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function. The formulation has twofold advantages. Firstly, the operator involved in the
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YF

studied in [4] for global convergence. We propose a

semismooth Levenberg-Marquardt method to solve the arising overdetermined system

of equations, and establish the global and local convergence results. Among others, the

superlinear (quadratic) rate of convergence is obtained under the strict complementarity

of the solution and a local error bound assumption, respectively. Numerical results verify

the advantages of the least-square reformulation for more difficult problems.

Key words. Second-order cone complementarity problem, Fischer-Burmeister function,

semismooth, Levenberg-Marquardt method.

1E-mail: shhpan@scut.edu.cn.
2Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

The author’s work is partially supported by National Science Council of Taiwan. E-mail:
jschen@math.ntnu.edu.tw, FAX: 886-2-29332342.

1



1 Introduction

We consider the second-order cone complementarity problem (SOCCP): to find ζ ∈ IRn

such that

F (ζ) ∈ K, G(ζ) ∈ K, 〈F (ζ), G(ζ)〉 = 0, (1)

where 〈·, ·〉 denotes the Euclidean inner product, F : IRn → IRn and G : IRn → IRn are

assumed to be continuously differentiable throughout this paper, and K is the Cartesian

product of second-order cones (SOCs), also called Lorentz cones [9]. In other words,

K = Kn1 ×Kn2 × · · · × Knq , (2)

where q, n1, . . . , nq ≥ 1, n1 + n2 + · · ·+ nq = n, and

Kni :=
{
(xi1, xi2) ∈ IR× IRni−1 | xi1 ≥ ‖xi2‖

}
,

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative real num-

bers. In the rest of this paper, corresponding to the Cartesian structure of K, we write

F = (F1, . . . , Fq) and G = (G1, . . . , Gq) with Fi and Gi being mappings from IRn to IRni .

An important special case of (1) corresponds to G(ζ) ≡ ζ, and then (1) reduce to

F (ζ) ∈ K, ζ ∈ K, 〈F (ζ), ζ〉 = 0. (3)

This is a natural extension of the nonlinear complementarity problem (NCP) [10, 11],

where K = IRn
+, the nonnegative orthant in IRn, corresponds to n1 = · · · = nq = 1 and

q = n. Another important special case of (1) corresponds to the Karush-Kuhn-Tucker

(KKT) conditions of the convex second-order cone program (SOCP):

minimize g(x)

subject to Ax = b, x ∈ K,
(4)

where g : IRn → IR is a twice continuously differentiable convex function, A ∈ IRm×n has

full row rank, and b ∈ IRm. The KKT conditions of (4) can be rewritten as (1) with

F (ζ) := x̂ + (I − AT (AAT )−1A)ζ, G(ζ) := ∇g(F (ζ))− AT (AAT )−1Aζ (5)

where x̂ ∈ IRn satisfies Ax = b; see [4] for details. The convex SOCP arises in many

applications from engineering design, finance, and robust optimization; see [1, 21] and

references therein. Motivated by [18] where the three-dimensional quasi-static frictional

contact was directly reformulated as a linear SOC complementarity problem, we believe

that, besides these applications, the SOCCP (1) will be found to have some applications

in engineering which can not reduce to SOCPs.

There have been proposed various methods for solving convex SOCPs and SOCCPs.

They include the interior point methods [1, 2, 21, 23, 30, 32], the smoothing Newton
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methods [6, 13, 16], the merit function method [4] and the semismooth Newton method

[17], where the last three kinds of methods are all based on an SOC complementarity

function or a merit function. Specifically, we call φ : IRni × IRni → IRni (ψ : IRni × IRni →
IR+) an SOC complementarity function (a merit function) associated with Kni if

φ(xi, yi) = 0 (ψ(xi, yi) = 0) ⇐⇒ x ∈ Kni , y ∈ Kni , 〈xi, yi〉 = 0. (6)

Clearly, when ni = 1, an SOC complementarity function reduces to an NCP function.

A popular choice of φ is the Fischer-Burmeister (FB) function φ
FB

: IRni×IRni → IRni ,

defined by

φ
FB

(xi, yi) := (x2
i + y2

i )
1/2 − (xi + yi), (7)

where x2
i = xi ◦ xi means the Jordan product of xi with itself, x

1/2
i is a vector such that

(x
1/2
i )2 = xi, and xi + yi denotes the usual componentwise addition of vectors. This

function is well defined for all xi, yi ∈ IRni , and was shown in [13] to satisfy (6). Hence,

the SOCCP (1) can be reformulated as the following system of nonsmooth equations

Φ
FB

(ζ) :=




φ
FB

(F1(ζ), G1(ζ))
...

φ
FB

(Fq(ζ), Gq(ζ))


 = 0, (8)

which induces a natural merit function Ψ
FB

: IRn → IR+ for (1), defined by

Ψ
FB

(ζ) :=
1

2
‖Φ

FB
(ζ)‖2 =

q∑
i=1

ψ
FB

(Fi(ζ), Gi(ζ)) (9)

with

ψ
FB

(xi, yi) :=
1

2
‖φ

FB
(xi, yi)‖2. (10)

The function ψ
FB

was well-studied in [4] and used to develop a merit function approach.

Recently, we analyzed in [24] that, to guarantee the boundedness of the level sets of the

FB merit function Ψ
FB

, it requires that the mapping F at least has the uniform Cartesian

P -property. This means that φ
FB

has some limitations in handling monotone SOCCPs.

Motivated by the work [19] for the NCPs, in this paper we give a new reformulation

for (1) to overcome the disadvantage of φ
FB

. Let φ0 : IRni × IRni → IR+ be given by

φ0(xi, yi) := max
{
0, xT

i yi

}
, (11)

and define the operator Φ : IRn → IRn+q as

Φ(ζ) :=




ρ1φFB
(F1(ζ), G1(ζ))

...

ρ1φFB
(Fq(ζ), Gq(ζ))

ρ2φ0(F1(ζ), G1(ζ))
...

ρ2φ0(Fq(ζ), Gq(ζ))




, (12)
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where ρ1, ρ2 are arbitrary but fixed constants from (0, 1) used as the weights between

the first type of terms and the second one. In other words, we define Φ by appending q

components to the mapping Φ
FB

. These additional components, as will be shown later,

play a crucial role in overcoming the disadvantage of Ψ
FB

mentioned above. Noting that

ζ∗ solves Φ(ζ) = 0 ⇐⇒ ζ∗ solves (1), (13)

we have the following nonlinear least-square reformulation for the SOCCP (1)

min
ζ∈IRn

Ψ(ζ) :=
1

2
‖Φ(ζ)‖2 =

q∑
i=1

ψ(Fi(ζ), Gi(ζ)), (14)

where

ψ(xi, yi) := ρ2
1ψFB

(xi, yi) +
1

2
ρ2

2φ0(xi, yi)
2. (15)

The reformulation has the following advantages: Ψ belongs to the class of merit func-

tions f
YF

introduced in [4], which will be shown to have more desirable properties than

Ψ
FB

; and Φ inherits the semismoothness of Φ
FB

even strong semismoothness under some

conditions. By this, we propose a semismooth Levenberg-Marquardt type method for

solving (14), and establish the superlinear (quadratic) rate of convergence under the

strict complementarity of the solution and a local error bound assumption, respectively.

Throughout this paper, I represents an identity matrix of suitable dimension, IRn

denotes the space of n-dimensional real column vectors, and IRn1×· · ·× IRnq is identified

with IRn1+···+nq . Thus, (x1, . . . , xq) ∈ IRn1 × · · · × IRnq is viewed as a column vector in

IRn1+···+nq . For a differentiable mapping F : IRn → IRm, ∇F (x) denotes the transpose of

the Jacobian F ′(x). For a (not necessarily symmetric) square matrix A ∈ IRn×n, we write

A º O (respectively, A Â O) to mean A is positive semidefinite (respectively, positive

definite). Given a finite number of matrices Q1, . . . , Qn, we denote the block diagonal

matrix with these matrices as block diagonals by diag(Q1, . . . , Qn). If J and B are index

sets such that J ,B ⊆ {1, 2, . . . , q}, we denote PJB by the block matrix consisting of

the sub-matrices Pjk ∈ IRnj×nk of P with j ∈ J and k ∈ B. We denote int(Kn) and

bd(Kn) by the interior and the boundary of Kn, respectively, and denote bd+(Kn) by the

boundary of Kn excluding the origion.

2 Preliminaries

This section recalls some background materials that will be used in the sequel. We start

with the definition of Jordan product. For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, we

define their Jordan product [9] associated with Kn as

x ◦ y := (〈x, y〉, x1y2 + y1x2). (16)
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The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative, which

is a main source on complication in the analysis of SOCCPs. The identity element under

this product is e := (1, 0, . . . , 0)T ∈ IRn. Given a vector x = (x1, x2) ∈ IR× IRn−1, let

Lx :=

[
x1 xT

2

x2 x1I

]
, (17)

which can be viewed as a linear mapping from IRn to IRn. It is easy to verify Lxy = x ◦ y

and Lx+y = Lx + Ly for any x, y ∈ IRn. Furthermore, x ∈ Kn if and only if Lx º O and

x ∈ int(Kn) if and only if Lx Â O. When x ∈ int(Kn), Lx is invertible with

L−1
x =

1

det(x)




x1 −xT
2

−x2
det(x)

x1

I +
1

x1

x2x
T
2


 , (18)

where det(x) denotes the determinant of x defined by det(x) := x2
1 − ‖x2‖2.

