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SUMMARY

In this paper, we consider experiments for which experimenters have some prior information on

the probability of effects being non-negligible in advance of collecting their data. We suggest

using this prior information as a tool to help experimenters to decide the appropriate run-sizes

that experimenters should use. In addition, we introduce a criterion for selecting orthogonal,

or nearly orthogonal, main effects designs, with robustness to interactions as a secondary con-

sideration under particular priors. We will show that this criterion exploiting prior information

about model uncertainty can lead to more appropriate designs reflecting experimenters’ prior

belief on the importance of each effect.

Some key words: prior information; factor screening; orthogonal array; projection; Bayesian

D-optimal designs.
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1 Introduction

In industrial experiments, when several factors are of interest, screening designs are widely used

to find the few “active” factors which have major effects. Traditionally, design and analysis of

screening experiments have been restricted to main effects only by assuming all interactions are

small and therefore negligible. However, it may be that, when modelling the data, a few inter-

actions are included in the model while some factors may be dropped completely. Motivated by

Hamada and Wu (1992), Tsai, Gilmour and Mead (2000) used a two-stage analysis that consid-

ers interactions as well as main effects for the analysis of screening experiments with complex

aliasing patterns. First, the main effects model is fitted to identify “active” factors. Secondly,

a stepwise regression procedure is used for selecting a suitable fitted model that may contain

some interactions as well as main effects, but which obeys functional marginality (McCullagh

and Nelder, 1989). It has been emphasised that, for this two-stage analysis, it is important that

designs used for screening experiments can project onto good lower dimensional designs for

various sets of factors and thus provide reasonably efficient parameter estimates for a range of

possible models.

To explore projection properties of screening designs, Tsai et al. (2000) introduced a cri-

terion, denoted by Q(Γ(k)) for a k-factor design, to compare orthogonal, or nearly orthogonal,

main effects designs, with robustness to interactions as a secondary consideration. This criterion

averages an approximation to As-efficiency over lower-dimensional projections of the design.

It has been showed that designs with lower Q(Γ(k)) are more likely to have efficient projections

and on average can provide better parameter estimates over a range of models than designs with

higher Q(Γ(k)). For detailed information on the Q-criterion, the reader is referred to Tsai et al.

(2000).

Here, we extend their method and consider the case when in advance of running an ex-

periment, experimenters have some prior knowledge about the probabilities of effects being

non-negligible. We will introduce a general framework for the prior probabilities of effects
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being non-negligible for the two-stage analysis. An 18-run three-level designs with six factors

will be used as an example used to demonstrate how to use these prior knowledge as a tool to

help experimenters to decide the appropriate experimental run sizes that they should use.

In addition, to incorporate the prior knowledge into design process, we generalise the Q(Γ(k))

criterion and propose a new criterion exploiting prior information about model uncertainty for

selecting orthogonal, or nearly orthogonal, main effects designs, with robustness to interactions

as a secondary consideration. In this paper, we will study the relationship between this criterion

and the the generalised minimum aberration criterion. For simplicity, we compare this criterion

with the G2-aberration criterion proposed by Tang and Deng (1999) for designs with two levels.

We will demonstrate that the efficiency-type Q(Γ(k)) criterion is the same as the G2-aberration

criterion (1999) is a good surrogate for model robustness for designs with two levels. Therefore,

the QB(Γ(k)) criterion which generalised the Q criterion is a good criterion for selecting designs

when experimenters have some prior believe of each factorial effect being non-negligible.

One of the frequently used three-level orthogonal arrays in industrial experiments is the

L18(3
7), an 18-run design for seven three-level factors. Wang and Wu (1995) and Cheng and

Wu (2001) studied the projection properties of the L18(3
7) orthogonal array when projected onto

sets of three and four factors. Cheng and Ye (2004) permuted the levels of the projected designs

obtained from the L18(3
7) orthogonal array to generate some additional orthogonal main effects

designs. Alternatively, Tsai et al. (2000) used a columnwise procedure to generate all possible

three-level main effects designs for 3 to 6 factors in 18 runs. It has been shown that, by using

their procedure, more designs can be found. The best 18-run designs with six factors that they

generated have better projection properties and are more efficient than those obtained by the

procedure of Cheng and Ye (2004) and those from the L18(3
7). Details and applications of the

Q-criterion were given by Tsai, et al. (2000, 2004).

