
J Optim Theory Appl (2017) 172:802–823
DOI 10.1007/s10957-016-0935-9

Parabolic Second-Order Directional Differentiability
in the Hadamard Sense of the Vector-Valued Functions
Associated with Circular Cones

Jinchuan Zhou1 · Jingyong Tang2 ·
Jein-Shan Chen3

Received: 29 June 2015 / Accepted: 9 April 2016 / Published online: 7 February 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, we study the parabolic second-order directional derivative in
the Hadamard sense of a vector-valued function associated with circular cone. The
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tral decomposition associated with circular cone. In particular, we present the exact
formula of second-order tangent set of circular cone by using the parabolic second-
order directional derivative of projection operator. In addition, we also deal with the
relationship of second-order differentiability between the vector-valued function and
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cone optimization problems.
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1 Introduction

The parabolic second-order derivatives were originally introduced by Ben-Tal and
Zowe in [1,2]; please refer to [3] for more details about properties of parabolic second-
order derivatives. Usually the parabolic second-order derivatives can be employed to
characterize the optimality conditions for various optimization problems; see [1,4–7]
and references therein. The so-called generalized parabolic second-order derivatives
are studied in [4,5,8], whereas the parabolic second-order derivatives for certain types
of functions are investigated in [5,8–10]. In this paper, we mainly focus on the par-
abolic second-order directional derivative in the Hadamard sense for the vector-valued
functions associated with circular cones. This vector-valued function, called circular
cone function, comes fromapplying a given real-valued function to the spectral decom-
position associated with circular cone.

For the circular cone function, by using the basic tools of nonsmooth analysis, var-
ious properties such as directional derivative, differentiability, B-subdifferentiability,
semismoothness, and positive homogeneity have been studied in [11,12]. The afore-
mentioned results can be regarded as the first-order type of differentiability analysis.
Here, we further discuss the second-order type of differentiability analysis for the
circular cone function. As mentioned above, the concept of parabolic second-order
directional differentiability plays an important role in second-order necessary and suf-
ficient conditions. Recently, there was an investigation on the parabolic second-order
directional derivative of singular values ofmatrices and symmetricmatrix-valued func-
tions in [10]. Inspired by this work, we study the parabolic second-order directional
derivative for the vector-valued circular cone function. The relationship of parabolic
second-order directional derivative between the vector-valued circular cone function
and the given real-valued function is established, in which we do not require that the
real-valued function is second-order differentiable. This allows us to apply our result
to more general nonsmooth functions. For example, we obtain the exact formula of
second-order tangent set by using the parabolic second-order directional differentiabil-
ity of projection operator associated with circular cone, which is corresponding to the
nonsmooth max-type function. In addition, we study the relationship of second-order
differentiability between circular cone function and the given real-valued function.
It is surprising that, not like the first-order differentiability, the relationship in the
second-order differentiability case really depends on the angle. This further shows the
essential role played by the angle in the circular cone setting.

2 Preliminaries

The n-dimensional circular cone is defined as

Lθ :=
{
x = (x1, x2)

T ∈ R × R
n−1 : cos θ‖x‖ ≤ x1

}
,

which is a nonsymmetric cone in the standard inner product. In our previous works
[12–15], we have explored some important features about circular cone, such as
characterizing its tangent cone, normal cone, and second-order regularity. In par-
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ticular, the spectral decomposition associated with Lθ was discovered, i.e., for any
x = (x1, x2) ∈ R × R

n−1, one has

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x , (1)

where

λ1(x) := x1 − ‖x2‖ cot θ, λ2(x) := x1 + ‖x2‖ tan θ

and

u(1)
x := 1

1 + cot2 θ

[
1 0
0 cot θ · I

] [
1

−x̄2

]
, u(2)

x := 1

1 + tan2 θ

[
1 0
0 tan θ · I

] [
1
x̄2

]

with x̄2 := x2/‖x2‖ if x2 �= 0, and x̄2 being any vectorw ∈ R
n−1 satisfying ‖w‖ = 1 if

x2 = 0. With this spectral decomposition (1), we can define a vector-valued function
associated with circular cone as below. More specifically, for a given real-valued
function f : R → R, the circular cone function f Lθ : Rn → R

n is defined as

f Lθ (x) := f (λ1(x)) u
(1)
x + f (λ2(x)) u

(2)
x .

Let X,Y be normed vector spaces and consider x, d, w ∈ X . Assume thatψ : X →
Y is directionally differentiable. The function ψ is said to be parabolical second-
order directionally differentiable in the Hadamard sense at x , if ψ is directionally
differentiable at x and for any d, w ∈ X the following limit exists:

ψ
′′
(x; d, w) := lim

t↓0
w′→w

ψ
(
x + td + 1

2 t
2w′)− ψ(x) − tψ

′
(x; d)

1
2 t

2
. (2)

To the contrary, the function ψ is said to be parabolical second-order directionally
differentiable at x , if w′ is fixed to be w in (2). Generally speaking, the concept of
parabolical second-order directional differentiability in theHadamard sense is stronger
than that of parabolical second-order directional differentiability. However, whenψ is
locally Lipschitz at x , these two concepts coincide. It is known that if ψ is parabolical
second-order directional differentiability in the Hadamard sense at x along d, w, then

ψ

(
x + td + 1

2
t2w + o

(
t2
))

= ψ(x)+tψ ′(x; d)+ 1

2
t2ψ

′′
(x; d, w)+o

(
t2
)

. (3)

At the first glance on (3), the concept of parabolical second-order directional differ-
entiability in the Hadamard sense is likely to say that ψ has a second-order Taylor
expansion along some directions. In fact, for the expression (3), the main difference
lies on the appearance of w. Why do we need such expansion (3), We say a few
words about it. For standard nonlinear programming, corresponding to the nonnega-
tive orthant, a polyhedral is targeted. Hence, considering the way x + td, a radial line,
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is enough. However, for optimization problems involved the circular cones, second-
order cones, or semidefinitematrices cones, they are all nonpolyhedral cones. Thus, we
need to describe the curves thereon. To this end, the curved approach x + td+ 1

2 t
2w is

needed, which, to some extent, reflects the nonpolyhedral properties of nonpolyhedral
cones. This point can be seen in Sect. 3, where the parabolic second-order directional
derivative is used to study the second-order tangent sets of circular cones. The exact
expression of second-order tangent set is important for describing the second-order
necessary and sufficient conditions for conic programming, since its support function
is appeared in the second-order necessary and sufficient conditions for conic program-
ming; see [16] for more information.