From [9, 13], we recall that each x = (x1, x2) ∈ IR × IRn−1 admits a spectral factor-

ization associated with Kn, of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (19)

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values and the associated spectral vectors

of x, respectively, defined by

λi(x) := x1 + (−1)i‖x2‖, u(i)
x :=

1

2

(
1, (−1)ix̄2

)
,

with x̄2 = x2/‖x2‖ if x2 6= 0 and otherwise being any vector in IRn−1 satisfying ‖x̄2‖ = 1.

If x2 6= 0, the factorization is unique. The spectral factorization of x, x2 as well as x1/2

have various interesting properties (see [13]). We here list some that will be used later.

Property 2.1 For any x = (x1, x2) ∈ IR × IRn−1 with the spectral values λ1(x), λ2(x)

and spectral vectors u
(1)
x , u

(2)
x given as above, we have the following results:

(a) x ∈ Kn ⇐⇒ 0 ≤ λ1(x) ≤ λ2(x), and x ∈ int(Kn) ⇐⇒ 0 < λ1(x) ≤ λ2(x).

(b) x2 = [λ1(x)]2 · u(1)
x + [λ2(x)]2 · u(2)

x ∈ Kn.

(c) x1/2 =
√

λ1(x) · u(1)
x +

√
λ2(x) · u(2)

x ∈ Kn if x ∈ Kn.

We next present Cartesian P -properties for a matrix and a nonlinear transformation.

Definition 2.1 [5] A matrix M ∈ IRn×n is said to have
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(a) the Cartesian P -property if for any nonzero ζ = (ζ1, . . . , ζq) ∈ IRn with ζi ∈ IRni,

there exists an index ν ∈ {1, 2, . . . , q} such that 〈ζν , (Mζ)ν〉 > 0;

(b) the Cartesian P0-property if for any nonzero ζ = (ζ1, . . . , ζq) ∈ IRn with ζi ∈ IRni,

there exists an index ν ∈ {1, 2, . . . , q} such that ζν 6= 0 and 〈ζν , (Mζ)ν〉 ≥ 0.

Definition 2.2 [5] The mappings F = (F1, . . . , Fq), G = (G1, . . . , Gq) are said to have

(a) the joint uniform Cartesian P -property if there exists a constant ρ > 0 such that,

for any ζ, ξ ∈ IRn, there exists ν ∈ {1, 2, . . . , q} such that

〈Fν(ζ)− Fν(ξ), Gν(ζ)−Gν(ξ)〉 ≥ ρ‖ζ − ξ‖2.

(b) the joint Cartesian P -property if for any ζ, ξ ∈ IRn with G(ζ) 6= G(ξ), there exists

ν ∈ {1, 2, . . . , q} such that 〈Fν(ζ)− Fν(ξ), Gν(ζ)−Gν(ξ)〉 > 0.

(c) the joint Cartesian P0-property if for any ζ, ξ ∈ IRn with G(ζ) 6= G(ξ), there exists

ν ∈ {1, 2, . . . , q} such that Gν(ζ) 6= Gν(ξ) and 〈Fν(ζ)− Fν(ξ), Gν(ζ)−Gν(ξ)〉 ≥ 0.

When G(ζ) ≡ ζ, Definition 2.2 gives Cartesian P -properties of the mapping F . Obvi-

ously, the uniform Cartesian P -property =⇒ the Cartesian P -property =⇒ the Cartesian

P0-property. Also, a continuously differentiable mapping has the Cartesian P0-property if

and only if its Jacobian at every point has the Cartesian P0-property, and if the Jacobian

of a continuously differentiable mapping has the Cartesian P -property at every point,

then the mapping has the Cartesian P -property. From Definition 2.1, we also see that

the positive semidefinitness of a matrix implies its Cartesian P0-property.

Given a mapping H : IRn → IRm, if H is locally Lipschitz continuous, then the set

∂BH(ζ) :=
{
V ∈ IRm×n | ∃{ζk} ⊆ DH : ζk → ζ, H ′(ζk) → V

}

is nonempty and is called the B-subdifferential of H at ζ, where DH ⊆ IRn denotes the

set of points at which H is differentiable. The convex hull ∂H(ζ) := conv∂BH(ζ) is the

generalized Jacobian of H at ζ in the sense of Clarke [7]. For the concepts of (strongly)

semismooth functions, please refer to [26, 27] for details.

3 Properties of the operator Φ

In this section, we study several important properties of the operator Φ. We first present

two technical lemmas to summarize some properties of φ
FB

and φ0, respectively. The

results of the first lemma can be found in [13, Proposition 4.2], [4, Proposition 2], [28,

Corollary 3.3] and [24, Proposition 3.1], and the results of the second lemma are direct.
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Lemma 3.1 Let φ
FB

: IRn× IRn → IRn be defined by (7). Then the following results hold.

(a) φ
FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn and 〈x, y〉 = 0.

(b) The squared norm of φ
FB

, namely ψ
FB

, is continuously differentiable everywhere.

(c) φ
FB

is strongly semismooth everywhere.

(d) For any given x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, each element [Ux − I Uy − I]

of the B-subdifferential ∂Bφ
FB

(x, y) has the following representation:

(d.1) If x2 + y2 ∈ int(Kn), then Ux = L−1
(x2+y2)1/2Lx and Uy = L−1

(x2+y2)1/2Ly.

(d.2) If x2 + y2 ∈ bd(Kn) and (x, y) 6= (0, 0), then [Ux, Uy] belongs to the set

{[
1

2
√

2w1

(
1 w̄T

2

w̄2 4I − w̄2w̄
T
2

)
Lx +

1

2

(
1

−w̄2

)
uT ,

1

2
√

2w1

(
1 w̄T

2

w̄2 4I − w̄2w̄
T
2

)
Ly +

1

2

(
1

−w̄2

)
vT

] ∣∣∣∣

u = (u1, u2), v = (v1, v2) satisfy |u1| ≤ ‖u2‖ ≤ 1, |u1| ≤ ‖u2‖ ≤ 1

}
,

where w = (w1, w2) := x2 + y2, w̄2 = w2/‖w2‖.
(d.3) If (x, y) = (0, 0), then [Vx, Vy] belongs to

{
[Lû, Lv̂] | ‖û‖2 + ‖v̂‖2 = 1

}
or

{[1

2

(
1

w̄2

)
ξT +

1

2

(
1

−w̄2

)
uT + 2

(
0 0

0 (I − w̄2w̄
T
2 )

)
Ls,

1

2

(
1

w̄2

)
ηT +

1

2

(
1

−w̄2

)
vT + 2

(
0 0

0 (I − w̄2w̄
T
2 )

)
Lω

] ∣∣∣

w̄2 ∈ IRn−1 satisfies ‖w̄2‖ = 1 and u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2),

η = (η1, η2), s = (s1, s2), ω = (ω1, ω2) ∈ IR× IRn−1 satisfy |ξ1| ≤ ‖ξ2‖ ≤ 1,

|u1| ≤ ‖u2‖ ≤ 1, |η1| ≤ ‖η2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, ‖s‖2 + ‖ω‖2 ≤ 1/2

}
.

Lemma 3.2 Let φ0 : IRn × IRn → IR+ be defined as in (11). Then,

(a) the square of φ0 is continuously differentiable everywhere;

(b) φ0 is strongly semismooth everywhere on IRn × IRn;

(c) the B-subdifferential ∂Bφ0(x, y) of φ0 at any (x, y) ∈ IRn × IRn is given by

∂Bφ0(x, y) = [∂B(xT y)+yT ∂B(xT y)+xT ],
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where

∂B(xT y)+ =




{1} if xT y > 0,

{1, 0} if xT y = 0,

{0} if xT y < 0.

Using Lemma 3.1 (b) and Lemma 3.2 (b), we readily get the semismoothness of Φ.

Proposition 3.1 The operator Φ : IRn → IRn+q defined by (12) is semismooth. If, in

addition, F ′ and G′ are Lipschitz continuous, then Φ is strongly semismooth.

Proof. Let Φi denote the i-th component function of Φ for i = 1, 2, . . . , 2q, i.e., Φi(ζ) =

φ
FB

(Fi(ζ), Gi(ζ)) for i = 1, 2, . . . , q and Φi(ζ) = φ0(Fi(ζ), Gi(ζ)) for i = q + 1, . . . , 2q.

Then, the mapping Φ is (strongly) semismooth if every Φi is (strongly) semismooth. For

i = 1, 2, . . . , q, Φi : IRn → IRni is the composite of the strongly semismooth function φ
FB

and the smooth function ζ 7→ (Fi(ζ), Gi(ζ)), whereas Φq+i : IRn → IR is the composite

of the strongly semismooth function φ0 and the function ζ 7→ (Fi(ζ), Gi(ζ)). Moreover,

when F ′ and G′ are Lipschitz continuous, ζ 7→ (Fi(ζ), Gi(ζ)) is strongly semismooth.