Here, we list some best six-factor main effects designs in 18 runs obtained by Tsai et

al. (2000) and compare them with those obtained by Cheng and Ye (2004) and those obtained

from the L18(3
7) orthogonal array under various priors. We will show that, depending on the
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prior knowledge, more appropriate designs can be found among the class of good designs. The

best designs constructed in their way are very robust to prior specifications, so experimenters

can have more confidence in using them.

The paper is organised as follows. In Section 2, we introduce the prior probabilities for the

two-stage analysis. In Section 3, we introduce the QB(Γ(k))-criterion to assess designs under

model uncertainty for some given prior. A comparison of an 18-run experiment is in Section 4.

Finally, in Section 5, we provide some concluding remarks.

2 Prior probabilities

In this paper, we consider experiments for which experimenters have some prior information on

the probabilities of effects being non-negligible in advance of collecting their data. The idea of

using prior probability of particular factors being non-negligible for the analysis of designed ex-

periments with complex aliasing was first introduced by Box and Meyer (1993). They proposed

a model-discrimination criterion, based on posterior probabilities, for designing follow-up ex-

periments that allow maximum discrimination among the plausible models. Chipman, Hamada

and Wu (1997) suggested a more elaborate Bayesian analysis approach for analysing data from

designs with complex aliasing. They used the hierarchical variable structure to reduce the model

space, and implemented variable selection using the stochastic search variable selection (SSVS)

methods, which sample from the posterior probability distribution over the model space. Re-

cently, Beattie, Fong and Lin (2002) proposed a two-stage Bayesian model selection strategy for

supersaturated designs, which can be summarized as a combination of SSVS (the first stage) to

find the active factors and intrinsic Bayes factors (the second stage) to test whether their effects

are significant.

Here, we do not use fully Bayesian methods. Instead, we propose a method to exploit

experimenters’ prior beliefs for selecting orthogonal, or nearly orthogonal, main effects designs,
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with robustness to interactions as a secondary consideration. The two-stage analysis is used to

analyse the data for screening experiments. First, the main effects model is fitted to identify

“active” factors. Secondly, a stepwise regression procedure is used for selecting a suitable fitted

model that may contain some interactions as well as main effects, but which obeys functional

marginality (McCullagh and Nelder, 1989). Functional marginality means that every term in

the model must be accompanied by all terms marginal to it, whether these are large or small.

We draw a distinction between functional marginality and the strong heredity principle, defined

by Chipman (1996) to be “the belief that for an interaction to be active . . . both corresponding

main effects must also be active.” Marginality defines the class of models that might be fitted,

whereas strong heredity describes a set of prior beliefs about which effects might be large.

Unfortunately, these two concepts have become blurred in the literature, but the distinction is

crucial to the work presented here. We believe models that break functional marginality should

not be formulated or used unless some good practical reason can be given for so doing. The

reader who is interested in this issue can refer to Nelder (1997, 1998).

For a three-level design with k factors, we consider only first- and second-order effects when

the k-factor second-order model is the maximal model of interest. Assume that there is a “true

model” that explains the relationship between the response and the factors. Assume further that

experimenters have some prior knowledge about the probabilities of each effect being in the

true model in advance of running an experiment. Let π1 denote experimenter’s prior belief that

“a linear term xi is in the true model”, which is defined as

Pr(δ(xi) = 1) = π1,

where δ(xi) indicates whether the linear effect of factor i is in the true model.

Under the functional marginality rule, a quadratic effect term may be in the model only if

the linear effect of the same factor is already in the model. Therefore, we define π2 as the prior

probability that a quadratic effect is in the true model given that the linear effect of the same
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factor is in the model, so that

Pr(δ(x2
i ) = 1 | δ(xi)) =











π2 if δ(xi) = 1;

0 if δ(xi) = 0.

Similarly, we define π3 as the prior probability that an interaction is in the true model given

that the linear effects of both the factors involved are in the model, so that

Pr(δ(xixj) = 1 | δ(xi), δ(xj)) =











π3 if δ(xi) = δ(xj) = 1;

0 otherwise.

