²¦¤ó©w²z²L½Í

®v¤j¼Æ¾Ç¬ã¨s©Ò³Õ¤h¯ZĬ·N¶²

«e¨¥¡G

        1995¦~5¤ë¥ô±Ð©ó´¶ªL´µ¹y¤j¾Çªº­^°ê¼Æ¾Ç®a¦w¼w¾|£»«Âº¸´µ(Andrew Wiles)¦b¡m¼Æ¾Ç¦~¥Z¡n(Annals of Mathematics)¤Wµoªí½×¤å¡A¹ý©³¸Ñ¨M¤F¾ú¸g¤T¦Ê¦~¡A§x´bµL¼Æ¼Æ¾Ç®aªº<¶O°¨³Ì«á©w²z>--- xn + yn = zn , ·ín¤j©ó2®É¨S¦³¾ã¼Æ¸Ñ¡C³o¬O·í¥N¼Æ¾Ç¬É¤@¥ó®¶¾Ä¤H¤ßªº¤j¨Æ¡CÃö©ó¶O°¨ªº³Ì«á©w²z¦p¦ó³QÃÒ©ú¡A§{¶¡¤w¦³¼Æ¥»Ä¶§@¡C¥Ñ©ó³o­Ó©w²z°_·½©ó²³©Ò©Pª¾ªº²¦¦¡©w²z¡G¹ï©ó¥ô¤@ª½¨¤¤T¨¤§Î¡A¨âªÑªº¥­¤è©Mµ¥©ó±×Ã䪺¥­¤è¡C·N§Y·íx¡By¬°¤@ª½¨¤¤T¨¤§Îªº¨âªÑ¡Az¬°±×Ãä®É¡A¦¹¤TªÌº¡¨¬x2 + y2 = z2¡C¦]¦¹¡A¥»¤å·N¹Ï¹ï²¦¤ó©w²z§@¾ú¥v©Êªº¦^ÅU¡A°£¤F¤¶²Ð¯«¯µªº²¦¹F­ô©Ô´µ¾Ç¬£¥H¥~¡A¨Ã±´°Q²¦¤ó©w²zªº·N¸q¥H¤Î¦¹©w²z¦b¼Æ¾Çµo®i¾ú¥v¤¤©Ò§êºtªº¨¤¦â¡A§Æ±æÂÇ¥ÑÀ˵øªº¹Lµ{¡A¹ï³o­Ó©w²zµ¹¤©¾A·íªº©w¦ì¡C

¤@¡B²¦¹F­ô©Ô´µ¾Ç¬£

        ²¦¹F­ô©Ô´µ¾Ç¬£¤§©Ò¥H³ò¤W¤@¼h¯«¯µªº­±¯½¡A¥D­n¬O¦]¬°²¦¹F­ô©Ô´µÄY®æ­n¨Dªù®{¥²¶·¿í¦u¬£³W¡A¤£±o¹ï¥~¬ªº|¯µ±K©Ò­P¡CÃö©ó²¦¹F­ô©Ô´µ§Ú­Ì©Òª¾¬Æ¤Ö¡A¬Û¶Ç¨ä½Ï¥Í©ó¦è¤¸«e580¦~«e«áªºÂļ¯´µ®q¡]Samos¡^¡C²¦¹F­ô©Ô´µ´¿®v¨Æ·R¶ø¥§¨È¾Ç¬£ªº»â¾É¤H®õ§Q´µ¡]Thales¡^¡AÂ÷¶}°h§Q´µ¤§«á¡A¥L¨ì¦U¦a¹C¾ú¡A¨ä¤¤¥]¬A¤F®J¤Î¡B¤Ú¤ñ­Ûµ¥¦a¡C¤@¯ë«w»{¬°²¦¹F­ô©Ô´µ¦b¹C¾ú¤¤¨V¨ú¤F¬Û·í¦h·í®É©Ò¨Ï¥Î¤§¼Æ¾Çª¾ÃÑ¡C¤j¬ù©ó¦è¤¸«e540¦~¡A²¦¤ó©w©~©ó§Jù¹y¡]Croton¡^¡A¨Ã¦b¦¹¦a³Ð³]¤F¤@©Ò¾Ç®Õ¡C¦¹¾Ç®Õªº¦¨­û´N¬O¤µ¤é§Ú­Ì©ÒºÙªº²¦¹F­ô©Ô´µ¾Ç¬£¡C