By [12, Theorem 19], we have that every component function of Φ is semismooth, and

strongly semismooth if F ′ and G′ are Lipschitz continuous. 2

Next we give an estimation for the B-subdifferential of the operator Φ at any ζ ∈ IRn.

Proposition 3.2 Let Φ: IRn → IRn+q be defined by (12). Then, for any given ζ ∈ IRn,

∂BΦ(ζ)T ⊆ ∇F (ζ) [ρ1(A(ζ)− I) ρ2C(ζ)] +∇G(ζ) [ρ1(B(ζ)− I) ρ2D(ζ)]

where C(ζ) = diag(C1(ζ), . . . , Cq(ζ)) and D(ζ) = diag(D1(ζ), . . . , Dq(ζ)) with

Ci(ζ) ∈ Gi(ζ)∂B(Fi(ζ)T Gi(ζ))+ and Di(ζ) ∈ Fi(ζ)∂B(Fi(ζ)T Gi(ζ))+,

and A(ζ) = diag(A1(ζ), . . . , Aq(ζ)) and B(ζ) = diag(B1(ζ), . . . , Bq(ζ)) with the block

diagonals Ai(ζ), Bi(ζ) ∈ IRni×ni having the following representation:

(a) If Fi(ζ)2 + Gi(ζ)2 ∈ int(Kni), then Ai(ζ) = LFi(ζ)L
−1
zi(ζ) and Bi(ζ) = LGi(ζ)L

−1
zi(ζ),

where zi(ζ) = (Fi(ζ)2 + Gi(ζ)2)1/2.

(b) If Fi(ζ)2 + Gi(ζ)2 ∈ bd+(Kni), then [Ai(ζ), Gi(ζ)] belongs to the set
{[

1

2
√

2wi1(ζ)
LFi(ζ)

(
1 w̄i2(ζ)T

w̄i2(ζ) 4I − w̄i2(ζ)w̄i2(ζ)T

)
+

1

2
ui

(
1,−w̄i2(ζ)T

)
,

1

2
√

2wi1(ζ)
LGi(ζ)

(
1 w̄i2(ζ)T

w̄i2(ζ) 4I − w̄i2(ζ)w̄i2(ζ)T

)
+

1

2
vi

(
1,−w̄i2(ζ)T

) ] ∣∣∣∣

ui = (ui1, ui2), vi = (vi1, vi2) satisfy |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1

}
,

where wi(ζ) = (wi1(ζ), wi2(ζ)) = Fi(ζ)2 + Gi(ζ)2 and w̄i2(ζ) = wi2(ζ)/‖wi2(ζ)‖.
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(c) If (Fi(ζ), Gi(ζ)) = (0, 0), then [Ai(ζ), Bi(ζ)] ∈ {[Lûi
, Lv̂i

] | ‖ûi‖2 +‖v̂i‖2 = 1} or
{[

1

2
ξi

(
1, w̄T

i2

)− 1

2
ui

(−1, w̄T
i2

)
+ 2Lsi

(
0 0

0 (I − w̄i2w̄
T
i2)

)
,

1

2
ηi

(
1, w̄T

i2

)− 1

2
vi

(−1, w̄T
i2

)
+ 2Lωi

(
0 0

0 (I − w̄i2w̄
T
i2)

)] ∣∣∣

w̄i2 ∈ IRni−1 satisfies ‖w̄i2‖ = 1 and ξi = (ξi1, ξi2), ui = (ui1, ui2), ηi = (ηi1, ηi2)

vi = (vi1, vi2), si = (si1, si2), ωi = (ωi1, ωi2) satisfy |ξ1| ≤ ‖ξ2‖ ≤ 1,

|ui1| ≤ ‖ui2‖ ≤ 1, |ηi1| ≤ ‖ηi2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1, ‖si‖2 + ‖ωi‖2 ≤ 1/2

}
.

Proof. Let Φi denote the i-th component function of Φ, i.e., Φi(ζ) = φ
FB

(Fi(ζ), Gi(ζ))

and Φq+i(ζ) = φ0(Fi(ζ), Gi(ζ)) for i = 1, . . . , q. By the definition of the B-subdifferential,

∂BΦ(ζ)T ⊆ ∂BΦ1(ζ)T × ∂BΦ2(ζ)T × · · · × ∂BΦ2q(ζ)T , (20)

where the latter means the set of all matrices whose (ni−1+1)-th to ni-th columns belong

to ∂BΦi(ζ)T with n0 = 0, and (n+ i)-th column belongs to ∂BΦq+i(ζ)T . Notice that

∂BΦi(ζ)T ⊆ ρ1[∇Fi(ζ) ∇Gi(ζ)] ∂Bφ
FB

(Fi(ζ), Gi(ζ))T ,

∂BΦq+i(ζ)T ⊆ ρ2[∇Fi(ζ) ∇Gi(ζ)] ∂Bφ0(Fi(ζ), Gi(ζ))T . (21)

Moreover, using Lemma 3.1 (d) and Lemma 3.2 (c), each element in ∂Bφ
FB

(Fi(ζ), Gi(ζ))T

and ∂Bφ0(Fi(ζ), Gi(ζ))T has the form of

(
Ai(ζ)− I

Bi(ζ)− I

)
and

(
Ci(ζ)

Di(ζ)

)
, respectively,

with Ai(ζ), Bi(ζ) and Ci(ζ), Di(ζ) for i = 1, 2, . . . , q characterized as in the proposition.

Therefore, combining with equations (20)–(21) yields the desired result. 2

To prove the fast local convergence of nonsmooth Levenberg-Marquardt methods, we

need to know that under what assumptions every element H ∈ ∂BΦ(ζ∗) has full rank n,

where ζ∗ is an optimal solution of the SOCCP (1). To the end, define the index sets

I :=
{

i ∈ {1, 2, . . . , q} | Fi(ζ
∗) = 0, Gi(ζ

∗) ∈ int(Kni)
}

,

B :=
{
i ∈ {1, 2, . . . , q} | Fi(ζ

∗) ∈ bd+(Kni), Gi(ζ
∗) ∈ bd+(Kni)

}
,

J :=
{

i ∈ {1, 2, . . . , q} | Fi(ζ
∗) ∈ int(Kni), Gi(ζ

∗) = 0
}

. (22)

If ζ∗ satisfies strict complementarity, i.e., Fi(ζ
∗) + Gi(ζ

∗) ∈ int(Kni) for all i, then

{1, 2, . . . , q} can be partitioned as I ∪ B ∪ J . Thus, suppose that ∇G(ζ∗) is invert-

ible, then by rearrangement the matrix P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗) can be rewritten as

P (ζ∗) =




P (ζ∗)II P (ζ∗)IB P (ζ∗)IJ
P (ζ∗)BI P (ζ∗)BB P (ζ∗)BJ
P (ζ∗)JI P (ζ∗)JB P (ζ∗)JJ


 .
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Now we have the following results for the full rank of every element H ∈ ∂BΦ(ζ∗).

Theorem 3.1 Let ζ∗ be a strictly complementary solution of (1). Suppose that ∇G(ζ∗)
is invertible and let P (ζ∗) = ∇G(ζ∗)−1∇F (ζ∗). If P (ζ∗)II is nonsingular and its Schur-

complement P̂ (ζ∗)II := P (ζ∗)BB − P (ζ∗)BIP (ζ∗)−1
IIP (ζ∗)IB, in the matrix

(
P (ζ∗)II P (ζ∗)IB
P (ζ∗)BI P (ζ∗)BB

)

has the Cartesian P -property, then every element H ∈ ∂BΦ(ζ∗) has full column rank n.

Proof. Let H ∈ ∂BΦ(ζ∗). By Proposition 3.2, H =

(
ρ1H1

ρ2H2

)
with HT

1 from the set

∂BΦ1(ζ
∗)T ×· · ·×∂BΦq(ζ

∗)T . From Theorem 4.1 of [24], it follows that HT
1 is nonsingular

under the given assumptions. This implies the desired result rank(H) = n. 2

The proof of Theorem 3.1 is based on the important property of the first block H1.

However, we see that when the first block H1 is singular, the second block H2 may con-

tribute something to guarantee that H has full column rank n.

To close this section, we present a technical lemma that will be used in Section 5.

Lemma 3.3 Let ζ∗ be a solution of (1) such that all elements in ∂BΦ(ζ∗) have full

column rank. Then, there exist constants ε > 0 and c > 0 such that ‖(HT H)−1‖ ≤ c for

all ‖ζ − ζ∗‖ < ε and all H ∈ ∂BΦ(ζ). Furthermore, for any given ν̄ > 0, HT H + νI are

uniformly positive definite for all ν ∈ [0, ν̄] and H ∈ ∂BΦ(ζ) with ‖ζ − ζ∗‖ < ε.

Proof. The proof is similar to [26, Lemma 2.6]. For completeness, we here include it.

Suppose that the claim of the lemma is not true. Then there exists a sequence {ζk}
converging to ζ∗ and a corresponding sequence of matrices {Hk} with Hk ∈ ∂BΦ(ζk) for

all k ∈ IN such that either HT
k Hk is singular or ‖(HT

k Hk)
−1‖ → +∞ on a subsequence.

