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Motivations
Finding an analytic proof of Smale conjecture:
the topological space consisted of unknotted
loops is homotopic to the topological space of
round circles.
However,
•A topological proof of Smale conjecture was

given by Hatcher in 1983 [3].
• It’s more natural and intuitive to have an

analytic proof of Smale conjecture instead of
an abstract topological proof (see [2]).

* This poster is based on the joint work in [6].

Introduction
Assume f : R/Z→ R3 is sufficiently smooth.
Let γ = |∂xf |, ds = γ dx the arclength element,
and ∂s = γ−1∂x the arclength differentiation.
Denote by T = ∂sf the unit tangent vector, by
I the set of arclength parameter of f , and by
κ = ∂2

sf the curvature vector of f . Define the
bending energy of f , K [f ], by

∫

I

|κ|2 ds, (1)

and the so-called Möbius energy (which is a
kind of electrostatic energy) of f , EM [f ], by

∫∫

S1×S1

[
1

|f (σ)− f (s)|2 −
1

D(f (σ), f (s))2

]
dsdσ,

(2)
where D(f (σ), f (s)) denotes the minimum
length of subarcs of f with end points f (σ)
and f (s), σ and s both denote the arclength
parameter of f . Let the total energy of f be

Eα,β,λ [f ] := α · K [f ] + γ · EM [f ] + λ · L[f ], (3)

where L[f ] is the total length of curve f and
α, γ, λ are non-negative constants. Note that
the Möbius energy EM is induced from a
renormalized electrostatic energy. Also, as
α > 0, γ = 0 in Eq.(3), the total energy
functional Eα,β,λ corresponds to the
Euler-Bernoulli model of elastic curves.

Below we investigate the L2 gradient flows of
Eα,γ,λ[f ]. The energy decreasing evolution
equation induced from Eα,β,λ can be written as,

∂tf = −2α · ∇2
sκ−

|κ|2
2

κ + λ · κ− γ · Hf , (4)

where the covariant derivative ∇sη denotes
the normal component of ∂sη, and
Hf : R/Z→ R3 is induced from the so-called
Gateaux differential of EM . Notice that the
leading term of this parabolic equation (4),
∇2

sκ, is fourth-order, Hf is a pseudo
differential operator of third-order (see [4]),
and keeps the curve ft away from
self-intersection (embedding) all the time.
The short time existence of (4) is a standard
matter. Notice that Hf is non-local, and whose
differential-order is less than the highest term
∇2

sκ in the linearized equation of Eq.(4). Hence
Hf remains a compact operator between the
relevant parabolic Hölder spaces. Therefore,
the short time existence can be argued the
same as the case of curve-straightening flow
(e.g., see [7], in which Hf doesn’t appear).
Thus we just need to focus on the long time
existence and the asymptotics (see the Main
Theorem below).

Main Theorem
Let f0 be a given smooth initial loop in the
Euclidean 3-space. Assume ft is the solution of

∂tf = −∇Eα,γ,λ[f ],

where α, γ, λ are non-negative constants.
Then,
1. the solution of evolution equation ft remains

smooth for all t > 0;
2. the asymptotic solution, f∞, is an

equilibrium configuration of Eα,γ,λ, i.e., f∞
satisfies

δEα,γ,λ[f∞] = 0.

In the proof of the main theorem, the
mathematical analysis follows [7], namely it is
based on L2 curvature estimates and
Gagliardo-Nirenberg interpolation inequalities.

Numerical Simulations
The algorithm here is an extension of that in
[7], where we exploited the divergence form of
the main part in the evolution equation and
the partition into a second-order
parabolic-elliptic system for the position
vector f and the curvature vector κ. We choose
α = 1

2, and write

∂tf + ∂s

(
∂sκ + 3

2 |κ|2 T
)

+ γHf = λκ, (5)
∂2

sf = κ (6)

and discretize the problem using an
semi-implicit scheme in time and
piecewise-affine finite elements for the space
dependence.

Computational Experiments
Below we show examples in exhibit
interesting dynamical behavior for the
gradient flow equation in Eqs.(5) and (6).

A (1,12)-knot initial curve Below shows an
example of competition between the elastic
energy and the Möbius energy during
untangling a unknotted loop of (1,12)-knot
type into a round circle. Notice that the shape
changes rapidly during t = 0.011 and t = 0.013.
Here we choose 1

2 = α = γ = λ.
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Below is a figure of elastic energy via t. It shows
that the elastic energy was forced to increase
before t = 0.01 and then decreased rapidly
after t = 0.01. The decreasing of the Möbius
energy is responsible for the phenomenon.
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A (2,3)-knot initial curve The figures below
show that a nearly flat trefoil remains in the
same knot type during the flow. Here we
choose 1

2 = α = γ = λ.
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Curve straightening flow for the same
(2,3)-knot initial curve The figures below
show that the curve-straightening flow for the
same initial curve of nearly flat trefoil doesn’t
prevent from self-intersection. Here we choose
1
2 = α = λ; 0 = γ.
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A figure-eight type initial curve The figures
below show that the part of two nearby arcs of
an almost flat figure-eight was initially pulled
apart. Here we choose 1

2 = α = γ = λ.

−2
0

2

−2
0

2
−0.05

0

0.05

t = 0

−2
0

2

−2
0

2
−0.2

0

0.2

t = 0.0005

−5
0

5

−2
0

2
−0.5

0

0.5

t = 0.005

−5
0

5

−1
0

1
−2

0

2

t = 0.05

−2
0

2

−0.5
0

0.5
−2

0

2

t = 0.1

−2
0

2

−0.5
0

0.5
−2

0

2

t = 1

Curve straightening flow for the same
figure-eight type initial curve The figures
below show that the corresponding
curve-straightening flow (i.e., the case of γ = 0
with the same initial curve as above behaves
differently. Here we choose 1

2 = α = λ; 0 = γ.
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A Remained Problem
•Are round circles the only equilibrium

configurations of the elastic knot energy,
Eα,γ,λ, in the class of unknotted loops?

Notice that one already know that round
circles are equilibrium configurations of Eα,γ,λ

for all non-negative constants α, γ, λ. Thus if
the answer is positive, then combining with
our result in [6] gives an analytic proof of
Smale conjecture.

Other Applications
There are two aspects in applications. We hope
to explore them in the future.

1. Constructing approximate solutions of the
N-body problem (see [1]).
2. Modeling over-damped dynamics of
elastic rods (e.g., bio-polymers, see [7] and
[5]).
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