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Chapter 1

General Properties on
Linear Representations
of Finite Groups

All groups we consider in this chapter are finite group.

1.1. Basic Definitions

Let V be a finite dimensional vector space over C and let Aut(V ) be the group of automorphisms of
V onto itself. A linear representation of a finite group G on V is a homomorphism ρ : G → Aut(V )
from G to the group Aut(V ). In this way we have the equalities

ρ(s · t) = ρ(s) ◦ ρ(t) ∀s, t ∈ G, ρ(1) = 1 and ρ(s−1) = ρ(s)−1.

We will also frequently write ρs instead of ρ(s).
When V is given, we say that V is a representation space of G, denoted Vρ and also say that G

acts on V through ρ. The dimension of V is called the dimension of ρ, denoted dim(ρ). If we have
ρ(s) equals to the identity map for all s ∈ G, the representation is called the trivial representation.

Example 1.1.1. Let g be the order of G and let V be the vector space of dimension g with a basis
(vt)t∈G indexed by the elements t of G. For s, t ∈ G, let ρs be the linear map of V into V such that
ρs(vt) = vst; this defines a linear representation, which is called the regular representation of G. Note
that if e is the identity of G, the orbit of ve form a basis of V .

Let ρ and ρ′ be two representations of the same group G in V and V ′, respectively. These
representations are said to be isomorphic if there exists a linear isomorphism τ : V → V ′ such that
τ ◦ ρ(s) = ρ′(s) ◦ τ for all s ∈ G. We shall usually identify isomorphic representations.

1.2. Subrepresentations and Irreducible
Representations

Let ρ : G → Aut(V ) be a linear representation and let W be a subspace of V . Suppose that w ∈ W
implies ρs(w) ∈W for all s ∈ G. The restriction ρs|W of ρs to W is then an automorphism of W and
we have ρst|W = ρs|W ◦ ρt|W . Thus W is stable under the action of G and ρ|W : G → Aut(W ) is a
linear representation of G in W ; W is said to be a subrepresentation of V .

There are some important subrepresentations. Let ρ and ρ′ be representations of G into V and W
respectively. A G-linear map from V to W is a linear map φ : V → W such that φ(ρs(v)) = ρ′s(φ(v))
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6 1. Linear Representations of Finite Groups

for all s ∈ G and v ∈ V . We denote the space of all G-linear maps from V to W by HomG(V,W ).
It is easy to check that for a given φ ∈ HomG(V,W ), the space Ker(φ) = {v ∈ V |φ(v) = 0} gives
a subrepresentation of G in V and the space Im(φ) = {w ∈ W |w = φ(v) for some v ∈ V } gives a
subrepresentation of G in W .

A representation of G in V is called irreducible if there is no proper nonzero subrepresentation of
V .

Lemma 1.2.1. Let ρ : G→ Aut(V ) and ρ′ : G→ Aut(W ) be two representations of G. Suppose that
φ ∈ HomG(V,W ) is not the zero map. Then we have the following:

(1) If V is an irreducible representation of G, then φ is injective.
(2) If W is an irreducible representation of G, then φ is surjective.

In particular, if both V and W are irreducible representations of G, then V and W are isomorphic.

Proof. Since φ is not zero, we have Ker(φ) �= V and Im(φ) �= {0}. Therefore, V is irreducible implies
Ker(φ) = {0} and W is irreducible implies Im(φ) = W . �

Corollary 1.2.2. Let V and W be two representations of G where V is irreducible and let φ1, φ2 ∈
HomG(V,W ). Suppose that there exist v �= 0 in V such that φ1(v) = φ2(v). Then φ1 = φ2.

Proof. The assumption says that φ1 − φ2 is not injective. Since φ1 − φ2 ∈ HomG(V,W ), it implies
that φ1 − φ2 is the zero mapping by Lemma 1.2.1. �

1.3. Schur’s Lemma and Its Applications

For each n× n matrix A, since it is over C which is algebraically closed, there exist eigenvalues of A.
By this, we can derive that there exists a unitary matrix U (i.e. UT · U = I) such that UT · A · U is
a upper triangular matrix. This is what called Schur’s Theorem in Linear Algebra [1, Section 6.5].
Here, by using similar argument, we have the following:

Proposition 1.3.1 (Schur’s Lemma). Let ρ : G→ Aut(V ) be an irreducible representation of G and
let f be a linear mapping of V into V such that ρs ◦ f = f ◦ ρs for all s ∈ G. Then f is a homothety
(i.e. f = λI for some λ ∈ C where I is the identity map of V ).

Proof. Because f is an endomorphism of V , there exists an eigenvalue λ with eigenvector v ∈ V .
Thus f(v) = λI(v). By Corollary 1.2.2, f is equal to λI. �

Let G be a finite abelian group and let ρ : G → Aut(V ) be a representation of G. It is easy to
show that for every s ∈ G, ρs is a G-linear mapping of V into V . Hence by Schur’s Lemma, we have
the following:

Corollary 1.3.2. Let G be a finite abelian group and let ρ : G → Aut(V ) be an irreducible represen-
tation of G. Then we have that dim(V ) = 1.

We will see latter that there are many applications for Schur’s Lemma. Here we give some impor-
tant ones which are very useful for developing character theory.

Corollary 1.3.3. Let ρ : G → Aut(V ) and ρ′ : G → Aut(W ) be two irreducible representations of G
and let g be the order of G. Let h be a linear mapping of V into W (note: h may not be a G-linear
mapping). Put

h0 =
1
g

∑
t∈G

(ρ′t)
−1 ◦ h ◦ ρt.

Then:
(1) If ρ and ρ′ are not isomorphic, then we have h0 = 0.
(2) If V = W and ρ = ρ′, then h0 is a homothety of ratio (1/n)Tr(h), where n = dim(V ).
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Proof. We have ρ′sh0 = h0ρs for all s ∈ G. Applying Lemma 1.2.1 and Schur’s Lemma with f = h0,
we see in case (1) that h0 = 0 and in case (2) that h0 = λI for some λ ∈ C. For the value of λ, we
have nλ = Tr(λI) = (1/g)

∑
t∈G Tr((ρt)−1hρt) = Tr(h). �

Now we rewrite Corollary 1.3.3 in matrix form. Suppose that dim(W ) = m and the linear mapping
h is defined by an m× n matrix (hkj) and likewise h0 is defined by (h0

kj). Assume ρ and ρ′ are given
in matrix form ρt = (rij(t)), 1 ≤ i, j ≤ n and ρ′t = (r′kl(t)), 1 ≤ k, l ≤ m respectively. We have by the
definition of h0:

h0
kj =

1
g

∑
t∈G,1≤l≤m,1≤i≤n

r′kl(t
−1) · hli · rij(t).

Since h is any linear mapping, we choose h with matrix form Eli, the matrix which is 1 in the (l, i)-
place and 0 everywhere else. Notice that Tr(Eli) = δli (δij denotes the Kronecker symbol, equal to 1
if i = j and 0 otherwise). Whence:

Corollary 1.3.4. Keeping the hypothesis and notation of Corollary 1.3.3, we have:
(1) If ρ and ρ′ are not isomorphic, then

1
g

∑
t∈G

r′kl(t
−1)rij(t) = 0, ∀ 1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n.

(2) If V = W and ρ = ρ′, then

1
g

∑
t∈G

rkl(t−1)rij(t) =

{
1/n if i=l and k=j,
0 otherwise.

1.4. Direct Sum and Tensor Product

There are many ways to construct new representations from old ones. Here we introduce direct
sum and tensor product. Let ρ : G → Aut(V ) and ρ′ : G → Aut(W ) be linear representations
of G in V and W , respectively. Define a linear representation ρ ⊕ ρ′ of G in V1 ⊕ V2 by setting
(ρ ⊕ ρ′)s(v ⊕ w) = ρs(v) ⊕ ρ′s(w), for all s ∈ G, v ∈ V and w ∈ W . ρ ⊕ ρ′ is called direct sum
representation of the given ρ and ρ′. The direct sum of an arbitrary finite number of representations
is defined similarly.

The tensor product representation ρ⊗ ρ′ of G in V ⊗W of the given representations ρ of G in V
and ρ′ in W is defined by the condition (ρ ⊗ ρ′)s(v ⊗ w) = ρs(v) ⊗ ρ′s(w), for all s ∈ G, v ∈ V and
w ∈W . The tensor product of an arbitrary finite number of representations is defined similarly.

We can easily see that

dim(ρ⊕ ρ′) = dim(ρ) + dim(ρ′) and dim(ρ⊗ ρ′) = dim(ρ) · dim(ρ′) .

1.5. Complete Reducibility

As in any study, before we begin our attempt to classify the representations of a finite group in earnest
we should try to simplify life by restricting our search somewhat. The key to all this is

Proposition 1.5.1. Let ρ be a linear representation of G in V and let W be a subrepresentation of
G in V . Then there exists a complement W 0 of W in V which is stable under G.

Proof. Choose W ′ an arbitrary complement of W in V , and let p : V → W be the corresponding
projection of V onto W (i.e. writing v ∈ V uniquely as v = w + w′ with w ∈ W and w′ ∈ W ′,
p(v) = w). Define

p0 =
1
g

∑
t∈G

(ρt)−1 ◦ p ◦ ρt,



8 1. Linear Representations of Finite Groups

where g is the order of G. Since p maps V into W and ρt preserves W for all t ∈ G, we see that
p0 maps V into W . Furthermore, because p(w) = w and ρ−1

t (w) = ρt−1(w) ∈ W for all w ∈ W ,
it implies that p0(w) = w for all w ∈ W . Thus p0 is a projection of V onto W , corresponding to
some complement W 0 = Ker(p0) of W . We have moreover ρs ◦ p0 = p0 ◦ ρs for all s ∈ G. Hence
p0 ◦ ρs(w0) = ρs ◦ p0(w0) = 0 for w0 ∈ W 0 and s ∈ G, which shows that W 0 is stable under G and
complete the proof. �

This proposition says that for any subrepresentation W of G in V , there exists another subrep-
resentation W 0 of G in V such that V = W ⊕ W 0 is a direct sum representation of W and W 0.
Therefore, an irreducible representation is equivalent to saying that it is not the direct sum of two
representations. We have the following complete reducibility property.

Theorem 1.5.2. Every representation is a direct sum of irreducible representations.

Proof. We proceed by induction on the dimension of representation. If the representation is irre-
ducible, there is nothing to prove. Otherwise, because of Proposition 1.5.1, it can be decomposed into
a direct sum of subrepresentations with smaller dimensions. By the induction hypothesis, these sub-
representations are direct sum of irreducible representations and so is our original representation. �

Remark . This property is not always true for representations of infinite group or over a field other
than C. For example, the additive group R does not have this property. Note also that the argument
of Proposition 1.5.1 would fail if the vector space was over a field of finite characteristic.

We can ask if this decomposition of V is unique. The case where all the ρs are equal to identity
shows that this is not true in general (in this case the irreducible representations are lines, and we
have an infinity of ways to decompose a vector space into a direct sum of lines). Nevertheless, we
have a decomposition of V which is “coarser” than the decomposition into irreducible representations,
but which has the advantage of being unique. It is obtained as follows. First decompose V into
direct sum of irreducible representations V = W1 ⊕ · · · ⊕Wk and then collect together the isomorphic
representations. A representation is said to be isotypic if it is a direct sum of isomorphic irreducible
representation. Thus, we have V = V1 ⊕ · · ·⊕Vh where every Vi is isotypic. This will be the canonical
decomposition we have in mind.

There is another concept for the proof of Proposition 1.5.1 which is very useful.
Let T be a linear mapping of V into V , where V is endowed with an inner product 〈 , 〉. Suppose

that 〈T (v), T (w)〉 = 〈v, w〉 for all v, w ∈ V and suppose further that U is the matrix representation of
T with respect to an orthonormal basis of V . Then U is unitary (i.e. UT · U = U · UT = I). We say
that an n × n matrix A is normal if AT · A = A · AT (so a unitary matrix is normal). Using Schur’s
theorem we can prove the spectral theorem which says that if A is normal, then there exists a unitary
matrix U such that UT · A · U is a diagonal matrix. This amounts to saying that A is normal if and
only if A possesses a orthonormal basis which are eigenvectors.

Let ρ : G → Aut(V ) be a linear representation where V is endowed with an inner product 〈 , 〉.
Consider the product 〈〈u, v〉〉 :=

∑
t∈G〈ρt(u), ρt(v)〉. Then 〈〈u, v〉〉 is an inner product with the

property 〈〈ρs(u), ρs(v)〉〉 = 〈〈u, v〉〉 for all s ∈ G. We can deduce from this that there exists a basis of
V such that the matrix form of ρs with respect to this basis is a unitary matrix for every s ∈ G. Now,
if W is a subrepresentation of G in V , then with respect to the inner product 〈〈u, v〉〉, the orthogonal
complement W⊥ of W in V is stable under G; another proof of Proposition 1.5.1 is thus obtained.

1.6. Characters for Representations

Let ρ : G → Aut(V ) be a linear representation of G in V . Since the trace of the linear mapping ρs
does not depend on the choice of basis of V , we put:

χρ(s) = Tr(ρs) for each s ∈ G.
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The complex valued function χρ on G thus obtained is called the character of the representation ρ.
We remark that if two representations ρ and ρ′ are isomorphic, then χρ = χρ′ .

Suppose that dim(ρ) = n. We have Tr(I) = n, and so χρ(e) = n where e is the identity of G.
Recall that from 1.5, the matrix form of ρs is normal, and hence diagonalizable. Thus for s ∈ G, a basis
(v1, . . . , vn) of V can be chosen such that ρs(vi) = λivi with λi ∈ C∗, and so χρ(s) =

∑n
i=1 λi. Also note

that s ∈ G has finite order, the values λi are roots of unity; in particular we have λi = λ−1
i . Because

ρs−1 = ρ−1
s , we have χρ(s−1) =

∑n
i=1 λ

−1
i =

∑n
i=1 λi and Tr(ρtst−1) = Tr(ρt ◦ ρs ◦ ρ−1

t ) = Tr(ρs).
We can summarize what we have shown so far in

Proposition 1.6.1. If χρ is the character of a dimension n representation ρ : G → Aut(V ) of G in
V , we have:

(1) χρ(e) = n.

(2) χρ(s−1) = χρ(s) for s ∈ G.
(3) χρ(tst−1) = χρ(s) for s, t ∈ G.

Proposition 1.6.2. Let ρ and ρ′ be two linear representations of G in V and W , and let χρ and χρ′
be their characters, respectively. Then:

(1) The character of the direct sum representation ρ⊕ ρ′ is equal to χρ + χρ′.
(2) The character of the tensor product representation ρ⊗ ρ′ is equal to χρ · χρ′.

Proof. This is a consequence of followings. Suppose that {vi} and {wj} are bases of V and W which
are eigenvectors of ρs and ρ′s with eigenvalues {λi} and {λ′j}, respectively. Then {vi ⊕ 0W , 0V ⊕ wj}
and {vi ⊗ wj} are eigenvectors of (ρ ⊕ ρ′)s and (ρ ⊗ ρ′)s with eigenvalues {λi, λ′j} and {λi · λ′j},
respectively. �

1.7. Orthogonality Relations for Characters

Let G be a group of order g. If φ and ψ are two complex valued functions on G, we put:

〈φ, ψ〉 =
1
g

∑
s∈G

φ(s)ψ(s).

This is an inner product.

Theorem 1.7.1. Let ρ and ρ′ be two irreducible representations of G with characters χρ and χρ′,
respectively.

(1) If ρ and ρ′ are not isomorphic, then we have 〈χρ, χρ′〉 = 0.
(2) If ρ and ρ′ are isomorphic, then we have 〈χρ, χρ′〉 = 1.

Proof. Because the character dose not depend on the choices of basis, without lose of generality by
suitable choice of basis, we suppose that the matrix form (rij(s)) of ρs and (r′kl(s)) of ρ′s are unitary
matrices. Thus (rij(s))−1 = (rij(s))T and (r′kl(s))

−1 = (r′kl(s))
T . We have then rij(s−1) = rji(s) and

r′kl(s
−1) = r′lk(s). Suppose dim(ρ) = n and dim(ρ′) = m. By definition, χρ(s) =

∑n
i=1 rii(s) and

χρ′(s) =
∑m

k=1 r
′
kk(s), and hence

〈χρ, χρ′〉 =
m∑
k=1

n∑
i=1

〈rii, r′kk〉 and 〈rii, r′kk〉 =
1
g

∑
s∈G

rii(s)r′kk(s) =
1
g

∑
s∈G

rii(s)r′kk(s
−1).

If ρ is not isomorphic to ρ′, then by Corollary 1.3.4, we have 〈rii, r′kk〉 = 0, and hence 〈χρ, χρ′〉 = 0. If
ρ is isomorphic to ρ′, then n = m and χρ = χρ′ . By Corollary 1.3.4, we have 〈rii, rkk〉 = δik/n, and
hence 〈χρ, χρ′〉 = 〈χρ, χρ〉 =

∑n
i,k=1 δik/n = 1. �

Theorem 1.7.1 says that in terms of the inner product defined above, the characters of irreducible
representations of G are orthonormal. There are many applications of these orthogonality relations.
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Corollary 1.7.2. Let ρ be a representation of G in V with character χρ and suppose V decomposes into
a direct sum of irreducible representations: V = W1 ⊕ · · · ⊕Wk. Let θ be an irreducible representation
of G in W with character χθ. Then the number of Wi which is isomorphic to W is equal to 〈χρ, χθ〉.
Proof. Let χi be the character of the irreducible representation of G in Wi. By Proposition 1.6.2, we
have χρ = χ1 + · · ·+χk. Thus 〈χρ, χθ〉 = 〈χ1, χθ〉+ · · ·+ 〈χk, χθ〉. By Theorem 1.7.1, 〈χi, χθ〉 is equal
to 1 (resp. 0) if Wi is (resp. is not) isomorphic to W . The result follows. �

Since 〈χρ, χθ〉 does not depend on the decomposition of V , this result says that the number of
irreducible representations in any decomposition of V which are isomorphic to W is the same. This
shows the fact that the canonical decomposition of V is unique (cf. Section 1.5). This number is
called the multiplicity of W occurs in V . If W1, . . . ,Wh are the distinct non-isomorphic irreducible
representations occur in W with multiplicities m1, . . . ,mh respectively, and χ1, . . . , χh denote corre-
sponding characters, then V is isomorphic to m1W1 ⊕ · · · ⊕mhWh and the character χρ of V is equal
to m1χ1 + · · · +mhχh with mi = 〈χρ, χi〉. Whence:

Corollary 1.7.3. Two representations have the same character if and only if they are isomorphic.