Noting that HT
k Hk is symmetric positive semidefinite, for the nonsingular case we have

‖(HT
k Hk)

−1‖ =
1

λmin(HT
k Hk)

,

which implies that the condition ‖(HT
k Hk)

−1‖ → +∞ is equivalent to λmin(H
T
k Hk) → 0.

Since ζk → ζ∗ and the mapping ζ 7→ ∂BΦ(ζ) is upper semicontinuous, it follows that

the sequence {Hk} is bounded, and hence it has a convergent subsequence. Let H∗ be

a limit of such a sequence. Then λmin(H
T
∗ H∗) = 0 by the continuity of the minimum

eigenvalue. This means that HT
∗ H∗ is singular. However, from the fact that the mapping

ζ 7→ ∂BΦ(ζ) is closed, we have H∗ ∈ ∂BΦ(ζ∗), which by the given condition implies that

HT
∗ H∗ is nonsingular. Thus, we obtain a contradiction.
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By the definition of matrix norm and the result of the first part, there exist constants

ε > 0 and c > 0 such that [λmin(H
T H + νI)]−1 = ‖(HT H + νI)−1‖ ≤ c for all ν ∈ [0, ν̄]

and H ∈ ∂BΦ(ζ) with ζ with ‖ζ − ζ∗‖ < ε. This implies that

uT (HT H + νI)u ≥ λmin(H
T H + νI)‖u‖2 ≥ 1

c
‖u‖2 ∀ u ∈ IRn.

Therefore, the matrices HT H + νI are uniformly positive definite. 2

4 Properties of the merit function Ψ

This section is devoted to the favorable properties of Ψ defined by (14)–(15). For this

purpose, we need the following technical lemma which summarizes the properties of ψ.

Lemma 4.1 Let ψ : IRn × IRn → IR+ be defined as in (15). Then, for any x, y ∈ IRn,

(a) ψ(x, y) = 0 ⇐⇒ ψ
FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0;

(b) ψ(x, y) is continuously differentiable;

(c) 〈x,∇xψ(x, y)〉+ 〈y,∇yψ(x, y)〉 ≥ 2ψ(x, y);

(d) 〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and the equality holds if and only if ψ(x, y) = 0;

(e) ψ(x, y) = 0 ⇐⇒ ∇ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0 ⇐⇒ ∇yψ(x, y) = 0.

Proof. Part (a) is direct by the definition of ψ, and part (b) is from Lemma 3.1 (b) and

Lemma 3.2 (a). We next consider part (c). By the definition of ψ, for any x, y ∈ IRn,

∇xψ(x, y) = ρ2
1∇xψFB

(x, y) + ρ2
2φ0(x, y)y,

∇yψ(x, y) = ρ2
1∇yψFB

(x, y) + ρ2
2φ0(x, y)x. (23)

From [4, Lemma 6(a)] and the definition of φ0(x, y), it then follows that

〈x,∇xψ(x, y)〉+ 〈y,∇yψ(x, y)〉
= ρ2

1 [〈x,∇xψFB
(x, y)〉+ 〈y,∇yψFB

(x, y)〉] + 2ρ2
2φ0(x, y)xT y

= ρ2
1‖φFB

(x, y)‖2 + 2ρ2
2φ0(x, y)2

= 2

(
ρ2

1ψFB
(x, y) +

1

2
ρ2

2φ0(x, y)2

)
+ ρ2

2φ0(x, y)2

≥ 2ψ(x, y).
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(d) Using the formulas in (23) and [4, Lemma 6 (a)], it follows that

〈∇xψ(x, y),∇yψ(x, y)〉 = ρ4
1〈∇xψFB

(x, y),∇yψFB
(x, y)〉+ ρ4

2x
T yφ0(x, y)2

+ρ2
1ρ

2
2φ0(x, y) [〈x,∇xψFB

(x, y)〉+ 〈y,∇yψFB
(x, y)〉]

= ρ4
1〈∇xψFB

(x, y),∇yψFB
(x, y)〉+ ρ4

2φ0(x, y)3

+2ρ2
1ρ

2
2φ0(x, y)ψ

FB
(x, y). (24)

Note that for the second equality, we use the fact

xT yφ0(x, y)2 = xT y
(
max{0, xT y})2

=

{
(xT y)3 if xT y ≥ 0,

0 otherwise,

which says xT yφ0(x, y) = φ0(x, y)3. The first term on the right hand side of (24) is

nonnegative by [4, Lemma 6 (b)], and the last two terms are also nonnegative. Therefore,

〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and moreover, 〈∇xψ(x, y),∇yψ(x, y)〉 = 0 if and only if

〈∇xψFB
(x, y),∇yψFB

(x, y)〉 = 0 and φ0(x, y) = 0,

which, together with [4, Lemma 6(b)], implies the desired result.

(e) If ψ(x, y) = 0, then from the definition of ψ, we have φ
FB

(x, y) = 0 and φ0(x, y) = 0.

From Proposition 1 of [4], we immediately obtain ∇xψFB
(x, y) = ∇yψFB

(x, y) = 0, and

consequently ∇xψ(x, y) = 0 and ∇yψ(x, y) = 0 by (23). If ∇ψ(x, y) = 0, then by part (c)

and the nonnegativity of ψ we get ψ(x, y) = 0. Thus we prove the first equivalence. For

the second equivalence, it suffices to prove the sufficiency. Suppose that ∇xψ(x, y) = 0.

From part (d), we readily obtain ψ(x, y) = 0, which together with part (a) and (23)

implies ∇ψ(x, y) = 0. Consequently, ∇ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0. Similarly,

∇ψ(x, y) = 0 ⇐⇒ ∇yψ(x, y) = 0. This implies the last equivalence. 2

From Lemma 4.1 (b), the function Ψ is continuously differentiable. Also, by Lemma

4.1 (d), we can prove every stationary point of Ψ is a solution of (1) under mild conditions.

Proposition 4.1 Let Ψ : IRn → IR+ be defined by (14)–(15). Then every stationary

point of Ψ is a solution of the SOCCP (1) under one of the following assumptions:

(a) ∇F (ζ) and −∇G(ζ) are column monotone 3 for any ζ ∈ IRn.

(b) For any ζ ∈ IRn, ∇G(ζ) is invertible and ∇G(ζ)−1∇F (ζ) has Cartesian P0-property.

Proof. When the assumption (a) is satisfied, using the same arguments as those of [4,

Proposition 3] yields the desired result. Now suppose that the assumption (b) holds. Let

ζ̄ be an arbitrary stationary point of Ψ and write

∇xψ(F (ζ), G(ζ)) =
(∇x1ψ(F1(ζ), G1(ζ)), . . . ,∇xqψ(Fq(ζ), Gq(ζ))

)
,

∇yψ(F (ζ), G(ζ)) =
(∇y1ψ(F1(ζ), G1(ζ)), . . . ,∇yqψ(Fq(ζ), Gq(ζ))

)
.

3M1,M2 ∈ IRn×n are column monotone if, for any u, v ∈ IRn, M1u + M2v = 0 ⇒ uT v = 0.
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Then,

∇Ψ(ζ̄) = ∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄)) +∇G(ζ̄)∇yψ(F (ζ̄), G(ζ̄)) = 0,

which, by the invertibility of ∇G, can be rewritten as

∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄)) +∇yψ(F (ζ̄), G(ζ̄)) = 0. (25)

Suppose that ζ̄ is not the solution of (1). By Lemma 4.1 (e), we necessarily have

∇xψ(F (ζ̄), G(ζ̄)) 6= 0.

From the Cartesian P0-property of∇G(ζ̄)−1∇F (ζ̄), there exists an index ν ∈ {1, 2, . . . , q}
such that ∇xνψ(Fν(ζ̄), Gν(ζ̄)) 6= 0 and

〈∇xνψ(Fν(ζ̄), Gν(ζ̄)),
[∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))

]
ν

〉 ≥ 0. (26)

In addition, notice that (25) is equivalent to

[∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))
]
i
+∇yi

ψ(Fi(ζ̄), Gi(ζ̄)) = 0, i = 1, 2, . . . , q.

Making the inner product with ∇xνψ(F (ζ̄), G(ζ̄)) for the νth equality, we obtain

〈∇xνψ(Fν(ζ̄), Gν(ζ̄)),
[∇G(ζ̄)−1∇F (ζ̄)∇xψ(F (ζ̄), G(ζ̄))

]
ν

〉

+〈∇xνψ(Fν(ζ̄), Gν(ζ̄)),∇yνψ(Fν(ζ̄), Gν(ζ̄))〉 = 0.

The first term on the left hand side is nonnegative by (26), whereas the second term is

positive by Lemma 4.1 (d) since ζ is not a solution of (1). This leads to a contradiction,

and consequently ζ̄ must be a solution of (1). 2

When ∇G(ζ) is invertible for any ζ ∈ IRn, the assumption in (a) is equivalent to the

positive semidefiniteness of ∇G(ζ)−1∇F (ζ) at any ζ ∈ IRn, which implies the Cartesian

P0-property of ∇G(ζ)−1∇F (ζ). Thus, for the SOCCP (3), the assumption (a) is stronger

than the assumption (b) which is now equivalent to the Cartesian P0-property of F .