These definitions imply that effects of the same type have the same probability of being in

the true model, and that the event that a linear effect is in the true model is independent of the

event that any other factor’s linear effect is in the true model. Also, for a given set of linear

effects being in the model, the inclusion of second order effects in the model is independent of

each other.

Note that the definition of π1 does not denote the probability that the linear effect of factor

i is large, but rather the probability that term xi, or any effect to which it is marginal, is large.

This is different from the prior probabilities defined by Chipman (1996). Detail discussion on

the relationship between the definition above and strong heredity and weak heredity principles

defined by Chipman (1996) can be found in Appendix A.

Given prior believe of each factorial effect being in the model, one can explicitly calculate

the prior probability of each model being the true model. Let Pr(Ms) denote such prior prob-

ability of model Ms being the true model under a specific prior, which is computed as the joint

probability of each individual effect being in the true model.

Pr(Ms) = πa
1 (1 − π1)

k−a πb
2 (1 − π2)

a−b πc
3 (1 − π3)

a(a−1)
2

−c, (1)

where a, b and c are the numbers of linear, quadratic and interaction effects that are in the model,

respectively.
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We suggest use this information as a reference to help experimenters to decide the appro-

priate run-sizes that they should use. First, we compute the probabilities of each of the models

being the true model. Second, we add up the probabilities for models with a specific number

of parameters. This sum represents the probability that a model with this number of parameters

is the true model. Finally, a histogram of these added probabilities over various numbers of

parameters is plotted. Experimenters can use this histogram plot as a reference to decide if the

experimental run-size they are going to use is appropriate for their prior beliefs.

Example

Consider an 18-run experiment for six factors in which each factor has three levels. When the

experimenters’ prior beliefs are, for example, π1 = 1, π2 = 1 and π3 = 0.5, we calculate

the prior probability of each model being the true model. We then add up the probabilities for

models with the same number of parameters. Figure 1 gives the histogram plot of the added

probabilities of models with different numbers of parameters, from 1 to 28, being the true model

when π1 = 1, π2 = 1 and π3 = 0.5. The value beside the dash line in the plot is the cumulative

probability for the models with the number of parameters not greater than a given value being

the true model. For example, Figure 1 shows that there is just a 15% chance that a model with no

more than 18 parameters will be the true model for this prior. Clearly, an 18-point experiment

is not suitable to accommodate such prior. It is better to increase the experimental run-size or to

allow for follow-up experiments. By contrast, if the experimenters’ prior beliefs are π1 = 0.8,

π2 = 0.7 and π3 = 0.3, Figure 2 shows that there is a 97.6% chance that a model with no

more than 18 parameters will be the true model. It can be concluded that an 18-point design is

appropriate for this prior.

It is clearly seen that this histogram plot can be used a useful tool to help experimenters to

decide the appropriate run-sizes for their experiments. If experimenters believe that most factors

will have non-negligible effects and models with a larger number of parameters are more likely

to be the true model, it is better to increase the experimental run-size or to allow for follow-up

7



0 5 10 15 20 25 30
0

5

10

15

20

25

50% 

15.1% 

85% 

98.2% 

Number of parameters

Pr
ob

ab
ili

ty
 (x

10
0)

Figure 1: Probabilities for models with various numbers of parameters being the true model for
a three-level design for six factors when π1 = 1, π2 = 1 and π3 = 0.5.
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Figure 2: Probabilities for models with various numbers of parameters being the true model for
a three-level design for six factors when π1 = 0.8, π2 = 0.7 and π3 = 0.3.
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experiments to accommodate their prior belief.

3 Design criterion

To incorporate experimenters’ prior belief into design process, we define a new criterion for

selecting orthogonal, or nearly orthogonal, main effects designs, with robustness to interactions

as a secondary. This new criterion, denoted by QB(Γ(k)), is defined as an average of an ap-

proximation to As-efficiency, ignoring the intercept, over all eligible models with each model,

weighted by the prior probability of the model.

As defined in Section 2, we use {π1, π2, π3} to represent, respectively, experimenters’ prior

probability that a linear effect is in the true model, the prior probability that a quadratic effect

is in the true model given that the linear effect of the same factor is in the model, and the prior

probability that an interaction effect is in the true model given that the linear effects of both the

factors involved are in the model. The probability that model Ms is the true model for a given

prior can then be computed as the joint probabilities of these effects being in the true model, as

defined in equation (1).