The above results reduce the study of representations to that of their characters. In particular,
we have:

Corollary 1.7.4. If χρ is the character of a representation ρ of G in V , then 〈χρ, χρ〉 is a positive
integer. Furthermore, we have 〈χρ, χρ〉 = 1 if and only if V is irreducible.

Proof. Suppose that χρ = m1χ1 + · · · +mhχh where χi are irreducible characters of G. The orthog-
onality relations among the χi imply 〈χρ, χρ〉 =

∑h
i=1m

2
i . Furthermore,

∑h
i=1m

2
i = 1 if only one of

the mi is equal to 1. Our result follows. �

1.8. The Space of Class Functions on G

A Complex valued function f on G is called a class function if f(tst−1) = f(s) for all s, t ∈ G. By
Proposition 1.6.1, all characters of a representation of G are class functions. Recall that two elements
s and s′ in G are said to be conjugate if there exists t ∈ G such that s′ = tst−1; this is an equivalence
relation, which partitions G into conjugacy classes. Let C1, . . . , Ch be the distinct conjugacy classes
of G. To say that a function f on G is a class function is equivalent to saying that f is constant on
each of C1, . . . , Ch.

We introduce now the space H of class functions on G. This is an inner product space endowed
with the inner product defined in 1.7. The dimension of H is equal to the number of conjugacy classes
of G.

Given a linear representation ρ : G → Aut(V ) of G in V , for f ∈ H, we define a linear mapping
ρf : V → V by:

ρf (v) =
∑
t∈G

f(t)ρt(v), for v ∈ V.

Because f is a class function on G, we have

ρ−1
s ◦ ρf ◦ ρs =

∑
t∈G

f(t)ρs−1ts =
∑
u∈G

f(sus−1)ρu =
∑
u∈G

f(u)ρu = ρf .

Hence, ρf is a G-linear mapping of V into V .

Lemma 1.8.1. Let G be a group of order g and let f be a class function on G. Suppose that ρ :
G → Aut(V ) is an irreducible linear representation of G of dimension n and character χ. Then
ρf =

∑
t∈G f(t)ρt is a homothety of ratio λ given by:

λ =
1
n

∑
t∈G

f(t)χ(t) =
g

n
〈f, χ〉.
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Proof. Since ρf ∈ HomG(V, V ) and V is irreducible, by Schur’s lemma (Proposition 1.3.1), ρf = λI.
Because dim(V ) = n, we have

λn = Tr(λI) = Tr(ρf ) =
∑
t∈G

f(t)Tr(ρt) =
∑
t∈G

f(t)χ(t).

The proof is complete. �

Theorem 1.7.1 show that the characters of the irreducible representations of G are orthonormal in
H. Therefore, they are linearly independent over C. This amounts to saying that the number of the
irreducible representations of G is less than or equal to the number of conjugacy classes of G. In fact,
they generate H.

Theorem 1.8.2. The characters of irreducible representations of G form an orthonormal basis of the
space of class functions on G.

Proof. Suppose that χ1, . . . , χh are the distinct characters of the irreducible representations of G.
We know that χ1, . . . , χh are also characters of G, and since 〈χi, χi〉 = 〈χi, χi〉 = 1, they are also
irreducible. Therefore, we only have to show that the orthogonal complement of W =span(χ1, . . . , χh)
in H is {0}. Let f ∈ W⊥ and for any representation ρ of G, put ρf =

∑
t∈G f(t)ρt. Since 〈f, χi〉 = 0,

Lemma 1.8.1 above shows that ρf is the zero mapping so long as ρ is irreducible. However, by Theorem
1.5.2, every representation is a direct sum of irreducible representations. We conclude that for any
representation ρ, ρf is always the zero mapping.

Now let ρ be the regular representation of G (cf. Example 1.1.1) in the vector space of dimension
g with a basis (vt)t∈G. Let e be the identity of G. Computing the image of ve under ρf , we have
ρf (ve) =

∑
t∈G f(t)ρt(ve) =

∑
t∈G f(t)vt = 0. Since (vt)t∈G is linearly independent, f(t) = 0 for all

t ∈ G and the proof is complete. �

This theorem says that the number of irreducible representations of G (up to isomorphic) is equal
to the number of conjugacy classes of G. We have another consequence of Theorem 1.8.2:

Proposition 1.8.3. Let χ1, . . . , χh be the distinct characters of irreducibles representations of G. Let
g be the order of G and for s ∈ G, let c(s) be the number of elements in the conjugacy class of s. Then
we have:

h∑
i=1

χi(s)χi(t) =

{
g
c(s) if t is conjugate to s ,

0 otherwise.

Proof. Let fs : G → C be the function on G such that fs(t) = 1 if t is conjugate to s and fs(t) = 0
otherwise. Since fs ∈ H, by Theorem 1.8.2, it can be written as fs =

∑h
i=1 λi χi. Because χ1, . . . , χh

are orthonormal,

λi = 〈fs, χi〉 =
1
g

∑
t∈G

fs(t)χi(t) =
c(s)
g
χi(s).

We then have for each t ∈ G,

fs(t) =
c(s)
g

h∑
i=1

χi(s)χi(t).

Our proof is complete by evaluating fs. �

Let e be the identity of G. Then c(e) = 1 and χi(e) equals to the dimension of the corresponding
irreducible representation of χi. Hence, we have the following:

Corollary 1.8.4. Let G be a group of order g. Let χ1, . . . , χh be all the distinct characters of the
irreducible representations of G and let n1, . . . , nh be the dimensions of their corresponding represen-
tations. Then

∑h
i=1 n

2
i = g and if s �= e then

∑h
i=1 ni χi(s) = 0.
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In Corollary 1.3.2, we know that every irreducible representation of an abelian group has dimension
1. In fact, the converse is also true.

Corollary 1.8.5. G is abelian if and only if all the irreducible representations of G have dimension
1.

Proof. Suppose that W1, . . . ,Wh are distinct irreducible representations of G of dimension n1, . . . , nh
respectively, where h is the number of conjugacy classes of G. Suppose that g is the order of G. By
Corollary 1.8.4, n2

1 + · · · + n2
h = g. Since G is abelian if and only if h = g, which is equivalent to all

the ni are equal to 1, our claim follows. �

1.9. Characters of a Group

A representation of G of dimension 1 is a homomorphism of G into the multiplicative group C∗ and is
called a character of G. In particular, we call the trivial 1-dimensional representation of G, the unit
character of G.

Let ρ be a representation of G. Suppose that µ is a character of G for which there exists a non-zero
v ∈ Vρ such that ρs(v) = µ(s)v for every s ∈ G. Then µ is said to be an eigenvalue of G with respective
to ρ and v is said to be an eigenvector of G that belongs to µ.

Let A be a finite abelian group. Then Proposition 1.8.3 says that the irreducible representation
of A are of dimension 1 and that their number is equal to |A|. Hence, in this case, the number
of characters of A is equal to the number of A. Furthermore, the set of characters of A forms a
multiplicative group Â which is isomorphic to A.

For arbitrary group, the subgroup of G generated by the set {sts−1t−1 | s, t ∈ G} is called the
commutator subgroup of G and denoted G′. G′ is the smallest normal subgroup of G such that G/G′

is abelian. We can deduce that, G has [G : G′] characters. The following properties for characters are
useful.

Lemma 1.9.1 (Orthogonality). If χ is not the unit character of G, then
∑

s∈G χ(s) = 0.

Proof. Since χ is not the unit character, there exists t ∈ G such that χ(t) �= 1. We have
∑

s∈G χ(s) =∑
s∈G χ(t)χ(s). Subtracting both side by

∑
s∈G χ(s), we obtain (χ(t) − 1)

∑
s∈G χ(s) = 0. Since

χ(t) �= 1, our proof is complete. �
Lemma 1.9.2 (Artin’s Lemma). If χ1, . . . , χn are distinct characters of G, then the only elements
a1, . . . , an in C such that

∑n
i=1 aiχi(s) = 0 for all s ∈ G are a1 = · · · = an = 0.

Proof. We prove the result by induction. We may assume that every ai �= 0. Since χ1 �= χ2, there
exists t ∈ G such that χ1(t) �= χ2(t). We have

∑n
i=1 aiχi(t)χi(s) = 0 and

∑n
i=1 aiχ1(t)χi(s) = 0.

Subtracting these two relations we obtain
∑n

i=2 ai(χ1(t) − χi(1))χi(s) = 0 for all s ∈ G. Since
a2(χ1(t) − χ2(t)) �= 0, this contradicts the validity of the result for n− 1 and complete the proof. �

Remark . Suppose G is abelian. Then G is canonically isomorphic to the dual ̂̂G of Ĝ. Hence the
dual of these two lemmas is also true.

1.10. Restricted Representation

If H ⊆ G is a subgroup, any representation ρ of G in V restricts a representation of H in V , denoted
ρH (or ResGH(V )).

Suppose that W is a subrepresentation of ρH , that is, a vector subspace of V stable under ρt, for
t ∈ H. Let s ∈ G; the vector space ρsW depends only on the left coset sH of s; indeed, if t ∈ H,
we have ρst(W ) = ρsρt(W ) = ρs(W ) because ρt(W ) = W . Hence, if τ is a left coset of H in G, we
can thus define a subspace Wτ of V to be ρsW for any s ∈ τ . Because the set of left cosets of H are
permuted among themselves by multiplying an element s ∈ G on the left, it is clear that the Wτ are
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permuted among themselves by the ρs, s ∈ G. Their sum
∑

τ∈G/HWτ is thus a subrepresentation of
V .

We are interested in the case that G has an abelian subgroup.

Proposition 1.10.1. Let G be a group of order g and let A be an abelian subgroup of G of order a.
Then each irreducible representation of G has dimension ≤ g/a.

Proof. Let ρ be an irreducible representation of G in V and ρA be the restriction to A. Suppose that
W ⊆ V is an irreducible subrepresentation of ρA. By Corollary 1.8.5, we have dim(W ) = 1. Since
V ′ =

∑
τ∈G/AWτ is thus a subrepresentation of V and V is irreducible, we have that V = V ′, and

hence dim(V ) ≤ g/a. �

1.11. Induced Representations

Let H be a subgroup of G and let W be a subspace of V which is stable under H. We say that the
representation ρ of G in V is induced by the representation θ of H in W , if V is equal to the direct
sum of the Wτ , τ ∈ G/H (thus, if V =

⊕
τ∈G/HWτ ). Recall that if τ is a left coset of H in G, Wτ

of V is ρsW for any s ∈ τ . Therefore, we have dim(V ) =
∑

τ∈G/H dim(Wτ ) = [G : H] · dim(W ),
where [G : H] is the number of left cosets of H in G, i.e. the index of H in G. Later (Theorem
1.11.4) we will see that given a linear representation θ : H → Aut(W ), there exists a unique (up to
isomorphic) representation ρ : G → Aut(V ) such that ρ in V is induced by θ in W . In this case we
write V = IndGH(W ) and ρ = IndGH(θ).

From the definition, it is easy to see that IndGH(W ⊕W ′) = IndGH(W ) ⊕ IndGH(W ′).

Example 1.11.1. Take for ρ the regular representation of G in V ; V has a basis (vt)t∈G such that
ρs(vt) = vst. Let W be the subspace of V with basis (vt)t∈H . The representation θ of H in W is the
regular representation of H and it is clear that ρ is induced by θ.

Now we show the existence and uniqueness of induced representations.

Lemma 1.11.2. If the representation ρ : G → Aut(V ) is induced by θ : H → Aut(W ), and if W ′ is
a subspace of W which is stable under H, then the subspace V ′ =

∑
τ∈G/HW

′
τ of V is stable under G

and the representation of G in V ′ is induced by the representation of H in W ′.

Proof. Let τ ∈ G/H and t ∈ τ . Then we have W ′
τ = ρt(W ′) ⊆ ρt(W ) = Wτ . Since V =

⊕
τ∈G/HWτ ,

it implies that V ′ =
⊕

τ∈G/HW
′
τ . �

By using the lemma above, we can prove the existence of induced representation of θ : H →
Aut(W ). Because IndGH(W ⊕W ′) = IndGH(W ) ⊕ IndGH(W ′), we may assume the θ is irreducible. In
this case, (using Corollary 1.7.2) θ is isomorphic to a subrepresentation of the regular representation
of H and the regular representation of H induces the regular representation of G (cf. the example
above). Applying Lemma 1.11.2, there exists a subrepresentation of the regular representation of G
which is induced by θ.

In next section, we will give a concrete construction for the induced representation.

Lemma 1.11.3. Suppose that the representation ρ : G → Aut(V ) is induced by θ : H → Aut(W ).
Let ρ′ : G → Aut(V ′) be a linear representation of G and let f : W → V ′ be a H-linear map (i.e.
f(θtw) = ρ′tf(w) for all t ∈ H and w ∈W ). Then there exists a unique linear map F : V → V ′ which
extends f (i.e. F (w) = f(w) for all w ∈W ) and satisfies F ◦ ρs = ρ′s ◦ F for all s ∈ G.

Proof. Let τ ∈ G/H. If F satisfies these conditions, for s ∈ τ and w ∈ W , we have F (ρs(w)) =
ρ′s(F (w)) = ρ′s(f(w)). This determines F on ρs(W ) = Wτ and hence on V because V =

⊕
τ∈G/HWτ .

This proves the uniqueness of F .
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For the existence of F ; if v = ρs(w) ∈ Wτ , we define F (v) = ρ′s(f(w)). This definition does not
depend on the choice of s in τ and w in W . If ρst(w′) = ρs(w) for some t ∈ H and w′ ∈ W , then we
have ρt(w′) = θt(w′) = w. Hence, ρ′st(f(w′)) = ρ′s(ρ′t(f(w′))) = ρ′s(f(θt(w′))) = ρ′s(f(w)). Again, since
V =

⊕
τ∈G/HWτ , by linearity, there exists a unique linear map F : V → V ′ which extends the partial

mappings thus defined on every Wτ . One easily checks that F ◦ ρs′ = ρ′s′ ◦ F for all s′ ∈ G. In fact, if
v = ρs(w) ∈Wτ , then F ◦ ρs′(ρs(w)) = F (ρs′s(w)) = ρ′s′s(f(w)) = ρ′s′(ρ

′
s(f(w))) = ρ′s′ ◦ F (ρs(w)). �

Theorem 1.11.4. Let H be a subgroup of G and let θ : H → Aut(W ) be a linear representation of
H in W . Then there exists a unique (up to isomorphic) representation ρ : G → Aut(V ) such that ρ
in V is induced by θ in W .

Proof. Because we have proved the existence, we only have to prove the uniqueness. Suppose that
ρ : G → Aut(V ) and ρ′ : G → Aut(V ′) are two representations of G induced by θ : H → Aut(W ).
Considering ι : W ↪→ V ′ the injection of W into V ′, by Lemma 1.11.3 there exists a unique linear map
F : V → V ′ which is identity on W and satisfies F ◦ρs = ρ′s◦F for all s ∈ G. For every ρ′s(w) ∈ ρ′s(W ),
we have F (ρs(w)) = ρ′s(F (w)) = ρ′s(w). Hence the image of F contains all the ρ′s(W ) and thus F is
onto. Since V and V ′ have the same dimension [G : H] dim(W ), we see that F is an isomorphism
which proves the uniqueness. �

1.12. A Concrete Construction for Induced
Representation

Let G be a finite group and let H be a subgroup of G. Let θ : H → Aut(W ) be a linear representation
of H. Define a vector space V to be the set of all functions f : G→W that satisfy

f(ts) = θt(f(s)) ∀ t ∈ H, s ∈ G.

Thus, an element f ∈ V is uniquely decided by its values on a system of representatives H\G of the
right cosets of H in G. Define an action of G on V by

ρs(f)(r) = f(r · s) ∀ r, s ∈ G and f ∈ V.

It is easy to check that ρ gives a linear representation of G with representation space V .
We embed W into V by mapping each w ∈W onto the function fw : G→W defined by

fw(s) =

{
θs(w) if s ∈ H,

0 otherwise.

Clearly we have that ρt(fw) = fθt(w) for all t ∈ H and W is isomorphic onto the subspace of V
consisting of functions which vanish off H.

Let now R be a system of representatives of the left cosets G/H. For every f ∈ V and r ∈ R, we
define a function fr ∈ V by

fr(s) =

{
f(s) if s ∈ Hr−1,

0 otherwise.

Then f =
∑

r∈R ρr(ρ
−1
r (f)) and ρ−1

r (fr) = ρr−1(fr) belongs to W (after identifying W with its image
in V ). Thus V =

⊕
τ∈G/HWτ and hence V = IndGH(W ).

There is another point of view of induced representation. Let ρ be a linear representation of
G. Then Vρ can be also considered as a module over the group-ring C[G]. Using this form, if ρ′ is
another representation of G, then we write (ρ, ρ′) = dim HomC[G](Vρ, Vρ′). The form (ρ, ρ′) is clearly
symmetric and bilinear. In fact, decomposing Vρ and Vρ′ into direct sum of irreducible representations,
by Theorem 1.7.1 we have that

〈χρ, χρ′〉 = (ρ, ρ′) .
From this point of view, for induced representation, we obtain also a canonical isomorphism

IndGH(W ) ∼= C[G] ⊗C[H] W .
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This characterization of induced representation makes it obvious that the induced representation
exists and is unique. On the other hand, given a C[G]-module V which is a direct sum V = ⊕i∈IWi

of vector space permuted transitively by G. Choose i0 ∈ I and W = Wi0 and let H be the subgroup
H = { s ∈ G |sW = W}. Then it is clear that the C[G]-module V is induced by the C[H]-module W .

This form of induced representation is convenient to prove the following fundamental properties,
by using elementary property of tensor product.

Proposition 1.12.1. Let J be a subgroup of H and H be a subgroup of G.

(1) (Lemma 1.11.3) Let W be a C[H]-module and let E be a C[G]-module. Then we have

HomC[H](W,E) ∼= HomC[G](IndGH(W ), E) .

(2) Let U be a C[J ]-module. Then

IndGJ (U) = IndGH(IndHJ (U)) .

1.13. Characters of Induced Representations

Let ρ : G → Aut(V ) be a linear representation of G which is induced by the representation θ : H →
Aut(W ) and let χρ and χθ be the corresponding characters. Since by the uniqueness, θ determines ρ
up to isomorphic, we ought to be able to compute χρ from χθ.

Theorem 1.13.1. Let ρ : G → Aut(V ) be a linear representation of G which is induced by the
representation θ : H → Aut(W ) and let χρ and χθ be the corresponding characters. Let h be the order
of H. For each s ∈ G, we have

χρ(s) =
1
h

∑
r∈G

r−1sr∈H

χθ(r−1sr).

