
Supplementary material for “A study of two types of split-plot designs” by

Tsai (2016)

This supplementary file describes the use of the R functions for the study of split-plot designs

with few whole-plot factors and blocked split-plot designs discussed in Tsai (2016). Two func-

tions find.SSP() and find.BSP() are available for generating optimal designs with respect

to our criterion for a given design configuration. Four functions SSP(), SSP.wd(), BSP(),

BSP.wd() are given for computing the mi-values, wordlength pattern, and the criterion val-

ues of Section 3 for a given design. All the functions are included in a program file, and we

can source the entire script by typing the following source() command in the R console.

source("http://math.ntnu.edu.tw/~pwtsai/doe/sspbsp_prg.R")

• find.SSP(nfat, nUnit) — this is used to generate optimal split-plot designs with few

whole-plot factors for nfat = c(n1, n2) and nUnit = c(w, s), where n1, n2, w, s

are the numbers of whole-plot factors, subplot factors, whole-plots, and subplots per

whole-plot, respectively.

• SSP.wd(nfat, nUnit, wd1, wd2): — this is used to compute the mi-values, wordlength

pattern, and the criterion values in (b) and (c) of Section 3 for a split-plot design with

few whole-plot factors, where wd1 is the subplot words and wd2 is the splitting words.

For example, SSP.wd(c(3,4), c(16,2), c("ABPR", "ABCQS"), c("PQ")) is used to

evaulate a 32-run design with n1=3, n2=4, w=16, s=2, and the design has R = ABP

and S = ABCQ as subplot words and PQ as the splitting word.

• SSP(nfat, nUnit, vec1, vec2) — this function is similar to that of SSP.wd() and

is useful for the cases when, instead of subplot and splitting words, subplot columns

(vec1) and splitting columns (vec1) are given, as in Tables 3 and 4 of Tsai (2016).

• find.BSP(nfat, nUnit) — this is used to generate optimal blocked split-plot designs

for nfat = c(n1, n2) and nUnit = c(b, w, s), where n1, n2, w, s are defined as

before and b is the number of blocks.

• BSP.wd(nfat, nUnit, wd1, wd2) — this is used to compute the mi-values, word-length

pattern, and the criterion values in (a), (b) and (c) of Section 3 for a given blocked

split-plot design, where wd1 are the whole-plot and subplot defining words, and wd2 is

the blocking and splitting words. We note that in all the cases discussed in McLeod

and Brewster (2004), and therefore in Tsai (2016), splitting words (if they are needed)

are a subset of blocking words and we do not need to separate these two words in this

function.

• BSP(nfat, nUnit, vec1, vec2) — this function is similar to that of BSP.wd() with

vec1 as the whole-plot and subplot columns and vec2 the blocking and splitting

columns.

1

Split-plot designs with few whole-plot factors

(1). Consider the design configuration with (n1 n2; w s) = (3 4; 16 2). We use the following

function to generate the split-plot design with few whole-plot factors with respect to

our criterion.

find.SSP(c(3,4),c(16,2))

defining words: ABCPR ABCQS (15 23)

splitting words: PQ (24)

mi in whole-plot stratum: 2 2 2 1 1 1 0 0 0 0 0 0

mi in subplot stratum: 1 1 1 1 1 1 1 1 1 1 1 1

(b) and (c) : (21 27); (12 12)

word length pattern: 0 1 2 0 0

user system elapsed

0.051 0.000 0.051

The best design we found has ABCPR and ABCQS as subplot words (columns 15

and 23) and PQ (column 24) as the splitting word. The mW
i ’s and mS

i ’s are given. The

sums of mi and m2
i in conditions (b) and (c) are (21, 27) and (12, 12), respectively.

The word length pattern is A3 = 0, A4 = 1, and A5 = 2. We note that this design is

denoted d2 in Tsai (2016).

(2). For the case (n1 n2; w s) = (3 4; 16 2), consider a design which has ABPR and ABCQS

as the independent words and PQ as the splitting word. This design is denoted d1 in

Tsai (2016). To evaluate this design, we use the following function.