For a k-factor three-level design, suppose that there are n0 possible models under functional

marginality rule for the two-stage analysis. Among them, models with more than N parameters

are not estimable for an N -point design. Those models whose number of parameters is greater

than N is called the non-eligible models, and they will not be formulated in the second stage of

the model-fitting procedure. In the two-stage analysis, one of eligible model will be the final

fitted model. Therefore, we define an adjusted probability, denoted by P̃r(Ms), to represent the

probability that “a particular model is the best of the eligible models”. The adjusted probability
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is defined as

P̃r(Ms) =



























Pr(Ms) if |Ms| < N

Pr(Ms) + γ

m
if |Ms| = N

0 if |Ms| > N

(2)

where |Ms| is the number of parameters in model Ms, γ is the sum of the prior probabilities

for all non-eligible models, and m is the number of models with exactly N parameters. Here,

we reallocate the probabilities from non-eligible models between all models one size smaller.

Clearly, if a model is more likely to be the best model, the model should be given more weight

in the design criterion.

Thus, the QB(Γ(k)) criterion can be computed as an average of an approximation to As-

efficiency, ignoring the intercept, over the eligible models with each model, weighted by the

adjusted probability that the model is the best model, which is

QB(Γ(k)) =
n0
∑

s=1

v
∑

i=1

v
∑

j=0

rij Ms(i, j) P̃r(Ms) (3)

where v = 2k +
(

k

2

)

is the maximal number of effects of interest for a k-factor three-level

design, and n0 is the number of eligible models. Symbol Ms(i, j) is an indicator representing

whether terms i and j are in the model Ms, which is

Ms(i, j) =











1 if terms i and j are both in model Ms

0 otherwise

Symbol rij, for i, j = 0, . . . , v, is defined as

rij =
1

aii

a2
ij

aiiajj

,

where aij are the elements in the information matrix for the k-factor second order model

whose values are determined by the selection of designs. rij is a kind of measure for the non-

orthogonality among effects for the second-order polynomial model of interest.

Let pij denote the sum of the adjusted probabilities for models containing both terms i and

j, which is

pij =
n0
∑

s=1

P̃r(Ms)Ms(i, j).
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Then QB(Γ(k)) criterion defined in (3) can also be written as

QB(Γ(k)) =
v

∑

i=1

v
∑

j=0

rij pij,

Clearly, the QB(Γ(k))-criterion does not require the inversion of the information matrices for the

models of interest. It is simple and computationally inexpensive, and therefore it can quickly

provide us with information on the worth of a design over a wide range of models.

This QB(Γ(k))-criterion generalised the Q(Γ(k))-criterion defined by Tsai et al. (2000)

which weighs all models equally. Here, we study the relationship between this criterion and

the the generalised minimum aberration criterion. For simplicity, we compare this criterion

with the G2-aberration criterion proposed by Tang and Deng (1999) for designs with two levels.

Let Xd be an N × k matrix of 1’s and −1’ for an N run (N even) design for k two-level

factors, where each column has N/2 1’s and N/2 −1’s corresponding to a factor’s main effect

and each row represents a factor-level combination. Consequently, the s-factor interactions

oare represented by the componentwise product of s columns of Xd. s = {1, . . . , k}. Let

Bs be the sum of squares all the componentwise products of s-columns of Xd divided by N 2.

The minimum G2-aberration criterion proposed by Tang and Deng (1999) is to sequentially

minimize B1, B2, . . . , Bk.

For a k-factor two-level design, when the k-factor second-order model is the maximal model

of interset, we have all the diagonal entries of the information matrix of the second-order model

equal N , i.e., aii = N , for i = 0, . . . , k +
(

k

2

)

. Thus, rij =
a2

ij

N3 . Let F =
(

k

2

)

, and

n0 = n(δ(0)) be the number of total models for a k-factor two levels designs, n0 =
∑k

i=0

(

k

i

)

2(i

2);

n1,0 = n(δ(xi)) be the total number of models that contain main effect of factor i, n1,0 =
∑k−1

i=0

(

k−1
i

)