        ²¦¤ó¾Ç¬£ªº©v¦®¬O¡u¸Uª«¬Ò¼Æ¡v¡]All is number¡^¡A¥L­Ì»{¬°¼Æ¬O¹êÅ骺³Ì®Ú¥»¡A©Ò¦³ªºªF¦è³£§t¦³¼Æªº¦¨¤À¡A¼Æ¬O§Î¦¨¦t©zªº­n¯À¡C¤T¨¤§Î¼Æ¡B¤è§Î¼Æ¡Bªø¤è§Î¼Æ¡B§¹¬ü¼Æ¡]¤@­Ó¼Æµ¥©ó¤ñ¨ä¤p¤§©Ò¦³¥¿¦]¼Æ¤§©M¡^µ¥³£¬O¦¹¾Ç¬£©ÒÁé·Rªº¡C¹ï²¦¤ó¾Ç¬£¦Ó¨¥¡A©Ò¿×¼Æ¶È«ü¾ã¼Æ¡A¨â­Ó¾ã¼Æ¤§¤ñ¨Ã«D¤À¼Æ¡A¦Ó¬O¥t¤@Ãþªº¼Æ¡C¦]¦¹·í¬Y¨Ç¤ñ­È¡]¨Ò¦pµ¥¸yª½¨¤¤T¨¤§Î¤@ªÑ»P±×Ã䤧¤ñ­È¡^µLªk¥Î¾ã¼Æ¤§¤ñªí¥Ü®É¡A¦¹¾Ç¬£·P¨ì§x´b©M«e©Ò¥¼¦³ªººÃ¼{¡C²¦¤ó¾Ç¬£©Ò¿ï¾Üªº³B²z¤è¦¡¬O°jÁסA¥L­Ì¨Ã¤£±µ¨ü³oºØ¤£¥i¤½«×¶q¤ñªº¼Æ¡]incommensurable ratios¡^¡C°£¤F¼Æ¾Ç¤§¥~¡A¼Æ»P¦ÛµMªºÃö«Y¤]¤Þ°_²¦¹F­ô©Ô´µªº¿³½ì¡C¥L»{¬°¦ÛµM²{¶H¬O¥Ñ³W«ß©Ò¤ä°t¡A¦Ó³o¨Ç³W«ß¥i¥H¥H¼Æ¾Ç¤èµ{¦¡¨Ó´y­z¡C

        ²¦¹F­ô©Ô´µ¸g¥Ñ³æ©¶©Ê½èªº¬ã¨s¡A§âÃö©ó¼ÖÁn¤ñ¨Òªº·s²z½×À³¥Î©ó½Ýµ^¡C³æ³æ¼·©¶·|²£¥Í¤@­Ó¼Ð·Ç­µ¡A¨ä¬O¥Ñ®¶°ÊµÛ©¶ªº¾ã­Óªø«×²£¥Í¡C±N©¶¦b¨äªø«×ªº¬Y³B©T©w¡A·|²£¥Í¤£¦Pªº®¶°Ê©M¤£¦Pªº­µ¡C­Y¦b©¶ªø¤@¥b³B©T©w©¶¡A¦A¼·©¶«á·|²£¥Í¤@­Ó»P­ì¨Óªº­µ©M¿Óªº°ª¤K«×­µ¡C¦P¼Ëªº¦b©¶ªøªº1/3¡A1/4©Î1/5³B©T©w©¶¡A·|²£¥Í¨ä¥Lªº©M­µ¡C¦ý¦pªG¦b¾ã±ø©¶ªø«×ªº«D²¤À¼Æ³B©T©w©¶¡A«h²£¥Íªº­µ¨Ã¤£·|»P¤W­z¤§­µ©M¿Ó¡C³o¬O·í®É¤@­Ó­«¤jªºµo²{¡A¦Ó³o¶µ¦¨ªG¤]¼vÅT¤F¤åÃÀ´_¿³®É´Á¹ï­µ¼Ö¤u§@ªº¬ã¨s¡C