3 Second-Order Directional Derivative

For subsequent analysis,wewill frequently use the second-order derivative of x̄ := x
‖x‖

at x �= 0. To this end, we present the second-order derivative of x̄ in below theorem.
For convenience of notation, we also denote Φ(x) := x̄ for x �= 0, which does not
cause any confusion from the context.

Theorem 3.1 Let a functionΦ : Rn → R
n be given asΦ(x) := x

‖x‖ for x �= 0. Then,
the function Φ is second-order continuous differentiable at x �= 0 with

JΦ(x) = I − x̄ x̄ T

‖x‖
and

J 2Φ(x)(w,w) = −2

(
x̄ Tw

‖x‖2
)

w + wT
(
3x̄ x̄ T − I

‖x‖3
)

wx, ∀w ∈ R
n .

Proof It is clear that Φ is second-order continuous differentiable because of x �= 0.
The Jacobian of Φ at x �= 0 is obtained from direct calculation. To obtain the second-
order derivative, for any given a ∈ R

n , we define ψ : Rn → R as

ψ(x) := Φ(x)T a = xT a

‖x‖ .

We also denote h(x) := aT x and g(x) := 1/‖x‖ so that ψ(x) = h(x)g(x). Since
x �= 0, it is clear that g andh are twice continuously differentiable at x withJ h(x) = a,
J 2h(x) = O , and

J g(x) = − x̄

‖x‖2 , J 2g(x) = −
(
I − x̄ x̄ T

)− 2x̄ x̄ T

‖x‖3 = 3x̄ x̄ T − I

‖x‖3 .

Hence, from the chain rule, we have Jψ(x) = g(x)J h(x) + h(x)J g(x) and

J 2ψ(x) = J g(x)TJ h(x) + h(x)J 2g(x) + g(x)J 2h(x) + J h(x)TJ g(x),
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which implies

J 2ψ(x)(w,w) = 2J g(x)(w)J h(x)(w) + h(x)J 2g(x)(w,w)

+ g(x)J 2h(x)(w,w)

= 2J g(x)(w)J h(x)(w) + h(x)J 2g(x)(w,w)

= aT
[
−2

x̄ Tw

‖x‖2w + wT
(
3x̄ x̄ T − I

‖x‖3
)

wx

]
. (4)

On the other hand, we see that J 2ψ(x)(w,w) = aTJ 2Φ(x)(w,w). Since a ∈ R
n is

arbitrary, this together with (4) yields

J 2Φ(x)(w,w) = −2
x̄ Tw

‖x‖2w + wT
(
3x̄ x̄ T − I

‖x‖3
)

wx,

which is the desired result. 
�
Next, we characterize the parabolic second-order directional derivative of the spec-

tral values λi (x) for i = 1, 2.

Theorem 3.2 Let x ∈ R
n with spectral decomposition x = λ1(x)u

(1)
x + λ2(x)u

(2)
x

given as in (1). Then, the parabolic second-order directional differentiability in the
Hadamard sense of λi (x) for i = 1, 2 reduces to the parabolic second-order direc-
tional differentiability. Moreover, given d, w ∈ R

n, we have

λ
′′
1(x; d, w) =

⎧⎪⎪⎨
⎪⎪⎩

w1 −
(
x̄ T2 w2 + ‖d2‖2−

(
x̄ T2 d2

)2
‖x2‖

)
cot θ, if x2 �= 0,

w1 − d̄T2 w2 cot θ, if x2 = 0, d2 �= 0,

w1 − ‖w2‖ cot θ, if x2 = 0, d2 = 0,

and

λ
′′
2(x; d, w) =

⎧⎪⎪⎨
⎪⎪⎩

w1 +
(
x̄ T2 w2 + ‖d2‖2−

(
x̄ T2 d2

)2
‖x2‖

)
tan θ, if x2 �= 0,

w1 + d̄T2 w2 tan θ, if x2 = 0, d2 �= 0,

w1 + ‖w2‖ tan θ, if x2 = 0, d2 = 0.

Proof Note that λi (x) for i = 1, 2 is Lipschitz continuous [12]; hence, the parabolic
second-order directional differentiability in the Hadamard sense of λi (x) for i = 1, 2
reduces to the parabolic second-order directional differentiability.

To compute the parabolic second-order directional derivative, we consider the fol-
lowing three cases.

(i) If x2 �= 0, then x + td + 1
2 t

2w = (x1 + td1 + 1
2 t

2w1, x2 + td2 + 1
2 t

2w2). Note
that λ′

1(x; d) = d1 − x̄ T2 d2 cot θ and
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‖x2 + td2 + 1

2
t2w2‖ = ‖x2‖ + t x̄ T2 d2 + 1

2
t2
(
x̄ T2 w2 + ‖d2‖2 − (x̄ T2 d2

)2
‖x2‖

)

+ o
(
t2
)

.

Thus, we obtain

λ1
(
x + td + 1

2 t
2w
)− λ1(x) − tλ′

1(x; d)

1
2 t

2

→ w1 −
(
x̄ T2 w2 + ‖d2‖2 − (x̄ T2 d2

)2
‖x2‖

)
cot θ.

(ii) If x2 = 0 and d2 �= 0, then x + td + 1
2 t

2w = (x1 + td1 + 1
2 t

2w1, td2 + 1
2 t

2w2)

and λ′
1(x; d) = d1 − ‖d2‖ cot θ . Hence,
λ1
(
x + td + 1

2 t
2w
)− λ1(x) − tλ′

1(x; d)

1
2 t

2
→ w1 − d̄T2 w2 cot θ.

(iii) If x2 = 0 and d2 = 0, then x + td + 1
2 t

2w = (x1 + td1 + 1
2 t

2w1,
1
2 t

2w2). Thus,
λ′
1(x; d) = d1 and

λ1
(
x + td + 1

2 t
2w
)− λ1(x) − tλ′

1(x; d)

1
2 t

2
→ w1 − ‖w2‖ cot θ.

From all the above, the formula of λ
′′
1(x; d, w) is proved. Similar arguments can be

applied to obtain the formula of λ
′′
2(x; d, w). 
�

The relationship of parabolic second-order directional differentiability in the
Hadamard sense between f Lθ and f is given below.