Proof. Choose R being a system of representatives of G/H, so V =
⊕

r∈R ρr(W ). For s ∈ G and
r ∈ R, we have that sr = r′t with r′ ∈ R and t ∈ H. We see that ρs sends ρr(W ) into ρr′(W ). We
choose a basis of V which is the union of bases of ρr(W ), r ∈ R. The indices r such that r �= r′ give
zero diagonal terms, and for the indices r such that r = r′, ρr(W ) is stable under ρs (because W is
stable under ρt = θt, for t ∈ H). Observe that r = r′ if and only if r−1sr = t ∈ H. We thus only have
to compute the trace of the restriction of ρs on ρr(W ) for those r ∈ R such that r−1sr ∈ H. Note
that in this case ρs ◦ ρr = ρr ◦ ρt = ρr ◦ θt and ρr defines an isomorphism of W into ρr(W ). Hence
the restriction of ρs on ρr(W ) is equal to ρrθtρ−1

r and thus its trace is equal to that of θt, that is, to
χθ(t) = χθ(r−1sr). Our formula follows from the fact that if r−1sr ∈ H , then every element u ∈ rH
has the property u−1su ∈ H and χθ(u−1su) = χθ(r−1sr). �

Let H be a subgroup of G. For a linear representation of ρ : G → Aut(V ) with character χρ,
we denote by ResGH(χρ) the character of the restricted representation ρH of G on H. For a linear
representation of θ : H → Aut(W ) with character χθ, we denote by IndGH(χθ) the character of the
representation of G induced by θ.

Theorem 1.13.2 (Frobenius Reciprocity). Let H be a subgroup of G. Let ρ : G→ Aut(V ) be a linear
representation of G with character χρ and let θ : H → Aut(W ) be a linear representation of H with
character χθ. Then we have

〈χρ, IndGH(χθ)〉G = 〈ResGH(χρ), χθ〉H ,
where 〈 , 〉G and 〈 , 〉H denote the inner products of the spaces of class functions on G and H defined
in 1.7.

Proof. Observe first that if ρ and ρ′ are linear representations of G in V and V ′ with characters χ and
χ′, respectively, then 〈χ, χ′〉G is equal to dim(HomG(V, V ′)). Lemma 1.11.3 shows that every H-linear
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mapping from W into ResGHV can be uniquely extended to a G-linear mapping from IndGH(W ) into
V . Therefore,

HomG(IndGH(W ), V )  HomH(W,ResGHV )

and our theorem follows. �

Remark . Let ρ be an irreducible representation of G in V and let θ be an irreducible representation
of H in W . Frobenius reciprocity says that the number of times that W occurs in ResGHV is equal to
the number of times that V occurs in IndGH(W ).

1.14. Restrictions of Induced Representations

Let H and J be two subgroups of G, and let θ : H → Aut(W ) be a linear representation of H, and
let V = IndGH(W ). We shall determine the restriction ResGJ (V ) of V to J .

First choose a set of representatives S for the double cosets J\G/H; this means that G is the
disjoint union of the JsH for s ∈ S. Given s ∈ S, let Hs = sHs−1 ∩ J , which is a subgroup of
J . Define a homomorphism θs : Hs → Aut(W ) by setting θs(x) = θ(s−1xs), for x ∈ Hs. This is a
linear representation of Hs. Though, the representation space for θs is also W , to distinguish it with
the representation θ we denote it by Ws. Since Hs is a subgroup of J , the induced representation
IndJHs(Ws) is defined.

Proposition 1.14.1. Let H and J be two subgroups of G and S be a representatives for the double
cosets J\G/H. The representation ResGJ (IndGH(W )) is isomorphic to the direct sum of the represen-
tations IndJHs(Ws), for s ∈ S.

Proof. Let ρ = IndGH(θ) and for s ∈ S let V (s) be the subspace of V = IndGH(V ) generated by ρx(W ),
for all x ∈ JsH. V (s) is a C[J ]-module and the space is a direct sum of the V (s). It remains to
claim that V (s) is C[J ]-isomorphic to IndJHs(Ws). V (s) is the direct sum of ρx(ρs(W )), x ∈ J/Hs

and the subgroup of J consisting of the elements x such that ρx(ρs(W )) = ρs(W ) is equal to Hs.
Therefore, V (s) = IndJHs(ρs(W )). Consider the map f : Ws → ρs(W ) given by f(w) = ρs(w). This is
a C[Hs]-isomorphism, because f((θs)x(w)) = ρs(θs−1xs(w)) = ρs(ρs−1xs(w)) = ρx(ρs(w)), for x ∈ Hs.
Our claim follows. �

We apply Proposition 1.14.1 to the case J = H; the representation θ of H defines a representation
ResHHs(θ) of Hs which should not be confused with the representation θs defined above.

Proposition 1.14.2 (Mackey’s irreducibility criterion). The induced representation ρ = IndGH(θ) is
irreducible if and only the following two conditions are satisfied:

(1) θ is irreducible.

(2) For each s ∈ G−H, (ResHHs(θ), θ
s) = 0, as representations for Hs.

Proof. From Proposition 1.14.1, we have ResGH(ρ) = ⊕s∈H\G/HIndHHs(θ
s). Applying Frobenius reci-

procity (Theorem 1.13.2), we obtain

(ρ, ρ) = (θ,ResGH(ρ)) =
∑

s∈H\G/H
(θ, IndHHs(θ

s)) =
∑

s∈H\G/H
(ResHHs(θ), θ

s) .

Since ρ is irreducible if and only if (ρ, ρ) = 1, our proof is complete. �

Corollary 1.14.3. Suppose that H is a normal subgroup of G. In order that IndGH(θ) is irreducible,
it is necessary and sufficient that θ is irreducible and not isomorphic to any of its conjugates θs, for
s /∈ H.

Proof. Indeed, we have then Hs = H and ResHHs(θ) = θ. �
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1.15. Method of Little Group

The principle of the method of little group is to show that the irreducible presentations of G can be
constructed from those of certain subgroups of G.

Proposition 1.15.1. Let A be a normal subgroup of G, and let ρ be an irreducible presentation of G.
Then:

(1) either there exists a subgroup H, A ⊆ H � G, and an irreducible representation θ of H such
that ρ is induced by θ;

(2) or else the restriction of ρ to A is isotypic.

Proof. Let Vρ = ⊕Vi be the canonical decomposition of ResGA(ρ) into a direct sum of isotypic rep-
resentations. Because A is normal in G, for s ∈ G we see that ρ(s) permutes the Vi and since V is
irreducible, G permutes them transitively. Let Vi0 be one of these. If Vi0 = V , we have case (2). Oth-
erwise, let H be the subgroup consisting of those s ∈ G such that ρ(s)(Vi0) = Vi0 . we have A ⊆ H � G
and ρ is induced by the nature representation of H in Vi0 , which is irreducible by (1) of Proposition
1.14.2. �

Let J and H be two subgroup of G, with J normal. We say that G is the semidirect product of H
by J , if G = J ·H and H ∩ J = {1}. Suppose that J is abelian and G is the semidirect product of H
by J . We are going to show that the irreducible representations of G can be constructed from those
of certain subgroups of H (this is the method of “little group” of Wigner and Mackey).

Since J is abelian, its irreducible representations are of dimension 1 and form the character group
Ĵ of J . The group G act on Ĵ by

(s ∗ ψ)(j) = ψ(s−1js), for s ∈ G, ψ ∈ Ĵ , j ∈ J.

Given ψ ∈ Ĵ , the subset of Ĵ consisting of all elements t∗ψ with t ∈ H is denoted by Hψ and is called
the orbit of ψ under H.

Let X be a system of representatives for the orbits of Ĵ under H. For each ψ ∈ X, let Hψ be
a subgroup of H consisting of those elements h such that h ∗ ψ = ψ, and let Gψ = J · Hψ be the
corresponding subgroup of G. We can extend ψ to a function of Gψ by setting

ψ(jh) = ψ(j) for j ∈ J and h ∈ Hψ.

Because J is normal and Hψ fixes ψ, we have that ψ((jh)(j′h′)) = ψ(j(hj′h−1)hh′) = ψ(j(hj′h−1)) =
ψ(j)ψ(j′) = ψ(jh)ψ(j′h′) for j, j′ ∈ J and h, h′ ∈ Hψ. Hence, ψ is a character of Gψ. Now let θ be an
irreducible representation of Hψ. By composing with the canonical projection Gψ → Hψ, we obtain
an irreducible representation θ̃ of Gψ. The tensor product ψ ⊗ θ̃ is also an irreducible representation
of Gψ. Let ρψ,θ = IndGGψ(ψ ⊗ θ̃).

Proposition 1.15.2. Let X be a system representatives of the orbits of Ĵ under H. For ψ ∈ X and let
θ be an irreducible representation of Gψ. Then ρψ,θ is an irreducible representation of G. Furthermore,
given an irreducible representation ρ of G, there exist ψ ∈ X and θ such that ρ is isomorphic to ρψ,θ.

Proof. We prove the irreducibility of ρψ,θ by using Mackey’s criterion (Proposition 1.14.2). For
s /∈ Gψ, Let Gs = Gψ ∩ sGψs−1. We only have to claim that

((ψ ⊗ θ̃)s,ResGψGs (ψ ⊗ θ̃)) = 0.

Since A ⊆ Gs, it is enough to check for the restrictions of theses representations to J . The restriction
of (ψ ⊗ θ̃)s to J is s ∗ ψ and the restriction of (ψ ⊗ θ̃) to J is ψ. Since s /∈ Gψ = J · Hi, we have
s ∗ ψ �= ψ. Our claim follows.

Finally, let ρ be an irreducible representation of G. Let Vρ = ⊕ψ∈ĴWψ be the canonical decompo-
sition of ResGJ (ρ) (Wψ is the space of vectors w in Vρ such that ρj(w) = ψ(j)w for j ∈ J). If s ∈ G
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and w ∈ Wψ, we have ρj(ρs(w)) = ρs(ρs−1js(w)) = ρs(ψ(s−1js)w) = (s ∗ ψ)(j)(ρs(w)). Hence, ρs
transforms Wψ into Ws∗ψ. Thus, if Wψ is nonzero, then Wψ′ is nonzero for every ψ′ in the orbit of
ψ under H. Suppose ψ ∈ X such that Wψ is nonzero. Hψ maps Wψ into itself and hence Wψ is a
C[Hψ]-module. Choose an irreducible sub-C[Hψ]-module Uψ of Wψ and let θ be the corresponding
representation of Hψ. It is clear that the corresponding representation of ResGGψ(ρ) on Uψ is isomorphic

to ψ ⊗ θ̃. Hence (ResGGψ(ρ), ψ ⊗ θ̃) ≥ 1. By Proposition 1.13.2, we have (ρ, IndGGψ(ψ ⊗ θ̃)) ≥ 1. Since
both ρ and IndGGψ(ψ ⊗ θ̃) = ρψ,θ are irreducible, this implies they are isomorphic. �

Remark . Let X be a system representatives of the orbits of Ĵ under H. Let ψ, ψ′ ∈ X and suppose
that ρψ,θ is isomorphic to ρψ′,θ′ . From the proof above, we know that the restriction of ρψ,θ involves
only characters belonging to the orbit of ψ under H. Hence, we have ψ = ψ′. Further, the space Wψ

is stable under Hψ and one checks immediately that θ is isomorphic to θ′. This says that given an
irreducible presentation ρ of G, the ψ and θ we find in (2) of Proposition 1.15.2 is in fact uniquely
determined by ρ.

1.16. The Schur Algebra

Given a representation ρ of G, HomC[G](Vρ, Vρ) is an algebra over C called the Schur algebra.
If ρ is irreducible, then HomC[G](Vnρ, Vnρ) is isomorphic to Mn(C), the algebra of all n × n

matrices over C. If ρ =
⊕
niρi is the canonical decomposition of ρ, then, by Schur’s lemma,

HomC[G](Vρ, Vρ) =
⊕
Mni(C). It follows that ρ has no multiple components, i.e. ni = 1 for all

i, if and only if HomC[G](Vρ, Vρ) is commutative.

Proposition 1.16.1. Let H and J be subgroup of G and let θ and σ be representations of H and
J , respectively. Then HomC[G](IndGH(Vθ), IndGJ (Vσ)) is isomorphic to the vector space of all functions
F : G→ HomC(Vθ, Vσ) satisfying

() F (jsh) = σj ◦ F (s) ◦ θh for all j ∈ J , s ∈ G and h ∈ H.

Proof. Let θ̂ = IndGH(θ), σ̂ = IndGJ (σ) and n = [G : H]. Let Vθ̂ and Vσ̂ be the representation
spaces we constructed in 1.12 for θ̂ and σ̂, respectively. Denote by F the space of all functions
F : G → HomC(Vθ, Vσ) satisfying (). For every F ∈ F , denote by TF the element of HomC(Vθ̂, Vσ̂)
defined by

TF (f)(s) =
1
n

∑
r∈G

F (sr−1)(f(r)), for f ∈ Vθ̂ and s ∈ G.

We remark that TF (f) ∈ Vσ̂ for f ∈ Vθ̂ because F (js) = σj ◦ F (s) for j ∈ J . Moreover, the map
F → TF is a homomorphism F → HomC[G](Vθ̂, Vσ̂) since clearly

TF (θ̂t(f))(s) =
1
n

∑
r∈G

F (sr−1)(f(rt)) =
1
n

∑
r∈G

F (str−1)(f(r)) = σ̂t(TF (f))(s).

We have to show that this is in fact an isomorphism.
It is injective. Indeed, suppose that TF = 0. Given t ∈ G and v ∈ Vθ, we define a function ft,v ∈ Vθ̂

by

ft,v(s) =

{
θh(v) if s = ht for some h ∈ H,

0 if s /∈ Ht.

Then we have that 0 = TF (ft,v)(s) = 1
n

∑
h∈H F (st−1)(v) = F (st−1)(v) (here, we use the fact that

F (sh) = F (s) ◦ θh). Hence F (st−1) = 0 for all s, t ∈ G, i.e. F = 0.
To show the map is surjective, we first remark that dim(F) is not equal to |J\G/H|dim(θ) dim(σ).

In fact, though it suffices to give values of F ∈ F on a system of representatives of J\G/H, we need
an extra condition. Because it is possible that there exist j �= j′ in J and h �= h′ in H such that
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jsh = j′sh′. Hence for s ∈ J\G/H, if jsh = j′sh′ for j, j′ ∈ J and h, h′ ∈ H, in order to have F ∈ F
(i.e. satisfies the relation ()) we need:

(′) F (s) = σj−1j′ ◦ F (s) ◦ θh′h−1 .

Let x = j−1j′ ∈ sHs−1 ∩ J . Recall in section 1.14, we define a representation of Hs = sHs−1 ∩ J by
setting θsx = θs−1xs for x ∈ Hs. The relation (′) is just saying that F (s) ∈ HomC[Hs](θ

s,ResJHs(σ)).
Observe that dim(HomC[G](IndGH(Vθ), IndGJ (Vσ))) = (θ̂, σ̂). According to Frobenius reciprocity, we
have (θ̂, σ̂) = (ResGJ (θ̂), σ). However, from Proposition 1.14.1 we have ResGJ (θ̂) = ⊕s∈J\G/HIndJHs(θ

s).
Once more applying the Frobenius reciprocity, we obtain:

(θ̂, σ̂) =
∑

s∈J\G/H
(θs,ResJHs(σ)) .

This proves that the dimension of F is equal to the dimension of HomC[G](Vθ̂, Vσ̂) and hence proves
the surjectivity. �

Corollary 1.16.2. Let H and J be subgroup of G and let θ and σ be representations of H and J ,
respectively. We have (IndGH(θ), IndGJ (σ)) ≤ |J\G/H|dim(θ) dim(σ).

The most interesting conclusion of Proposition 1.16.1 arises in the special case where H = J and
θ = σ. In this case, Proposition 1.16.1 turns F into the Schur algebra of IndGH(θ) and the product
between two elements F1 and F2 of F is given by

(F1 · F2)(s) =
1

[G : H]

∑
r∈G

F1(sr−1)F2(r)

which can be easily verified from the basic relation TF1 ◦ TF2 = TF1·F2 .





Chapter 2

The Group GL(2, Fq)
and Its Subgroups

In this chapter Fq is a finite field with q elements, where q > 2.

2.1. Notational Conventions

We denote by G the group GL(2,Fq) of all 2 × 2 invertible matrices with entries in Fq. We further
reserve some letters for distinguished subgroups of G that will concern us in the sequel.

The letter B stands for the Borel subgroup of G consisting of all upper triangular matrices

B =
{(

α β
0 δ

)
| α, δ ∈ F×

q ; β ∈ Fq

}
.

B contains the normal abelian subgroup

U =
{(

1 β
0 1

)
| β ∈ Fq

}
.

The quotient group B/U is isomorphic to the Cartan group

D =
{(

α 0
0 δ

)
| α, δ ∈ F×

q

}
.

Another important subgroup of B is

P =
{(

α β
0 1

)
| α ∈ F×

q , β ∈ Fq

}
.

A complement of U in P is the group

A =
{(

α 0
0 1

)
| α ∈ F×

q

}
.

The center of G is

Z =
{(

δ 0
0 δ

)
| δ ∈ F×

q

}
.

The idempotent matrix

w =
(

0 1
1 0

)
will play an important role in the sequel.

21
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2.2. The Subgroups U and P

U is a normal abelian subgroup of B which contains all unipotent upper triangular matrices. This
group is isomorphic to the additive group F+

q of the field Fq. Indeed(
1 β
0 1

)(
1 β′

0 1

)
=
(

1 β + β′

0 1

)
.

We shall sometimes identify an element β of Fq with the corresponding matrix of U .
P is another important subgroup of B. It is of order (q − 1)q. Note that U is contained in P . In

fact, U is also the commutator subgroup of P .
A is a complement of U in P and is isomorphic to F×

q . Thus P is the semidirect product of A by
U . The action of A on U by conjugation corresponds to the action of F×

q on F+
q by multiplication(

α 0
0 1

)(
1 β
0 1

)(
α−1 0
0 1

)
=
(

1 αβ
0 1

)
.

We use the method of little groups of Wigner and Mackey (cf. Section 1.15) in order to determine
the representations of P .