        ±q­µ¼Öªº©MÁn¡B¦æ¬P¹B¦æ¡B¤û¹yªº¸U¦³¤Þ¤O²z½×¡A¦b¦b³£Åã¥Ü¤Fª«²z¥@¬É¦s¦bµÛ¤@­Ó¼Æ¾Çµ²ºc¡C®É¦Ü¤µ¤é¡AÂǥѼƦì¹q¸£¡B¼Æ¦ì¤â¿ö¡B¼Æ¦ì¦¬­µ¾÷¡B¼Æ¦ì¿ý©ñ¼v¹³¡A©ÎªÌ§Ú­Ì¥i¥H»¡²{¦b¤w¸g¶V¨Ó¶V±µªñ²¦¹F­ô©Ô´µ©Ò¿×¡u¸Uª«¬Ò¼Æ¡vªº¥@¬É¤F¡C²¦¤ó¾Ç¬£¬O¤@­Ó©v±Ðªº¡B¬ì¾Çªº¡B­õ¾Çªº²Õ´¡AµL¥iÁקK¦a¡A¥L­Ì¤]¯A¤J¤F¬Fªv¬¡°Ê¡C¥Ñ©ó¦¹¾Ç¬£ªþ©M©ó¶Q±Úªº¬Fªv¬£¨t¦Ó¨ü¨ì¥t¤@ÄÒ¬£ªº°l±þ¡CÁöµM²¦¹F­ô©Ô´µ°k¤`¨ìMetapontum¡AÁÙ¬O¤£©¯ªº¦b¨º¸Ì³Q¿Ñ±þ¡]¬ù¬°¦è¤¸«e497¦~¡^¡C²¦¹F­ô©Ô´µ¦º«á¡A¨ä¾Ç¬£ªº¦¨­û¤´´²©~§Æþ¦U³BÄ~Äò¶Ç§G¨ä¾Ç»¡¡C¤§«áªº¬f©Ô¹Ï¡B¨È¨½´µ¦h±o¡B¼Ú´X¨½±o³£¶Ç©Ó¦Û²¦¤ó¾Ç¬£¡A¬O§Æþ­õ¾Ç¡B¼Æ¾Çªº¤@¥N©v®v¡A¦¹¤D¬O«á¸Ü¤F¡C

¤G¡B²¦¤ó©w²zªº·N¸q

        ²¦¤ó©w²zªº¼vÅT¤Î¤@¯ë¤Æ¥iÀ³¥Î¨ì¬Û·í¼sªxªº»â°ì¡AºÙ¨ä¬°¼Æ¾Ç¤W³Ì­«­n¤§°ò¥»©w²z¨Ã¤£¬°¹L¡C¤Ñ¤å¾Ç®a§J¤R°Ç¡]Kepler¡^»{¬°²¦¤ó©w²z¬°´X¦ó¾Ç¤Wªº¶Àª÷¡A¨ä¦b´X¦ó¾Ç¤¤©Ò¦û¤§¥÷¶q¥i¨£¤@¯ë¡Cºâ³N©M´X¦ó­ì¥»¬O¤£¬ÛÃöªº»â°ì¡Aºâ³N»F°ò©ó°O¼Æ¡A¬O¤@­Ó¨å«¬ªºÂ÷´²¹Lµ{¡C·í­pºâ¹Lµ{µ²§ô®É¡Aºâ³Nªº¨Æ¹ê¥i¥H«Ü²M·¡ªº³QÁA¸Ñ¡C¦Ó¤H­Ì¤]¤£·|´Á±æ±q¼Æ­È¥»¨­±o¨ì¤°»ò·N¸q¡C¦ý´X¦ó«h¤£¦P¡A´X¦ó³B²z½u¬q¡B¦±½u¡B­±µ¥µ¥°ÝÃD¡A¥¦­Ì¬O³sÄò¦Ó¤£¬OÂ÷´²ªºª«¥ó¡C¤H­Ì¸û§Æ±æ¬Ý¨ìªº¬O´X¦óªº¨Æ¹ê¦Ó¤£¬OÂǥѭpºâÀò­Pªºµ²ªG¡C²¦¤ó©w²z¦b³o¸Ì¹ï©óºâ³N©M´X¦ó¨âªÌ¤§¶¡©ÒÁôÂ꺲`¼hÃö«Y¡Aµ¹¤©¤F²Ä¤@­Ó·t¥Ü¡A¦Ó¥B¦b¼Æ¾Ç¥vªºµo®i¤W¨ä¦b¤W­z¤G»â°ì¤§¶¡³B©óÃöÁä©Êªº¦a¦ì¾ú¤[¦Ó¤£°I¡CÃö©ó²¦¤ó©w²z¡AŪªÌ¥i¥H«Ü®e©öªºµo²{¡A¥¦¹ï©ó¹³32+42=52³o¼Ë¤@­Ó¯Âºâ³Nªº¨Æ¹ê¡A¦s¦b©ó¨ä¤¤¤@­Ó´X¦óªº¸ÑÄÀ¡C