Theorem 3.3 Suppose that f : R → R. Then, f Lθ is parabolic second-order direc-
tionally differentiable at x in the Hadamard sense if and only if f is parabolic
second-order directionally differentiable at λi (x) in the Hadamard sense for i = 1, 2.
Moreover,

(a) if x2 = 0 and d2 = 0, then
(
f Lθ

)′′
(x; d, w) = f

′′
(x1; d1, w1 − ‖w2‖ cot θ) u(1)

w

+ f
′′
(x1; d1, w1 + ‖w2‖ tan θ) u(2)

w ;

(b) if x2 = 0 and d2 �= 0, then
(
f Lθ

)′′
(x; d, w)

= f
′′ (

x1; d1 − ‖d2‖ cot θ, w1 − d̄T2 w2 cot θ
)
u(1)
d
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+ f
′′ (

x1; d1 + ‖d2‖ tan θ, w1 + d̄T2 w2 tan θ
)
u(2)
d

+ 1

tan θ + cot θ

(
f ′(x1; d1 + ‖d2‖ tan θ) − f ′(x1; d1 − ‖d2‖ cot θ)

)
J Φ̃(d)w;

(c) if x2 �= 0, then

(
f Lθ

)′′
(x; d, w)

= f
′′ (

x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ, w1 − [x̄ T2 w2 + dT2 JΦ(x2)d2
]
cot θ

)
u(1)
x

+ f
′′ (

x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ, w1 + [x̄ T2 w2 + dT2 JΦ(x2)d2
]
tan θ

)
u(2)
x

+ 2

cot θ + tan θ
Γ1J Φ̃(x)d + 1

cot θ + tan θ
Γ2

(
J Φ̃(x)w + J 2Φ̃(x)(d, d)

)
,

where

Γ1 := f ′ (x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ
)

− f ′ (x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ
)

Γ2 := f (x1 + ‖x2‖ tan θ) − f (x1 − ‖x2‖ cot θ)

and Φ̃(x) := (1, Φ(x2))T for all x ∈ R
n with x2 �= 0.

Proof “⇐” Suppose that f is parabolic second-order directionally differentiable at
λi (x) for i = 1, 2 in the Hadamard sense. Given d, w ∈ R

n andw′ → w, we consider
the following four cases. First we denote z := x + td + 1

2 t
2w′.

Case 1: For x2 = 0, d2 = 0, andw2 = 0,we have f Lθ (x) = ( f (x1), 0
) = f (x1)u

(1)
z +

f (x1)u
(2)
z and

(
f Lθ

)′
(x; d) = ( f ′ (x1; d1) , 0

) = f ′ (x1; d1) u(1)
z + f ′ (x1; d1) u(2)

z .

Note that u(i)
z → u(i)

ξ as i = 1, 2 for some ξ ∈ {(1, w) : ‖w‖ = 1}. Thus, we conclude
that

f Lθ
(
x + td + 1

2 t
2w′)− f Lθ (x) − t

(
f Lθ
)′

(x; d)

1
2 t

2

→ f
′′
(x1; d1, w1) u

(1)
ξ + f

′′
(x1; d1, w1) u

(2)
ξ

=
(
f

′′
(x1; d1, w1) , 0

)
.

Case 2: For x2 = 0, d2 = 0, and w2 �= 0, since f is parabolic second-order direction-
ally differentiable, we have

f (λ1(z)) − f (x1) − t f ′ (x1; d1)
1
2 t

2
→ f

′′
(x1; d1, w1 − ‖w2‖ cot θ)
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and

f (λ2(z)) − f (x1) − t f ′ (x1; d1)
1
2 t

2
→ f

′′
(x1; d1, w1 + ‖w2‖ tan θ) .

Note that u(i)
z → u(i)

w for i = 1, 2. Therefore, we also conclude that

f Lθ
(
x + td + 1

2 t
2w′)− f Lθ (x) − t

(
f Lθ
)′

(x; d)

1
2 t

2

→ f
′′
(x1; d1, w1 − ‖w2‖ cot θ) u(1)

w + f
′′
(x1; d1, w1 + ‖w2‖ tan θ) u(2)

w .

In summary, from Cases 1 and 2, we see that under x2 = 0 and d2 = 0

(
f Lθ

)′′
(x; d, w) = f

′′
(x1; d1, w1 − ‖w2‖ cot θ) u(1)

w

+ f
′′
(x1; d1, w1 + ‖w2‖ tan θ) u(2)

w .

Case 3: For x2 = 0, d2 �= 0, we have

( f Lθ )′(x; d) = f ′(x1; d1 − ‖d2‖ cot θ)u(1)
d

+ f ′(x1; d1 + ‖d2‖ tan θ)u(2)
d .

Note that

f

(
x1 + td1 + 1

2
t2w′

1 − t‖d2 + 1

2
tw′

2‖ cot θ
)

= f

(
x1 + td1 + 1

2
t2w′

1 − t
[
‖d2‖ cot θ + 1

2
t d̄T2 w′

2 cot θ + o(t)
])

= f

(
x1 + td1 + 1

2
t2w1 − t

[
‖d2‖ cot θ + 1

2
t d̄T2 w2 cot θ

]
+ o

(
t2
))

= f (x1) + t f ′ (x1; d1 − ‖d2‖ cot θ)

+1

2
t2 f

′′ (
x1; d1 − ‖d2‖ cot θ,w1 − d̄T2 w2 cot θ

)
+ o

(
t2
)

, (5)

where we use the facts that w′ → w and f is parabolic second-order directionally
differentiable at λ1(x) in the Hadamard sense. Similarly, we obtain

f

(
x1 + td1 + 1

2
t2w′

1 + t‖d2 + 1

2
tw′

2‖ tan θ

)

= f (x1) + t f ′ (x1; d1 + ‖d2‖ tan θ)

+ 1

2
t2 f

′′ (
x1; d1 + ‖d2‖ tan θ,w1 + d̄T2 w2 tan θ

)
+ o

(
t2
)

. (6)
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Thus, the first component of
f Lθ (x+td+ 1

2 t
2w′)− f Lθ (x)−t ( f Lθ )′(x;d)

1
2 t

2 converges to

1

1 + cot2 θ
f

′′ (
x1; d1 − ‖d2‖ cot θ,w1 − d̄T2 w2 cot θ

)

+ 1

1 + tan2 θ
f

′′ (
x1; d1 + ‖d2‖ tan θ,w1 + d̄T2 w2 tan θ

)
.