We consider first all the irreducible representations of U . Fix a non-unit character ψ of U (we
consider it also as a character of F+

q ). For every s ∈ G, we define an action s ∗ ψ(u) = ψ(s−1us).
Consider the orbit of ψ under A. For a, a′ ∈ A, we have that a ∗ ψ = a′ ∗ ψ if and only if a = a′.
Indeed, if

a =
(
α 0
0 1

)
, a′ =

(
α′ 0
0 1

)
and u =

(
1 β
0 1

)
,

then a ∗ ψ(u) = ψ(α−1β), and a ∗ ψ = a′ ∗ ψ implies that ψ((α − α′)β) = 1 for all β ∈ Fq. Since ψ is
non-unit, this implies that α = α′ and hence a = a′. We thus get q − 1 distinct representations of U .
These together with the unit representation of U , are all the irreducible representations of U , since
| U |=| Û |= q.

From the discussion above, we know that the non-unit character ψ and the unit character 1 is a
system of representatives of the orbits of Û under A. We also know that Aψ = {a ∈ A | a ∗ ψ =
ψ} = {1}. The only representation of Aψ is the trivial representation and Pψ = U · Aψ = U . Hence,
by Proposition 1.15.2 we have ρψ,1 = IndPU (ψ) is an irreducible representation of P . For the unit
character 1 of U , it is clear that A1 = A and P1 = U · A1 = P . Every irreducible representation θ of
A1, i.e. every character of A, can be lifted to a character θ̃ of P defined by θ̃(ua) = θ(a), for u ∈ U

and a ∈ A (this is ρ1,θ in Proposition 1.15.2). Notice that the q− 1 characters θ̃ of P obtained in this
way are all the characters of P since [P : P ′] = [P : U ] = q − 1. Using Proposition 1.15.2 again, we
obtain all the irreducible representations of P . We have therefore proved the following:

Theorem 2.2.1. The group P has q irreducible representations:

(1) q − 1 of them are 1-dimensional representations which are the lifting of the characters of A;
and

(2) one (q − 1)-dimensional representation which is IndPU (ψ), where ψ is any non-unit character
of U .

Remark . The (q − 1)-dimensional irreducible representation of P is independent of the choice of
non-unit character ψ of U . We fix for the rest of this note a non-unit character ψ of U and let

π = IndPU (ψ) .

We would like to show more directly that π is independent of the choice of ψ. Consider first

ResPU IndPU (ψ) =
⊕
a∈A

a ∗ ψ .
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This can be proved by applying Proposition 1.14.1 to the case G = P , J = H = U and U is normal
in P (so that Us = U and ψs = s ∗ ψ). We can also construct this direct sum concretely. For every
a ∈ A, we define a function fa ∈ IndPUVψ by

fa(a′) =

{
1 if a′ = a−1,

0 if a′ �= a−1
, where a′ ∈ A.

Then we can see that fa is an eigenvector of U that belongs to the eigenvalue a ∗ ψ, i.e. πu(fa)(p) =
fa(pu) = (a∗ψ)(u)fa(p) for every p ∈ P and u ∈ U . Thus, the vector fa generates the one-dimensional
space Va∗ψ. If we let a vary, we get q − 1 linearly independent vector fa of the (q − 1)-dimensional
vector space IndPU (Vψ). Hence we have the direct sum decomposition. From this we can show again
that IndPU (ψ) is an irreducible representation of P (this can also be seen by using Corollary 1.14.3).
Indeed, by Frobenius reciprocity

(IndPU (ψ), IndPU (ψ)) = (ψ,
⊕
a∈A

a ∗ ψ) =
∑
a∈A

(ψ, a ∗ ψ) = 1 .

Now for any non-unit character ψ′ of U , we have ψ′ = a ∗ ψ for some a′ ∈ A. Hence

ResPU IndPU (ψ′) =
⊕
a∈A

a ∗ (a′ ∗ ψ) =
⊕
a∈A

a ∗ ψ .

and as before IndPU (ψ′) is irreducible. Therefore, by Frobenius reciprocity again, (IndPU (ψ), IndPU (ψ′)) =
1. Thus, π = IndPU (ψ) = IndPU (ψ′).

Once we know that π is an irreducible representation of P , combining with the q − 1 characters
of P , Theorem 2.2.1 can also be proved by using Corollary 1.8.4 to show that there is no additional
representation of P . In fact, we have that (q − 1) · 12 + (q − 1)2 = q(q − 1) =| P |.

We can also show that there is no additional representation of P without using the counting
method (Corollary 1.8.4). Let σ be an arbitrary irreducible representation of P . If there exists a
non-unit character ψ of U such that (ResPU (σ), ψ) > 0, then we have (σ, π) = (ResPU (σ), ψ) > 0. Hence
σ = π. Otherwise, ResPU (σ) is a multiple of the unit character of U , i.e., σu(v) = v for every v ∈ Vσ.
Since A is abelian, there exists 0 �= v ∈ Vσ and a character θ of A such that σa(v) = θ(a)v for every
a ∈ A. Hence, if u ∈ U , then σau(v) = σa(σu(v)) = θ(a)v. It follows that σ = θ̃.

2.3. The Borel Subgroup B

The Borel subgroup B consists of all upper triangular matrices in GL(2,Fq). Clearly, | B |= (q−1)2q.
B is a solvable group. (One says that a group G is solvable if there exists a sequence {1} = G0 ⊂

G1 ⊂ · · · ⊂ Gn = G with Gi−1 normal in Gi and Gi/Gi−1 abelian.) Indeed, B contains the normal
abelian subgroup U . The quotient group B/U is isomorphic to the Cartan group D of all invertible
diagonal matrices. Clearly, U ∩D = {1} and B = U ·D. Hence B is the semidirect product of D by
U . Direct computation shows that U is the commutator subgroup of B, if | Fq |�= 2. In particular, it
follows that B has exactly (q − 1)2 characters.

P is another important normal subgroup of B and is of index q−1. The center Z is also contained
in B. Clearly, Z ∩ P = {1} and B = Z · P . Hence B is also the semidirect product of P by Z.

We use the method of little groups of Wigner and Mackey again in order to determine the repre-
sentations of P .

First, consider B is the semidirect product of D by U . In last section, we know that for a nonunit
character ψ of U , the orbit of ψ under A is the set of all nonunit character of U . Since A ⊂ D, we
have that ψ and 1 is a representatives of the orbit of Û under D.

For the unit character 1 of U , we know that D1 = {d ∈ D | d ∗ 1 = 1} = D and hence B1 =
U ·D1 = B. The extension of 1 to B1 = B is also a unit character of B. Now let θ be an irreducible
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representation of D1 = D. It is a character of D because D is abelian. In fact, every pair (µ1, µ2) of
characters of F×

q defines a unique character θ of D by the formula

θ

(
α 0
0 δ

)
= µ1(α)µ2(δ), for α, δ ∈ F×

q .

By composing with the canonical projection B1 = B → D1 = D, we obtain a character θ̃ of B, i.e.

θ̃

(
α β
0 δ

)
= µ1(α)µ2(δ), for α, δ ∈ F×

q .

From this, by the notation of Section 1.15, ρ1,θ = IndBB1
(1 ⊗ θ̃)  θ̃. Recall that the commutator of

B is U , so B has exactly (q − 1)2 characters. Thus the (q − 1)2 characters of B given here are all the
characters of B.

By Proposition 1.15.2, another kind of irreducible representation comes from ψ. It is easy to see
that Dψ = {d ∈ D | d ∗ ψ = ψ} = Z. We know that the method of little groups will involve the group
Bψ = U ·Dψ = U ·Z which we have not studied yet. Therefore, we move to another form of semidirect
product, B = Z · P .

Recall that the abelian group Z is isomorphic to F×
q and has q − 1 characters. For each of the

character χ of Z, since Z is the center of B, B acts trivially on χ, i.e., b ∗ χ(z) = χ(b−1zb) = χ(z)
for every b ∈ B and z ∈ Z. Hence, we have the the orbit of χ under P is χ itself and Pχ = {p ∈ P |
p∗χ = χ} = P . We can extend χ to a character of Bχ = Z ·Pχ = B by setting χ̃(zp) = χ(z) for z ∈ Z
and p ∈ P . Now let θ be an irreducible representation of Pχ = P . By composing with the canonical
projection Bχ = B → Pχ = P , we obtain an irreducible representation θ̃ of B. By Proposition 1.15.2,
χ̃⊗ θ̃ is an irreducible representation of B and every irreducible representation of B is isomorphic to
χ̃⊗ θ̃ for some χ ∈ Ẑ and irreducible representation θ of P . From Theorem 2.2.1, we know that θ is
either a character of P or θ = π. If θ is a character of P , then χ̃⊗ θ̃ is a character of B (which we have
already found above). If θ = π, then χ̃⊗ π̃ is an irreducible (q − 1)-dimensional representation of B.
Varying χ on all the characters of Z, we get q− 1 of (q− 1)-dimensional irreducible representations of
B. These, together with the (q− 1)2 characters of B, are all the irreducible representations of B (this
can also be seen by computing (q − 1)2 · 12 + (q − 1) · (a− 1)2 = q(q − 1)2 =| B |).

We sum up our results in the following:

Theorem 2.3.1. The group B has q(q − 1) irreducible representations:

(1) (q − 1)2 of them are 1-dimensional representations which are lifting of the characters of D;
and

(2) q− 1 of them are (q− 1)-dimensional irreducible representation isomorphic to χ̃⊗ π̃ for some
χ ∈ Ẑ.

2.4. The Group GL(2, Fq)

We denote by G the group GL(2,Fq). Straightforward calculations show that the matrices

w =
(

0 1
1 0

)
and

(
1 0
γ 1

)
, γ ∈ Fq

form a system of representatives for the left classes of G modulo B. Hence [G : B] = q + 1 and thus
| G |= (q − 1)2q(q + 1).

On the other hand, we have the Bruhat’s decomposition of G, namely G = B ∪BwU . Notice that
B ∩BwU = ∅. Indeed, if γ �= 0, then(

α β
γ δ

)
=
(
β − αγ−1δ α

0 γ

)(
0 1
1 0

)(
1 γ−1δ
0 1

)
.
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We need a description of GL(2,Fq) by generators and relations for an explicit presentation of the
representations of GL(2,Fq).

Let

w′ =
(

0 1
−1 0

)
and u =

(
1 1
0 1

)
.

Then we have the following relations between w′ and the elements of B:

w′
(
α 0
0 δ

)
w′−1 =

(
δ 0
0 α

)
, w′2 =

(−1 0
0 −1

)
, and (w′u)3 =

(
1 0
0 1

)
.

Proposition 2.4.1. GL(2,Fq) is the free group generated by B and w̃ with the following as the defining
relations.

(1) w̃

(
α 0
0 δ

)
w̃−1 =

(
δ 0
0 α

)
,

(2) w̃2 =
(−1 0

0 −1

)
,

(3) (w̃u)3 =
(

1 0
0 1

)
Proof. Let G̃ be the free group generated by B and w̃ with the above defining relations. Then there
exists a unique epimorphism θ : G̃ → G which is the identity on B and maps w̃ onto w′. We have to
prove that its kernel consists of 1.

We first show that in G̃, for every b ∈ B − D, there exist b1, b2 ∈ B such that w̃bw̃ = b1w̃b2.
Indeed, if β �= 0, then

b =
(
α β
0 δ

)
=
(

1 0
0 δβ−1

)(
1 1
0 1

)(
α 0
0 β

)
= d′ud′′;

also by(3), w̃uw̃ = u−1w̃−1u−1; hence

w̃uw̃ = u−1

(−1 0
0 −1

)
w̃u−1

by (2). It follows that
w̃bw̃ = (w̃d′w̃−1)w̃uw̃(w̃−1d′′w̃) = b1w̃b2,

where

b1 = (w̃d′w̃−1)u−1

(−1 0
0 −1

)
and b2 = u−1(w̃−1d′′w̃)

are in B because of (1).
Next note that if d ∈ D, then w̃dw̃ = (w̃dw̃−1)w̃2 ∈ B by (1) and (2).
Now let g �= 1 be in the kernel of θ. Then g �= B; hence by using

w̃bw̃ =

{
b if b ∈ D,

b1w̃b2 if b ∈ B −D,

g can be written as

g =
(
α′ β′

0 δ′

)
w̃

(
α β
0 δ

)
where α, α′, δ, δ′ �= 0.

The right-hand side is mapped by θ to the element
(−α′α α′δ − β′β
−δ′α −δ′β

)
of GL(2,Fq). But g is mapped

to 1. Hence δ′α = 0, which is a contradiction. �
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2.5. Inducing Characters from B to G

As a first step toward the determination of the irreducible representations of G, we investigate those
that appear as components of IndGB(µ) where µ is a character of B. In order to shorten the notation,
we make the convention

µ̂ = IndGB(µ)
and stick to it for the rest of this note. The dimension of µ̂ is [G : B] = q+ 1. Our task in this section
is to determine the connection between µ and µ̂.

Proposition 2.5.1. Let µ be a character of B and let µ̂ = IndGB(µ). Then either µ̂ is irreducible, or
µ̂ decomposes into a direct sum of two non-isomorphic irreducible representations.

Proof. Bruhat’s decomposition of G implies that | B\G/B |= 2. Hence, by Corollary 1.16.2 (µ̂, µ̂) ≤
2. Thus, we have either (µ̂, µ̂) = 1 or (µ̂, µ̂) = 2. Our proof is complete. �

Now we shall determine the restriction ResGB(µ̂). Bruhat’s decomposition of G also tells us that
{1, w} is a representatives for the double cosets B\G/B. We have that B1 = B, µ1 = µ and Bw =
wBw−1 ∩B = D, µw(x) = µ(w−1xw) for x ∈ D. By Proposition 1.14.1,

ResGB(µ̂) = µ⊕ IndBD(µw).

Moreover, Mackey’s irreducible criterion (Proposition 1.14.2) tell us that µ̂ is irreducible if and only
if (ResBD(µ), µw) = 0 as representations for D. Notice that since both ResBD(µ) and µw are characters
of D, we have that (ResBD(µ), µw) = 0 if and only if ResBD(µ) �= µw. Recall that every character µ of
B is given by

µ

(
α β
0 δ

)
= µ1(α)µ2(δ),

for some µ1 and µ2 characters of F×
q . Hence ResBD(µ) = µw if and only if µ1 = µ2.

Lemma 2.5.2. If µ is a character of B and µ = µw, then µ̂ has a 1-dimensional component.

Proof. The assumption implies that µ(b) = µ1(det(b)) for every b ∈ B, where µ1 is a character of F×
q .

Consider the character µ̃ = µ1 ◦ det of G. We have that 〈µ̃, µ̂〉 = 〈ResGB(µ̃), µ〉 ≥ 1. �

We summarize our results as the following:

Theorem 2.5.3. Let µ be a character of B given by

µ

(
α β
0 δ

)
= µ1(α)µ2(δ),

for some µ1 and µ2 characters of F×
q and let µ̂ = IndGB(µ). Then

(1) If µ1 �= µ2, then µ̂ is an irreducible (q + 1)-dimensional representation of G.
(2) If µ1 = µ2, then µ̂ decomposes into a direct sum of a 1-dimensional representation and a

q-dimensional representation.

Lemma 2.5.4. Let µ and µ′ be two distinct characters of B. Then µ̂ = µ̂′ if and only if ResBD(µ′) = µw.

Proof. Applying Frobenius reciprocity twice, we obtain

(µ̂′, µ̂) = (µ′,ResGB(µ̂)) = (µ′, µ) + (µ′, IndBD(µw)) = (µ′, µ) + (ResBD(µ′), µw).

Our lemma follows easily. �

We shall now calculate the number of irreducible representation of G which are components of
induced representations of the form IndGB(µ). Suppose that µ corresponds to the pair of characters
(µ1, µ2) of F×

q . By Theorem 2.5.3, we have two possibilities:
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(1) µ1 = µ2. In this case we denote by ρ′(µ1,µ1) the corresponding one-dimensional irreducible
component and ρ(µ1,µ1) the corresponding q-dimensional irreducible component of µ̂, respec-
tively. F×

q has q − 1 characters; hence, we obtain q − 1 irreducible representations of G of
each type.

(2) µ1 �= µ2. In this case µ̂ is an irreducible representation of dimension q + 1 and we denote
it by ρ(µ1,µ2). Then number of these µ is equal to the number of characters of B minus the
number of characters of type (1), i.e. (q − 1)2 − (q − 1). Hence, by Lemma 2.5.4, we obtain
in this way (q − 1)(q − 2)/2 irreducible representations of G of dimension q + 1.

We have therefore proved:

Theorem 2.5.5. The irreducible representations of G, which are components of induced representa-
tions of the form IndGB(µ) where µ is a character of B, split up into the following cases:

(1) q − 1 representations ρ′(µ1,µ1) of dimension one;

(2) q − 1 representations ρ(µ1,µ1) of dimension q;

(3) 1
2(q − 1)(q − 2) representations ρ(µ1,µ2) with µ1 �= µ2 of dimension q + 1.

Corollary 2.5.6. The group GL(2,Fq) has exactly q − 1 characters.

Proof. If χ is a character of G, then χ is a component of IndGB(ResGB(χ)). It follows by Theorem 2.5.5
(1) that G has exactly q − 1 characters. �

Remark . Given a character υ of F×
q , the composite map υ◦det : G→ C, s �→ υ(det(s)) is a character

of G. By Corollary 2.5.6, these are all the characters for G.

Corollary 2.5.7. The subgroup SL(2,Fq) = {g ∈ GL(2,Fq) | det(g) = 1} is the commutator subgroup
of GL(2,Fq).

Proof. SL(2,Fq) is normal and GL(2,Fq)/SL(2,Fq) ∼= F×
q which is abelian. Hence SL(2,Fq) contains

the commmutator subgroup of GL(2,Fq). By Corollary 2.5.6, [G : G′] = q − 1 and hence SL(2,Fq) =
G′. �

2.6. The Jacquet Module of a Representation of
GL(2, Fq)

In Section 1.12, we give a concrete construction of induced representation. We ought to use this
construction to get some information about induced representation. In this section, we introduce the
Jacquet module and provide another approach of last section.

We define the Jacquet Module of a representation ρ of G as

J(Vρ) = {v ∈ Vρ | ρu(v) = v for every u ∈ U}.
The fact that U is normal in B implies that B acts on J(Vρ). Indeed, if v ∈ J(Vρ), b ∈ B and u ∈ U ,
then b−1ub ∈ U ; hence

ρu(ρb(v)) = ρb(ρb−1ub(v)) = ρb(v).

It is also clear that if ρ1 and ρ2 are representations of G, then

J(Vρ1 ⊕ Vρ2) = J(Vρ1) ⊕ J(Vρ2).