        ¤@¨Ç¾ÇªÌ»{¬°²¦¤ó©w²z¦b²¦¤ó«e¤@¤d¦~´N¬°¤H©Ò¼ôª¾¡C²{¦b¦¬Âéó­ô­Û¤ñ¨È¤j¾Çªº¤Ú¤ñ­Û·¤§Îªdª©322¡]Plimpton 322¡^¡A¬O¦è¤¸«e1700¦~¥ª¥kªº¤åª«¡C¤U¹Ï¬O­ì©lªº·¤«¬ªdªO¡A¥t¤@¹Ï«h¬O¹ï·Ó©ó²{¥N©Ò¨Ï¥Î¤§¼Æ¾Ç²Å¸¹¡C

        ¸g¹LNeugebauerµ¥¾ÇªÌªº¸ÑÄÀ¡A³o¥÷ªdª©¬O¤@¥÷¼Æ¾Ç§@«~¦Ó¥B¤]Ä­§t¤@­Ó¦X²zªº¼Æ¾Ç¸ÑÄÀ¡C§Ú­Ì¥i¥H¬Ý¨ì¨ä¤W¦³¤Q¤­²Õ²¦¤ó¤T¤¸²Õ¡C©Ò¿×ªº²¦¤ó¤T¤¸²Õ´N¬Oª½¨¤¤T¨¤§Î¨âªÑªø¬°a¡Ab¡A±×Ãäªø¬°c¡C­Ya¡Ab¡Ac¤TªÌµL¦@¦P¦]¯À¡A

«ha=(p2-q2)¡Ab=2pq¡Ac=p2+q2¡C¨ä¤¤p¡Aq¬°¾ã¼Æ¡C§Ú­Ì¥i¥H«Ü®e©ö´N±o¨ì¡A­Y(a¡Ab¡Ac) ¤TªÌ¤¬½è¥B¬°¤@²¦¤ó¤T¤¸²Õ¡A«h a©Mb¨âªÌ¥²©w¤@¬°©_¼Æ¤@¬°°¸¼Æ¡C

        ¦b¼Æ¾Çµo®iªº¾ú¥v¤¤¡A§Ú­Ì±`¥iµo²{¼Æ¾Ç®a¦b¤£¦Pªº®ÉªÅ¤U¡A¦U¦Û¿W¥ß¦aµo®i¥X¬Û¦Pªº©w²z¡C¦è¤¸«e500~200¦~¶¡ªº¦L«×Sulvasutras¤]´£¤Î²¦¤ó©w²z¨Ã¥X²{¤F¡]5¡A12¡A13¡^¡]8¡A15¡A17¡^¡]7¡A24¡A25¡^¡]12¡A35¡A37¡^µ¥²¦¤ó¤T¤¸²Õ¡C¦b¤¤°êªº¼Æ¾Ç¥v¤W¡A§Ú­ÌºÙ¦¹©w²z¬°°Ó°ª©w²z¡C³o¬O¦]¬°©ó©Pñ¹ºâ¸g¤¤´¿°O¸ü¤F³o¼Ë¤@¬q¸Ü¡G¡u©õªÌ©P¤½°Ý©ó°Ó°ª¤ê¡G¡yÅÑ»D©ó¤j¤Òµ½¼Æ¤]¡A½Ð°Ý¥jªÌ¥]Äë¥ß©P¤Ñ¾ú«×¡A¤Ò¤Ñ¤£¥i¶¥¦Ó¤É¡A¦a¤£¥i±o¤Ø¤o¦Ó«×¡A½Ð°Ý¼Æ¦w±q¥X¡H¡z¡C°Ó°ª¤ê¡G¡y¼Æ¤§ªk¥X¤_¶ê¤è¡A¶ê¥X¤_¤è¡A¤è¥X¤_¯x¡A¯x¥X¤_¤E¤E¤K¤Q¤@¡C¬G§é¯x¡A¥H¬°¤Ä¼s¤T¡AªÑ­×¥|¡A¸g¶¨¤­¡C¡z¡v³o¬O¤¤°ê²Ä¤@¦¸¥X²{ªº²¦¤ó¤T¤¸²Õ¡]3¡A4¡A5¡^¡C¦Ü©ó¤ÄªÑ©¶Ãö«Yªº¤@¯ë¦¡¡A«h¦P¼Ë°O¸ü©ó¦¹ºâ¸g¡C¡u³¯¤l¤ê¡G¡y­Y¨D¨¸¦Ü¤éªÌ¡A¥H¤é¤U¬°¤Ä¡A¤é°ª¬°ªÑ¡A¤ÄªÑ¦U¦Û­¼¡A¦}¦Ó¶}¤è°£¤§¡A±o¨¸¦Ü¤é¡A¡K¡K¡z¡v¡C