In addition, according to Theorem 3.1, we know

d2 + 1
2 tw

′
2

‖d2 + 1
2 tw

′
2‖

= Φ

(
d2 + 1

2
tw′

2

)

= Φ(d2) + 1

2
tJΦ(d2)w

′
2 + 1

8
t2J 2Φ(d2)

(
w′
2, w

′
2

)+ o
(
t2
)

= Φ(d2) + 1

2
tJΦ(d2)w

′
2 + 1

8
t2J 2Φ(d2) (w2, w2) + o

(
t2
)

. (7)

Hence, it follows from (5) to (7) that

− f (λ1(z))Φ

(
d2 + 1

2
tw′

2

)
+ f (x1)Φ(d2) + t f ′ (x1; d1 − ‖d2‖ cot θ) Φ(d2)

= −1

2
t f (x1)JΦ(d2)w

′
2 − 1

2
t2
[
f

′′
(
x1; d1 − ‖d2‖ cot θ,w1 − d̄T2 w2 cot θ

)
Φ(d2)

+ f ′ (x1; d1 − ‖d2‖ cot θ)JΦ(d2)w
′
2 + 1

4
f (x1)J 2Φ(d2) (w2, w2)

]
+ o

(
t2
)

and

f (λ2(z))Φ

(
d2 + 1

2
tw′

2

)
− f (x1)Φ(d2) − t f ′(x1; d1 + ‖d2‖ tan θ)Φ(d2)

= 1

2
t f (x1)JΦ(d2)w

′
2 + 1

2
t2
[
f

′′
(
x1; d1 + ‖d2‖ tan θ,w1 + d̄T2 w2 tan θ

)
Φ(d2)

+ f ′ (x1; d1 + ‖d2‖ tan θ)JΦ(d2)w
′
2 + 1

4
f (x1)J 2Φ(d2) (w2, w2)

]
+ o

(
t2
)

.

Thus, the second component of
f Lθ (x+td+ 1

2 t
2w′)− f Lθ (x)−t ( f Lθ )′(x;d)

1
2 t

2 converges to

1

tan θ + ctanθ

(
κ1JΦ(d2)w2 + κ2Φ(d2)

)
,

where

κ1 := f ′ (x1; d1 + ‖d2‖ tan θ) − f ′ (x1; d1 − ‖d2‖ cot θ)

κ2 := f
′′ (

x1; d1 + ‖d2‖ tan θ,w1 + d̄T2 w2 tan θ
)

− f
′′ (

x1; d1 − ‖d2‖ cot θ,w1 − d̄T2 w2 cot θ
)

.
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To sum up, we can conclude that

(
f Lθ

)′′
(x; d, w)

= f
′′ (

x1; d1 − ‖d2‖, w1 − d̄T2 w2 cot θ
)
u(1)
d

+ f
′′ (

x1; d1 + ‖d2‖ tan θ,w1 + d̄T2 w2 tan θ
)
u(2)
d

+ 1

tan θ + cot θ

(
f ′ (x1; d1 + ‖d2‖ tan θ) − f ′ (x1; d1 − ‖d2‖ cot θ)

)
J Φ̃(d)w.

Case 4: For x2 �= 0, under this case, we know

( f Lθ )′(x; d) = f ′ (λ1(x); d1 − x̄ T2 d2 cot θ
)
u(1)
x + f ′ (λ2(x); d1 + x̄ T2 d2 tan θ

)
u(2)
x

+ f (λ2(x)) − f (λ1(x))

λ2(x) − λ1(x)

[
0 0
0 I − x̄2 x̄ T2

]
d.

Note that

‖x2 + td2 + 1

2
t2w′

2‖ = ‖x2‖ + t x̄ T2 d2 + 1

2
t2
[
x̄ T2 w′

2 + dT2 JΦ(x2)d2
]

+ o
(
t2
)

= ‖x2‖ + t x̄ T2 d2 + 1

2
t2
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
+ o

(
t2
)

.

Since f is parabolic second-order directionally differentiable atλ1(x) in theHadamard
sense, we have

f

(
x1 + td1 + 1

2
t2w′

1 − ‖x2 + td2 + 1

2
t2w′

2‖ cot θ
)

= f (x1 − ‖x2‖ cot θ) + t f ′ (x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ
)

+ 1

2
t2 f

′′ (
x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ,w1

−
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

)
+ o

(
t2
)

.

Besides, we know that

Φ

(
x2 + td2 + 1

2
t2w′

2

)

= Φ(x2) + tJΦ(x2)d2 + 1

2
t2
(
JΦ(x2)w

′
2 + J 2Φ(x2) (d2, d2)

)
+ o

(
t2
)

= Φ(x2) + tJΦ(x2)d2 + 1

2
t2
(
JΦ(x2)w2 + J 2Φ(x2) (d2, d2)

)
+ o

(
t2
)

.
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Thus, the first component of
f Lθ (x+td+ 1

2 t
2w′)− f Lθ (x)−t ( f Lθ )′(x;d)

1
2 t

2 converges to

1

1 + cot2 θ
f

′′ (
x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ,w1

−
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

)

+ 1

1 + tan2 θ
f

′′ (
x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ,w1

+
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
tan θ

)
.

Moreover, the second component of
f Lθ (x+td+ 1

2 t
2w′)− f Lθ (x)−t ( f Lθ )′(x;d)

1
2 t

2 converges

to

− cot θ

1 + cot2 θ

(
f (x1 − ‖x2‖ cot θ)

[JΦ(x2)w2 + J 2Φ(x2) (d2, d2)
]

+ 2 f ′ (x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ
)
JΦ(x2)d2

+ f
′′(
x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ,w1

−[x̄ T2 w2 + dT2 JΦ(x2)d2
]
cot θ

)
Φ(x2)

)

+ tan θ

1 + tan2 θ

(
f (x1 + ‖x2‖ tan θ)

[JΦ(x2)w2 + J 2Φ(x2) (d2, d2)
]

+ 2 f ′ (x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ
)
JΦ(x2)d2

+ f
′′ (

x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ,w1

+[x̄ T2 w2 + dT2 JΦ(x2)d2
]
tan θ

)
Φ(x2)

)
.

To sum up, we can conclude that

(
f Lθ
)′′

(x; d, w)

= f
′′
(
x1 − ‖x2‖ cot θ; d1 − x̄ T2 d2 cot θ,w1 −

[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

)
u1x

+ f
′′
(
x1 + ‖x2‖ tan θ; d1 + x̄ T2 d2 tan θ,w1 +

[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
tan θ

)
u2x

+ 2

cot θ + tan θ
Γ1J Φ̃(x)d + 1

cot θ + tan θ
Γ2

(
J Φ̃(x)w + J 2Φ̃(x)(d, d)

)
,

where we use the facts that J Φ̃(x)w = (0,JΦ(x2)w2) and J 2Φ̃(x)(d, d) =
(0,J 2Φ(x2)(d2, d2)).
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“⇒” Suppose that f Lθ is parabolic second-order directionally differentiable at x in
the Hadamard sense. Given d̃, w̃ ∈ R and w̃′ → w̃. To proceed, we also discuss the
following two cases.
Case 1: For x2 = 0, let d = d̃e, w′ = w̃′e, and w = w̃e. Denote z := x + td + 1

2 t
2w′.

