
Statistical Isomorphism of

Three-Level Fractional Factorial Designs

Pi-Wen Tsai

Division of Biostatistics and Bioinformatics

National Health Research Institutes, Taipei, 115, Taiwan, R.O.C.

pwtsai@nhri.org.tw

Steven G. Gilmour

School of Mathematical Sciences, Queen Mary,

University of London, Mile End Road, London E1 4NS, UK.

s.g.gilmour@qmul.ac.uk

Roger Mead

School of Applied Statistics, The University of Reading,

PO Box 240, Earley Gate, Reading RG6 6FN, UK.

roger.mead@tesco.net

Abstract

From a statistician’s standpoint, the interesting kind of isomorphism for frac-

tional factorial designs depends on the statistical application. Combinatorially

isomorphic fractional factorial designs may have different statistical properties

when factors are quantitative. This idea is illustrated by using Latin squares of

order 3 to obtain fractions of the 33 factorial design in 18 runs.
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1 Introduction

Two fractional factorial designs are called combinatorially isomorphic if one can

be obtained from the other by permutations of the experimental units (rows),
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factor labels (columns) and levels of the factors. To identify the combinatorial

isomorphism of two fractional factorial designs is known to be an NP hard prob-

lem, i.e. the number of steps required to solve it is not bounded by a polynomial

in the size of the input, here the number of factors multiplied by the number of

experimental units. Clark and Dean [5] proposed using Hamming distances to

detect distinct designs for two-level experiments. Ma, Fang and Lin [7] proposed

a necessary criterion based on the uniformity of distances between points in the

design [2] for detecting non-isomorphic designs. Cheng and Ye [4] used indicator

functions as a tool to classify geometrically non-isomorphic designs. We now

emphasise that the statistically interesting kind of isomorphism depends on the

statistical application. Two combinatorially isomorphic three-level designs may

have different statistical properties when factors are quantitative. We use the

simple example of three-level designs to demonstrate our idea.

2 Latin squares and fractional factorials

A Latin square of order n is an n×n array with entries from a set of n symbols,

such that each symbol in the set occurs exactly once in each row and exactly

once in each column. For example, assuming that the symbols in the square are

{0, 1, 2}, the square

0 2 1

1 0 2

2 1 0

(1)

is a Latin square of order 3. Clearly, if we permute the rows, the columns or

the symbols of a Latin square, the result is still a Latin square.

A Latin square can be represented as an n2 × 3 array. Let S be the set of n2

triples of the form (i, j, k) where the symbol in row i and column j of the square

is k. Labelling the rows {0, 1, 2} and the columns likewise, the Latin square in
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(1) can be represented by the following nine triples:

000 012 021 101 110 122 202 211 220 (2)

When written with each triple on a separate line of the page, this becomes an

orthogonal array of strength 2 for three factors, each with 3 levels.

This orthogonal array can also be obtained by using the usual defining contrast

subgroups procedure for the construction of regular 33−1 fractional factorial

designs. The procedure is to ensure the resulting design contains exactly nine

treatment combinations that satisfy the relationship (which is called the defining

relation of the design)

x1 + α2x2 + α3x3 = a (mod 3), (3)

where xi is the level of the ith factor in a particular treatment combination

and xi = 0 (low level), 1 (middle level) or 2 (high level), αi = 1 or 2 and

a = 0, 1 or 2. The orthogonal array obtained from (2) is formed when we select

x1 + 2x2 + 2x3 = 0 (mod 3) as the defining relation.

It is easily verified that there are 12 distinct sets of αs and as corresponding

to the 12 regular 33−1 fractional factorials. These 12 designs are said to be

combinatorially isomorphic since one can be obtained from any other by re-

labelling the factors, reordering the runs and relabelling the levels of factors.

Each of these designs can be represented by a 3 × 3 Latin square and these

Latin squares are said to be isotopic since one can be obtained from another by

permuting rows, columns and symbols.

However, when the factors are quantitative, with equally spaced levels, and we

are interested in checking linearity of response, we use linear and quadratic con-

trasts, with coefficients (−1, 0, 1) and (1/2,−1, 1/2) respectively, to decompose

the main effects of factors. Assume now that the three levels are denoted by −1,

0 and +1 for the low, middle and high levels of a factor. Then designs obtained

from one another by some relabellings of levels of factors, namely switching 0

with +1 or 0 with −1 or cycling (−1, 0, +1) to either (0, +1,−1) or (+1,−1, 0),
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are said to be in different design families as defined by [9], or geometrically non-

isomorphic as defined by [3]. Only one design in a design family is needed, since

the other members of the family have the same properties. For this classification,

the 12 regular 33−1 designs are divided into two design families: one consists

of Latin squares with a centre point (0,0,0); the other consists of Latin squares

without the centre point. These are denoted by LS wc and LS wt respectively.

3 Example for three factors

One of the frequently used three-level orthogonal arrays in industrial experi-

ments is the L18(3
7) orthogonal array, an 18-run design for seven three-level

factors, described in, for example, [6]. There are 7 different designs for three

factors when we project L18(3
7) onto sets of three factors, as described in [10]

and [3]. These designs can be obtained by putting two 3 × 3 Latin squares

together and have either 18, 15 or 9 distinct points.

When we put together two 3×3 Latin squares which have no points in common,

we have two designs with 18 distinct points, namely designs D1 and D2 in

Table 1. These two designs, although they are combinatorially isomorphic,

have different statistical properties and are separated as two different design

families. Design D2 is formed by putting two mutually orthogonal 3 × 3 Latin

squares together.

When we put together two 3×3 Latin squares which have points in common, we

either have a design with three repeated points, i.e. one of designs D3, D4, D5

and D6 in Table 1, or a design with nine repeated points, D7 and D8 in Table 1.