2(i+1
2 );

n2,0 = n(δ(xi), δ(xj)) be the total number of models that contain the main effects of factors i

and j, n2,0 =
∑k−2

i=0

(

k−2
i

)

2(i+2
2 ) ;
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n2,1 = n(δ(xi), δ(xixj)) be the total number of models that contain main effects of factor i

and a two-factor interaction involving the same factor, n2,1 =
∑k−2

i=0

(

k−2
i

)

2(i+2
2 )−1 ;

n3,1 = n(δ(xi), δ(xjxl)) be the total number of models that contain the main effect of factor i

and a two-factor interaction not involving the same factor, n3,1 =
∑k−3

i=0

(

(k−3)
i

)

2((i+3)
2 )−1;

n3,2 = n(δ(xixj), δ(xixl)) be the total number of models that contain two interactions that

have one factor in common, n3,2 =
∑k−3

i=0

(

k−3
i

)

2(i+3
2 )−2;

n4,2 = n(δ(xixj), δ(xlxm)) be the total number of models that contain two interactions that

have no factor in common, n4,2 =
∑k−4

i=0

(

k−4
i

)

2(i+4
2 )−2.

Then the Q(Γ(k)) defined by Tsai et al. (2000) can be written as

Q(Γ(k)) =
1

n0N
{kn1,0 + Fn2,1 + [2n2,0 + n2,1 + 2(k − 2)n3,2]B2 + 6n3,1B3 + 6n4,2B4}

(4)

which is a linear combination of B2, B3 and B4 with decreasing weights. It showns that the

G2-aberration criterion can provide a good surrogate for model robustness.

Consider an alternative model space for a k-factor two-level design with k main effects and

f two-factor interactions, where f is a positive integer such that f ≤ F . Under this model

space, we have n0 = n1,0 = n2,0 =
(

F

f

)

, n2,1 = n3,1 =
(

F−1
f−1

)

= f

F
n0, and n3,2 = n4,2 =

(

F−2
f−2

)

= f(f−1)
F (F−1)

n0. Therefore, the corresponding criterion which averages of an approximation

to As-efficiency, ignoring the intercept, over the the models with k main effects and f two-factor

interactions is as

1

N

{

k + f +

[

2 +
f

F
+ 2(k − 2)

f(f − 1)

F (F − 1)

]

B2 + 6
f

F
B3 + 6

f(f − 1)

F (F − 1)
B4

}

which is the same as the results in Cheng, Deng and Tang (2002) that the minimum G2-

aberration criterion sequentially minimizing B1, B2, . . . , Bk indirectly takes efficiencies into

account and provides a kind of overall measure of the partial aliasing and correlation among

factorial effects.
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The QB(Γ(k)) criterion which generalised the Q criterion with each model weighted by the

prior probability of all the models. Therefore, if we partition the the sum of the adjusted proba-

bilities for models containing both terms i and j to be qi,j the sum of the adjusted probabilities

for models containing i main terms and j interactions. As done in (4), the QB(Γ(k)) can be

written as

Q(Γ(k)) =
1

q0N
{kq1,0 + Fq2,1 + [2q2,0 + q2,1 + 2(k − 2)q3,2]B2 + 6q3,1B3 + 6q4,2B4} (5)

which is a linear combination of B2, B3 and B4 where qi,j are determined by the given prior.

There is a conceptual similarity between this QB-criterion and the Bayesian D-criterion sug-

gested by DuMouchel and Jones (1994) who proposed a Bayesian modification of D-optimal

designs to reduce the dependence of D-optimal designs on the choice of an assumed model

for looking at designs that allow the precise estimation of some primary terms while providing

detectability for the potential terms. Other useful criteria could be constructed based on similar

ideas. The Bayesian D criterion is perhaps more widely applicable than the QB criterion, which

we recommend only for main effects designs when the robustness to interactions is a secondary

consideration. However, this criterion which work with the inverse of a matrix is computation-

ally more expensive and allows us to search over only a few designs, whereas for the specific

problem of obtaining main effects designs, the QB criterion allows us to consider all possible

designs.