Then

f
(
x1 + t d̃ + 1

2 t
2w̃′
)

− f (x1) − t f ′(x1, d̃)

1
2 t

2

=
〈
f Lθ (z) − f Lθ (x) − t

(
f Lθ
)′

(x; d)

1
2 t

2
, e

〉
.

Thus, we obtain f
′′
(x1; d̃, w̃) = 〈( f Lθ )

′′
(x; d, w), e〉.

Case 2: For x2 �= 0, let d = d̃u(1)
x , w′ = w̃′u(1)

x , and w = w̃u(1)
x . Then, we have

x + td + 1

2
t2w′ =

(
λ1(x) + t d̃ + 1

2
t2w̃′

)
u(1)
x + λ2(x)u

(2)
x

with t > 0 satisfying t d̃ + 1
2 t

2w̃′ < λ2(x) − λ1(x). This implies

f Lθ

(
x + td + 1

2
t2w′

)
= f

(
λ1(x) + t d̃ + 1

2
t2w̃′

)
u(1)
x + f (λ2(x)) u

(2)
x

and ( f Lθ )′(x; d) = f ′(λ1(x); d̃)u(1)
x . Thus,

f
(
λ1(x) + t d̃ + 1

2 t
2w̃′
)

− f (λ1(x)) − t f ′
(
λ1(x); d̃

)

1
2 t

2

=
(
1 + cot2 θ

) 〈 f Lθ
(
x + td + 1

2 t
2w′)− f Lθ (x) − t

(
f Lθ
)′

(x; d)

1
2 t

2
, u1x

〉
,

which says

f
′′ (

λ1(x); d̃, w̃
)

=
(
1 + cot2 θ

) 〈(
f Lθ

)′′
(x; d, w), u(1)

x

〉
.

The similar arguments can be used for f at λ2(x). From all the above, the proof is
complete. 
�

4 Second-Order Tangent Sets

In this section, we turn our attention to f being the special function f (t) = max{t, 0}.
In this case, the corresponding f Lθ is just the projection operator associated with
circular cone. For x ∈ Lθ , from [16], we know the tangent cone is given by
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TLθ
(x) := {d : dist(x + td,Lθ ) = o(t), t ≥ 0}

= {
d : ΠLθ

(x + td) − (x + td) = o(t), t ≥ 0
}

=
{
d : Π ′

Lθ
(x; d) = d

}
, (8)

which, together with the formula of Π ′
Lθ

, yields

TLθ
(x) =

⎧⎨
⎩
R
n, if x ∈ intLθ ,

Lθ , if x = 0,{
d : dT2 x2 − d1x1 tan2 θ ≤ 0

}
, if x ∈ bdLθ /{0}.

Definition 4.1 [16, Definition 3.28] The set limits

T i,2
S (x, d) :=

{
w ∈ R

n : dist
(
x + td + 1

2
t2w, S

)
= o

(
t2
)

, t ≥ 0

}

and

T 2
S (x, d) :=

{
w ∈ R

n : ∃ tn ↓ 0 such that dist

(
x + tnd + 1

2
t2nw, S

)
= o

(
t2n
)}

are called the inner and outer second-order tangent sets, respectively, to the set S at x
in the direction d.

In [13], we have shown that the circular cone is second-order regular, which means
T i,2
Lθ

(x; d) is equal to T 2
Lθ

(x; d) for all d ∈ TLθ
(x). Since the inner and outer second-

order tangent sets are equal, we simply say that T 2
Lθ

(x; d) is the second-order tangent
set. Next,we provide two different approaches to establish the exact formula of second-
order tangent set of circular cone. One is following from the parabolic second-order
directional derivative of the spectral value λ1(x), and the other is using the parabolic
second-order directional derivative of projection operator ΠLθ

.

Theorem 4.1 Given x ∈ Lθ and d ∈ TLθ
(x), then

T 2
Lθ

(x, d) =
⎧⎨
⎩

R
n, if d ∈ intTLθ (x),

TLθ (d), if x = 0,{
w : wT

2 x2 cot θ − w1x1 tan θ ≤ d21 tan θ − ‖d2‖2 cot θ
}
, otherwise.

Proof First, we note that Lθ = {x : −λ1(x) ≤ 0}. With this, we have

w ∈ T 2
Lθ

(x; d) ⇐⇒ −λ1

(
x + td + 1

2
t2w + o

(
t2
))

≤ 0

⇐⇒ −λ1(x) − tλ′
1(x; d) − 1

2
t2λ

′′
1(x; d, w) + o

(
t2
)

≤ 0. (9)

The case of x ∈ intLθ (corresponding to−λ1(x) < 0) or x ∈ bdLθ and d ∈ intTLθ
(x)

(corresponding toλ1(x) = 0 and−λ′
1(x; d) < 0) ensures that (9) holds for allw ∈ R

n .
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For the case x = 0 and d = 0, it follows from Theorem 3.2 and (9) that

w ∈ T 2
Lθ

(x; d) �⇒ −w1 + ‖w2‖ cot θ ≤ 0 ⇐⇒ w ∈ Lθ .

Conversely, if w ∈ Lθ , then dist( 12 t
2w,Lθ ) = 0 due to Lθ is a cone, which implies

w ∈ T 2
Lθ

(x; d). Hence, T 2
Lθ

(x; d) = TLθ
(x).

For the case x = 0 and d ∈ bdTLθ
(x)\{0} = bdLθ\{0}, it follows from Theorem 3.2

and (9) that

w ∈ T 2
Lθ

(x; d) �⇒ −w1d1 tan
2 θ + dT2 w2 ≤ 0 ⇐⇒ w ∈ TLθ

(d).