        ¦³Ãö©ó¦¹©w²z§ó¸Ô²Óªº±Ô­z¬O¦b¤¤°êªº¡m¤E³¹ºâ³N¡n²Ä¤E³¹¡C³o¥»ºâ¸gªº½sÄ¡¦~¥N¤j¬ù¬O¦bªFº~ªì´Á¡A®Ñ¤¤¦¬¶°¤F¨â¦Ê¥|¤Q¤»­ÓÀ³¥Î°ÝÃDªº¸Ñªk¡A¤À§OÁõÄÝ©ó¤è¥Ð¡Bµ¯¦Ì¡B°I¤À¡B¤Ö¼s¡B°Ó¥\¡B§¡¿é¡B¬Õ¤£¨¬¡B¤èµ{¡B¥yªÑ¤E³¹¡C¤E³¹ºâ³N¤§¦¨®Ñ¬O¦]¬°¬K¬î¡B¾Ô°ê®É´ÁªÀ·|¥Í²£¤O³vº¥´£°ª¡A«P¶i¤F¼Æ¾Çªºµo®i¡C·í®É¦U°êªº²Îªv¶¥¯Å­n«ö¯a¦¬µ|¡A¥²¶·¦³´ú¶q¤g¦a¡B­pºâ­±¿nªº¤èªk¡F­nÀx³Æ³­¹¡A¥²¶·¦³­pºâ­Ü®w®e¿nªº¤èªk¡F­n­×«ØÄéµ@´ë¹D¡Bªvªe³ö¨¾©M¨ä¥L¤g¤ì¤u¨Æ¡A¥²¶·¯à­pºâ¤uµ{¤H¤u¡F­n­×­q¤@­Ó¾A¦X¹A·~¥Í²£ªº¾äªk¡A¥²¶·¯à§Q¥Î¦³Ãöªº¤Ñ¤å¼Æ¾Ú¡C¨º®Éªº¦Ê©m´x´¤¤F¬Û·íÂ×´Iªº¡B¥Ñ¤é±`¥Í¬¡¤¤²£¥Íªº¼Æ¾Çª¾ÃÑ©M­pºâ§Þ¯à¡A¡m¤E³¹¡n¤§¦¨®Ñ´N¬O³o¨Çª¾ÃѪº·J¾ã¡C¥yªÑ³¹¥þ³¹¹ï²¦¤ó©w²z¦³²`¤Jªº±´°Q¡C¥H¤U§Ú­Ì±N°µ­Ó²³æªº¤¶²Ð¡C

        ­n½Í½×¡m¤E³¹ºâ³N¡n´N¤£¯à¤£´£¤Î¼BÀ²¡A¦pªG§Ú­Ìµø¡m¤E³¹ºâ³N¡n¬°¤@¼Æ¾Ç°©¬[¡A¨º¼BÀ²ªºµù¸Ñ´N¬O½á¤©¨ä¦å¦×¡A¯u¥¿¦aÅé²{¤F¡m¤E³¹ºâ³N¡nªººë¯«¡A¨Ï¤§¦¨¬°¤¤°ê¥j¥N¼Æ¾Çªº¥Nªí¡C¬Û¶Ç¼BÀ²¬O¤T°êÃQ®Ê®É¤H¡A¬°¤@¦ì¥¬¦ç¼Æ¾Ç®a¡C¼BÀ²»{¬°¼Æ¾Ç²{¶H¬O¦h¼Ë©Êªº²Î¤@¡A¦UºØ¦U¼Ëªº¼Æ¾Ç¤èªk³£¦³¦@¦Pªº¥»·½¡C¥L¦b¡m¤E³¹ºâ³Nª`­ì§Ç¡n¤¤¼g¹D¡G

