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Motivations

Finding an analytic proof of Smale conjecture:
the topological space consisted of unknotted
loops is homotopic to the topological space of
round circles.

However,

e A topological proof of Smale conjecture was
given by Hatcher in 1983 [3].

e [t's more natural and intuitive to have an
analytic proof of Smale conjecture instead of
an abstract topological proof (see [2]).

* This poster is based on the joint work in [6].

Introduction

Assume f : R/Z — R is sufficiently smooth.
Let v = |0.f|, ds =~ dx the arclength element,
and 0, = 7 '0, the arclength differentiation.
Denote by T' = 0, f the unit tangent vector, by
I the set of arclength parameter of f, and by
k = 0°f the curvature vector of f. Define the
bending energy of f, K |f], by

| Il ds, 1)
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and the so-called Mobius energy (which is a
kind of electrostatic energy) of f, £y/ |f], by
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where D(f(o), f(s)) denotes the minimum
length of subarcs of f with end points f(o)
and f(s), o and s both denote the arclength
parameter of f. Let the total energy of f be

Eapalf] =a - Klfl+v-Eulfl+A-LIf], 3

where L] f] is the total length of curve f and
o, v, A are non-negative constants. Note that
the Mobius energy &,/ is induced from a
renormalized electrostatic energy. Also, as
a > 0,v = 01in Eq.(3), the total energy
functional &, 5 ) corresponds to the
Euler-Bernoulli model of elastic curves.

Below we investigate the L* gradient flows of
Ea~f]- The energy decreasing evolution
equation induced from &, s\ can be written as,

K[

O f = —2a-Vik K+A-k—7-Hsy (4)
where the covariant derivative V1 denotes
the normal component of 9,7, and

H;:R/Z — R’ is induced from the so-called
Gateaux differential of £,;. Notice that the
leading term of this parabolic equation (4),
VZk, is fourth-order, H; is a pseudo
differential operator of third-order (see [4]),
and keeps the curve f; away from
self-intersection (embedding) all the time.

The short time existence of (4) is a standard
matter. Notice that H is non-local, and whose
differential-order is less than the highest term
VZk in the linearized equation of Eq.(4). Hence
H s remains a compact operator between the
relevant parabolic Holder spaces. Theretfore,
the short time existence can be argued the
same as the case of curve-straightening flow
(e.g., see [7], in which H s doesn’t appear).
Thus we just need to focus on the long time
existence and the asymptotics (see the Main
Theorem below).

Main Theorem
Let fy be a given smooth initial loop in the
Euclidean 3-space. Assume f; is the solution of

atf — _vgoz,%)\[f]7

where «, v, A are non-negative constants.
Then,

1. the solution of evolution equation f; remains
smooth for all ¢ > 0;

2. the asymptotic solution, f., is an
equilibrium configuration of &, , ), 1.e., f
satisfies

5504,%)\[foo] = 0.

In the proof of the main theorem, the
mathematical analysis follows [7], namely it is
based on L* curvature estimates and
Gagliardo-Nirenberg interpolation inequalities.
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Numerical Simulations

The algorithm here is an extension of that in
7], where we exploited the divergence form ot
the main part in the evolution equation and
the partition into a second-order
parabolic-elliptic system for the position
vector f and the curvature vector k. We choose

a = 1, and write

Of + 05 (Outi + 3 |K[°T) +vH; = A&, (5)
0;f =k (6)

and discretize the problem using an
semi-implicit scheme in time and
piecewise-affine finite elements for the space
dependence.

Computational Experiments

Below we show examples in exhibit
interesting dynamical behavior for the
gradient flow equation in Egs.(5) and (6).

A (1,12)-knot initial curve Below shows an
example of competition between the elastic
energy and the Mobius energy during
untangling a unknotted loop of (1,12)-knot
type into a round circle. Notice that the shape
changes rapidly during ¢ = 0.011 and ¢ = 0.013.
Here we Choose l=a=7y=\

t=0.011

I

t=0.0125
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Below is a figure ot elastic energy via t. Tt shows
that the elastic energy was forced to increase
before t = 0.01 and then decreased rapidly
after ¢ = 0.01. The decreasing of the M&bius
energy is responsible for the phenomenon.

t=0.012
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A (2,3)-knot initial curve The figures below
show that a nearly flat trefoil remains in the
same knot type during the flow. Here we
choosei=a=7vy=\
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Curve straightening flow for the same
(2,3)-knot initial curve The figures below
show that the curve-straightening flow for the
same initial curve of nearly flat trefoil doesn’t

prevent from self-intersection. Here we choose

t=0 t=4 t=6
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A Remained Problem

e Are round circles the only equilibrium
configurations of the elastic knot energy,
Ea~. 10 the class of unknotted loops?

Notice that one already know that round
circles are equilibrium configurations of &, -
for all non-negative constants «, vy, A\. Thus it
the answer is positive, then combining with
our result in [6] gives an analytic proof of
Smale conjecture.

A figure-eight type initial curve The figures
below show that the part of two nearby arcs of
an almost flat figure-eight was initially pulled
apart. I—Iere we choose 5 = a =7 = \.

t = 0.0005
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Curve straightemng flow for the same
figure-eight type initial curve The figures
below show that the corresponding
curve-straightening flow (i.e., the case of v = 0
with the same initial curve as above behaves
differently Here we choose l=a= )\' O = 1.
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Other Applications
There are two aspects in applications. We hope
to explore them in the future.

1. Constructing approximate solutions of the
N-body problem (see [1]).

2.Modeling over-damped dynamics of
elastic rods (e.g., bio-polymers, see [/] and

[5]).
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