Next we provide a condition to guarantee the boundedness of the level sets of Ψ

LΨ(γ) := {ζ ∈ IRn | Ψ(ζ) ≤ γ}
for all γ ≥ 0. This property is important since it guarantees that the descent sequence

of Ψ must have a limit point, and furthermore, the solution set of (1) is bounded if it is

nonempty. It turns out that the following condition for F and G is sufficient.

Condition 4.1 For any sequence {ζk} satisfying ‖ζk‖ → +∞, whenever

lim sup ‖[−F (ζk)]+‖ < +∞ and lim sup ‖[−G(ζk)]+‖ < +∞, (27)

there exists an index ν ∈ {1, 2, . . . , q} such that lim sup
〈
Fν(ζ

k), Gν(ζ
k)

〉
= +∞.
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Proposition 4.2 If the mappings F and G satisfy Condition 4.1, then the level sets

LΨ(γ) are bounded for all γ ≥ 0.

Proof. Assume that there is a unbounded sequence {ζk} ⊆ LΨ(γ) for some γ ≥ 0. Since

Ψ(ζk) ≤ γ for all k, the sequence {Ψ
FB

(ζk)} is bounded. By Lemma 8 of [4],

lim sup ‖[−Fi(x
k)]+‖ < +∞ and lim sup ‖[−Gi(x

k)]+‖ < +∞

hold for all i ∈ {1, 2, . . . , q}. This shows that F and G satisfy Condition 4.1, and hence

there exists an index ν such that lim sup
〈
Fν(ζ

k), Gν(ζ
k)

〉
= +∞. From the definition of

Ψ, it follows that the sequence {Ψ(ζk)} is unbounded, which clearly contradicts the fact

that {ζk} ⊆ LΨ(γ). The proof is completed. 2

Condition 4.1 is rather weak to guarantee that Ψ has bounded level sets since, as

will be shown below, the condition is implied by the jointly monotone functions with a

strictly feasible point used in [4] for f
YF

, the jointly uniform Cartesian P -functions with

a feasible point, or the joint R̃01-functions in the following sense.

Definition 4.1 The mappings F,G : IRn → IRn are said to have the joint R̃01-property

if for any sequence {ζk} with

‖ζk‖ → +∞,
[−G(ζk)]+
‖ζk‖ → 0,

[−F (ζk)]+
‖ζk‖ → 0, (28)

there holds that

lim inf
k→+∞

〈F (ζk), G(ζk)〉
‖ζk‖ > 0. (29)

Proposition 4.3 Condition 4.1 is satisfied if one of the following assumptions holds:

(a) F and G are jointly monotone mappings satisfying lim
‖ζ‖→+∞

‖F (ζ)‖+ ‖G(ζ)‖ = +∞,

and there exists ζ̂ ∈ IRn such that F (ζ̂), G(ζ̂) ∈ int(K).

(b) F and G have jointly uniform Cartesian P -property, and there exists a point ζ̂ ∈ IRn

such that F (ζ̂), G(ζ̂) ∈ K.

(c) F and G have the joint R̃01-property.

Proof. In the proof, let {ζk} be a sequence such that ‖ζk‖ → +∞ and (27) holds.

(a) First, {λ1[F (ζk)]} and {λ1[G(ζk)]} must be bounded from below. If not, using

‖[−x]+‖2 = (max{0,−λ1(x)})2 + (max{0,−λ2(x)})2 ,
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we obtain lim sup ‖[−F (ζk)]+‖ = +∞ or lim sup ‖[−G(ζk)]+‖ = +∞, which contradicts

the assumption that {ζk} satisfies (27). Noting that ‖F (ζk)‖+ ‖G(ζk)‖ → +∞ and

‖F (ζk)‖+ ‖G(ζk)‖ =

√
λ2

1[F (ζk)] + λ2
2[F (ζk)]

2
+

√
λ2

1[G(ζk)] + λ2
2[G(ζk)]

2
,

the lower boundness of {λi[F (ζk)]} and {λi[G(ζk)]} for i = 1, 2 implies that

lim sup λ2[F (ζk)] = +∞ or lim sup λ2[G(ζk)] = +∞.

From the proof of [4, Lemma 9 (b)] it then follows that

lim sup
{
〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉

}
= +∞. (30)

Now suppose that Condition 4.1 is not satisfied. Then, we necessarily have

lim sup〈Fi(ζ
k), Gi(ζ

k)〉 < +∞ for all i = 1, 2, . . . , q.

In addition, from the joint monotonicity of F and G, we have

〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉 ≤ 〈F (ζk), G(ζk)〉+ 〈F (ζ̂), G(ζ̂)〉

=

q∑
i=1

〈Fi(ζ
k), Gi(ζ

k)〉+ 〈F (ζ̂), G(ζ̂)〉.

The last two equations imply lim sup{〈F (ζk), G(ζ̂)〉+ 〈F (ζ̂), G(ζk)〉} < +∞. This clearly

contradicts (30), and consequently the desired result follows.

(b) By Definition 2.2 (a), there exists a constant ρ > 0 such that

ρ‖ζk − ζ̂‖2 ≤ max
i∈{1,...,q}

{
〈Fi(ζ

k)− Fi(ζ̂), Gi(ζ
k)−Gi(ζ̂)〉

}

= 〈Fν(ζ
k), Gν(ζ

k)〉+ 〈Fν(ζ̂),−Gν(ζ
k)〉

+〈−Fν(ζ
k), Gν(ζ̂)〉+ 〈Fν(ζ̂), Gν(ζ̂)〉

≤ 〈Fν(ζ
k), Gν(ζ

k)〉+ 〈Fν(ζ̂), [−Gν(ζ
k)]+〉

+〈[−Fν(ζ
k)]+, Gν(ζ̂)〉+ 〈F (ζ̂), Gν(ζ̂)〉,

where ν is one of the indices for which the max is attained which we have, without loss

of generality, assumed to be independent of k, and the second inequality is since

Fν(ζ̂) ∈ Knν , Gν(ζ̂) ∈ Knν , [−Fν(ζ
k)]− ∈ −Knν , [−Gν(ζ

k)]− ∈ −Knν .

Dividing the last inequality by ‖ζk‖2 and taking the limit, it follows from (27) that

lim
k→+∞

〈Fν(ζ
k), Gν(ζ

k)〉
‖ζk‖2

≥ ρ > 0,

15



which immediately implies the result.

(c) Clearly, {ζk} satisfies (28), and the result then follows from the following implications:

lim inf
k→+∞

〈F (ζk), G(ζk)〉
‖ζk‖ > 0 =⇒ lim inf

k→+∞
maxi{〈Fi(ζ

k), Gi(ζ
k)〉}

‖ζk‖ > 0

=⇒ max
i
{〈Fi(ζ

k), Gi(ζ
k)〉} → +∞.

So far, we complete the proof of this proposition. 2

When G(ζ) ≡ ζ, if we replace (29) with lim inf
k→+∞

〈F (ζk), G(ζk)〉/‖ζk‖2 > 0, then Defi-

nition 4.1 is saying that F is a R01 function. Thus, Proposition 4.2 and Proposition 4.3

(a) show that Ψ has bounded level sets under a weaker condition than the one given by

[3, Prop. 4.1 (a)] for the class of merit functions f
YF

.

To close this section, we show that the function Ψ provides a global error bound for

the solution of SOCCP (1) under the jointly uniform Cartesian P -property of F and G.

Since the jointly strong monotonicity implies the jointly uniform Cartesian P -property,

the global error bound condition is weaker than that of [4, Proposition 5].

Proposition 4.4 Let ζ∗ be a solution of the SOCCP. Suppose that F and G have the

jointly uniform Cartesian P -property. Then, there exists a scalar κ > 0 such that

‖ζ − ζ∗‖2 ≤ κΨ(ζ)1/2 ∀ζ ∈ IRn.

Proof. Since F and G have the jointly uniform Cartesian P -property, there exists a

scalar ρ > 0 such that, for any ζ ∈ IRn, there is an index ν ∈ {1, 2, . . . , q} such that

ρ‖ζ − ζ∗‖2 ≤ 〈Fν(ζ)− Fν(ζ
∗), Gν(ζ)−Gν(ζ

∗)〉
= 〈Fν(ζ), Gν(ζ)〉+ 〈−Fν(ζ), Gν(ζ

∗)〉+ 〈Fν(ζ
∗),−Gν(ζ)〉

≤ 〈Fν(ζ), Gν(ζ)〉+ 〈[−Fν(ζ)]+, Gν(ζ
∗)〉+ 〈Fν(ζ

∗), [−Gν(ζ)]+〉
≤ φ0(Fν(ζ), Gν(ζ)) + ‖[−Fν(ζ)]+‖‖Gν(ζ

∗)‖+ ‖Fν(ζ
∗)‖‖[−Gν(ζ)]+‖

≤ c
(
φ0(Fν(ζ), Gν(ζ)) + ‖[−Fν(ζ)]+‖+ ‖[−Gν(ζ)]+‖

)

≤ c
(
φ0(Fν(ζ), Gν(ζ)) + 4ψ

FB
(Fν(ζ), Gν(ζ))1/2

)

≤ c
(√

2/ρ2 + 4/ρ1

)
Ψ(ζ)1/2,

where c := max{1, ‖Gν(ζ
∗)‖, ‖Fν(ζ

∗)‖}, the second inequality is using the fact that

Gν(ζ
∗) ∈ Knν and Fν(ζ

∗) ∈ Knν , and the next to last inequality is due to [4, Lemma 8].