¨ÆÃþ¬Û±À¡A¦U¦³§ñÂk¡A¬GªK±øÁö¤À¦Ó¦P¥»·FªÌ¡Aª¾µo¨ä¤@ºÝ¦Ó¤w¡C

¼BÀ²ª`³e¬ï¤F³oºØ»{ÃÑ¡A¯S§Oª`­«¹ï¼Æ¾Ç²z½×°l¥»·¹·½¡A´£ºõ®²»â¡AºÜ¤O¤Þ¶i¼Æ¾Ç¤¤³Ì°ò¥»ªº·§©À­ì²z¡A¦b³o­Ó°ò¦¤W«Ø¥ß¥Lªº²z½×¤j·H¡C¦b¼Æ¾Çªº¤èªk½×¤W¡A¼BÀ²¥D±i§â¥Í°Êªºª½Æ[»P©â¶HªºÅÞ¿è½×ÃÒµ²¦X°_¨Ó¡C¥¿¦p¡m¤E³¹ºâ³Nª`­ì§Ç¡n¤ª¡G

¤S©ÒªR²z¥HÃã¡A¸ÑÅé¥Î¹Ï¡A±f¥ç¬ù¦Ó¯à©P¡A³q¦Ó¤£Æu¡AÄý¤§ªÌ«ä¹L¥b¨o¡C

Ãã©M¹Ï¤£¶È®i²{¼BÀ²ªº¼Æ¾Ç¦¨´N¡A¤]Åã¥Ü¥X¼BÀ²°ª¶WªºÅÞ¿è«ä·Q¡C¼BÀ²¥þ­±ÃÒ©ú¤F¡m¤E³¹ºâ³N¡nªº¤½¦¡¸Ñªk¡AÀ±¸É¨ä¤£¨¬¡A³þ©w¤F¤¤°ê¼Æ¾Çªº²z½×°ò¦¡C

        ¡m¤E³¹ºâ³N¡nªº¤ÄªÑ³¹¬O¬y¶Ç¨´¤µªº¤¤°ê¥j¥N³Ì¦­¦³¨t²Îªº¤ÄªÑ²z½×¡C¥þ³¹¤G¤Q¥|°Ý¡A¤jÅé¤À¬°¨â³¡¤À¡G«eªÌ¬°¥H¤ÄªÑ©w²z¬°¤¤¤ßªº¸Ñ¤ÄªÑ§Îºâªk¡A«áªÌÄÝ©ó¤ÄªÑ´ú¶q°ÝÃD¡C«e«á°ÝÃD©Ê½è¤£¦P¡A¸ÑÃD¤èªk¥ç¤j¬Û³w®x¡C¼BÀ²§Q¥Î¥X¤J¬Û¸É­ì²zÃÒ©ú¸Ñ¤ÄªÑ§Îªº¤½¦¡¡G

¤Ä¦Û­¼¬°¦¶¤è¡AªÑ¦Û­¼¬°«C¤è¡A¥O¥X¤J¬Û¸É¡A¦U±q¨äÃþ¡A¦]´N¨ä¾l¤£²¾°Ê¤]¡A¦X¦¨©¶¤è¤§¾­¡C

¼BÀ²ªº¡m¤E³¹•¤ÄªÑª`¡nÄÄ©ú¤F±q¥X¤J¬Û¸É¨ì¤ÄªÑ¤ñ²v½×ªº²z½×µo®i¹Lµ{¡A·§¬A¥X¥j¥N¤ÄªÑºâªk§¹¾ã¦ÓÄYÂÔªº²z½×Åé¨t¡C