The importance of the Jacquet modules for our investigation lies in the following:

Lemma 2.6.1. Let ρ be a representation of G. Then J(Vρ) �= 0 if and only if there exists a character
µ of B such that (ρ, µ̂) �= 0.
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Proof. Suppose that J(Vρ) �= 0. Then J(Vρ) can be considered as a non-trivial C[B/U ]-module via ρ.
Since B/U is abelian, it follows that there exists a character µ of B and a non-zero element v ∈ J(Vρ)
such that ρb(v) = µ(b)v for every b ∈ B. Hence (ResGB(ρ), µ) �= 0. By the Frobenius reciprocity
(ρ, µ̂) �= 0 and half of the lemma is thus proved.

Now suppose that (ρ, µ̂) �= 0. By Frobenius reciprocity there exists a non-zero element v ∈ Vρ
such that ρb(v) = µ(b)v for every b ∈ B. Since U is the commutator subgroup of B, µ is trivial on U .
Hence v ∈ J(Vρ). �

We now investigate J(Vµ̂).

Lemma 2.6.2. If µ is a character of B, then dim(J(Vµ̂)) = 2.

Proof. By definition, J(Vµ̂) consists of all the functions f : G→ C that satisfy

f(bs) = µ(b)f(s) and f(bu) = µ̂u(f)(b) = f(b) for all b ∈ B, s ∈ G and u ∈ U.

In particular

f(b) = µ(b)f(1) and f(bwu) = µ(b)f(w) for all b ∈ B and u ∈ U.

Using the Bruhat decomposition, this implies that f is determined by its values in 1 and w, where it
can be arbitrary. It follows that dim(J(Vµ̂)) = 2. �

Corollary 2.6.3 (cf. Proposition 2.5.1). If µ is a character of B, then µ̂ has at most two irreducible
components.

Proof. Let µ̂ = ρ1 ⊕ · · · ⊕ ρr be a decomposition of µ̂ into irreducible components. then J(Vµ̂) =
J(Vρ1)⊕· · ·⊕J(Vρr). By Lemma 2.6.1, dim(J(Vρi)) ≥ 1 for i = 1 . . . r. On other hand dim(J(Vµ̂)) = 2.
Hence r ≤ 2. �

Now we can easily get the restriction of µ̂ to the subgroup P , which in some cense is more
complicated by using the method in Section 1.14.

Proposition 2.6.4. If µ is a character of B, then

ResGP (Vµ̂) = ResBP (J(Vµ̂)) ⊕ Vπ.

Proof. J(Vµ̂) is a C[B]-module and hence is a C[P ]-module. Let V be a C[P ]-complement to J(Vµ̂) in
Vµ̂. Then dim(V ) = q−1, since dim(J(Vµ̂)) = 2. Further, V has no one-dimensional C[P ]-submodule;
indeed otherwise, there would exist a non-zero element v ∈ V and a character χ of P such that
µ̂pv = χ(p)v, for every p ∈ P . In particular, we would have that µ̂u(v) = v for every u ∈ U , since U
is the commutator subgroup of P . Thus v ∈ J(Vµ̂), which is a contradiction. Therefore, by Theorem
2.2.1, V is isomorphic to the unique irreducible C[P ]-module Vπ of dimension q − 1. �

A canonical basis for J(Vµ̂) is the two functions f1, f2 ∈ Vµ̂ satisfying

f1(1) = 1 f1(w) = 0
f2(1) = 0 f2(w) = 1

.

For f1, we have µ̂b(f1)(1) = f1(b) = µ(b)f1(1). Also by teh Bruhat decomposition there exists
for every b ∈ B elements b1 ∈ B and u ∈ U such that wb = b1wu. Hence µ̂b(f1)(w) = f1(bw) =
f1(b1wu) = µ(b1)f1(w) = 0. Therefore, µ̂b(f1) = µ(b)f1 for every b ∈ B.

For f2, we have µ̂b(f2)(1) = f2(b) = µ(b)f2(1) = 0. Since f1 and f2 generate J(Vµ̂), for every
b ∈ B there exist α1(b), α2(b) ∈ C such that

µ̂b(f2) = α1(b)f1 + α2(b)f2.

Evaluate at 1 we get α1(b) = 0 for all b ∈ B; hence µ̂b(f2) = α2(b)f2 for all b ∈ B. It follows that α2 is
a character of B. In particular, if d ∈ D, then µ̂d(f2)(w) = f2(wdww) = µ(wdw)f2(w). This implies
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that α2(d) = µ(wdw) = µw(d) for all d ∈ D. Recall that every character of D can be extend uniquely
to a character of B, i.e. if

b =
(
α β
0 δ

)
and d =

(
α 0
0 δ

)
,

then α2(b) = α2(d). Hence µ̂b(f2)(w) = α2(b)f2(w) = α2(d)f2(w) = µw(d)f2(w) = µw(b)f2(w) (here,
we extend the character µw of D to the corresponding character of B). We summary our results as
the following:

Lemma 2.6.5. If µ is a character of B, then

µ̂b(f1) = µ(b)f1 and µ̂b(f2) = µw(b)f2.

The following lemmas give the exact information about the components of µ̂.

Lemma 2.6.6 (Lemma 2.5.2). If µ is a character of B and µ = µw, then µ̂ has a 1-dimensional
component.

Proof. The assumption implies that µ(b) = µ1(det(b)) for every b ∈ B, where µ1 is a character of F×
q .

Now define a function f : G→ C by f(s) = µ1(det(s)), for s ∈ G. It is easy to see that f ∈ Vµ̂ and f
is an eigenvector of G that belongs to the eigenvalue µ1 ◦ det. �

Lemma 2.6.7. If µ is a character of B, then µ̂ has at most one 1-dimensional component.

Proof. Assume that µ̂ has two 1-dimensional components. Then by Corollary 2.6.3 they are all the
components of µ̂. It follows that q + 1 = dim(µ̂) = 2, which is a contradiction. �

Lemma 2.6.8. If µ is a character of B and µ̂ is reducible, then µ̂ has a 1-dimensional component.
Furthermore, µ = µw.

Proof. Since µ̂ is reducible, by Corollary 2.6.3 we have that Vµ̂ = V ⊕ V ′ where V and V ′ are non-
trivial irreducible C[G]-module. These are also C[P ]-modules and hence by Proposition 2.6.4 we can
assume, without loss of generality, that Vπ ∈ V . On the other hand, 0 �= J(V ) ⊆ J(Vµ̂) ∩ V . Hence
Vπ � V . It follows that dim(V ) ≥ q and hence dim(V ′) = 1.

We have proved that there exists a character χ of G and a non-zero function f : G → C in Vµ̂
such that µ̂s(f) = χ(s)f for all s ∈ G. In particular, we have f(1) �= 0; indeed otherwise, because
there exists a positive integer n such that sn = 1 for all s, we would have 0 = f(1) = f(s · sn−1) =
µ̂sn−1(f)(s) = χ(sn−1)f(s). It follows that f(s) = 0 since χ(sn−1) �= 0. This is a contradiction. Let
d ∈ D. Then µ(d)f(1) = f(d) = χ(d)f(1). Hence µ(d) = χ(d) for every d ∈ D. It follows that
µw(d) = µ(wdw) = χ(wdw) = χ(d) = µ(d), for every d ∈ D. Hence µ = µw. �

Summing up the Lemmas 2.5.2–2.6.8, we can obtain Theorem 2.5.3.

2.7. The conjugacy Classes of GL(2, Fq)

Before we start to investigate the irreducible representations of G, we would like to compute their
number. By Theorem 1.8.2, this number is equal to the number of the conjugacy classes of G. Now,
we give explicitly a representative for each of the conjugacy classes.

An element g of G has two eigenvalues. All the elements in the conjugacy class of g have the same
eigenvalues. There are therefore four cases:

• The eigenvalues of g belong to Fq.
In this case g is conjugate over Fq to a unique matrix in a canonical Jordan form. If both
eigenvalues are equal to the same element α of Fq, then we have:
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(1) g is diagonalizable. Hence the Jordan form is

c1(α) =
(
α 0
0 α

)
.

There are q − 1 classes of the form c1(α).
(2) g is not diagonalizable. In this case for any v ∈ F2

q which is not an eigenvector of g, we
have that g(v) − αv is an eigenvector of g (by the Cayley-Hamilton theorem). Hence
v, g(v) − αv form a basis of F2

q over Fq and so the Jordan form is

c2(α) =
(
α 1
0 α

)
.

There are q − 1 classes of the form c2(α).
If the eigenvalues are α, β ∈ Fq and α �= β, then
(3) the Jordan form is

c3(α, β) =
(
α 0
0 β

)
.

Since c3(α, β) and c3(β, α) are in the same conjugacy class, there are 1
2(q − 1)(q − 2)

classes of the form c3(α, β).
• The eigenvalues of g do not belong to Fq

In this case the two eigenvalues λ and λ belong to the unique quadratic extension Fq2 of Fq

and λ, λ are conjugate over Fq. Let v be a nonzero vector in F2
q . then v, g(v) form a basis of

F2
q over Fq. By Cayley-Hamilton theorem, when consider g as a linear operator on F2

q with
respect to the basis v, g(v),
(4) g is conjugate in G to

c4(λ) =
(

0 −λλ
1 λ+ λ

)
.

Since c4(λ) is conjugate to c4(γ) if and only if λ = γ or λ = γ, there are 1
2(q2 − q) classes

of the form c4(λ).



Chapter 3

The Representations of
GL(2, Fq)

3.1. Cuspidal Representations

Irreducible representations of G that are not components of µ̂, with µ a character of B, are said to be
cuspidal. By Lemma 2.6.1, an irreducible representation ρ of G is cuspidal if and only if J(Vρ) = 0.
Comparing Theorem 2.5.5 with the results in Section 2.7, we find that G has 1

2(q2 − q) cuspidal
representations, exactly as the number of conjugacy classes of the form c4(λ).

Lemma 3.1.1. Let ρ be a cuspidal representation of G. Then ResGP (ρ) = rπ for some positive integer
r.

Proof. If v ∈ ResGP (Vρ) is an eigenvector, then using the similar argument as in the proof of Proposition
2.6.4, we have that v ∈ J(Vρ); thus J(Vρ) �= 0, contrary to the assumption that ρ is cuspidal. Hence
ResGP (Vρ) cannot have 1-dimensional component and hence ResGP (ρ) must be a multiple of π. �

Lemma 3.1.2. Let ψ be a non-unit character of U . Then π̂ = IndGP (π) = IndGU (ψ) has no multiple
component.

Proof. Recall that by Proposition 1.16.1, HomC[G](Vπ̂, Vπ̂) is isomorphic to the algebra A of all func-
tions F : G→ C satisfying

F (u1su2) = ψ(u1u2)F (s) for u1, u2 ∈ U and s ∈ G,

and where multiplication between F1, F2 ∈ A is given by the formula

(F1 · F2)(s) =
1

[G : U ]

∑
t∈G

F1(st−1)F2(t).

We shall show that A is abelian. This implies that π̂ has no multiple components (cf. Section 1.16).
We start by defining an involution s �→ s′ = (wsw)T on G, i.e.

s =
(
α β
γ δ

)
�−→ s′ =

(
δ β
γ α

)
It is obvious that (s1s2)′ = s′2s′1 and u′ = u for every s1, s2 ∈ G and u ∈ U . We continue by defining
for an element F ∈ A a function F ′ : G → C by F ′(s) = F (s′) for every s ∈ G. It is easy to check
that F ′ ∈ A and (F1 · F2)′ = F ′

2 · F ′
1. we shall show that F = F ′. Hence F1 · F2 = F2 · F1. �

31
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In order to prove that F = F ′, it suffices to prove that F and F ′ coincide on representatives of
the double cosets U\G/U . Indeed, by Bruhat’s decomposition and B = UD, we have that the above
representatives are of the following two forms

(a)
(

0 β
γ 0

)
, (b)

(
δ 0
0 α

)
We only have to check for those of the form (b) with α �= δ. Indeed, acting with F on both sides of(

1 β
0 1

)(
α 0
0 δ

)
=
(
α 0
0 δ

)(
1 α−1δβ
0 1

)
,

we have

ψ(β)F
(
α 0
0 δ

)
= F

(
α 0
0 δ

)
ψ(α−1δβ).

Since α �= δ and ψ is a non-unit character, we have that ψ(β) �= ψ(α−1δβ) for some β ∈ Fq. This
implies that F vanishes on matrices of the form (b) with α �= δ and so is F ′.

Proposition 3.1.3. Let ρ be a representation of G. Then ρ is cuspidal if and only if ResGP (ρ) = π.

Proof. If ρ is cuspidal, then Lemma 3.1.2, (ResGP (ρ), π) = (ρ, IndGP (π)) = 1. Hence ResGP (ρ) = π, by
Lemma 3.1.1.

On the other hand, if ResGP (ρ) = π, then since π is irreducible, ρ is also irreducible. By Theorem
2.5.3, the components of µ̂ have the only possible dimensions 1, q, or q+ 1. However, dim(ρ) = q− 1;
hence, ρ is cuspidal. �

Remark . By Theorem 2.5.3 and Lemma 3.1.1, we can use the fact that the number of cuspidal
representations is 1

2(q2 − q) to calculate directly that every cuspidal form has dimension q − 1.

3.2. Characters of F×
q2

Fq2 is the only quadratic extension of Fq. If λ is an element of Fq2 , then λ denotes its unique conjugate
over Fq. Since the Galois group Gal(Fq2/Fq) of Fq2 over Fq is generated by the Frobenius automorphism
λ �→ λq, we have in fact λ = λq.

The function N(λ) = λλ is the norm map from Fq2 to Fq. It is multiplicative, i.e. N(λλ′) =
N(λ)N(λ′).

Lemma 3.2.1. The kernel of the norm map from F×
q2

to F×
q consists of q+ 1 elements. Furthermore,

the norm map from Fq2 to Fq is surjective.

Proof. The restriction of N to F×
q2

is a homomorphism into F×
q . Since N(λ) = λq+1, the kernel of this

homomorphism consists of elements satisfying xq+1 − 1 = 0, which has at most q+1 elements. Hence,
the image of N consists of at least (q2 − 1)/(q + 1) = q − 1 elements. Therefore, it must be F×

q . �

Corollary 3.2.2 (Hilbert’s Satz 90). If ζ is an element of F×
q2

such that N(ζ) = 1, then there exists

a λ ∈ F×
q2

such that λλ−1 = ζ.

Proof. The set E = {λ ∈ F×
q2

| N(λ) = 1}, has exactly q + 1 element. Consider the map h : F×
q2

→ E

defined by h(λ) = λλ
−1. Its kernel is F×

q . Hence the image of h has (q2 − 1)/(q− 1) = q+ 1 elements,
exactly as many as E has. �

Let χ be a character of F×
q . Composing χ with the norm mp N from F×

q2
to F×

q , we obtain a
character χ̃ of F×

q2
:

χ̃(λ) = χ(N(λ)), λ ∈ F×
q2
.
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If ν is a character of F×
q2

, then ν denotes its conjugate over Fq, i.e.

ν(λ) = ν(λ), λ ∈ F×
q2
.

A character ν of F×
q2

is said to be decomposable if ν = χ̃ for some character χ of F×
q .

Lemma 3.2.3. A character ν of F×
q2

is decomposable if and only if ν = ν.

Proof. If ν is decomposable, then since N(λ) = N(λ), certainly we have ν(λ) = ν(λ) = ν(λ). Con-
versely, if ν = ν, then we define a map χ : N(F×

q2
) → C by χ(N(λ)) = ν(λ). By Corollary 3.2.2, we

can check that χ is well defined. The fact that N is surjective now extends the domain of χ to F×
q .

Hence, χ is a character of F×
q and ν is therefore decomposable. �

Lemma 3.2.4. If ν is a non-decomposable character of F×
q2

, then∑
N(x)=α

ν(x) = 0 for every α ∈ F×
q .

Proof. By Lemma 3.2.3, there exists ζ ∈ F×
q2

such that ν(ζ) �= ν(ζ). Let λ = ζ/ζ. Then∑
N(x)=α

ν(x) =
∑

N(x)=α

ν(λx) = ν(λ)
∑

N(x)=α

ν(x),

and our claim follows. �

We shall need the analogue to Lemma 3.2.3 for the characters of additive group F+
q2

. The trace
function Tr : F+

q2
→ F+

q is defined by Tr(λ) = λ+ λ.

Lemma 3.2.5. The kernel of the trace map from Fq2 to Fq consists of q elements. Furthermore, the
trace map from Fq2 to Fq is surjective.

Proof. The trace function is additive and its kernel consists of elements in Fq2 satisfying xq+x = 0. �

Corollary 3.2.6. If λ ∈ F×
q2

, then for every α ∈ Fq there exists an x ∈ Fq2 such that λx+ λx = α.

Proof. There exists a ζ ∈ Fq2 such that Tr(ζ) = α. Choose x = ζ/λ will do. �

3.3. The Small Weil Group

Let F/E be a finite Galois extension. Its Galois group G(F/E) acts on the multiple group F× of F .
Denote by W (F/E) = G(F/E) ·F×, the semi-direct product of G(E/F ) by F×. It consists of all pairs
(x, σ) where x ∈ F× and σ ∈ G(F/E). Multiplication is given by the formula

(x, σ) · (y, τ) = (x · σ(y), στ).

It is easy to check that the identity is (1, 1) and the inverse is given by (x, σ)−1 = (σ−1(x), σ−1). The
map x �→ (x, 1) is an embedding of F× in W (F/E). We identify F× with its image. F× is normal in
W (F/E).

The group W (F/E) is in general not abelian. A typical commutator is

(x, σ)(y, τ)(x, σ)−1(y, τ)−1 = (x · σ(y) · στσ−1(x−1) · στσ−1τ−1(y−1), στσ−1τ−1).

In particular, if G(F/E) is abelian, then we simply have

(x, σ)(y, τ)(x, σ)−1(y, τ)−1 = (x · σ(y) · τ(x−1) · y−1, 1).
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We now restrict our attention to the case where E = Fq and F = Fq2 . In this case, W (Fq2/Fq)
is called the small Weil group of the extension Fq2/Fq. It is a finite group having 2(q2 − 1) elements,
and it can be described as the free group generated by F×

q2
and ϕ (the conjugation) with the relations

ϕ2 = 1, and x · ϕ = ϕ · ϕ(x) = ϕ · x, for x ∈ F×
q2
.

(Here, we identify ϕ by (1, ϕ).)
We would like to establish a correspondence between the representations of W (Fq2/Fq) and the

characters of F×
q2

. We remark that since W (Fq2/Fq) contains the abelian normal subgroup F×
q2

of index
2, by Proposition 1.15.2 its irreducible representations are of dimension ≤ 2.