Table 2 summarises the properties of these designs. The difference between D3

and D4 is that the former has repeated points corresponding to the middle level,

0, of one factor, whereas the latter has repeated points corresponding to +1 or

−1 of one factor. Design D8 is obtained by using a LS wt twice and cannot be

obtained by projection from L18(3
7). Wang and Wu [10] found that there are
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Table 1: Plans for designs for three 3-level factors in 18 runs

D1

−−−

−−+

−0−

−0 0

−+0

−++

0−0

0−+

0 0−

0 0+

0+−

0+0

+−−

+−0

+0 0

+0+

++−

+++

D2

−−−

−−0

−0−

−0+

−+0

−++

0−−

0−+

0 0 0

0 0+

0+−

0+0

+−0

+−+

+0−

+0 0

++−

+++

D3

−−−

−−+

−0−

−0 0

−+0

−++

0−0

0−0

0 0+

0 0+

0+−

0+−

+−−

+−+

+0−

+0 0

++0

+++

D4

−−−

−−−

−0 0

−0 0

−++

−++

0−0

0−−

0 0+

0 0−

0++

0+0

+−0

+−+

+0−

+0+

++−

++0

D5

−−−

−−−

−0 0

−0+

−+0

−++

0−+

0−+

0 0−

0 0 0

0+−

0+0

+−0

+−0

+0−

+0+

++−

+++

D6

−−−

−−0

−0−

−0+

−+0

−++

0−+

0−+

0 0 0

0 0 0

0+−

0+−

+−−

+−0

+0−

+0+

++0

+++

D7

−−−

−−−

−0+

−0+

−+0

−+0

0−+

0−+

0 0 0

0 0 0

0+−

0+−

+−0

+−0

+0−

+0−

+++

+++

D8

−−−

−−−

−0 0

−0 0

−++

−++

0−+

0−+

0 0−

0 0−

0+0

0+0

+−0

+−0

+0+

+0+

++−

++−

D9

−−−

−−0

−0−

−0+

−+0

−++

0−0

0−+

0 0−

0 0+

0+−

0+0

+−−

+−+

+0 0

+0 0

++−

+++

D10

−−−

−−0

−0−

−0+

−+0

−++

0−+

0−+

0 0−

0 0 0

0+−

0+0

+−−

+−0

+0 0

+0+

++−

+++

D11

−−−

−−0

−0−

−0+

−+0

−++

0−−

0−+

0 0 0

0 0 0

0+−

0++

+−0

+−+

+0−

+0+

++−

++0

D12

−−−

−−−

−0 0

−0+

−+0

−++

0−0

0−+

0 0−

0 0+

0+−

0+0
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+−+

+0−
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+++

D13

−−−

−−−
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0−0

0−+

0 0−

0 0 0
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0++
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+0+

++−

++0

three types of projected three-factor designs and named them L18 3.1, L18 3.2

and L18 3.3 respectively, as in Table 2. Cheng and Ye [4], who permuted the

levels of the projected designs to generate some additional 18-run designs, also

found these eight 18-run three-factor design families.

However, by using the design search procedure of [9], we generated five other

three-factor designs. They each have only one repeated point and cannot be

formed either by putting two Latin squares together or by projection from the

Table 2: The relationship between the 18-run designs and Latin squares

Design Two Latin squares #Distinct runs
D1 LS wt+LS wt 18 L18 3.1
D2 LS wt+LS wc 18
D3 LS wt+LS wt 15 L18 3.2
D4 LS wt+LS wt 15
D5 LS wt+LS wc 15
D6 LS wc+LS wc 15
D7 LS wc twice 9 L18 3.3
D8 LS wt twice 9
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Table 3: A (3 × 3)/2 Semi-Latin square

− 0 +
− 1 4 2 6 3 5
0 3 6 1 5 2 4
+ 2 5 3 4 1 6

Table 4: Correspondence between entries in semi-Latin square and labels in
3-level designs

Label D9 D10 D11 D12 D13
− 3,4 5,6 4,6 1,4 1,4
0 5,6 4,5 1,5 2,3 5,6
+ 5,6 3,6 2,3 5,6 2,3

L18(3
7) array. They are labelled D9, D10, D11, D12 and D13 in Table 1. In

fact, these new designs can be obtained from the (3 × 3)/2 semi-Latin square

labelled (b) in [8], shown in Table 3. Labelling the rows (−, 0, +) and the

columns similarly, as shown, these designs are obtained by labelling the numbers

(−, 0, +), as shown in Table 4. Designs D1-D6 can be obtained in a similar way

from this semi-Latin square, whereas designs D7 and D8 can be obtained from

the other (3 × 3)/2 semi-Latin square, labelled (a) in [8], namely the inflated

Latin square.

Studying the linear and quadratic contrasts of the factors for these 13 designs,

we find that the linear and quadratic effects of a factor are sometimes correlated

with interactions not involving that factor, and that the interactions are cor-

related with each other. These designs have different efficiencies for fitting the

models that contain some interactions as well as main effects. Table 5 gives val-

ues of the As criterion, i.e. the mean of the variances of the parameter estimates,

excluding the intercept, for fitting a second-order model; see [1] for a fuller de-

scription of this and related optimality criteria. It shows that designs that are

not formed by putting two Latin squares together, namely those labelled D9,

D10, D11, D12 and D13, do not necessarily give less efficient parameter esti-
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Table 5: Properties of designs for three factors in 18 runs

Design As Design As

D1 0.1334 D9 0.1158
D2 0.1187 D10 0.1204
D3 0.1121 D11 0.1529
D4 0.1688 D12 0.1394
D5 0.1741 D13 0.1289
D6 0.1420
D7 ∞
D8 ∞

mates than those obtained from putting two Latin squares together, even for

the second-order model.
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