Letting κ := (c/ρ)(
√

2/ρ2 + 4/ρ1), we obtain the desired result. 2
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5 Algorithm and convergence

It is known that the Levenberg-Marquardt method using equation (12) has the advantage

that it reduces the complementarity gap 〈x, F (x)〉 for NCP faster than the traditional

nonsmooth method using equation (8) does (see [19]). This motivates our employing a

Levenberg-Marquardt type method with line search for solving the nonlinear least-square

problem (14). We state its iterative scheme as below.

Algorithm 5.1 (Semismooth Levenberg-Marquardt Method)

(S.0) Choose a starting point ζ0 ∈ IRn, the parameters ρ1, ρ2 ∈ (0, 1), η, β ∈ (0, 1), and

σ ∈ (0, 1/2). Given a tolerance ε ≥ 0, and set k := 0.

(S.1) If ‖∇Ψ(ζk)‖ ≤ ε, then stop.

(S.2) Choose Hk ∈ ∂BΦ(ζk) and νk > 0. Find a solution dk ∈ IRn of linear system

(HT
k Hk + νkI)d = −∇Ψ(ζk), (31)

where νk > 0 is the Levenberg-Marquardt parameter.

(S.3) If dk satisfies

‖Φ(ζk + dk)‖ ≤ η‖Φ(ζk)‖, (32)

then ζk+1 := ζk + dk. Otherwise, compute tk = max{βl | l = 0, 1, 2, · · ·} such that

Ψ(ζk + tkd
k) ≤ Ψ(ζk) + σtk∇Ψ(ζk)T dk, (33)

and let ζk+1 := ζk + tkd
k.

(S.4) Set k := k + 1, and go to (S.1).

Notice that the above method is different from the classical Levenberg-Marquardt

method for nonlinear least-square problems in that Φ is not continuously differentiable.

If νk ≡ 0, the solution of (31) is exactly the solution of the linear least-square problem

min
d∈IRn

1

2
‖Hkd + Φ(ζk)‖2, (34)

since ∇Ψ(ζk) = HT
k Φ(ζk). In this paper, we choose the parameter νk by

νk := min {p1, p2‖Φ(ζk)‖%}, (35)

where p1, p2 > 0 are given constants and % is a real number from [1, 2]. Such choice

is consistent with the requirements for local superlinear (quadratic) convergence stated

in Theorem 5.2 and Theorem 5.3 below, as well as adopted by our numerical experiments.

In what follows, we will study the convergence properties of the algorithm. For this

purpose, assume that ε equals to 0. We first state a global convergence result.
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Theorem 5.1 Let {ζk} be the sequence generated by Algorithm 5.1 with νk updated by

(35). Then every accumulation point of {ζk} is a stationary point of Ψ.

Proof. From the steps of Algorithm 5.1, {ζk} is well defined since νk > 0, and dk

determined by (31) is always a descent direction of Ψ at ζk. Let ζ∗ be any accumulation

point of {ζk} and {ζk}K be a subsequence converging to ζ∗. Suppose that ∇Ψ(ζ∗) 6= 0.

Since {Ψ(ζk)} is monotonically decreasing and bounded below, and {Ψ(ζk)}K converges

to Ψ(ζ∗), the entire sequence {Ψ(ζk)} converges to Ψ(ζ∗) > 0. This implies that (32)

holds for only finitely many k ∈ K, and the inequality (33) is satisfied for all sufficiently

large k. Since Ψ(ζk+1) − Ψ(ζk) ≤ σtk∇Ψ(ζk)T dk ≤ 0 for all sufficiently large k, using

Ψ(ζk+1)−Ψ(ζk) → 0 yields that

{
tk∇Ψ(ζk)T dk

}
K
→ 0. (36)

We next prove {∇Ψ(ζk)T dk}K has a nonzero limit as k → +∞. By the definition of dk,

∇Ψ(ζk)T dk = −∇Ψ(ζk)T (HT
k Hk + νkI)−1∇Ψ(ζk) ∀k. (37)

Since the B-subdifferential ∂BΦ(ζ) is a nonempty compact set for any ζ ∈ IRn, {Hk}K is

bounded. Without loss of generality, assume that {Hk}K → H∗. Considering that the

set-valued mapping ζ 7→ ∂BΦ(ζ) is closed and {ζk}K → ζ∗, we have H∗ ∈ ∂BΦ(ζ∗). In

addition, since Φ(ζ∗) 6= 0, we have νk → ν∗ with ν∗ = min{p1, p2‖Φ(ζ∗)‖%} > 0. Thus,

{HT
k Hk + νkI}k∈K → HT

∗ H∗ + ν∗I Â O. This, together with (37) and the continuity of

∇Ψ, implies that {∇Ψ(ζk)T dk}K has a nonzero limit as k → +∞. From (36), it then

follows that {tk}K → 0. Now, for all sufficiently large k, let lk ∈ {0, 1, . . .} be the unique

exponent such that tk = βlk . Since {tk}K → 0, we have {lk}k∈K →∞. From the Armijo

line search in (S.3), for all k ∈ K sufficiently large,

Ψ(ζk + βlk−1dk)−Ψ(ζk)

βlk−1
> σ∇Ψ(ζk)T dk. (38)

Taking the limit k → ∞ with k ∈ K and using {lk}K → ∞ and {ζk}K → ζ∗, we have

∇Ψ(ζ∗)T d∗ ≥ σ∇Ψ(ζ∗)T d∗. This means ∇Ψ(ζ∗)T d∗ ≥ 0. On the other hand, we learn

from (31) that {dk}K → d∗ with d∗ being the solution of

(HT
∗ H∗ + ν∗I)d = −∇Ψ(ζ∗), (39)

which implies that∇Ψ(ζ∗)T d∗ < 0 since (HT
∗ H∗+ν∗I)Â O. Thus, we get a contradiction.

2

Observe that the sequence {ζk} generated by Algorithm 5.1 always belongs to the

level set LΨ(Ψ(ζ0)). By Propositions 4.2 and 4.3, the existence of accumulation points of

{ζk} is guaranteed by one of the assumptions of Proposition 4.3. Since, when F and G

have the jointly uniform Cartesian P -property, the SOCCP (1) has at most one solution,
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{ζk} must have a unique accumulation point which is the unique solution of (1) if F and

G satisfies the assumption (c) of Proposition 4.3. For the SOCCP (3), the sequence {ζk}
has accumulation points and each of them is a solution under the assumption that F is

monotone and (3) is strictly feasible.

Next we establish the superlinear (or quadratic) rate of convergence of Algorithm 5.1

under the strict complementarity of the solution. This condition seems to be a little

rigorous, and later we will replace it with a local error bound assumption.

Theorem 5.2 Let {ζk} be generated by Algorithm 5.1 with νk given by (35). Suppose

that ζ∗ is an accumulation point of {ζk} with ζ∗ being a strictly complementary solution

of (1), and F and G at ζ∗ satisfy the condition of Theorem 3.1. Then,

(a) the entire sequence {ζk} converges to ζ∗.

(b) The full stepsize tk = 1 is always accepted for sufficiently large k and the rate of

convergence is Q-superlinear.

(c) The rate of convergence is Q-quadratic if, in addition, F ′ and G′ are locally Lipschitz

continuous around ζ∗ and νk = O(‖Φ(ζk)‖).

Proof. The proof is similar to the one given by [19]. For completeness, we include it.

(a) By the proof technique of Theorem 3.1 (b) of [22], it suffices to prove that ζ∗ is an

isolated solution. From Theorem 3.1 and Lemma 3.3, there exist ε1, κ1 > 0 such that

‖H(ζ − ζ∗)‖2 = (ζ − ζ∗)HT H(ζ − ζ∗) ≥ κ1‖ζ − ζ∗‖2

for all ζ satisfying ‖ζ − ζ∗‖ < ε1 and all H ∈ ∂BΦ(ζ). In addition, the semismoothness

of Φ implies that there exists ε2 > 0 such that

‖Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗)‖ ≤ (
√

κ1/2)‖ζ − ζ∗‖
for all H ∈ ∂BΦ(ζ) with ζ satisfying ‖ζ − ζ∗‖ < ε2. Set ε = min{ε1, ε2}. Then, we have

‖Φ(ζ)‖ = ‖H(ζ − ζ∗) + (Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗))‖
≥ ‖H(ζ − ζ∗)‖ − ‖Φ(ζ)− Φ(ζ∗)−H(ζ − ζ∗)‖
≥ (

√
κ1/2)‖ζ − ζ∗‖

for all ζ with ‖ζ − ζ∗‖ < ε. This means that ζ∗ is an isolated solution of the SOCCP.