Conversely, if w ∈ TLθ
(d), then dist(d + tw,Lθ ) = o(t), and hence, dist(d +

1
2 tw,Lθ ) = o( 12 t) = o(t). Thus, we obtain dist(x + td + 1

2 t
2w,Lθ ) = dist(td +

1
2 t

2w,Lθ ) = o(t2), which means w ∈ T 2
Lθ

(x; d).
The case remained is x ∈ bdLθ /{0} and d ∈ bdTLθ

(x), i.e., x1 = ‖x2‖ cot θ and
dT2 x2 = d1x1 tan2 θ . Since x2 �= 0, −λ1 is second-order differentiable at x . Hence, it
follows from Theorem 3.2 that

T 2
Lθ

(x; d) =
{
w : −λ

′′
1(x; d, w) ≤ 0

}

=
{
w : −x1w1 tan θ + xT2 w2 cot θ + ‖d2‖2 cot θ − d21 tan θ ≤ 0

}
,

where the last step is due to x̄ T2 d2 = d1 tan θ . 
�
As below, we provide the second approach to establish the formula of second-order

tangent set by using the parabolic second-order directional derivative of projection
operator associated with circular cone. To this end, we need a technical lemma.

Lemma 4.1 For x ∈ Lθ and d ∈ TLθ
(x), we have

T 2
Lθ

(x, d) =
{
w : Π

′′
Lθ

(x; d, w) = w
}

.

Proof The desired result follows from

T 2
Lθ

(x, d) =
{
w : dist

(
x + td + 1

2
t2w,Lθ

)
= o

(
t2
)

, t ≥ 0

}

=
{
w : ΠLθ

(
x + td + 1

2
t2w

)
−
(
x + td + 1

2
t2w

)
= o

(
t2
)

, t ≥ 0

}

=
{
w : ΠLθ

(
x + td + 1

2
t2w

)
− ΠLθ

(x) − tΠ ′
Lθ

(x; d) − 1

2
t2w

= o
(
t2
)

, t ≥ 0
}

=
{
w : Π

′′
Lθ

(x; d, w) = w
}

,

where the third step uses the fact that d = Π ′
Lθ

(x; d) since d ∈ TLθ
(x) by (8). 
�
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Recall first from [15] thatΠLθ
, the projection operator, is the vector-valued function

corresponding to f (t) = max{t, 0}. To present the second approach, we will also use
the parabolic second-order directional derivative of the f (t) = max{t, 0}, which can
be found in [10]. Now the second approach to prove Theorem 4.1 is given below.

Proof Notice first that as x1 > ‖x2‖ cot θ or x1 = ‖x2‖ cot θ �= 0 and d1 ≥
x̄ T2 d2 cot θ , then

2

tan θ + cot θ
Γ1J Φ̃(x)d + 1

tan θ + cot θ
Γ2
(J Φ̃(x)w + J 2Φ̃(x)(d, d)

)

=
(
0, w2 −

[
x̄ T2 w2 −

(
x̄ T2 d2

)2
‖x2‖ + ‖d2‖2

‖x2‖
]

x2
‖x2‖

)T

. (10)

As x1 ≥ 0 and d1 ≥ ‖d2‖ cot θ , we know that

1

tan θ + cot θ

(
f ′(x1; d1 + ‖d2‖ tan θ) − f ′(x1; d1 − ‖d2‖ cot θ)

)
J Φ̃(d)w

=
(
0, w2 − d̄T2 w2d̄2

)T

. (11)

We point it out that, in the above formulas (10) and (11), we have applied the parabolic
second-order directional derivative of the max-type function f (t) = max{t, 0}. To
proceed, we discuss the following three cases.
Case 1: For d ∈ intTLθ

(x), we keep going to discuss three subcases.
Subcase (1): x = 0. Under this subcase, we see d ∈ intLθ , i.e., d1 > ‖d2‖ cot θ . If
d2 = 0, then d1 > 0 which yields

f
′′
(x1; d1, w1 − ‖w2‖ cot θ) u1w + f

′′
(x1; d1, w1 + ‖w2‖ tan θ) u2w = w, ∀w ∈ R

n .

If d2 �= 0, it then follows from (11) that
(
f Lθ

)′′
(x; d, w) =

(
w1 − d̄T2 w2 cot θ

)
u(1)
d +

(
w1 + d̄T2 w2 tan θ

)
u(2)
d

+
(
0, w2 − d̄T2 w2d̄2

)T

= w.

Subcase (2): x ∈ intLθ . Under this subcase, it is clear that TLθ
(x) = R

n . If x2 = 0,
it follows from Theorem 3.3 that ( f Lθ )

′′
(x; d, w) = w whenever d2 = 0 or d2 �= 0

due to x1 > 0 in this case. If x2 �= 0, from (10), we know that

(
f Lθ

)′′
(x; d, w) =

⎛
⎝

w1[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
x2‖x2‖

⎞
⎠

+
⎛
⎝

0

w2 −
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
x2‖x2‖

⎞
⎠ = w.
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Subcase (3): x ∈ bdLθ /{0}. Then d ∈ intTLθ
(x) means dT2 x2 < d1x1 tan2 θ =

d1‖x2‖ tan θ , i.e., x̄ T2 d2 cot θ < d1. Thus, ( f Lθ )
′′
(x; d, w) = w for all w ∈ R

n by the
similar argument as above.
In summary, we have T 2

Lθ
(x, d) = R

n in this case.
Case 2: For x = 0, since d ∈ TLθ

(x) = Lθ , we see that d1 ≥ ‖d2‖ cot θ . It only
remains to show the case of d1 = ‖d2‖ cot θ . If d2 = 0, then d1 = 0, and hence,

(
f Lθ

)′′
(x; d, w) = f

′′
(x1; d1, w1 − ‖w2‖ cot θ) u1w

+ f
′′
(x1; d1, w1 + ‖w2‖ tan θ) u2w

= (w1 − ‖w2‖ cot θ)+ u1w + (w1 + ‖w2‖ tan θ)+ u2w
= ΠLθ

(w).

This, together with Lemma 4.1, yields w ∈ T 2
Lθ

(x; d) ⇐⇒ ΠLθ
(w) = w, i.e.,

w ∈ Lθ = TLθ
(d). If d2 �= 0, then d1 = ‖d2‖ cot θ > 0. Hence,

(
f Lθ

)′′
(x; d, w) =

(
w1 − d̄T2 w2 cot θ

)
+ u(1)

d +
(
w1 + d̄T2 w2 tan θ

)
u(2)
d

+
(
0, w2 − d̄T2 w2d̄2

)T

.

