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Nonlinear complementarity problem based on a class of NCP-functions. More specifically, we recast the BQP as an equivalent
Generalized Fischer-Burmeister function minimization and then seeks its global minimizer via a global continuation method. Such
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We investigate this continuation approach again by using a more general function, called
the generalized Fischer-Burmeister function. However, the theoretical background for such
extension can not be easily carried over. Indeed, it needs some subtle analysis.
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1. Introduction

In this paper, we consider the following binary quadratic program (BQP)
minx'Qx + c'x over xe€S, (1)

where Q is an n x n symmetric matrix, ¢ is a vector in R" and S is the binary discrete set {0,1}". It is known that BQP is
NP-hard and has a variety of applications in computer science, operations research and engineering, see [1,3,8,13,14] and
references therein. There have been proposed several continuous approaches for solving BQP [9,12,15] which often need
to cooperate with branch and bound algorithms or some heuristic strategies to generate an exact or approximate solution.
In [10], another type of continuous approach was proposed which is to reformulate BQP as an equivalent mathematical pro-
gramming problem with equilibrium constraints (MPEC) and then consider an effective algorithm to find its global solution.
In this approach, many NCP-functions are employed to convert equilibrium constraints into a collection of quasi-linear
equality constraints. Among others, the Fischer-Burmeister function ¢g; : R* — R defined as

¢ep(a.b) = \/a +b* — (a+b) (2)

is a popular one. In this paper, we investigate this continuation approach again by using a more general function ¢, : R? - R,
called the generalized Fischer-Burmeister function and defined by

¢p(@,b) == [[(a,b)|l, — (a+Db), (3)
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where p > 1 is an arbitrary fixed real number and ||(a, b)||, denotes the p-norm of (a,b), i.e., ||(a,b)||, = {/|al” + [b]’. In other
words, in the generalized FB function ¢,, we replace the 2-norm of (a, b) appeared in the FB function by a more general p-
norm. The function ¢, is still an NCP-function, which naturally induces another NCP-function ,, : R?> — R, given by

Up(a.b) = 316, (@ b @)

For any given p > 1, the function y, is shown to possess all favorable properties of the FB function .
Traditionally, in the continuation approach for BQP, one needs to utilize the fact that

xc{0,1}"=x=x} i=12....n (5)

To the contrast, our proposed continuous optimization approach arises from the complementarity condition formulation of
0 — 1 vector x € {0,1}", which includes the equivalence (5) with redundant constraints

0<x <1, i=1,2,...,n

so that it can generate an integer feasible solution. For finding the global minimizer of our continuous optimization problem,
we employ the similar way as in [10,11]. In summary, the method is to add a quadratic penalty term associated with its equi-
librium constraints and a logarithmic barrier term associated with box constraints -1 < x; < 1,i=1,2,...,n, respectively, to
the objective function, and then construct a global smoothing function. Since the generalized Fischer-Burmeister function v,
is quasi-linear, the quadratic penalty for equilibrium constraints will make the convexity of the global smoothing function
more stronger. Particularly, we have shown that the global smoothing function is strictly convex in the whole domain for
barrier parameter large enough or in a subset of its domain for penalty parameter large enough. According to the feature
above, we use a global continuation algorithm defined in [11] via a sequence of unconstrained minimization for this function
with varying penalty and barrier parameters. Although the idea is brought from [11], as will be seen, the theoretical back-
ground for such extension can not be easily carried over. Indeed, it needs some subtle analysis for extending the background
materials. Without loss of generally, in this paper we consider the case that S = {—1,1}". By a transformation z = (x + €)/2
for the variable x and the unit vector e in R, we can extend the conclusions to the case S = {0,1}".

2. Continuous formulation based on @, function

In this section we will reformulate (1) as an equivalent continuous optimization based on the ¢, function. As will be seen,
the following equivalence plays a key role which says that a binary constraint ¢t € {a,b} with a,b € R is equivalent to a com-
plementarity condition (or equilibrium constraint), i.e.,

tef{a,b} < t-a=0 b-t>=0, (t—a)(t—b)=0.
With this, the unconstrained BQP problem in (1) can be recast as a mathematical programming problem with equilibrium
constraints (MPEC)
min f(x)
st. (1+x,1-%x)=0, i=1,2,...,n, (6)
1+ >0, 1-x=>0, i=12,...,n
In fact, given any NCP-function ¢ : R x R — R, the property of NCP-functions (see [6]) yields that the equilibrium constraint
in (6) is indeed equivalent to an equality constraint associated with ¢:
(1+x,1-%)=0, 1+x >0, 1-x%>0, < ¢(1+x,1-x;)=0. (7)
Thus we reformulate the original BQP problem, which together with (6) and (7), as the following continuous optimization
problem:
min f(x)
st. ¢o(1+x,1-x)=0, i=1,2,....,n (8)
-1<x<1,i=1,2,...,n.
Accordingly, the global minimizer of (8) is the solution of (1). Note that although the box constraints
-1<x<1,i=1,2,...,nin(8) are indeed redundant, we keep them on purpose. Actually, we shall see that such constraints
play a crucial role in the construction of a global smoothing function for problem (8) as was shown in [9,10]. Generally
speaking, most NCP-functions are non-differentiable, such as the popular Fischer-Burmeister function in (2), the generalized
Fischer-Burmeister function in (3), as well as the minimum function
¢min(a7 b) = min{a7 b}