SSP.wd(c(3,4), c(16,2), c("ABPR", "ABCQS"), c("PQ"))

mi in whole-plot stratum: 2 1 1 1 1 1 1 1 0 0 0 0

mi in subplot stratum: 2 2 1 1 1 1 1 1 1 1 0 0

(b) and (c) : (21 27); (12 16)

word length pattern: 0 1 2 0 0

Comparing (1) and (2), we note that d1 and d2 are equally good with respect to

the usual minimum aberration criterion but d2 is a better design with respect to our

criterion.

(3). Function SSP() is used to evaluate a design when, instead of subplot and splitting

words, subplot and splitting columns are given.

For example, for the case (n1 n2; w s) = (1 13; 8 4), the design in Table 2 of BSS

has 3,5,9,14,15,17,22,26,28 as subplot columns and 6,24 as splitting columns. To

evaluate this design, we use the following function.

SSP(c(1, 13), c(8, 4), c(3,5,9,14,15,17,22,26,28), c(6, 24))

2

mi in whole-plot stratum: 6 5 5 5 5 5

mi in subplot stratum: 6 6 5 5 5 5 5 5 1 1 1

(b) and (c) : (76 386); (45 225)

word length pattern: 5 55 45 96 106 87 82 16 17 1 1 0

For the case (1 13; 8 4), we consider the design given in Table 3 of Tsai (2016).

> SSP(c(1,13), c(8,4), c(3,7,13,14,19,22,25,26,28), c(10,20))

mi in whole-plot stratum: 6 6 6 1 1 1

mi in subplot stratum: 5 5 5 5 5 5 5 5 5 5 5

(b) and (c) : (76 386); (55 275)

word length pattern: 5 55 45 96 106 87 82 16 17 1 1 0

We note that these designs are equally good with respect to the usual minimum aber-

ration criterion but our design has more two-factor interactions in the subplot stratum.

Clearly, our design is a better design, as discussed on Page 10 of Tsai (2016).

(4). Three cases where there are more than one admissible design.

> find.SSP(c(1,8),c(8,4))

defining words: APQT PQRU PQSV AQRSW (7 14 22 29) splitting words: PR QS (10 20)

(b) and (c) : (36 72); (27 57) #BSS

defining words: APQT PQRU AQRV APRSW (7 14 13 27) splitting words: PR QS (10 20)

(b) and (c) : (36 78); (28 64) #New

defining words: APQT PQRU APSV QRSW (7 14 19 28) splitting words: PR QS (10 20)

(b) and (c) : (36 90); (29 73) #New

user system elapsed

10.058 0.052 10.110

> find.SSP(c(1,9),c(8,4))

defining words: APQT PQRU PQSV AQRSW APRSX (7 14 22 29 27) splitting words:PR QS (10 20)

(b) and (c) : (45 105); (33 81) #BSS

defining words: APQT PQRU APSV QRSW ARSX (7 14 19 28 25) splitting words:PR QS (10 20)

(b) and (c) : (45 135); (36 108) #New

user system elapsed

40.453 0.124 40.574

> find.SSP(c(2,8),c(8,4))

defining words: ABPS ABQT APQRU BPQRV ABRW (7 11 29 30 19) splitting words: PR (20)

(b) and (c) : (45 105); (32 64) #BSS

defining words: APQS ABQT PQRU BQRV ABPQRW (13 11 28 26 31) splitting words: PR (20)

(b) and (c) : (45 135); (36 108) #New

defining words: ABPS ABQT PQRU AQRV BQRW (7 11 28 25 26) splitting words: PR (20)

(b) and (c) : (45 141); (37 117) #New

user system elapsed

51.097 0.204 51.297

3

(5). Eight cases where better 32-run split-plot designs are listed in Table 3 of Tasi (2016).
Clearly, for each class, our design is better when compared with BSS’s designs.