Therefore, we obtain
(
f Lθ

)′′
(x; d, w) = w ⇐⇒ 1

1 + cot2 θ

(
w1 − d̄T2 w2 cot θ

)
+

= w1 − cot2 θ

1 + cot2 θ

(
w1 + d̄T2 w2 tan θ

)

⇐⇒
(
w1 − d̄T2 w2 cot θ

)
+ = w1 − d̄T2 w2 cot θ

⇐⇒ w1d1 tan
2 θ ≥ dT2 w2

⇐⇒ w ∈ TLθ
(d),

where we have used the fact that d1 = ‖d2‖ cot θ .
Case 3: For x ∈ bdLθ /{0} and d ∈ bdTLθ

(x), we have d1 = x̄ T2 d2 cot θ . This says
that

(
f Lθ

)′′
(x; d, w) =

(
w1 − [x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

)
+ u(1)

x

+
(
w1 + [x̄ T2 w2 + dT2 JΦ(x2)d2

]
tan θ

)
u(2)
x

+
(
0, w2 − [x̄ T2 w2 + dT2 JΦ(x2)d2

] x2
‖x2‖

)T

.

Hence,
(
f Lθ

)′′
(x; d, w) = w ⇐⇒

(
w1 −

[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

)

+
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= w1 −
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ

⇐⇒ w1 −
[
x̄ T2 w2 + dT2 JΦ(x2)d2

]
cot θ ≥ 0

⇐⇒ w1x1 tan θ − xT2 w2 cot θ ≥ ‖d2‖2 cot θ − d21 tan θ

⇐⇒ w ∈ T 2
Lθ

(x; d),

where the third equivalence is due to the fact d1 = x̄ T2 d2 cot θ in this case. 
�

5 Second-Order Differentiability

The relationship for the first-order differentiability between f Lθ and f has been stud-
ied in [11,12]. More specifically, f Lθ is first-order differentiable at x if and only if f
is first-order differentiable at λi (x) for i = 1, 2. It is natural to ask whether analogous
relationship for the second-order differentiability (in the Fréchet sense) between f Lθ

and f exists or not. In this section, we provide an answer for this question.

Theorem 5.1 Let x ∈ R
n with spectral decomposition x = λ1(x)u

(1)
x + λ2(x)u

(2)
x

given as in (1). Suppose that f is second-order differentiable at λi (x) for i = 1, 2.
Then,

(a) for x2 �= 0, f Lθ is second-order differentiable at x with

J 2 f Lθ (x)(d, d) =
(
dT A1(x)d, dT A2(x)d, . . . , dT An(x)d

)T

,

where

A1(x) :=
[

ξ̃ 
̃x̄ T2

̃x̄2 ã I + (η̃ − ã)x̄2 x̄ T2

]
,

Ai (x) := C(x)
(x2)i
‖x2‖ + Bi (x), i = 2, . . . , n.

Here

C(x) :=
[


̃ (η̃ − ã)x̄ T2
(η̃ − ã)x̄2 τ̃ I + ( − 3τ̃ )x̄2 x̄ T2

]
,

Bi (x) := veTi + eiv
T , v := (ã, τ̃ x̄ T2

)T
,

and

a := f (λ2(x)) − f (λ1(x))

λ2(x) − λ1(x)
, ξ̃ := f

′′
(λ1(x))

1 + cot2 θ
+ f

′′
(λ2(x))

1 + tan2 θ
, τ̃ := η − a

‖x2‖ ,

ã := f ′(λ2(x)) − f ′(λ1(x))
λ2(x) − λ1(x)

,
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̃ := − cot θ

1 + cot2 θ
f

′′
(λ1(x)) + tan θ

1 + tan2 θ
f

′′
(λ2(x)),

η := cot2 θ

1 + cot2 θ
f

′
(λ1(x)) + tan2 θ

1 + tan2 θ
f

′
(λ2(x)),

η̃ := cot2 θ

1 + cot2 θ
f

′′
(λ1(x)) + tan2 θ

1 + tan2 θ
f

′′
(λ2(x)),

 := − cot3 θ

1 + cot2 θ
f

′′
(λ1(x)) + tan3 θ

1 + tan2 θ
f

′′
(λ2(x)).

(b) for x2 = 0 and θ = 45◦, f Lθ is second-order differentiable at x with

J 2 f Lθ (x)(d, d) =
(
dT A1(x)d, dT A2(x)d, . . . , dT An(x)d

)T

,

where

A1(x) := f
′′
(x1)I, Ai (x) := f

′′
(x1)

[
0 eTi−1

ei−1 0

]
, i = 2, 3, . . . , n.

Proof (a) Note that ‖x2‖ and x̄2 are second-order differentiable at x2 �= 0, which
together with that f is second-order differentiable, ensures that f Lθ is also
second-order differentiable at x with x2 �= 0. Since f Lθ is second-order
differentiable, according to the definition of the parabolic second-order dif-
ferentiability, we have J 2 f Lθ (x)(d, d) = ( f Lθ )

′′
(x; d, 0). Note also that

f
′′
(λi (x); d̃, w̃) = f ′(λi (x))w̃ + f

′′
(λi (x))(d̃, d̃) for i = 1, 2 whenever f

is second-order differentiable. Hence, taking w = 0 in Theorem 3.3 yields

J 2
(
f Lθ

)
(x)(d, d)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ̃d21 + 2
̃d1 x̄ T2 d2 + [η̃ − ã
] (
x̄ T2 d2

)2 + ã‖d2‖2[

̃d21 + 2η̃d1 x̄ T2 d2 + 

(
x̄ T2 d2

)2 + η
‖x2‖‖d2‖2 − η

‖x2‖
(
x̄ T2 d2

)2]
x̄2

+2ãd1d2 − 2ãd1
(
x̄ T2 d2

)
x̄2 + 2 η

‖x2‖
(
x̄ T2 d2

)
d2 − 2 η

‖x2‖
(
x̄ T2 d2

)2
x̄2

−2 a
‖x2‖ x̄

T
2 d2d2 + 3 a

‖x2‖
(
x̄ T2 d2

)2
x̄2 − a ‖d2‖2‖x2‖ x̄2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

ξ̃d21 + 2
̃d1 x̄ T2 d2 + [η̃ − ã
] (
x̄ T2 d2

)2 + ã‖d2‖2[

̃d21 + 2 (η̃ − ã) d1 x̄ T2 d2 + ( − 3τ̃ ) (x̄ T2 d2)

2 + τ̃‖d2‖2
]
x̄2

2
(
ãd1 + τ̃ x̄ T2 d2

)
d2

⎞
⎟⎟⎠ .