The commutator subgroup W (Fq2/Fq)′ of W (Fq2/Fq) is the set {z/z | z ∈ F×
q2
}, which by Corollary

3.2.2 is equal to {x ∈ F×
q2

| N(x) = 1}. Hence by Lemma 3.2.1, we have proved:

Lemma 3.3.1. W (Fq2/Fq) has 2(q − 1) characters.

Remark . If τ is a character of W (Fq2/Fq), then τ(x) = τ(x) for every x ∈ F×
q2

because x/x ∈
W (Fq2/Fq)′. On the other hand, starting from a character µ of F×

q , we define characters τ1, τ2 of
W (Fq2/Fq) by τi(x) = µ(N(x)) and τi(ϕ) = (−1)i. These are all the characters of W (Fq2/Fq).

Consider now a 2-dimensional representation τ of W (Fq2/Fq). Its restriction to F×
q2

decomposes
into a direct sum of two characters. Let ν be one of them. By construction, there exists a vector
0 �= v ∈ Vτ such that τx(v) = ν(x)v, for every x ∈ F×

q2
. Let v′ = τϕ(v). Then the relation x · ϕ = ϕ · x

implies τx(v′) = ν(x)v′, for every x ∈ F×
q2

. Hence, ν is also a component of the restriction of τ to F×
q2

.
There are two possibilities.

(1) ν �= ν. In this case, v and v′ are linearly independent and we have

ResW
F
×
q2

(τ) = ν ⊕ ν.

In this case we also have that τ is irreducible; indeed, otherwise ν must be equal to the
restriction of one of the 1-dimensional component of τ to F×

q2
, which we already knew is

decomposable.
(2) ν = ν. In this case, either v′ is a multiple of v or v′ and v are linearly independent. In the

first case v is an eigenvector of W (Fq2/Fq). This implies that τ is reducible. In the second
case, v and v′ generate Vτ . Hence τx(w) = ν(x)w for every w ∈ Vτ . Let w be an eigenvector
of τϕ. Then w is an eigenvector of W (Fq2/Fq), This implies again that τ is reducible.

We have thus proved:

Lemma 3.3.2. Let τ be a two dimensional representation of W (Fq2/Fq) and let ν be a component of
its restriction to F×

q2
. Then ν is non-decomposable if and only if τ is irreducible.

Remark . Let ν be a non-decomposable character of F×
q2

. Define a 2-dimensional representation τν
of W (Fq2/Fq) by

τν(x) =
(
ν(x) 0

0 ν(x)

)
and τν(ϕ) =

(
0 1
1 0

)
.

τν is irreducible and τν = τν′ if and only if ν ′ = ν or ν ′ = ν. Theses are all the 1
2(q2−q) two-dimensional

representations of W (Fq2/Fq).

3.4. Constructing Cuspidal Representations
from Non-decomposable Characters

Let ν be a non-decomposable character. We are going to define a representation ρ that will turn out
being a cuspidal representation. In order to define ρ on G, it suffices to define ρ as a map from B∪{w′}
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into the automorphism group of an appropriate vector space V such that the restriction of ρ to B is
a homomorphism and such that ρ preserves the relations (1), (2) and (3) of Proposition 2.4.1.

The dimension of ρ should be q − 1. Hence it is convenient to take V as the vector space of all
functions f : F×

q → C. On the other hand, ResGP (ρ) = π = IndPU (ψ), by the construction of induced
representation, we only have to give values on a system of representatives of P/U ∼= A. Identifying A
with F×

q , and using the identity(
x 0
0 1

)(
α β
0 1

)
=
(
αx βx
0 1

)
=
(

1 βx
0 1

)(
αx 0
0 1

)
we are led to the following definition:[

ρ

(
α β
0 1

)
(f)
]

(x) = ψ(βx)f(αx).

Further, we would like to have ρ coincides with ν on Z:[
ρ

(
δ 0
0 δ

)
(f)
]

(x) = ν(δ)f(x).

It follows that we must define ρ on B by[
ρ

(
α β
0 δ

)
(f)
]

(x) =
[
ρ

(
δ 0
0 δ

)(
ρ

(
αδ−1 βδ−1

0 1

)
(f)
)]

(x) = ν(δ)ψ(βδ−1x)f(αδ−1x).

A straightforward calculation shows that ρ is indeed a homomorphism of B into Aut(V ).
In order to define ρ(w′), we define a function j : F×

q → C by

j(x) =
−1
q

∑
N(λ)=x, λ∈F

×
q2

ψ(Tr(λ))ν(λ),

and for an f ∈ V define ρ(w′)(f) by

[ρ(w′)(f)](x) =
∑
y∈F

×
q

ν(y−1)j(xy)f(y).

Our task now is to prove that ρ(w′) together with the definition of ρ on B is compatible with the
relations (1), (2) and (3) of Proposition 2.4.1. We remark the once we prove the identity (2) is true,
we have ρ(w′) ∈ Aut(V ) automatically.

In order to prove that ρ preserve identity (1) of Proposition 2.4.1, we compute for every f ∈ V :[
ρ

(
w′
(
α 0
0 δ

))
(f)
]

(x) =
∑
y∈F

×
q

ν(y−1)j(xy)(ν(δ)f(αδ−1y)),

and [
ρ

((
δ 0
0 α

)
w′
)

(f)
]

(x) = ν(α)(
∑
z∈F

×
q

ν(z−1)j(δα−1xz)f(z)).

Changing variables by z = αδ−1y, we will see that they are equal.
In order to prove that ρ preserve identity (2) of Proposition 2.4.1, we compute for every f ∈ V :

[ρ(w′)(ρ(w′)(f))](x) =
∑
y∈F

×
q

ν(y−1)j(xy)(
∑
z∈F

×
q

ν(z−1)j(yz)f(z))

=
∑
z∈F

×
q

ν(xz−1)f(z)(
∑
y∈F

×
q

j(yz)j(xy)ν(x−1y−1)).
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We can get

[ρ(w′)(ρ(w′)(f))](x) = ν(−1)f(x) =
[
ρ

(
δ 0
0 α

)
(f)
]

(x),

by using the following:

Lemma 3.4.1. Given any x ∈ F×
q , then∑

y∈F
×
q

j(yz)j(xy)ν(x−1y−1) =

{
ν(−1) if z = x,

0 if z �= x.

Proof. We start from the left-hand side:∑
y∈F

×
q

j(yz)j(xy)ν(x−1y−1) =
1
q2

∑
y∈F

×
q

∑
N(t)= z

x (xy)

N(s)=xy

ψ(Tr(t+ s))ν(tsx−1y−1)

=
1
q2

∑
s∈F

×
q2

∑
N(t)= z

x
N(s)

ψ(Tr(t+ s))ν(t/s) (using N is onto)

=
1
q2

∑
N(λ)=z/x

ν(λ)
∑
s∈F

×
q2

ψ(Tr(s(1 + λ))) (by letting λ = t/s)

For a fixed λ, the map s �→ ψ(Tr(s(1 + λ))) is a character of F+
q2

. Since the map s �→ Tr(s(1 + λ))
maps Fq2 onto Fq if λ �= −1 and ψ is not the unit character, it follows that∑

s∈F
×
q2

ψ(Tr(s(1 + λ))) =

{
−1 if λ �= −1,
q2 − 1 if λ = −1.

We now distinguish between two cases and suppose first that z = x. Then∑
y∈F

×
q

j(yz)j(xy)ν(x−1y−1) =
1
q2

∑
N(λ)=1
λ �=−1

ν(λ)
∑
s∈F

×
q2

ψ(Tr(s(1 + λ))) +
1
q2
ν(−1)(q2 − 1)

=
−1
q2

∑
N(λ)=1
λ �=−1

ν(λ) +
1
q2
ν(−1)(q2 − 1)

=
1
q2
ν(−1) +

1
q2
ν(−1)(q2 − 1) (by Lemma 3.2.4)

= ν(−1)

Now suppose that z �= x. Then N(λ) = z/x implies that λ �= −1. Hence, in this case by Lemma
3.2.4, ∑

y∈F
×
q

j(yz)j(xy)ν(x−1y−1) =
−1
q2

∑
N(λ)=z/x

ν(λ) = 0.

�

Finally we have to prove that ρ preserves relation (3) of Proposition 2.4.1. We compute for every
f ∈ V : [

ρ

(
w′
(

1 1
0 1

)
w′
)

(f)
]

(x) =
∑
y∈F

×
q

ν(y−1)j(xy)ψ(y)[ρ(w′)(f)](y)

=
∑
y∈F

×
q

ν(y−1)j(xy)ψ(y)(
∑
z∈F

×
q

ν(z−1)j(yz)f(z))
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and [
ρ

((−1 −1
0 −1

)
w′
(

1 −1
0 1

))
(f)
]

(x) = ν(−1)ψ(−x)
[
ρ

(
w′
(

1 −1
0 1

))
(f)
]

(x)

= ν(−1)ψ(−x)
∑
z∈F

×
q

ν(z−1)j(xz)(ψ(−z)f(z))

In order to prove that these two equalities are equal, we need the following:

Lemma 3.4.2. Given any x, z ∈ F×
q , we have that∑

y∈F
×
q

ν(y−1)j(xy)j(yz)ψ(y) = ν(−1)j(xz)ψ(−x)ψ(−z).

Proof. We start from the left-hand side.∑
y∈F

×
q

ν(y−1)j(xy)j(yz)ψ(y) =
1
q2

∑
y∈F

×
q

∑
N(t)=xy
N(s)=yz

ψ(Tr(s+ t) + y)ν(sty−1)

Let λ = sty−1. Then N(t) = xy and N(s) = yz imply that N(λ) = xz. Using

Tr(s+ t) + y = z−1N(s+ z + λ) − zN(1 + z−1λ),

we have that∑
y∈F

×
q

ν(y−1)j(xy)j(yz)ψ(y) =
1
q2

∑
N(λ)=xz

ψ(−zN(1 + z−1λ))ν(λ)
∑
s∈F

×
q2

ψ(z−1N(s+ z + λ)).

However,∑
s∈F

×
q2

ψ(z−1N(s+ z + λ)) =
∑

r∈Fq2 ; r �=z+λ
ψ(z−1N(r))

=
∑
r∈F

×
q2

ψ(z−1N(r)) + 1 − ψ(z−1N(z + λ))

= (q + 1)
∑
α∈F

×
q

ψ(z−1α) + 1 − ψ(z−1N(z + λ)) (by Lemma 3.2.1)

= −q − ψ(z−1N(z + λ)).

Therefore, we have that∑
y∈F

×
q

ν(y−1)j(xy)j(yz)ψ(y) =
1
q2

∑
N(λ)=xz

ψ(−zN(1 + z−1λ))ν(λ)(−q − ψ(z−1N(z + λ)))

=
−1
q

∑
N(λ)=xz

ψ(−zN(1 + z−1λ))ν(λ) − 1
q2

∑
N(λ)=xz

ψ(−zN(1 + z−1λ) + z−1N(z + λ))ν(λ)

Note that under the assumption N(λ) = xz, we have that

−zN(1 + z−1λ) = −x− z − Tr(λ) and − zN(1 + z−1λ) + z−1N(z + λ) = 0
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Hence, we may continue the chain of equalities by∑
y∈F

×
q

ν(y−1)j(xy)j(yz)ψ(y) =
−1
q
ψ(−x− z)

∑
N(λ)=xz

ψ(−Tr(λ))ν(λ) − 1
q2

∑
N(λ)=xz

ν(λ)

=
−1
q
ψ(−x− z)

∑
N(λ)=xz

ψ(−Tr(λ))ν(λ) (by Lemma 3.2.4)

=
−1
q
ψ(−x− z)ν(−1)

∑
N(λ′)=xz

ψ(Tr(λ′))ν(λ′) (by letting λ = −λ′)

= ν(−1)j(xz)ψ(−x)ψ(−z).
�

For later references let us also describe the action of ρ on the element

s =
(
α β
γ δ

)
, γ �= 0.

We use the identity (
α β
γ δ

)
=
(
β − αγ−1δ −α

0 −γ
)(

0 1
−1 0

)(
1 γ−1δ
0 1

)
.

For f : F×
q → C,

[ρ(s)(f)](x) = ν(−γ)ψ(αγ−1x)
[
ρ(w′)ρ

(
1 γ−1δ
0 1

)
(f)
]

((β − αγ−1δ)(−γ)−1x)

= ν(−γ)ψ(αγ−1x)
∑
y∈F

×
q

ν(y−1)j((αδ − βγ)γ−2xy)
[
ρ

(
1 γ−1δ
0 1

)
(f)
]

(y)

=
−1
q
ν(−γ)ψ(αγ−1x)

∑
y∈F

×
q

ν(y−1)ψ(γ−1δy)f(y)
∑

N(λ)=γ−2xy det(s)

ψ(Tr(λ))ν(λ)

=
−1
q

∑
y∈F

×
q

⎛⎝ψ(
αx+ δy

γ
)

∑
N(λ′)=xy−1 det(s)

ψ(−y
γ

Tr(λ′))ν(λ′)

⎞⎠ f(y) (letting λ′ = −γλ
y

)

We have therefore proved:

Proposition 3.4.3. Let s =
(
α β
γ δ

)
∈ GL(2,Fq) with γ �= 0. Then we have

[ρ(s)(f)](x) =
∑
y∈F

×
q

k(x, y; s)f(y),

where

k(x, y; s) =
−1
q
ψ(
αx+ δy

γ
)

∑
N(λ)=xy−1 det(s)

ψ(−y
γ

Tr(λ))ν(λ).

3.5. The Correspondence between Cuspidal
Representations and Non-decomposable
Characters

In last section, given a non-decomposable character ν of F×
q2

we associate a cuspidal representation.
To distinguish its dependence with ν, we denote such a representation by ρν .
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Proposition 3.5.1. If ν and nu′ are non-decomposable characters of F×
q2

, then ρν is isomorphic to
ρν′ if and only if ν is conjugate to ν ′ over Fq.

Proof. Let ρ = ρnu, ρ′ = ρν′ and let j = jν , j′ = jν′ be the corresponding j function, respectively. If
ν ′ = ν, then we have ν ′(α) = ν(α) for α ∈ F×

q . Hence, ρ = ρ′ on B. Further,

j′(x) =
−1
q

∑
N(λ)=x

ψ(Tr(λ))ν ′(λ) =
−1
q

∑
N(λ)=x

ψ(Tr(λ))ν(λ) =
−1
q

∑
N(λ)=x

ψ(Tr(λ))ν(λ) = j(x).

Hence ρ′(w′) = ρ(w′). We conclude that ρ = ρ′.
Conversely, suppose that ρ′ is isomorphic to ρ. Then there exists an θ ∈ Aut(V ) such that

ρ′(s) ◦ θ = θ ◦ ρ(s), for all s ∈ G. However ResGP (ρ) = π = ResGP (ρ′) and π is irreducible. By Schur’s
lemma (Proposition 1.3.1), θ is a homothety. Hence, ρ′(s) = ρ(s) for every s ∈ G. In particular, ρ and
ρ′ are equal on B. Hence, ν(α) = ν ′(α) for every α ∈ F×

q . Further, ρ(w′) = ρ′(w′); hence∑
y∈F

×
q

ν(y−1)j(xy)f(y) =
∑
y∈F

×
q

ν ′(y−1)j′(xy)f(y),

for every x ∈ F×
q and every f ∈ V (recall that V is the space of functions f : F×

q → C). This implies
that j(α) = j′(α) for every α ∈ Fq, i.e.∑

N(λ)=α

ψ(Tr(λ))ν(λ) =
∑

N(λ)=α

ψ(Tr(λ))ν ′(λ).

For any x ∈ F×
q , we also have that j(x2α) = j′(x2α). Cancelling ν(x), we obtain∑

N(λ)=α

ψ(xTr(λ))ν(λ) =
∑

N(λ)=α

ψ(xTr(λ))ν ′(λ), for beingevery α, x ∈ F×
q .

Now choose a generator λ0 of the cyclic group F×
q2

. For any y ∈ Fq, there exists λ ∈ Fq2 such that
Tr(λ) = y and N(λ) = N(λ0) (we use the fact that Fq2 is the unique quadratic extension of Fq). The
other solution is obvious λ. Let ay = ν(λ) + ν(λ) − ν ′(λ) − ν ′(λ). and let ψy be the character of F+

q

defined by ψy(x) = ψ(xy). Then we have that∑
y∈Fq

ayψy = 0.

Notice that if y �= y′, then ψy �= ψy′ . Hence by Artin’s lemma (Lemma 1.9.2), we have that ay = 0 for
every y ∈ Fq. In particular, we have

ν(λ0) + ν(λ0) = ν ′(λ0) + ν ′(λ0).

Combining with
ν(λ0)ν(λ0) = ν(N(λ0)) = ν ′(N(λ0)) = ν ′(λ0)ν ′(λ0),

we have either ν ′(λ0) = ν(λ0) or ν ′(λ0) = ν(λ0). This implies that ν ′ = ν or ν ′ = ν, since λ0 is the
generator of F×

q2
.

�

Remark . There are totally q2−q non-decomposable characters of F×
q2

and there are 1
2(q2−q) cuspidal

representations of GL(2,Fq). From Proposition 3.5.1, we know that every cuspidal representation of
the form ρν , for some non-decomposable character ν.

At this point, we would like to indicate an interesting duality between conjugacy classes of GL(2,Fq)
and characters of F×

q2
. For example, the elements λ ∈ Fq2 − Fq correspond to the conjugacy classes

c4(λ) (cf. Section 2.7), whereas the characters ν of Fq2× that do not come from characters of F×
q (i.e.

non-decomposable characters) correspond to the cuspidal representations ρν of G. In both sets there
are 1

2(q2 − q).
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We summarize these data in the following table.

Elmt. of F×
q2

Conj. Cl. No. of Elmt. Dim. Irr. Rep. Char. of F×
q2

α ∈ F×
q c1(α) q − 1 1 ρ′(µ1,µ1) µ1 ∈ F̂×

q

c2(α) q − 1 q ρ(µ1,µ1)

α �= β ∈ F×
q c3(α) 1

2(q − 1)(q − 2) q + 1 ρ(µ1,µ2) µ1 �= µ2 ∈ F̂×
q

λ ∈ F×
q2

− F×
q c4(λ) 1

2(q2 − q) q − 1 ρν ν ∈ F̂×
q2

− F̂×
q

3.6. Whittakers Models

Recall that we have fixed a non-unit character ψ of F+
q , identified it with a character of U and found

that π = IndPU (ψ) is a (q − 1)-dimensional irreducible representation of P .
If χ is a character of G, then by Frobenius reciprocity

(χ, IndGU (ψ)) = (χ, IndGP (π)) = (ResGP (χ), π) = 0.