(n1, n2; w s) = (1 5 ; 8 4)

subplot columns: 15 splitting column: 10 22 #New

(b) and (c) : (15 15); (13 13)

word length pattern: 0 0 1 0

subplot columns: 31 ; splitting column: 10 18 #BSS

(b) and (c) : (15 15); (12 12)

word length pattern: 0 0 0 1

=====

(n1, n2; w s) = (1 6 ; 8 4)

subplot columns: 14 27 splitting column: 10 22 #New

(b) and (c) : (21 27); (18 22)

word length pattern: 0 1 2 0 0

subplot columns: 15 30 splitting column: 10 18 #BSS

(b) and (c) : (21 27); (17 23)

word length pattern: 0 1 2 0 0

=====

(n1, n2; w s) = (1 13 ; 8 4) (discussed in (3))

(b) and (c) : (76 386); (55 275) #New

(b) and (c) : (76 386); (45 225) #BSS

=====

(n1, n2; w s) = (1 14 ; 8 4)

subplot columns: 3 5 9 14 15 17 22 23 26 28 splitting column: 10 20 #New

(b) and (c) : (87 519); (51 303)

word length pattern: 6 77 62 168 188 203 188 56 62 7 6 0 0

subplot columns: 3 5 9 14 15 17 22 23 26 28 splitting column: 6 24 #BSS

(b) and (c) : (87 519); (50 290)

word length pattern: 6 77 62 168 188 203 188 56 62 7 6 0 0

=====

(n1, n2; w s) = (2 4 ; 8 4)

subplot columns: 15 splitting column: 20 #New

(b) and (c) : (15 15); (13 13)

word length pattern: 0 0 1 0

subplot columns: 31 splitting column: 20 #BSS

(b) and (c) : (15 15); (12 12)

word length pattern: 0 0 0 1

=====

(n1, n2; w s) = (2 5 ; 8 4)

subplot columns: 15 28 splitting column: 20 #New

(b) and (c) : (21 27); (18 22)

word length pattern: 0 1 2 0 0

subplot columns: 25 30 splitting column: 20 #BSS

(b) and (c) : (21 27); (18 24)

word length pattern: 0 1 2 0 0

=====

(n1, n2; w s) = (2 6 ; 8 4)

subplot columns: 15 27 28 splitting column: 20 #New

(b) and (c) : (28 46); (24 36)

word length pattern: 0 3 4 0 0 0

4

subplot columns: 15 21 27 splitting column: 29 #BSS

(b) and (c) : (28 46); (24 40)

word length pattern: 0 3 4 0 0 0

=====

(n1, n2; w s) = (3 4 ; 16 2)

subplot columns: 15 23 splitting column: 24 #New

(b) and (c) : (21 27); (12 12)

word length pattern: 0 1 2 0 0

subplot columns: 11 23 splitting column: 24 #BSS

(b) and (c) : (21 27); (12 16)

word length pattern: 0 1 2 0 0

Blocked split-plot designs

(1). Consider the design configuration (n1 n2; b w s) = (3 4; 2 4 4). We use the following

function to generate optimal blocked split-plot design with respect to our criterion.

find.BSP(c(3,4),c(2,4,4))

defining words: ABPQR ACPQS (27 29)

splitting/blocking words: ABC (7)

mi in block stratum: 0

mi in whole-plot stratum: 2 1 1

mi in subplot stratum: 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

(a), (b) and (c) : (21 27); (21 27); (17 21)

word length pattern: 0 1 2 0 0

The best design we found has ABPQR and ACPQS as defining words (columns 27 and

29) and ABC (column 7) as the blocking word. The sums of mi and m2
i in conditions

(a), (b) and (c) are (21, 27) (21, 27) and (17, 21), respectively. The word length

pattern for this design is A3 = 0, A4 = 1, and A5 = 2. This design is denoted d4 in

Tsai (2016).

(2). For the case (n1 n2; b w s) = (3 4; 2 4 4), consider another design with ABPR and

ABCQS as the defining words and ABC as the blocking word. This design is denoted

d3 in Tsai (2016). We evaluate this design by running the following function.

BSP.wd(c(3,4), c(2,4,4), c("ABPR", "ABCQS"), c("ABC"))

mi in block stratum: 1

mi in whole-plot stratum: 2 1 1

mi in subplot stratum: 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

(a), (b) and (c) : (21 27); (20 26); (16 20)

word length pattern: 0 1 2 0 0

MB word length pattern: 0 1 1 2 2 0 0 0 0 1

5

Comparing (1) and (2), we note that d3 and d4 are equally good with respect to the

usual minimum aberration criterion, but clearly d4 is a better design as discussed in

Section 3 of Tsai (2016).