(b) When θ = 45◦, then circular cone reduces to the second-order cone and the
circular cone function f Lθ is the SOC function f soc. The result follows from
[17,18]. 
�
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Theorem 5.2 Let x ∈ R
n with spectral decomposition x = λ1(x)u

(1)
x + λ2(x)u

(2)
x

given as in (1). For x2 �= 0, if f Lθ is second-order differentiable at x, then f is
second-order differentiable at λi (x) for i = 1, 2. For x2 = 0, if f Lθ is second-
order differentiable at x, then f is second-order differentiable at x1 and θ = 45◦. In
particular,

(a) when x2 = 0 and θ = 45◦, f ′′
(x1) = 〈J 2 f Lθ (x)(e, e), e

〉 ;
(b) when x2 �= 0, f

′′
(λi (x)) = 1

‖u(i)
x ‖2

〈
J 2 f Lθ (x)(u(i)

x , u(i)
x ), u(i)

x

〉
, i = 1, 2.

Proof To proceed, we consider the following two cases.
Case 1: For x2 = 0, from the second-order differentiability of f Lθ , we know that

f Lθ (x + d) = f Lθ (x) + J f Lθ (x)d + 1

2
J 2 f Lθ (x)(d, d) + o

(
‖d‖2

)
. (12)

For t ∈ R, taking d = te in (12) yields[
f (x1 + t)

0

]
=
[
f (x1)
0

]
+
[
f ′(x1)t

0

]
+ 1

2
t2J 2 f Lθ (x)(e, e) + o

(
t2
)

,

which in turn implies

f (x1 + t) = f (x1) + f ′(x1)t + 1

2
t2
〈
J 2 f Lθ (x)(e, e), e

〉
+ o

(
t2
)

.

This is equivalent to saying that f is second-order differentiable with f
′′
(x1) =

〈J 2 f Lθ (x)(e, e), e〉. This together with the fact f
′′
(x1; d̃, w̃) = f ′(x1)w̃ +

f
′′
(x1)(d̃, d̃) and Theorem 3.3 yields

J 2
(
f Lθ

)
(x)(d, d) =

(
dT A1(x)d, dT A2(x)d, . . . , dT An(x)d

)T

+
(
0, dT E2(x)d, . . . , dT En(x)d

)T

,

where

A1(x) := f
′′
(x1)I, Ai (x) := f

′′
(x1)

[
0 eTi−1

ei−1 0

]
, i = 2, 3, . . . , n,

and

Ei (x) := f
′′
(x1)(tan θ − cot θ)

(
0
d̄2

)(
0, eTi−1

)
, i = 2, . . . , n.

Because f Lθ is second-order differentiable at x , then J 2 f Lθ (x)(d, d) is a bilinear
mapping. Since

J 2 f Lθ (x)(d, d) −
(
dT A1(x)d, dT A2(x)d, . . . , dT An(x)d

)T
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is a bilinear mapping, this requires that for i = 2, . . . , n,

dT Ei (x)d = f
′′
(x1)(tan θ − cot θ)dT

(
0
d̄2

)(
0, eTi−1

)
d

= f
′′
(x1)(tan θ − cot θ)‖d2‖(d2)i

is also a bilinear mapping with respect to d, which holds if and only if tan θ = cot θ ,
i.e., θ = 45◦.
Case 2: For x2 �= 0, taking d = tu(1)

x in (12), we have

f (λ1(x) + t) u(1)
x = f (λ1(x))u

(1)
x + tJ f Lθ (x)u(1)

x

+ 1

2
t2J 2 f Lθ (x)

(
u1x , u

1
x

)
+ o

(
t2
)

= f (λ1(x)) u
(1)
x + t f ′ (λ1(x)) u(1)

x

+ 1

2
t2J 2 f Lθ (x)

(
u(1)
x , u(1)

x

)
+ o

(
t2
)

.

This leads to

f (λ1(x) + t) = f (λ1(x)) + t f ′(λ1(x))

+ 1

2
t2

1

‖u(1)
x ‖2

〈
J 2 f Lθ (x)

(
u(1)
x , u(1)

x

)
, u(1)

x

〉
+ o

(
t2
)

,

which implies

f
′′
(λ1(x)) = 1

‖u(1)
x ‖2

〈
J 2 f Lθ (x)

(
u(1)
x , u(1)

x

)
, u(1)

x

〉
.

The similar arguments can be used to obtain the formula of f
′′
(λ2(x)). 
�

Putting Theorem 5.2 and Theorem 5.3 together, we immediately obtain the follow-
ing result.

Theorem 5.3 Let x ∈ R
n with spectral decomposition x = λ1(x)u

(1)
x + λ2(x)u

(2)
x

given as in (1). Then, the following statements hold.

(a) For x2 �= 0, f Lθ is second-order differentiable at x if and only if f is second-
order differentiable at λi (x) for i = 1, 2.

(b) For x2 = 0, f Lθ is second-order differentiable at x if and only if f is second-
order differentiable at x1 and θ = 45◦.

The below example illustrates that the converse statement in Theorem 5.3(b) is
false when θ �= 45◦.
Example 5.1 Consider n = 2 and f (t) = t2. Then, by a simple calculation, we have

f Lθ (x) =
[

x21 + x22
2x1x2 + (tan θ − cot θ)|x2|x2

]
.
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Note that the function

|x2|x2 =
⎧⎨
⎩
x22 , if x2 > 0,
0, if x2 = 0,
−x22 , if x2 < 0.

is differentiable at x2 = 0, but not second-order differentiable at x2 = 0. Hence, f Lθ

is not second-order differentiable at x with x2 = 0 unless θ satisfies tan θ = cot θ ,
i.e., θ = 45◦.

To sum up, from Theorem 5.3 and Example 5.1, we conclude that

“ f Lθ is second-order differentiable at x ⇐⇒ f is second-order differentiable
at λi (x)” is not always true.

This phenomenon differs from what occurs in the first-order differentiability case.
Precisely, the relationship for the first-order differentiability is independent of the
angle, while the relationship for second-order differentiability really depends on the
angle.

6 Conclusions

The parabolic second-order directional differentiability and second-order differentia-
bility of the circular cone function were discussed in this paper. These results belong
to the second-order type of differentiability analysis and help us to understand the rela-
tionship between the vector-valued circular cone function and the given real-valued
function more clearly. In particular, the parabolic second-order directional differen-
tiability of projection operator was used to establish the expression of second-order
tangent sets, which plays an important role to develop the second-order optimality
conditions for circular programming problems. The second-order differentiability of
the given real-valued function cannot ensure the second-order differentiability of cir-
cular cone function unless some additional assumption is given on the angle. This is
a very interesting and surprising fact. It further indicates that some results holding
in second-order cone setting, such as second-order cone monotonicity and convexity,
cannot be extended to circular cone setting, because in the latter case the angle plays
an important role [14,19]. Thus, the further study to discover the difference between
second-order cone programming and circular cone programming is necessary.
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