Hence all irreducible components of π̂ = IndGU (ψ) are of dimension > 1 and each of them appears in
multiplicity 1 by Lemma 3.1.2.

Lemma 3.6.1. Let ρ be an irreducible representation of GL(2,Fq) of dimension > 1. Then

ResGP (Vρ) = ResGP (J(Vρ)) ⊕ Vπ.

Proof. This has been prove when dim(ρ) = q−1 (Lemma 3.1.1) and when dim(ρ) = q+1 (Proposition
2.6.4). If dim(ρ) = q, then there exists a character µ of B and a character ρ′ of G such that µ̂ =
IndGB(µ) = ρ′ ⊕ ρ. Further, by Proposition 2.6.4 we have ResGP (Vµ̂) = ResGP (J(Vµ̂)) ⊕ Vπ. Hence

ResGP (Vρ′) ⊕ ResGP (Vρ) = ResGP (J(Vρ′)) ⊕ ResGP (J(Vρ)) ⊕ Vπ.

However, since J(Vρ′) �= 0 by Lemma 2.6.1, we have ResGP (Vρ′) = ResGP (J(Vρ′)), and hence the lemma.
�

Theorem 3.6.2. IndGU (ψ) is the direct sum of all higher dimensional (> 1) irreducible representations
of G, each of multiplicity 1.

Proof. For any higher dimensional irreducible representation ρ, since ResGP (J(Vρ)) is either 0 or
decomposes into a direct sum of 1-dimensional C[P ]-submodules, by Lemma 3.6.1 we have

(ρ, IndGU (ψ)) = (ρ, IndGP (π)) = (ResGP (ρ), π) = 1.

�

If now ρ is an irreducible higher dimensional representation of G, the Vρ can be embedded in
IndGU (Vψ). Thus, for every v ∈ Vρ, there exists a unique function Wv : G → C in IndGU (Vψ) called a
Whittaker function of ρ such that the following rules hold:

(1) Wv = 0 if and only if v = 0; Wcv+c′v′ = cWv + c′Wv′ , for c, c′ ∈ C.

(2) Wv(us) = ψ(u)Wv(s), for u ∈ U and s ∈ G.

(3) Wρs(v)(r) = Wv(rs), for r, s ∈ G.

The set of all function Wv form a C[G]-submodule W (ρ) of IndGU (Vψ) called the Whittaker model of ρ.
By Theorem 3.6.2, this submodule is uniquely determined within IndGU (Vψ). Moreover, if ρ′ is another
higher dimensional irreducible representation of G, then W (ρ) ∩W (ρ′) = {0}.
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3.7. The Γ-function of a representation of G

Let ρ be a higher dimensional irreducible representation of G. The P -decomposition Vρ = J(Vρ)⊕ Vπ
is also an A-decomposition, because A is a subgroup of P . We study the action of A through ρ on
J(Vρ) and Vπ.

If ρ = ρ(µ1,µ2), where µ1 and µ2 are characters of F×
q , then by Lemma 2.6.5 µ1 and µ2 are

eigenvalues of A on J(Vρ) (here, we identify A with F×
q ). In this case, we call µ−1

1 and µ−1
2 the

exceptional characters for ρ. We remark that if ρ is cuspidal, then there is no exceptional character.
In any case, if the inverse of a character υ of F×

q is not exceptional, then υ is not an eigenvalue of A
operating on J(Vρ) through ρ.

By the definition of Vπ, every f ∈ Vπ is uniquely determined by its value on the representative
P/U ∼= A. Hence ResPA(Vπ) is isomorphic to the space of all functions f : F×

q → C, and A acts on this
space by the formula [

ρ

(
α 0
0 1

)
(f)
]

(x) = f(xα), for α, x ∈ F×
q .

Lemma 3.7.1. Let ρ be a higher dimensional irreducible representation of G. If a character υ of F×
q

is not an exceptional character of ρ, then any two linear mappings l1, l2 : Vρ → C satisfying

li(ρ
(
x 0
0 1

)
(v)) = υ−1(x)li(v) for every x ∈ F×

q and v ∈ Vρ,

are linearly dependent.

Proof. Let ζ be a generator of the cyclic group F×
q and define the linear map T : Vρ → Vρ by

T (v) = ρ

(
ζ 0
0 1

)
(v) − υ−1(ζ)v.

Then

Ker(T ) = {v ∈ Vρ | ρ
(
α 0
0 1

)
(v) = υ−1(α)v for all x ∈ F×

q },

i.e. the space of eigenvectors of A belonging to the eigenvalue υ−1. Since υ is non-exceptional,
υ−1 is not the eigenvalue of A operating on J(Vρ) through ρ. By Lemma 3.6.1, we conclude that
Ker(T ) ⊆ ResPA(Vπ). However, any function f : F×

q → C satisfying

f(xα) =
[
ρ

(
α 0
0 1

)
(f)
]

(x) = υ−1(α)f(x),

is uniquely defined by the value of f(1); indeed, we have f(α) = υ−1(α)f(1), for all α ∈ F×
q . This

implies that dim Ker(T ) = 1, and hence dimT (Vρ) = dim(Vρ) − 1.
Now, suppose l1 and l2 are not zero mapping. Clearly, T (Vρ) ⊆ Ker(li) and dim Ker(li) = dim(Vρ)−

1. Therefore Ker(l1) = T (Vρ) = Ker(l2). This follows that l1 and l2 are linearly dependent. �

Theorem 3.7.2. Let ρ be a higher dimensional irreducible representation of G and let υ be a character
of F×

q which is not exceptional for ρ. Then there exists a complex number Γρ(υ) such that for every
Whittaker function Wv of ρ, we have

Γρ(υ)
∑
x∈F

×
q

Wv

(
x 0
0 1

)
υ(x) =

∑
x∈F

×
q

Wv

(
0 1
x 0

)
υ(x).

Proof. Define the linear mappings l1, l2 : Vρ → C by

li(v) =
∑
x∈F

×
q

Wv

(
wi
(
x 0
0 1

))
υ(x) for i = 1, 2 and v ∈ Vρ.



42 3. The Representations of GL(2,Fq)

Then

li(ρ
(
α 0
0 1

)
(v)) =

∑
x∈F

×
q

Wv

(
wi
(
x 0
0 1

)(
α 0
0 1

))
υ(x) =

∑
x∈F

×
q

Wv

(
wi
(
αx 0
0 1

))
υ(x)

= υ(α−1)
∑
x∈F

×
q

Wv

(
wi
(
x 0
0 1

))
υ(x) = υ−1(α)li(v) ∀α ∈ F×

q ,∀ v ∈ Vρ.

l2 is not a zero mapping; indeed by the proof of Lemma 3.7.1, there exists a nonzero v ∈ ResPA(Vπ)
such that v is a eigenvector of A belonging to υ−1. Hence

Wv

(
x 0
0 1

)
= Wυ−1(x)v

(
1 0
0 1

)
= υ−1(x)Wv

(
1 0
0 1

)
for every x ∈ F×

q .

This implies that for this v, l2(v) = (q−1)Wv(1) �= 0. It follows from Lemma 3.7.1 that l1 is a multiple
of l2 by a constant denoted by Γρ(υ). �

The complex valued function Γρ(υ) defined for every non-exceptional character υ of F×
q for ρ will

play an important role in the computation of the character table of GL(2,Fq).

3.8. Determination of ρ by Γρ

Let ρ be a higher dimensional irreducible representation of G. For every v ∈ Vρ, let Wv be the
corresponding Whittaker function of ρ and let F (F×

q ,C) be the space of all functions f : F×
q → C.

Consider the homomorphism R : Vρ → F (F×
q ,C) defined by R(v) = Wv|A (here, we identify A with

F×
q ). If we define an operation of F×

q on F (F×
q ,C) by (α ∗ f)(x) = f(xα) and identify A with F×

q , then
R is an A-homomorphism.

Lemma 3.8.1. The homomorphism R is surjective and Ker(R) = J(Vρ).

Proof. We start by determining Ker(R). Let v ∈ J(Vρ). Then for every α ∈ F×
q , we choose a β ∈ Fq

such that ψ(αβ) �= 1 (because ψ is non-unit). Since u =
(

1 β
0 1

)
∈ U , we have ρu(v) = v. Hence

Wv

(
α 0
0 1

)
= Wρu(v)

(
α 0
0 1

)
= Wv

(
α αβ
0 1

)
= wv

((
1 αβ
0 1

)(
α 0
0 1

))
= ψ(αβ)Wv

(
α 0
0 1

)
.

This shows that Wv

(
α 0
0 1

)
= 0, for every α ∈ F×

q . Hence, v ∈ Ker(R).

To prove that Ker(R) ⊆ J(Vρ), we remark first that Ker(R) is a C[P ]-module; indeed, since
P = AU and U is normal in P , for any a ∈ A, p ∈ P , there exist a′ ∈ A and u ∈ U such that
ap = ua′. Hence, if v ∈ Ker(R), then Wρp(v)(a) = Wv(ap) = ψ(u)Wv(a′) = 0. This implies that the
C[P ]-submodule Vπ ∩Ker(R) is either {0} or Vπ, since Vπ is P -irreducible. Assume Vπ ∩Ker(R) = Vπ.
Then J(Vρ) ⊆ Ker(R) and Vρ = J(Vρ) ⊕ Vπ implies that R is a zero mapping. In particular, we have
Wv(1) = 0 for all v ∈ Vρ. Hence for every v ∈ Vρ, Wv(s) = Wρs(v)(1) = 0, for every s ∈ G. Thus v = 0,
which is absurd. We conclude that Vπ ∩Ker(R) = {0}. Hence Ker(R) = J(Vρ). This fact implies that
dim(R(Vρ)) = dim(Vπ) = q − 1 = dim(F (F×

q ,C)). �

The center Z of G consists of the scalar matrices and is therefore canonical isomorphic to F×
q . The

restriction of ρ to Z can therefore be identified with a character υρ of F×
q , called the central character

of ρ.

Theorem 3.8.2. A cuspidal representation ρ of G is uniquely determined by its Γ-function and its
central character.
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Proof. Let ρ and ρ′ be two cuspidal representation of G. Suppose that ρ and ρ′ coincide on Z. Then
since ResGP (ρ) = π = ResGP (ρ′) and B = ZP , we conclude that ρ and ρ′ coincide on B. Suppose in
addition that Γρ = Γρ′ . Because of Bruhat decomposition G = B∪BwU , in order to prove that ρ and
ρ′ are isomorphic, it suffices to show that ρw and ρ′w coincide.

What we have now is that there exists an isomorphism θ : Vρ → Vρ′ such that θ(ρs(v)) = ρ′s(θ(v))
for every v ∈ Vρ and s ∈ B. Since J(Vρ) = J(Vρ′) = {0}, by Lemma 3.8.1 the maps R : Vρ → F (F×

q ,C)
and R′ : Vρ′ → F (F×

q ,C) are C[A]-isomorphisms. Given any character υ of A, we know that there
exist v ∈ Vρ such that ρa(v) = υ(a)v for every a ∈ A. Therefore, Wv(a) = Wρa(v)(1) = υ(a)Wv(1)
and similarly because ρ′a(θ(v)) = υ(a)θ(v), Wθ(v)(a) = υ(a)Wθ(v)(1). Multiplying a suitable constant,
we can assume that Wv(a) = Wθ(v)(a) for every a ∈ A. Since Vρ is a direct sum of eigenvectors of A
belonging to characters of A, without loss of generality, we can assume that Wv|A = Wθ(v)|A for every
v ∈ Vρ.

Therefore, by Theorem 3.7.2 the assumption Γρ = Γρ′ implies that for every character υ of F×
q

(there is no exceptional character for cuspidal representation),∑
x∈F

×
q

Wv

(
0 1
x 0

)
υ(x) =

∑
x∈F

×
q

Wθ(v)

(
0 1
x 0

)
υ(x).

This implies by Artin’s lemma that

Wv

(
0 1
x 0

)
= Wθ(v)

(
0 1
x 0

)
, for every x ∈ F×

q , v ∈ Vρ.

Hence for every x ∈ F×
q let z =

(
x 0
0 x

)
∈ Z, and we have

Wρw(v)

(
x 0
0 1

)
= Wv

((
x 0
0 1

)(
0 1
1 0

))
= Wv

((
0 1
x 0

)(
0 1
x 0

))
= Wρz(v)

(
0 1
x−1 0

)
= Wθ(ρz(v))

(
0 1
x−1 0

)
= Wρ′z(θ(v))

(
0 1
x−1 0

)
= Wρ′w(θ(v))

(
x 0
0 1

)
This shows that

R′(θ(ρw(v))) = Wθ(ρw(v))|A = Wρw(v)|A = Wρ′w(θ(v))|A = R′(ρ′w(θ(v))).

Since R′ is an isomorphism, we conclude θ(ρw(v)) = ρ′w(θ(v)).
�

3.9. The Bessel Function of a representation

Let ρ be a higher dimensional irreducible representation of G. Then for q > 3, we have dim(Vρ) ≥
q − 1 > 2 ≥ dim(J(Vρ)), and for q = 3 and dim(Vρ) = 2, ρ is cuspidal and hence J(Vρ) = {0}.
Therefore, Vρ �= J(Vρ) in all cases.

As U is abelian, ResGU (ρ) decomposes into a direct sum of characters. Since Vρ �= J(Vρ), one of
the characters must be non-unit. Fix a non-unit character ψ of F+

q . Recall that for another non-unit
character ψ′ of F+

q , there exists an α ∈ F×
q such that ψ′(x) = ψ(αx) for all x ∈ Fq. Suppose that ψ′ is

an eigenvalue of U through ρ with an eigenvector v′ ∈ Vρ, i.e.

ρ

(
1 β
0 1

)
(v′) = ψ′(β)v′, ∀β ∈ Fq.

Replacing v′ by v = ρ

(
α 0
0 1

)
(v′), we get that for every β ∈ Fq,

ρ

(
1 β
0 1

)
(v) = ρ

(
α 0
0 1

)
ρ

(
1 α−1β
0 1

)
(v′) = ψ′(α−1β)ρ

(
α 0
0 1

)
(v′) = ψ(β)v.
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Hence, ψ is an eigenvalue of U through ρ with eigenvector v. Using similar method and using dim(Vρ)−
dim(J(Vρ)) = q − 1, we conclude that every non-unit character of F+

q appears exactly once as an
eigenvalue of U through ρ. On the other hand, the Whittaker model W (ρ) of ρ is considered as a
C[G]-submodule of IndGUVψ for the fixed ψ (cf. Section 3.6 condition (2)). It follows that if α ∈ F×

q ,

then for all β ∈ Fq since ρ
(

1 β
0 1

)
(v) = ψ(β)v, we have

ψ(β)Wv

(
α 0
0 1

)
= Wψ(β)v

(
α 0
0 1

)
= Wv

((
α 0
0 1

)(
1 β
0 1

))
= Wv

((
1 αβ
0 1

)(
α 0
0 1

))
= ψ(αβ)Wv

(
α 0
0 1

)
.

If α �= 1, then we may conclude that Wv

(
α 0
0 1

)
= 0. Further, since v �= J(Vρ), Wv|A �= 0 by Lemma

3.8.1 and therefore Wv(1) �= 0. The vector is said to be a Bessel vector for ρ.
Let us sum up the results in the following:

Lemma 3.9.1. Let ρ be a higher dimensional irreducible representation of G. Then for a given non-
unit character ψ of U , we have (ψ,ResGU (ρ)) = 1. A Bessel vector for ρ is an eigenvector v of A
belonging to ψ which is unique up to a scalar multiple and satisfying

Wv

(
α 0
0 1

){
= 0 if α �= 1 and α ∈ F×

q ,

�= 0 if α = 1.

We use Bessel vector v to define the Bessel function Jρ : G→ C of ρ by

Jρ(s) =
Wv(s)
Wv(1)

for every s ∈ G.

Clearly Jρ(s) does not depend on which Bessel vector v is used. Note that Jρ is also a Whittaker
function for ρ. We have

Jρ(su) =
Wv(su)
Wv(1)

=
Wρu(v)(s)
Wv(1)

=
ψ(u)Wv(s)
Wv(1)

= ψ(u)Jρ(s) = Jρ(us), for u ∈ U and s ∈ G.

Also

Jρ(a) =

{
0 if a �= 1 and a ∈ A,

1 if a = 1.

Therefore, if a character υ of F×
q is not exceptional for ρ, we have by Theorem 3.7.2 that

Γρ(υ) =
∑
x∈F

×
q

Jρ

(
0 1
x 0

)
υ(x).

One can use this formula to define Γρ(υ) also for the exceptional character υ.

3.10. The Computation of Γρ(υ) for a
Non-cuspidal ρ

Let ρ be a higher dimensional irreducible representation of G which is not cuspidal. Then ρ is a
component of µ̂ = IndGB(µ), where µ is a character of B which corresponds to the pair of characters
(µ1, µ2) of F×

q . We may consider therefore Vρ as an irreducible C[G]-submodule of IndGB(Vµ). Every
element of V ρ appears then as a function f : G→ C such that

f(bs) = µ(b)f(s), ∀ b ∈ B, s ∈ G.

The action of G on Vρ is given by ρr(f)(s) = f(sr) for s, r ∈ G.



3.10. Γρ(υ) for a Non-cuspidal ρ 45

We shall use this description of Vρ in order to give a concrete Whittaker model for ρ in the space
IndGU (Vψ). Thus, we shall define an injective C[G]-linear map from Vρ into IndGU (Vψ). For every f ∈ Vρ,
let Wf : G→ C be the function defined by

Wf (s) =
∑
u∈U

f (wus)ψ(u)−1.

It is easy to check that

Wf (us) =
∑
u′∈U

f
(
wu′us

)
ψ(u′)−1 =

∑
u′′∈U

f
(
wu′′s

)
ψ(u′′u−1)−1 = ψ(u)Wf (s), for u ∈ U , s ∈ G

and
Wρr(f)(s) =

∑
u∈U

ρr(f) (wus)ψ(u)−1 =
∑
u∈U

f (wusr)ψ(u)−1 = Wf (sr), for r, s ∈ G.

Therefore, the map f �→ Wf defines a C[G]-linear map from Vρ into IndGU (Vψ). Since ρ is irreducible,
Vρ is the C[G]-span of any non-zero f ∈ Vρ. We show the map is injective by constructing a specific
non-zero function f ∈ Vρ such that Wf �= 0.

Using Bruhat’s decomposition G = B ∪BwU , we define f by

f(b) = 0 and f(bwu) = µ(b)ψ(u), for b ∈ B, u ∈ U.