4 A case study

Consider an experiment described by Logothetis (1990), who gave a detailed analysis of ex-

perimental data from a plasma etching process. The aim of the experiment was to identify the

effects of six factors, labelled F1–F6, on the etch rate (in 10−10m/min) of the aluminum-silicon

layer placed on the surface of an integrated circuit. The six factors, each at three levels, were

assigned to the columns of an L18(3
6) array given in Table 1. For each of the 18 experimen-
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Table 1: An electronics experiment

Factor
Run F1 F2 F3 F4 F5 F6 Mean

1 − − − − − − 4900
2 − − + + 0 0 5664
3 − 0 0 0 0 0 5777
4 − 0 − − + + 6224
5 − + + + + + 9195
6 − + 0 0 − − 5569
7 0 − − 0 0 + 12810
8 0 − 0 + − + 5391
9 0 0 0 + + − 9591

10 0 0 + − 0 − 5074
11 0 + + − − 0 5565
12 0 + − 0 + 0 5203
13 + − + 0 + − 4999
14 + − 0 − + 0 8540
15 + 0 − + − 0 10750
16 + 0 + 0 − + 12143
17 + + − + 0 − 6024
18 + + 0 − 0 + 8806

tal runs, two wafers were tested simultaneously at two levels of over-etch time. Finally, the

etch rate was measured at five fixed locations on each wafer. Table 1 gives the mean etch rate

across the 10 observations for each of the 18 experimental runs. As analysed by Tsai, Gilmour

and Mead (1996), the final model selected for the interpretation of the data is a model which

contains linear effects of F1, F2, F5 and F6 and the linear by linear interaction of F1 and F5.

Logothetis (1990), Fearn (1992), Tsai et al. (1996) and Cox and Reid (2000) discussed other

aspects of the analysis of these data.

Table 3 lists some of the best designs for six factors in 18 runs generated by the procedure in

Tsai et al. (2000). It has been shown that, by using their procedure, more designs are generated.

All the designs can all be generated by their procedure are equally efficient for fitting the main

effects model and any sub-model of it. Nevertheless, for the two-stage analysis that considers
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interactions in addition to main effects, these designs are different. The best 18-run designs

with six factors that they generated have better projection properties and are more efficient than

those obtained by the procedure of Cheng and Ye (2004) and those from the L18(3
7). Design

25 in Table 3 is the preferred design with 6 factors in Cheng and Ye (2004). L18 2 is one of the

two six-factor designs that is obtained from L18(3
7). The other is in Table 1 and will be referred

to as L18 1 in Table 3. Tsai et al. (2004) noted that the designs studied in Cheng and Ye (2004)

and obtained from the L18(3
7) always project onto designs for three factors that are formed by

putting two regular 33−1 factorials together. Design 11 in Table 3 is the best design generated

by Tsai et al. (2000) that has this three-factor projection property.

We use QB(Γ(6)) to compare these orthogonal main effects designs for various priors. Table

3 gives the corresponding values of QB(Γ(6)) for the designs given in Table 2. The boldface

for QB(Γ(6)) indicates that the design has the lowest QB(Γ(6)) for the particular prior. Clearly,

depending on the prior knowledge, slightly more appropriate designs can be found, and the de-

signs chosen by the modified criterion are clearly better than the one actually used and are better

than the best design in Cheng and Ye (2004) under several priors. In general, designs with small

values of Q(Γ(k)) tend to have small values of QB(Γ(k)). For picking up the appropriate class

of designs, exact specification of prior probabilities is not crucial. The best designs constructed

in this way are very robust to prior specifications, so experimenters can have great confidence

in using them. Nonetheless, they can use their prior probabilities to select a specific best design

for any particular experiment.

5 Conclusion

In this paper, we studied a good way to assess orthogonal main effects designs, with robustness

to interactions as a secondary consideration when experimenters have some prior information

about the probability of effects being non-negligible in advance of collecting their data. In this

paper, we used the QB(Γ(k))-criterion to compare all the 440 three-level main effects designs
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Table 2: Some orthogonal main effects designs for six factors in 18 runs

Design 1

−−−−−0
−−0 + +−
−0−0 0−
−0 +−+ +
−+ 0 0−+
−+ + + 0 0
0−+−0−
0−+ 0−+
0 0−+ + +
0 0 0 0 0 0
0 +−+−−
0 + 0−+ 0
+−−0 + 0
+−0 + 0 +
+ 0 0−−−
+ 0 + +−0
+ +−−0 +
+ + + 0 +−