(b) We first prove that for all sufficiently large k,

‖ζk + dk − ζ∗‖ = o(‖ζk − ζ∗‖). (40)

By part (a), the sequence {ζk} converges to a solution ζ∗ satisfying the assumptions of

Theorem 3.1. From Lemma 3.3, there exists c > 0 such that ‖(HT
k Hk+νkI)−1‖ ≤ c for all
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k. Noting that the sequence {Hk} is bounded, there exists c1 > 0 such that ‖HT
k ‖ ≤ c1

for all k. Using Theorem 5.1 and the fact that Φ(ζ∗) = 0, we obtain that

‖ζk + dk − ζ∗‖ = ‖ζk − (HT
k Hk + νkI)−1∇Ψ(ζk)− ζ∗‖

≤ ‖(HT
k Hk + νkI)−1‖‖∇Ψ(ζk)− (HT

k Hk + νkI)(ζk − ζ∗)‖
≤ c‖HT

k Φ(ζk)−HT
k Hk(ζ

k − ζ∗)− νk(ζ
k − ζ∗)‖

= c‖HT
k (Φ(ζk)− Φ(ζ∗)−Hk(ζ

k − ζ∗))− νk(ζ
k − ζ∗)‖

≤ c(c1‖Φ(ζk)− Φ(ζ∗)−Hk(ζ
k − ζ∗)‖+ νk‖ζk − ζ∗‖).

Notice that Φ(ζk) − Φ(ζ∗) − Hk(ζ
k − ζ∗) = o(‖ζk − ζ∗‖) by the semismoothness of Φ,

whereas νk → 0 by part (a) and the continuity of Φ. Thus, the inequality implies (40).

To prove that the full step is eventually accepted, by (32) it suffices to show that

lim
k→∞

Ψ(ζk + dk)

Ψ(ζk)
= 0. (41)

Since all element V ∈ ∂BΦ
FB

(ζ∗) are nonsingular by [24, Theorem 4.1], from Lemma 3.3

and the proof of part (a), there exists a constant α > 0 such that

‖Φ(ζk)‖ ≥ ρ1‖ΦFB
(ζk)‖ ≥ α‖ζk − ζ∗‖.

Using the locally Lipschitz continuity of Φ and (40) then yields that

‖Φ(ζk + dk)‖
‖Φ(ζk)‖ ≤ ‖Φ(ζk + dk)− Φ(ζ∗)‖

α‖ζk − ζ∗‖ ≤ L‖ζk + dk − ζ∗‖
α‖ζk − ζ∗‖ → 0,

where L > 0 denotes the locally Lipschitz constant of Φ. Thus, the stepsize tk = 1 is

eventually accepted in the line search criterion, i.e., ζk+1 = ζk +dk for all k large enough.

Consequently, Q-suplinear convergence of {ζk} to ζ∗ follows from (40).

(c) The proof is essentially same as for the superlinear convergence. We only note that

νk in (35) satisfies νk = O(‖Φ(ζk)‖) = O(‖ζk − ζ∗‖) for k large enough, and

Φ(ζk)− Φ(ζ∗)−Hk(ζ
k − ζ∗) = O(‖ζk − ζ∗‖2)

due to the strong semismoothness of Φ by Proposition 3.1. 2

We next establish the superlinear (quadratic) rate of convergence of Algorithm 5.1

under a local error bound assumption, which is stated as follows:

Assumption A. There exist constants κ2 > 0 and 0 < δ < 1 such that

κ2dist(ζ, S∗) ≤ ‖Φ(ζ)‖ ∀ζ ∈ N (ζ∗, δ), (42)

where S∗ denotes the solution set of the SOCCP (1) and is assumed to be nonempty.
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Lemma 5.1 Let ζk be generated by Algorithm 5.1 with νk given by (35). Suppose that F ′

and G′ are Lipschitz continuous on N (ζ∗, δ) and Assumption A holds. If νk = p2‖Φ(ζk)‖%

and ζk ∈ N (ζ∗, δ/2), then there exists a constant c1 > 0 such that ‖dk‖ ≤ c1dist(ζk, S∗).
If, in addition, ζk + dk ∈ N (ζ∗, δ/2), then there exists a constant c3 > 0 such that

dist(ζk + dk, S∗) ≤ c3dist(ζk, S∗)(%+2)/2.

Proof. Let ζ̄k ∈ S∗ be such that ‖ζk − ζ̄k‖ = dist(ζk, S∗). Then, ζ̄k ∈ N (ζ∗, δ) since

‖ζ̄k − ζ∗‖ ≤ ‖ζ̄k − ζk‖+ ‖ζk − ζ∗‖ ≤ 2‖ζk − ζ∗‖ ≤ δ.

Noting that Φ is Lipschitz continuous on N (ζ∗, δ), there is a constant L1 > 0 such that

‖Φ(ζk)‖ = ‖Φ(ζk)− Φ(ζ̄k)‖ ≤ L1‖ζk − ζ̄k‖.
Combining with the inequality (42), we have

p2κ
%
2‖ζ̄k − ζk‖% ≤ νk = p2‖Φ(ζk)‖% ≤ p2L

%
1‖ζk − ζ̄k‖%. (43)

On the other hand, since Φ is strongly semismooth on N (ζ∗, δ) by Proposition 3.1, there

exists a constant ĉ > 0 such that

‖Φ(ζk) + Hk(ζ̄
k − ζk)‖ = ‖Φ(ζk)− Φ(ζ̄k)−Hk(ζ

k − ζ̄k)‖ ≤ ĉ‖ζk − ζ̄k‖2. (44)

Define

ϕk(d) := ‖Φ(ζk) + Hkd‖2 + νk‖d‖2. (45)

Then, dk is a minimizer of ϕk(d). This together with (44) and (43) yields that

‖dk‖2 ≤ ϕk(d
k)

νk

≤ ϕk(ζ̄
k − ζk)

νk

=
‖Φ(ζk) + Hk(ζ̄

k − ζk)‖2 + νk‖ζ̄k − ζk‖2

νk

≤ ĉ2p−1
2 κ−%

2 ‖ζ̄k − ζk‖4−% + ‖ζ̄k − ζk‖2

= (ĉ2p−1
2 κ−%

2 + 1)‖ζ̄k − ζk‖2,

which implies the first part with c1 =
√

ĉ2p−1
2 κ−%

2 + 1. Noting that

ϕk(d
k) ≤ ϕk(ζ̄

k − ζk) ≤ ‖Φ(ζk) + Hk(ζ̄
k − ζk)‖2 + νk‖ζ̄k − ζk‖2

≤ ĉ2‖ζ̄k − ζk‖4 + p2L
%
1‖ζk − ζ̄k‖2+%

≤ (
ĉ2 + p2L

%
1

) ‖ζk − ζ̄k‖2+%,

we have

‖Φ(ζk + dk)‖ = ‖Φ(ζk + dk)− Φ(ζk)−Hkd
k + Φ(ζk) + Hkd

k‖
≤ ‖Φ(ζk + dk)− Φ(ζk)−Hkd

k‖+
√

ϕk(dk)

≤ ĉ‖dk‖2 + (ĉ2 + p2L
%
1)

1/2‖ζk − ζ̄k‖(%+2)/2

≤ ĉ(ĉ2p−1
2 κ−%

2 + 1)‖ζ̄k − ζk‖2 + (ĉ2 + p2L
%
1)

1/2‖ζk − ζ̄k‖(%+2)/2

≤ c2‖ζk − ζ̄k‖(%+2)/2
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with c2 = ĉ(ĉ2p−1
2 κ−%

2 + 1) + (ĉ2 + p2L
%
1)

1/2. Consequently,

dist(ζk + dk, S∗) ≤ 1

κ2

‖Φ(ζk + dk)‖ ≤ c2

κ2

‖ζk − ζ̄k‖(%+2)/2 = c3dist(ζk, S∗)(%+2)/2.

Thus, we complete the proof of the second part. 2

By Lemma 5.1, using the similar arguments to [8, Theorem 2.1] and [31, Theorem

3.1], we get the quadratic rate of convergence of Algorithm 5.1 under Assumption A.

Theorem 5.3 Let {ζk} be generated by Algorithm 5.1 with νk given by (35), and ζ∗ be

an accumulation point of {ζk}. If ζ∗ is a solution of (1), then the sequence {ζk} converges

to ζ∗ superlinearly, and moreover, quadratically when % = 2, provided that F ′ and G′ are

locally Lipschitz continuous and Assumption A holds.

Now we do not know whether Assumption A is weaker than the strict complementar-

ity of the solution, although the assumptions of Theorem 5.3 are weaker than those of

Theorem 5.2, since the latter implies that each element in ∂BΦ(ζ∗) is nonsingular, and so

‖Φ(ζ)‖ provides a local error bound on some neighborhood of the solution ζ∗, but from

[31] the former does not imply the nonsigularity of each element in ∂BΦ(ζ∗). From the

proof of Lemma 5.1, we find that the condition (42) cannot be weakened to

κ2dist(ζ, S∗) ≤ ‖Φ(ζ)‖1/2 ∀ζ ∈ N (ζ∗, δ),

in order to guarantee the superlinear (or quadratic) convergence of Algorithm 5.1, and

therefore the global error bound result of Proposition 4.4 may not be applied for it. If let

Ψ(ζ) = ‖Φ(ζ)‖4/4 instead of Ψ(ζ) = ‖Φ(ζ)‖2/2, then Assumption A holds automatically

under the jointly uniform Cartesian P -property of F and G, but this will bring difficulty

to numerical implementation due to the bad scaling of Ψ. Thus, it is worthwhile to study

what conditions of F and G are sufficient for Assumption A to hold.