(3). Four cases where more than one design are listed in MB’s Table 1, only the first design

is admissible and an additional admissible design up to equivalence is found.

> find.BSP(c(2,4), c(4,4,2))

defining words: ABPQRS (31) splitting/blocking words: PQ APR (12 21) #New

(a), (b) and (c) : (15 15); (14 14); (8 8)

word length pattern: 0 0 0 1

defining words: PQRS (28) splitting/blocking words: APQ BPR (13 22) #MB1

(a), (b) and (c) : (15 21); (15 21); (8 8)

word length pattern: 0 1 0 0

> find.BSP(c(3,3), c(4,4,2))

defining words: ABCPR (15) splitting/blocking words: AC APQ (5 25) #New

(a), (b) and (c) : (15 15); (14 14); (9 9)

word length pattern: 0 0 1 0

defining words: ABPR (11) splitting/blocking words: ABC APQ (7 25) #MB1

(a), (b) and (c) : (15 21); (15 21); (9 13)

word length pattern: 0 1 0 0

> find.BSP(c(3,4), c(4,4,2))

defining words: ABCPR ABCQS (15 23) splitting/blocking words: AC APQ (5 25) #New

(a), (b) and (c) : (21 27); (20 26); (12 12)

word length pattern: 0 1 2 0 0

defining words: ABPR ABQS (11 19) splitting/blocking words: ABC APQ (7 25) #MB1

(a), (b) and (c) : (21 39); (21 39); (12 20)

word length pattern: 0 3 0 0 0

> find.BSP(c(5,3), c(4,4,2))

number of admissible design(s): 2

defining words: ABCE ABPQ BCDPR (7 19 30) splitting/blocking words: AC ABD (5 11) #New

(a), (b) and (c) : (28 46); (25 41); (15 23)

word length pattern: 0 3 4 0 0 0

defining words: ABCE ABPQ BDPR (7 19 26) splitting/blocking words: AC ABD (5 11) #MB1

(a), (b) and (c) : (28 58); (26 54); (15 31)

word length pattern: 0 5 0 2 0 0

(4). Seven cases where only one design is listed in MB’s Table 1 and an additional admissible
design up to equivalence is found.

> find.BSP(c(1,5), c(4,2,4))

defining words: APQRT (15) splitting/blocking words: PR PQS (10 22) #New

(a), (b) and (c) : (15 15); (14 14); (13 13)

word length pattern: 0 0 1 0

defining words: PQRT (14) splitting/blocking words: APR PQS (11 22) #MB

(a), (b) and (c) : (15 21); (15 21); (13 17)

6

word length pattern: 0 1 0 0

> find.BSP(c(1,6), c(4,2,4))

defining words: APQRT APRSU (15 27) splitting/blocking words: PR PQS (10 22) #New

(a), (b) and (c) : (21 27); (20 26); (18 22)

word length pattern: 0 1 2 0 0

defining words: PQRT PRSU (14 26) splitting/blocking words: APR PQS (11 22) #MB

(a), (b) and (c) : (21 39); (21 39); (18 30)

word length pattern: 0 3 0 0 0

> find.BSP(c(3,4), c(4,2,4))

defining words: ABPR ACPQS (11 29) splitting/blocking words: AB AC (3 5) #New

(a), (b) and (c) : (21 27); (17 21); (17 21)

word length pattern: 0 1 2 0 0

defining words: APQR BCPQS (25 30) splitting/blocking words: AB AC (3 5) #MB

(a), (b) and (c) : (21 27); (18 24); (17 23)

word length pattern: 0 1 2 0 0

> find.BSP(c(3,5), c(4,2,4))

defining words: ABPR ABQS ACPQT (11 19 29) splitting/blocking words: AB AC (3 5)

(a), (b) and (c) : (28 46); (23 35); (23 35) #New

word length pattern: 0 3 4 0 0 0

defining words: APQR BCPQS ABCPT (25 30 15) splitting/blocking words: AB AC (3 5)