Design 2

−−−−0−
−−0 +−0
−0−0−+
−0 +−+ 0
−+ 0 0 +−
−+ + + 0 +
0−0 0 + +
0−+−−+
0 0−+ + 0
0 0 + 0 0−
0 +−+−−
0 + 0−0 0
+−−0 0 0
+−+ + +−
+ 0 0−−−
+ 0 0 + 0 +
+ +−−+ +
+ + + 0−0

Design 3

−−−−−0
−−0 + 0−
−0−0 +−
−0 +−0 +
−+ 0 0−+
−+ + + + 0
0−0 0 0 0
0−+−+−
0 0−+ 0 +
0 0 + 0−0
0 +−+−−
0 + 0−+ +
+−−0 + +
+−+ +−+
+ 0 0−−−
+ 0 0 + + 0
+ +−−0 0
+ + + 0 0−

Design 4

−−−−0−
−−0 0−+
−0−+ + +
−0 + +−0
−+ 0−+ 0
−+ + 0 0−
0−+−+ 0
0−+ + 0 +
0 0−0 +−
0 0 0 0 0 0
0 +−−−+
0 + 0 +−−
+−−0−0
+−0 + +−
+ 0 0−0 +
+ 0 +−−−
+ +−+ 0 0
+ + + 0 + +

Design 5

−−−−0 0
−−0 0−−
−0−+ + +
−0 + +−0
−+ 0−+−
−+ + 0 0 +
0−+−+ +
0−+ + 0−
0 0−−−−
0 0 0 0 0 0
0 +−0 + 0
0 + 0 +−+
+−−0−+
+−0 + + 0
+ 0 0−0 +
+ 0 + 0 +−
+ +−+ 0−
+ + +−−0

Design 8

−−−−0−
−−0 +−+
−0−0−0
−0 +−+ +
−+ 0 0 +−
−+ + + 0 0
0−0 0 + 0
0−+−−0
0 0−+ + +
0 0 + 0 0−
0 +−+−−
0 + 0−0 +
+−−0 0 +
+−+ + +−
+ 0 0−−−
+ 0 0 + 0 0
+ +−−+ 0
+ + + 0−+

Design 11

−−−−−−
−−+ 0 + 0
−0−+ + +
−0 0−0 0
−+ 0 0−+
−+ + + 0−
0−0 0 0−
0−+ +−+
0 0−0−0
0 0 +−+−
0 +−−0 +
0 + 0 + + 0
+−−+ 0 0
+−0−+ +
+ 0 0 +−−
+ 0 + 0 0 +
+ +−0 +−
+ + +−−0

Design 25

−−−−−−
−−+ 0 0 +
−0−+ 0 0
−0 0−+ +
−+ 0 0−0
−+ + + +−
0−0 0 +−
0−+ +−0
0 0−0−+
0 0 +−0−
0 +−−+ 0
0 + 0 + 0 +
+−−+ + +
+−0−0 0
+ 0 0 +−−
+ 0 + 0 + 0
+ +−0 0−
+ + +−−+

L18 2

−−−−−−
−−0 0 + +
−0−+ 0 +
−0 +−+ 0
−+ 0 +−0
−+ + 0 0−
0−−+ + 0
0−+−0 +
0 0 0 0 0 0
0 0 + +−−
0 +−0−+
0 + 0−+−
+−0 + 0−
+−+ 0−0
+ 0−0 +−
+ 0 0−−+
+ +−−0 0
+ + + + + +

16



Table 3: Comparison of L18(3
6) designs under several priors

QB(Γ(6)) Design

(π1, π2, π3) D1 D2 D3 D4 D5 D8 D11 D25 L18 1 L18 2

(1, 1, 0.5) 272.15 273.60 272.97 276.06 273.09 276.05 276.76 282.57 293.11 293.12

(1, 1, 0.2) 192.90 191.41 193.06 194.14 192.13 191.35 192.63 195.39 201.00 194.24

(0.8, 0.9, 0.2) 130.75 129.79 130.81 131.20 130.50 129.79 130.54 131.51 134.90 131.21

(0.8, 0.9, 0.3) 152.72 151.79 152.86 153.67 152.33 151.90 152.78 154.71 159.01 154.65