6 Numerical results

In this section, we report numerical results with the least-square semismooth method (LS

semismooth method for short) solving the SOCCP (1), derived from the KKT conditions

of convex SOCPs. As one referee pointed out, for the solution of convex SOCPs, the

reformulation seems to be circuitous since the KKT conditions can be directly written

as a mixed SOCCP. However, since the purpose of this paper is to develop an efficient

method for the general SOCCP (1), instead of convex SOCPs, we here adopt such refor-

mulation so as to obtain the corresponding test instances for (1).
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All experiments were done with a PC of Intel Pentium Dual CPU E2200 and 2047MB

memory, and the computer codes were written in Matlab 7.0. Since the nonmonotone

line search [14] is usually superior to the classical monotone line search, we replaced the

Armijo line search of Algorithm 4.1 by the nonmonotone version in [14], i.e., we computed

tk such that

Ψ(ζk + tkd
k) ≤ Wk + σtk∇Ψ(ζk)T dk,

where

Wk := max
j=k−mk,...,k

Ψ(ζj),

and where, for a given nonnegative integer m̂ and s, mk = 0 if k ≤ s, and otherwise

mk = min {mk−1 + 1, m̂}. In our tests, the parameters in Algorithm 5.1 were chosen as

ρ1 = 0.9, ρ2 = 0.1, η = 1.0e− 6, σ = 1.0e− 4, β = 0.5, m̂ = 5 and s = 5.

The parameter νk was chosen as in (35) with p1 = 1.0, p2 = 10−5/n, and % = 1. We

started Algorithm 5.1 with the initial point ζ0 = 0 and terminated it whenever

max
{|F (ζk)T G(ζk)|, Ψ(ζk)

} ≤ 10−6, or k > 150, or tk < 10−15. (46)

We compared the numerical performance of Algorithm 5.1 with that of the least-square

semismooth Newton method based on (8), called the FB semismooth method, which cor-

responds to the special case of ρ1 = 1, ρ2 = 0 of Algorithm 5.1. For the linear SOCPs, we

compared the numerical results of the two semismooth methods with those of SeDuMi

[29], a successful interior point method software for the linear SOCPs and the semidefi-

nite programming. The parameters of the SeduMi were set as default values.

The first group of test instances is the linear SOCP from the DIMACS Implementa-

tion Challenge library [25]. During the tests, we computed x̂ ∈ IRn in F as a solution

of minx ‖Ax− b‖ by Matlab’s least square solver “LSQLIN”, and evaluated F and G in

(5) via the Cholesky factorization of AAT . The results were reported in Table 1, where

Optval denotes the objective value of the SOCPs at the final iteration, Iter records the

number of iteration, and NF means the number of function evaluations for each problem.

From Table 1, we see that the two least-square semismooth Newton methods are able

to yield a solution with favorable accuracy for all test problems, and requires less iter-

ations for “nb L2 bessel” than the SeduMi. However, for “nb” and “nb L1”, they are

incomparable with the SeduMi in terms of the number of iterations. We also checked that

the solutions of the two problems do not satisfy the strict complementarity. In addition,

for the two difficult test problems, the LS semismooth method requires less iterations

and function evaluations than the FB semismooth method. Moreover, for “nb L1”, the

advantage of the LS semismooth method is more remarkable.

23



Table 1: Numerical results for the DIAMCS linear SOCPs

LS semismooth Method FB semismooth method SeDuMi

Problem Optval Iter NF Optval Iter NF Optval Iter

nb –5.070456e–2 38 87 –5.070467e–2 39 108 –5.070310e–2 21

nb-L1 –1.301223e+1 90 126 –1.301223e+1 106 187 –1.301227e+1 18

nb-L2-bessel –1.025697e–1 10 16 –1.025697e–1 10 16 –1.025695e–1 16

The second group of test instances is the nonlinear convex SOCP (4) with sparse A.

To generate such test problems, we consider the problem of minimizing a sum of the k

largest Euclidean norms with a convex regularization term: minu≥0

∑k
i=1 ‖s[i]‖ + h(u),

where ‖s[1]‖, · · · , ‖s[r]‖ are the norms ‖s1‖, · · · , ‖sr‖ sorted in nonincreasing order with

r ≥ k and si = bi −Aix for i = 1, . . . , r with Ai ∈ IRmi×l and bi ∈ IRmi , and h : IRl → IR

is a twice continuously differentiable convex function. The problem can be converted to

min (1− k/r)
∑r

i=1 vi + (k/r)
∑r

i=1 wi + h(u)

s.t. Aiu + si = bi, i = 1, 2, . . . , r,

(w1 − v1)− (w2 − v2) = 0,
...

(w1 − v1)− (wr − vr) = 0,

u ≥ 0, vi ≥ 0, (wi, si) ∈ ×Kmi+1, i = 1, 2, . . . , r.

In our tests, we set h(u) :=
1

3
‖u‖3

3 with ‖·‖3 denoting the 3-norm, and generated each mi

randomly from {2, 3, . . . , 10}. All Ai were chosen as sparse matrices with approximately

10% ·mi · d uniformly distributed nonzero entries, and all entries of bi were chosen from

the uniform distribution in [−1, 0]. For each (l, r, k), we generated ten test instances,

and then solved the SOCCP (1) derived from the KKT conditions of each problem with

the LS semismooth method and the FB semismooth method. The mappings F and G in

(5) were evaluated in the same way as above. The first inequality in (46) was replaced

by max
{|F (ζk)T G(ζk)|, Ψ(ζk)

} ≤ 10−8. The numerical results were listed in Table 2,

in which the second column gives the average dimension (m,n) of A for ten problems,

Gap denotes the average value of |F (ζk)T G(ζk)| at final iteration, NF means the average

function evaluations for solving each instance, and Iter denotes the average number of

iteration for each instance to satisfy the termination conditions, and Time records the

average CPU time in second for solving each test problem.

From Table 2, we see that for the second group of test problems which is much easier

than “nb” and “nb L1”, the LS semismooth method does not have remarkable superi-
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Table 2: Numerical results for the nonlinear convex SOCPs

Dim. LS semismooth Method FB semismooth method

(l,r,k) (m,n) Gap NF Iter Time Gap NF Iter Time

(500,10,5) (77,588) 3.20e–9 45.3 22.4 9.01 3.16e–9 52.3 22.5 6.29

(500,20,5) (132,653) 2.68e–9 39.8 22.9 12.4 1.99e–9 42.7 21.4 8.00

(500,50,5) (355,906) 2.15e–9 50.9 28.9 36.1 2.44e–9 41.8 25 22.3

(500,100,2) (688,1289) 4.08e–9 33.9 26.4 83.1 4.71e–9 33.5 27.5 65.3

(1000,10,5) (71,1082) 2.74e–9 58.9 24.8 53.4 2.79e–9 65.6 25.5 35.6

(1000,20,5) (136,1157) 2.44e–9 55.9 22.4 62.4 2.30e–9 57 24.3 41.1

(1000,50,5) (347,1398) 1.99e–9 49.6 27.9 117.9 2.92e–9 48.7 27.8 81.2

(2000,10,5) (70,2081) 2.10e–9 92.3 32.5 445.6 1.82e–9 88 31.2 276.8

ority to the FB semismooth method. Among eight groups of test instances, the average

number of iteration and the average number of function evaluations required by the LS

semismooth method are basically same as that of the FB semismooth method, but the

FB semismooth method requires less CPU time due to less computation work at each

iteration. Combining with the results in Table 1, we conclude that the LS semismooth

method is superior to the FB semismooth method only for those difficult problems.

7 Conclusion

We have presented a nonlinear least-square reformulation for the SOCCP (1) by use of

the FB function and the plus function, which was shown to have some advantages over

the nonsmooth system reformulation (8). Based on the reformulation, a semismooth

Levenberg-Marquardt method was developed, and the superlinear (quadratic) rate of

convergence was established under the strict complementarity of the solution and a local

error bound assumption, respectively. Although the local error bound assumption makes

no requirements for the solution, we do not know what conditions of F and G can guar-

antee it to hold. We will leave it as a future research topic.

It should be pointed out that other least-square formulations can be constructed by a

similar way; for example, appending (x)+ ◦ (y)+ or (x ◦ y)+ to the mapping Φ
FB

. But, it

seems that the formulation based on φ0 is the best, since the merit function corresponding

to (x)+ ◦ (y)+ is not smooth, whereas the one corresponding to (x ◦ y)+ does not have all
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the properties of Lemma 4.1. This is completely different from the NCP case. Since the

strong semismoothness of the FB function over general symmetric cones is still an open

problem, now the method of this paper can not be extended to general symmetric cone

complementarity problems.
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