Then f is a non-zero element of IndGB(Vµ) and it satisfies

(∗) f(su) = ψ(u)f(s) for u ∈ U and s ∈ G.

Computing Wf (u) for u ∈ U , we find

Wf (u) =
∑
u′∈U

f
(
wu′u

)
ψ(u′)−1 =

∑
u′∈U

ψ
(
u′u
)
ψ(u′)−1 = qψ(u).

Hence Wf �= 0. Now we only need to prove that f ∈ Vρ.

If dim(ρ) = q + 1, then Vρ = IndGB(Vµ), and there is nothing to prove. We can therefore assume
that dim(ρ) = q − 1. In this case IndGB(Vµ) = Vρ′ ⊕ Vρ, where ρ′ is a 1-dimensional representation
of G. We can therefore write f = f1 + f2, where f1 ∈ Vρ′ and f2 ∈ Vρ. Since ρ′ is a 1-dimensional
representation of G, for every s ∈ G, we have f1(s) = ρ′s(f1)(1) = µ1(det(s))f1(1) (cf. Lemma 2.5.2).
In particular, we have f1(u) = f1(1) for every u ∈ U . Now for every u ∈ U , by definition µ̂u(f1) and
ψ(u)f1 both belong to Vρ′ and similarly µ̂u(f2) and ψ(u)f2 both belong to Vρ. Since by the equality (∗),
µ̂u(f) = ψ(u)f , we have that µ̂u(f1) + µ̂u(f2) = ψ(u)f1 + ψ(u)f2. By the direct sum decomposition,
we conclude that µ̂u(f1) = ψ(u)f1. In particular, we have f1(u) = µ̂u(f1)(1) = ψ(u)f1(1), for every
u ∈ U . It follows from f1(u) = f1(1) that f1(1) = 0. Since f1(s) = µ1(det(s))f1(1), we have f1 = 0
and our contention is proved.

Note that (∗) implies that f is an eigenvector belonging to ψ. Hence, f is a Bessel vector for ρ.
In order to compute Γρ(υ), we now have to compute

Wf

(
0 1
x 0

)
=
∑
y∈Fq

f

((
0 1
1 0

)(
1 y
0 1

)(
0 1
x 0

))
ψ(y)−1.

Since

(
0 1
1 0

)(
1 y
0 1

)(
0 1
x 0

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
x 0
0 1

)
if y = 0,(

−y−1 x

0 yx

)(
0 1
1 0

)(
1 (yx)−1

0 1

)
otherwise,

we have that

Wf

(
0 1
x 0

)
=
∑
y∈F

×
q

µ1(−y−1)µ2(yx)ψ((yx)−1 − y) =
∑

αβ=−1/x

µ1(α)−1µ2(β)−1ψ(α+ β).
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Also
Wf (1) =

∑
u∈U

f(wu)ψ(u)−1 =
∑
u∈U

ψ(u)ψ(u)−1 = q.

Hence

Γρ(υ) =
1
q

∑
x∈F

×
q

∑
αβ=−1/x

µ1(α)−1µ2(β)−1ψ(α+ β)υ(x)

=
1
q

∑
x∈F

×
q

∑
αβ=−1/x

µ1(α)−1µ2(β)−1ψ(α)ψ(β)υ(−α−1β−1)

=
υ(−1)
q

∑
α∈F

×
q

µ1(α)−1υ(α)−1ψ(α)
∑
β∈F

×
q

µ2(β)−1υ(β)−1ψ(β).

Now recall that for a character χ of F×
q and a non-unit character φ of F+

q , one define the Gauss
sum

G(χ, φ) =
∑
x∈F

×
q

χ(x)φ(x).

We have therefore proved the following:

Theorem 3.10.1. Let µ1 and µ2 be characters of F×
q and let ρ = ρ(µ1,µ2) be the corresponding irre-

ducible representation of G. If υ is a character of F×
q , then

Γρ(υ) =
υ(−1)
q

G(µ−1
1 υ−1, ψ)G(µ−1

2 υ−1, ψ).

Remark . It is well known that | G(χ, φ) |= √
q. Hence | Γρ(υ) |= 1.

If ψ′ is another non-unit character of F+
q , then there exists an α ∈ F×

q such that ψ′(x) = ψ(αx).
It follows that G(χ, ψ′) = χ(α)−1G(χ, ψ). Hence, if we denote by Γ′

ρ the Γ-function of ρ obtained by
using ψ′, then

Γ′
ρ(υ) = υ(α)2µ1(α)µ2(α)Γρ(υ).

3.11. The Computation of Γρ(υ) for a Cuspidal ρ

Let ν be a non-decomposable character of F×
q2

and let ρ = ρν be the corresponding cuspidal represen-
tation of G. Recall that we consider Vρ as the space of all functions f : F×

q → C. We define the action
of ρ as the following. [

ρ

(
α β
0 δ

)
(f)
]

(x) = ν(δ)ψ(βδ−1x)f(αδ−1x)

and

[ρ(w′)(f)](x) =
[
ρ

(
0 1
−1 0

)
(f)
]

(x) =
∑
y∈F

×
q

ν(y−1)j(xy)f(y),

where j = jν is the function

j(x) =
−1
q

∑
N(λ)=x, λ∈F

×
q2

ψ(Tr(λ))ν(λ).

We shall use this description of Vρ in order to give a concrete Whittaker Model W (ρ) in IndGU (Vψ).
We define a function η : G→ C in W (ρ) as the following.

η

(
α β
γ δ

)
=

⎧⎪⎨⎪⎩
0 if γ = 0 and α �= δ,

ν(α)ψ(α−1β) if γ = 0 and α = δ,
−1
q ψ(α+δ

γ )
∑

N(λ)=αδ−γβ ψ(−Tr(λ)
γ )ν(λ) if γ �= 0.
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We need to check that η is in IndGU (Vψ). Indeed, by
(

1 ζ
0 1

)(
α β
γ δ

)
=
(
α+ ζγ β + ζδ
γ δ

)
we have

η

((
1 ζ
0 1

)(
α β
γ δ

))
=

⎧⎪⎨⎪⎩
0 if γ = 0 and α �= δ,

ν(α)ψ(α−1β + ζ) if γ = 0 and α = δ,
−1
q ψ(α+δ

γ + ζ)
∑

N(λ)=αδ−γβ ψ(−Tr(λ)
γ )ν(λ) if γ �= 0.

Thus, η(us) = ψ(u)η(s), for all u ∈ U and s ∈ G. Let W (η) be the C[G]-submodule of IndGU (Vψ)
spanned by η. Define a map φ : W (η) → Vρ by

φ(h)(x) = h

(
x 0
0 1

)
, for h ∈W (η) and x ∈ F×

q .

We are going to show that φ is a C[G]-linear map. Since both W (η) and Vρ are irreducible, this implies
that φ is a C[G]-isomorphism.

We only have to check φ(π̂s(η))(x) = ρs(φ(η))(x) for the cases s ∈ B and s = w′. For s =
(
α β
0 δ

)
,

we have

φ(π̂s(η))(x) = π̂s(η)
(
x 0
0 1

)
= η

((
x 0
0 1

)(
α β
0 δ

))
= η

(
xα xδ
0 δ

)
=

{
0 if x �= α−1δ,

ν(δ)ψ(α−1β) if x = α−1δ.

and

ρs(φ(η))(x) =
[
ρ

(
α β
0 δ

)
(φ(η))

]
(x) = ν(δ)ψ(βδ−1x)(φ(η))(αδ−1x)

= ν(δ)ψ(βδ−1x)η
(
αδ−1x 0

0 1

)
=

{
0 if x �= α−1δ,

ν(δ)ψ(α−1β) if x = α−1δ.

For w′ =
(

0 1
−1 0

)
, we have

φ(π̂w′(η))(x) = η

((
x 0
0 1

)(
0 1
−1 0

))
= η

(
0 x
−1 0

)
=

−1
q

∑
N(λ)=x

ψ(Tr(λ))ν(λ) = j(x)

and

ρw′(φ(η))(x) =
∑
y∈F

×
q

ν(y−1)j(xy)φ(η)(y) =
∑
y∈F

×
q

ν(y−1)j(xy)η
(
y 0
0 1

)
= j(x)

We have thus proved that W (η) is the Whittaker model of ρ. In fact, the homomorphism φ is the
same as the homomorphism R defined in Section refsec:R. If we define an operation of G on F (F×

q ,C)
by ρ then R is an G-isomorphism.

Lemma 3.11.1. The Wittaker function η for ρ is the Bessel function.

Proof. This is true because Jρ(1) = η(1) = 1 and Jρ(a) = η(a) = 0 for a ∈ A and a �= 0. �

Now for every f ∈ Vρ = F (F×
q ,C), let Wf : G→ C be the function defined by

Wf (s) =
∑
y∈F

×
q

f(y)η
(
s

(
y−1 0
0 1

))
, for all s ∈ G.

Then Wf is the Witakker function for ρ corresponding to f ; indeed, we have R(Wf ) = f .
In order to compute Γρ(υ), we now have to compute

η

(
0 1
x 0

)
=

−1
q

∑
N(λ)=−x

ψ(−Tr(λ)
x

)ν(λ).
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Hence, if υ is a character of F×
q , then

Γρ(υ) =
∑
x∈F

×
q

−1
q

∑
N(λ)=−x

ψ(−Tr(λ)
x

)ν(λ)υ(x) =
−1
q

∑
x∈F

×
q

υ(x)
∑

N(λ)=−x
ψ(λ−1 + λ

−1)ν(λ)

=
−1
q

∑
λ∈F

×
q2

υ(−λ−1λ
−1)ψ(λ+ λ)ν(λ) =

−1
q
υ(−1)

∑
λ∈F

×
q2

υ(N(λ))−1ψ(Tr(λ))ν(λ)

Theorem 3.11.2. Let ν be a non-decomposable character of F×
q2

and let ρ = ρν be the corresponding
cuspidal representation of G. Then

Γρ(υ) =
−1
q
υ(−1)

∑
λ∈F

×
q2

υ(N(λ))−1ψ(Tr(λ))ν(λ) =
−1
q
υ(−1)GF2

q
(ν · (υ ◦ N)−1, ψ ◦ Tr)

for every character υ of F×
q .

Remark . GFq2
is the Gauss sum for Fq2 . As in the non cuspidal case, | Γρ(υ) |= 1, since | GFq2

|= q.
Also if ψ′(x) = ψ(αx) is another character of F+

q , then Γ′
ρ(υ) = ν(α)−1υ(α)2Γρ(υ).

3.12. The Characters Table of GL(2, Fq)

We conclude our exposition on the representations of GL(2,Fq) with a computation of its characters
table.

(A). Though π̂ = IndGP (π) = IndGU (ψ) is not irreducible, it is the direct sum of all higher dimensional
irreducible representations. We compute it first. By Theorem 1.13.1, we have

χπ̂(s) =
1

| U |
∑
r∈G

r−1sr∈U

ψ(r−1sr).

The only eigenvalue of elements of U is 1. It follows that the only conjugacy class on which χπ̂ may
not vanish are c1(1) and c2(1). Clearly, χπ̂(1) = [G : U ] = (q − 1)2(q + 1). In order to compute χπ̂ at

c2(1) =
(

1 1
0 1

)
, we need:

Lemma 3.12.1.

s

(
x 1
0 x

)
s−1 ∈ B ⇐⇒ s ∈ B

Proof. Let s =
(
α β
γ δ

)
be an element of G and let s−1 =

(
α′ β′

γ′ δ′

)
. Then s ∈ B if and only if

γ = 0. The lemma follows therefore from:(
α β
γ δ

)(
x 1
0 x

)(
α′ β′

γ′ δ′

)
=
(
α β
γ δ

)[(
x 0
0 x

)
+
(

0 1
0 0

)](
α′ β′

γ′ δ′

)
=
(
x+ αγ′ αδ′

γγ′ 1 + γδ′

)
�

Lemma 3.12.1 implies that

χπ̂

(
1 1
0 1

)
=

1
| U |

∑
s∈B

ψ

(
s−1

(
1 1
0 1

)
s

)
=

∑
α,δ∈F

×
q

ψ(αδ−1) = 1 − q.

(B). Let µ be a character of B which is defined by the pair of characters (µ1, µ2) of F×
q . Let

µ̂ = IndGB(µ) and compute

χµ̂(s) =
1

| B |
∑
r∈G

r−1sr∈B

µ(r−1sr).
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First,

χµ̂

(
x 0
0 x

)
=

1
| B |

∑
r∈G

µ

(
r−1

(
x 0
0 x

)
r

)
= [G : B]

∑
r∈G

µ

(
x 0
0 x

)
= (q + 1)µ1(x)µ2(x).

For c2(x), we use Lemma 3.12.1 again;

χµ̂

(
x 1
0 x

)
=

1
| B |

∑
r∈B

µ

(
r−1

(
x 1
0 x

)
r

)
=

q

| B |
∑

α,δ∈F
×
q

µ

(
x αδ−1

0 x

)
= µ1(x)µ2(x).

In order to compute the value of χµ̂ at c3(x, y), we need the following.

Lemma 3.12.2. For x �= y(
α β
γ δ

)(
x 0
0 y

)(
α β
γ δ

)−1

∈ B ⇐⇒ γ = 0 or δ = 0

Proof. Let
(
α β
γ δ

)−1

=
(
α′ β′

γ′ δ′

)
it is easy to check that if γ �= 0 then α′ = 0 if and only if δ = 0.

Our lemma follows therefore from:(
α β
γ δ

)(
x 0
0 y

)(
α′ β′

γ′ δ′

)
=
(
y 0
0 y

)
+
(
αα′(x− y) αβ′(x− y)
γα′(x− y) γβ′(x− y)

)
.

�

Since
(
α β
γ 0

)
=
(
β α
0 γ

)(
0 1
1 0

)
, we have

χµ̂

(
x 0
0 y

)
=

1
| B |

∑
r∈B

µ

(
r−1

(
x 0
0 y

)
r

)
+

1
| B |

∑
r∈B

µ

(
r−1

(
y 0
0 x

)
r

)
= µ1(x)µ2(y) + µ1(y)µ2(x).

Finally, because the eigenvalues of elements c4(λ) do not belong to Fq, χµ̂(c4(λ)) = 0.
(B1). If µ1 �= µ2, then µ̂ is irreducible. Its character has therefore been computed.
(B2). If µ1 = µ2, then χ̂ = ρ⊕ρ′, where ρ′ is a 1-dimensional character given by ρ′(s) = µ1(det(s))

(cf. Lemma 2.5.2). Hence χρ(s) = χµ̂(s) − µ1(det(s)).

(C). Let ν be a non-decomposable character of F×
q2

and let ρν be the corresponding cuspidal
representation. Let W (ρ) be the Whittaker model for ρ. We know that elements in W (ρ) are uniquely
determined by their values on A. For α ∈ F×

q , define δα : G→ C be the unique element in W (ρ) such
that

δα

(
x 0
0 1

)
=

{
1 if x = α,

0 otherwise.

The Bessel function η = δ1 and δα = ρ

(
α−1 0
0 1

)
(η); indeed, we have

[
ρ

(
α−1 0
0 1

)
(η)
](

x 0
0 1

)
= η

((
x 0
0 1

)(
α−1 0
0 1

))
=

{
1 if x = α,

0 otherwise.

{δα | α ∈ F×
q } is a basis of W (ρ). We have

ρ(s)(δα) =
∑
x∈F

×
q

[ρ(s)(δα)]
(
x 0
0 1

)
δx =

∑
x∈F

×
q

[
ρ(s)ρ

(
α−1 0
0 1

)
(η)
](

x 0
0 1

)
δx

=
∑
x∈F

×
q

η

((
x 0
0 1

)
s

(
α−1 0
0 1

))
δx.
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Hence,

χρ(s) =
∑
α∈F

×
q

η

((
α 0
0 1

)
s

(
α−1 0
0 1

))
The computation of c1(x) is now

χρ

(
x 0
0 x

)
=
∑
α∈F

×
q

η

((
α 0
0 1

)(
x 0
0 x

)(
α−1 0
0 1

))
=
∑
α∈F

×
q

η

(
x 0
0 x

)
= (q − 1)ν(x).

For c2(x), we have:

χρ

(
x 1
0 x

)
=
∑
α∈F

×
q

η

((
α 0
0 1

)(
x 1
0 x

)(
α−1 0
0 1

))
=
∑
α∈F

×
q

η

(
x α
0 x

)
= ν(x)

∑
α∈F

×
q

ψ(x−1α) = −ν(x).

For c3(x, y), we have:

χρ

(
x 1
0 x

)
=
∑
α∈F

×
q

η

((
α 0
0 1

)(
y 0
0 x

)(
α−1 0
0 1

))
=
∑
α∈F

×
q

η

(
y 0
0 x

)
= 0.

For c4(z), we have:

χρ

(
0 −N(z)
1 Tr(z)

)
=

∑
α∈F

×
q

η

((
α 0
0 1

)(
0 −N(z)
1 Tr(z)

)(
α−1 0
0 1

))
=
∑
α∈F

×
q

η

(
0 −αN(z)
α−1 Tr(z)

)

=
∑
α∈F

×
q

−1
q
ψ(αTr(z))

∑
N(λ)=N(z)

ψ(−αTr(λ))ν(λ)

=
−1
q

∑
N(λ)=N(z)

ν(λ)
∑
α∈F

×
q

ψ(αTr(z) − αTr(λ))

Since N(λ) = N(z), if λ = z or λ = z, then Tr(λ) = Tr(z); hence
∑

α∈F
×
q
ψ(αTr(z) − αTr(λ)) = q − 1.

If λ �= z and λ �= z, then Tr(λ) �= Tr(z); hence
∑

α∈F
×
q
ψ(αTr(z) − αTr(λ)) = −1. It follows that

χρ

(
0 −N(z)
1 Tr(z)

)
=

−1
q

(
(q − 1)(ν(z) + ν(z)) −

∑
λ �=z,z

N(λ)=N(z)

ν(λ)
)

=
−1
q

(
q(ν(z) + ν(z)) −

∑
N(λ)=N(z)

ν(λ)
)

= −ν(z) − ν(z).

We sum up the character values in the following table.

Rep. c1(x) c2(x) c3(x, y) c4(z)
ρν (q − 1)ν(x) −ν(x) 0 −ν(z) − ν(z)

ρ(µ1,µ1) qµ1(x)2 0 µ1(xy) −µ1(zz)
ρ(µ1,µ2) (q + 1)µ1(x)2 µ1(x)µ2(x) µ1(x)µ2(y) + µ1(y)µ2(x) 0
IndGU (ψ) (q − 1)2(q + 1)δ1,x (1 − q)δ1,x 0 0
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