(a), (b) and (c) : (28 46); (25 43); (23 39) #MB

word length pattern: 0 3 4 0 0 0

> find.BSP(c(6,2), c(4,4,2))

defining words: ABCE ACDF ABDPQ (7 13 27) splitting/blocking words: AC ABD (5 11)

(a), (b) and (c) : (28 46); (24 36); (12 12) #New

word length pattern: 0 3 4 0 0 0

defining words: ABCE ACDF ABPQ (7 13 19) splitting/blocking words: AC ABD (5 11)

(a), (b) and (c) : (28 58); (25 49); (12 20) #MB

word length pattern: 0 5 0 2 0 0

> find.BSP(c(6,3), c(2,8,2))

defining words: ABCE ACDF ACPQ ABDPR (7 13 21 27) splitting/blocking words: ABD (11)

(a), (b) and (c) : (36 72); (35 71); (18 30) #New

word length pattern: 0 6 8 0 0 1 0

defining words: ABCE ACDF ABPQ BDPR (7 13 19 26) splitting/blocking words: ABD (11)

(a), (b) and (c) : (36 90); (36 90); (18 42) #MB

word length pattern: 0 9 0 6 0 0 0

> find.BSP(c(7,2), c(2,8,2))

defining words: ABCE ACDF BCDG ABDPQ (7 13 14 27) splitting/blocking words: ABD (11)

(a), (b) and (c) : (36 78); (35 77); (14 14) #New

word length pattern: 0 7 7 0 0 0 1

defining words: ABCE ACDF BCDG ABPQ (7 13 14 19) splitting/blocking words: ABD (11)

(a), (b) and (c) : (36 96); (36 96); (14 26) #MB

word length pattern: 0 10 0 4 0 1 0

7

(5). Function BSP() is used to evaluate a design when, instead of defining and split-

ting/blocking words, defining and splitting/blocking columns are given.

(a) Consider the case (n1 n2; b w s) = (1 7; 2 2 8). The design on Page 15 of Tsai

(2016) has 15,26,29 as the defining columns and 22 as the splitting/blocking

column. We use the following function to evaluate the design.

BSP(c(1,7),c(2,2,8), c(15,26,29), c(22))

mi in block stratum: 0

mi in whole-plot stratum: 0

mi in subplot stratum: 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0

(a), (b) and (c) : (28 46); (28 46); (28 46)

word length pattern: 0 3 4 0 0 0

MB word length pattern: 0 0 3 3 4 4 0 0 0 0 0 1

For (n1 n2; b w s) = (1 7; 2 2 8), the design in MB’s Table 1 has 15,23,30 as the

defining columns and 27 as the splitting/blocking column. We have the following

output.

> BSP(c(1,7),c(2,2,8), c(15,23,30), c(27)) #MB

mi in block stratum: 0

mi in whole-plot stratum: 1

mi in subplot stratum: 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0

(a), (b) and (c) : (28 46); (28 46); (27 45)

word length pattern: 0 3 4 0 0 0

MB word length pattern: 0 0 3 3 4 4 0 0 0 0 0 1

(b) Consider the case (n1 n2; b w s) = (1 8; 2 2 8)

> BSP(c(1,8), c(2,2,8), c(15,21,25,30), c(19)) #New

mi in block stratum: 0

mi in whole-plot stratum: 1

mi in subplot stratum: 4 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

(a), (b) and (c) : (36 72); (36 72); (35 71)

word length pattern: 0 6 8 0 0 1 0

MB word length pattern: 0 0 6 4 8 8 0 0 0 0 1 4 0 0

> BSP(c(1,8), c(2,2,8), c(15,23,27,29), c(30)) #MB’s design

mi in block stratum: 0

mi in whole-plot stratum: 4

mi in subplot stratum: 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

(a), (b) and (c) : (36 72); (36 72); (32 56)

word length pattern: 0 6 8 0 0 1 0

MB word length pattern: 0 0 6 4 8 8 0 0 0 0 1 4 0 0

In each case, the new design is a better design, as discussed in Tsai (2016).

References

Tsai, P. W. (2016), “A study of two types of split-plot designs”, Journal of Quality Technology 48,

44-53.

8