§ÀÁn

        ¦p«e©Ò­z¡AÁöµM¦U¥Á±Ú³£¥X²{¤F¦P¼Ëªº©w²z¡A¦ý¬°¦ó³Ì«á¤H­Ì«o¥H²¦¹F­ô©Ô´µ©w²z¡]Pythagorean theorem¡^©R¦W©O¡H³o´N»P¦U¥Á±Ú©Ê¦³Ãö¤F¡C¦³¨Ç¥Á±Ú¸û­«µø¼Æ¾Ç¤§¹ê¥Î©Ê¡A¥L­Ì¦b·Nªº¬O¦p¦ó¨Ï¥Î¼Æ¾Ç¡A¨Ï¨ä¹ï¤é±`¥Í¬¡¦³©ÒÀ°§U¡C¦Ó§Æþ¤H¾K¤ß©ó¤ß´¼ªºÁëÁå¡A¼ö°J©óºtö±À²z¡A¥L­Ì¯à¯Âºé¦aªY½à¼Æ¾Ç¤§¬ü¡A¤]Ä@·N­P¤O¥hµo±¸¼Æ¾Ç¥»¨­©ÒÄ­Â䧷N¸q¡C©Ò¥H³Ì«á¹ï¦¹©w²z§Æþ¤H¯u¥¿´£¥X´X¦óÃÒ©ú¡C¼Ú´X¨½±oªº¡m´X¦ó­ì¥»¡n¦¬¿ý¤F¬Û·í¦h¦³Ãö²¦¤ó¾Ç¬£ªº¼Æ¾Ç¦¨´N¡A¨ä¤¤²¦¤ó©w²zªºÃÒ©ú½s¼g©ó²Ä¤@¥U©RÃD47¡C¦Ü¤µ¬°¤î¡A¦³¼Æ¦ÊºØÃö©ó²¦¤ó©w²zªºÃÒªk¡C³o­Ó¦b¥j¤å©ú®É¥N´N¬°¤H©Òª¾ªº¥j¦Ñ©w²z¡A®É¦Ü¤µ¤é¤´¾ú¤[À±·s¡C¤å³¹§Y±Nµ²§ô¡A¸g¹L¤F³o¨Ç¤¶²Ð¡A¤U¦¸¡A·í±z©ó¸ÑÃD¹Lµ{¤¤¹B¥Î¨ì²¦¤ó©w²z®É¡A©Î³\·|¦³¥t¤@µf¤£¦PªºÅé·|§a¡I

°Ñ¦Ò¤åÄm

Courant, Richard and Herbert Robbins,¡]Revised by Ian Stewart¡^ 1996. What is Mathematics?--2nd ed. , Oxford
     University Press, Inc.

Grattan-Guinnes, Ivor 1997. The Fontana History of the Mathematics Sciences, Fontana Press.

Heath, T. L. 1980. Mathematics in Aristotle, Garlano Publishing, Ine.

Hirschy, Harriet D. 1989." The Pythagorean Theorem¡]National  Council of Teachers of Mathematics¡^",
    in: Historical Topics For The Mathematics Classroom, pp.215~218.

Katz, Victor J. 1993. A History of Mathematics, HarperCollins College Publishers .

Stillwell, John 1989. Mathematics and Its History, Springer-Verlag New York Inc .

Trimble, Harold C. 1989."Number Beliefs of The Pythagoreans ¡]National Council of Teachers of Mathematics¡^",
    in: Historical Topics For The Mathematics Classroom, pp.51~52.

Kline, Morris 1983. ¡m¼Æ¾Ç¥v- ¼Æ¾Ç«ä·Qªºµo®i ¤W¥U- ¼Æ¾Ç«ä·Qªºµo®i ¤W¥U¡n¡]Mathematical Thought from Ancient to Modern Time¡^,
    ªLª¢¥þ¡B¬x¸U¥Í¡B·¨±d´ºªQ Ķ,¥x¥_¡G¤E³¹¥Xª©ªÀ¡C

Singh, Simon 1998.¡m¶Oº¿³Ì«á©w²z¡n¡]Fremat's Last Theorem¡^,Á§±K Ķ,¥x¥_¡G»OÆW°Ó°È¦L®ÑÀ]¡C

D. Aczel, Amir 1998.¡m¶O°¨³Ì«á©w²z¡n¡]Fremat's Last Theorem¡^,ªL·ç¶³Ä¶,¥x¥_¡G®É³ø¤å¤Æ¡C

¿úÄ_Úz¡m¤E³¹ºâ¸gÂI®Õ¡n¡A¥x¥_¡G¤E³¹¥Xª©ªÀ¡A1984¡C

§õÄ~¶{¡m¤E³¹ºâ³N¡r¤Î¨ä¼BÀ²ª`¬ã¨s¡n¡A¥x¥_¡G¤E³¹¥Xª©ªÀ¡A1992¡C

³¢®Ñ¬K¡m¥j¥N¥@¬É¼Æ¾Ç®õ¤æ¢w¼BÀ²¡n¡A¥x¥_¡G¤E³¹¥Xª©ªÀ¡A1995¡C