(0.8, 0.8, 0.6) 200.62 200.72 201.04 203.00 200.31 201.52 202.28 206.56 212.34 209.26

(0.8, 0.7, 0.3) 139.59 138.64 139.72 140.20 139.77 139.05 139.95 140.84 146.13 142.63

(0.8, 0.6, 0.6) 189.97 190.13 190.39 192.01 190.34 191.30 192.04 195.16 202.04 200.13

(0.8, 0.5, 0.7) 199.35 199.96 199.84 201.69 199.97 201.48 202.09 205.52 212.83 212.12

(0.7, 0.7, 0.4) 128.19 127.53 128.33 128.89 128.23 127.86 128.57 129.71 133.92 131.03

(0.6, 0.9, 0.5) 120.04 119.54 120.15 120.87 119.56 119.53 120.06 121.87 124.23 121.24

(0.67, 0.8, 0.7) 135.38 135.12 135.57 136.63 134.87 135.27 135.80 138.33 141.14 138.30

(0.67, 0.7, 0.5) 132.79 132.29 132.95 133.71 132.71 132.63 133.29 134.91 138.89 136.13
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with six factors in 18 runs generated by using the procedure by Tsai et al. (2000). We showed

that, depending on the prior knowledge, more appropriate designs can be found among the class

of good designs. The best designs constructed in this way are very robust to prior specifications,

so experimenters can have more confidence in using them.

In this paper, the QB(Γ(k))-criterion is used as a secondary consideration for orthogonal

main effects designs. Clearly, it can be used in exactly the same way for nearly orthogonal

designs. However, there is a question about how far we can go towards expecting large inter-

actions. If their prior probability becomes larger than that for quadratic effects, then we should

be using a different class of designs from orthogonal main effects plans. If this is the case, we

could use the QB criterion as a primary, rather than a secondary criterion, and we could use this

criterion in an exchange algorithm to construct designs in a way similar to Bayesian D-optimal

designs. However, the objectives for such designs will be different from those given in this

paper and we have not explored this possibility.
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Appendix A

Chipman (1996) defined the prior for a term of a given order being active is conditional on all

terms of its lower order such as

Pr (xi is active) = p

Pr
(

x2
i is active | δ(xi)

)

=











p0 if δ(xi) = 0

p1 if δ(xi) = 1

Pr (xixj is active | δ(xi), δ(xj)) =







































p00 if δ(xi) = δ(xj) = 0

p01 if δ(xi) = 0 and δ(xj) = 1

or δ(xi) = 1 and δ(xj) = 0

p11 if δ(xi) = δ(xj) = 1

In our definition, π1 is defined as the probability that a linear effect xi is in the true model,

which is the probability that term xi, or any effect to which it is marginal, is large. This is

the joint probability of the following events such that xi is active and x2
i is active and any xixj

interaction, for j 6= i and j = 1, . . . , k, is active, which can be written as

π1 = p + (1 − p)p0 + (1 − p)(1 − p0)[p01p + p00(1 − p)] +

(1 − p)(1 − p0){1 − [p01p + p00(1 − p)]}[p01p + p00(1 − p)] +

· · · + (1 − p)(1 − p0){1 − [p01p + p00(1 − p)]}k−2[p01p + p00(1 − p)]

= p + (1 − p)p0 + (1 − p)(1 − p0)
{

1 − {1 − [p01p + p00(1 − p)]}k−1
}
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π2 is defined as the probability that a quartic effect is in the true model given that the linear

effect of the same factor is in to model, so that

π2 = p1 (6)

Similarly, π3 is defined as the probability that an interaction effect is in the true model given

that the linear effects of both the factors involved are in to model, so that

π3 = p11 (7)

Under the strong heredity principle defined by Chipman (1996) that the belief that for an

interaction to be active both corresponding main effects must also be active, we have p0 = p00 =

p01 = 0. Therefore,

π1 = p. (8)

Under the weak heredity principle that the belief that for an interaction to be active one of the

corresponding main effects must also be active, we have p00 = 0. Thus

π1 = p + (1 − p)p0 + (1 − p)(1 − p0)
{

1 − [1 − p01p]k−1
}

(9)
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