However, it is very interesting to observe that, when specializing ¢ in (8) as the generalized Fischer-Burmeister function, we
can reach smooth constraint functions
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¢p(1+Xi,1 —Xi) = \p/|] +Xi‘p+‘1 —X,‘|p—2:07 i=1,2,...,n

and consequently some usual nonlinear programming solvers can be employed to design an effective algorithm for solving
problem (8). In view of this, we in this paper pay attention to the following equivalent continuous formulations reformulated
by the generalized Fischer-Burmeister function:
min f(x)
st ¢p(1+x,1-%)=0, i=1,2,....n 9)
-1<x<1, i=1,2,...,n
We also note that using the equivalence that x; € {—1,1} <= x? = 1 gives another another type of continuous optimization:
min f(x)
st. x2=1, i=1,2,...,n (10)
-1<x<1, i=1,2,...,n

The formulation of (10) looks simple and friendly at first glance, nonetheless, the following remarkable advantages explain
why we still stick to the smooth constrained optimization problem (9):

(i) The quasi-linearity of generalized Fischer-Burmeister function implies that it feasible set tends to be convex.

(ii) The equality constraint conditions ¢,(1 +x;,1 —x;) =0,i=1,2,...,n have incorporated the equivalent formulation
x2=1,i=1,2,...,n, of x € {~1,1} with its relaxation formulation -1 < x; < 1,i=1,2,...,n, which indicates that,
when solving (9) with a penalty function method, an implicit interior point constraint is additionally imposed on.

(iii) From Proposition 2.1 as below, we see that the quadratic penalty function of equality constraints is strictly convex in a
very large region when the penalty parameter is large enough.

These advantages have great contributions to searching for an optimal solution or a favorable suboptimal solution of (1),
which will be shown later. Before we prove the main proposition, we first introduce several technical lemmas which are
important for building up the background materials of our extension.

Lemma 2.1. Let f, g be real-valued functions from R to R,. Suppose f,g satisfy

(i) f'(x) > 0and g'(x) < 0 for all x € (a,b),
(ii) f”(x) < 0 and g"(x) < 0 for all x € (a,b),
(iii) (fg)'(a) < 0 and f(a) > g(a).

Then (fg)'(x) < O for all x € (a, b).

Proof. To achieve our result, we need to verify two things: (i) (fg)'(a) < 0 and (ii) (fg)'(x) is decreasing on x € (a, b). We pro-
ceed these verifications as below.

(i) From the assumptions and the chain rule, it is clear that

(fg)'(a) =f'(a)g(a) + f(a)g'(a) <O.

(ii) Since (fg)'(x) = f'(x)g(x) + f(x)g'(x), we see that in order to show (fg)'(x) is decreasing on x € (a, b), it is enough to argue
both f'(x)g(x) and f(x)g’(x) are decreasing on (a, b). We look into the first term first. Note that

(f®)g(x) =f"(x)g(x) +f'(x)g'(x) <O Vx € (a,b),

because f”(x) < 0,g(x) > 0,f"(x) > 0 and g'(x) < 0. This claims that f’(x)g(x) is decreasing on x € (a,b). The decreasing of
f(x)g'(x) over (a,b) can be concluded similarly.

Thus, from all the above, the proof is complete. O

The conclusion of next lemma is simple and neat, however, its arguments are very tedious. Indeed the main idea behind is
approximation.

Lemma 2.2. Let y, be defined as in (4). Then, y,(1 +¢t,1 — t) is positive at t = +V 21 forallp = 2.

Proof. For symmetry, we only prove the case of t = V 25 1. First, from direct computations and simplifying the expression
of Y, we have
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(1T+1tP +(1—tP)

n 1 1-— _
Brel=b A+ 021 =01+ 6P + (1 —t)P)°

F(p,t), (11)

where F(p,t) = fo(p r[ﬂ (p.t) + fo(p,t) + f3(p, t)] + fa(p, t) with
fop.t) = (1 +6) + (1 - )PP,
filp.t) =(1- ) (t+1)2p
hp.t)=(t+1)*1 -0,
f(p,t) = (262 +4p — 6)(t + 1)’ (1 — t)P,
fa(p,t) = (8 = 8p)(1 - ).

Since the first term on the right side of (11) is always positive for all p > 2, it suffices to show that F(p, vV 25— 12 > 0 for all
p > 2. However, it is very hard to claim this fact directly. Our strategy is to construct a function A : R — R such that

Alp) gF( \/:> Vp > 2. (12)

The special feature for A(p) is that it is easier to verify A(p) > 0 for all p > 2 so that our goal could be reached. Now, we pro-
ceed the proof by carrying out the aforementioned two steps.
Step (1): Construct a function A(-) satisfying (12). Indeed, the function F(-, -) is composed of fy, f1,f>,f3 and f4, so for each f;,

we will construct a corresponding piecewise function a; such that a;(p) < f; (p, V25— 1) fori=0,1,2,3,4. Then, combining

them together to build up the function A(-). For making the reader understand more easier, we will give some pictures during
the process of proof.
(i) First, we explain how to set up ap(p). Notice that the second derivative of f; with respect to p is positive at t = V 231
for all p > 2,fq is strictly convex at t = V 25 — 1 for all p = 2 (the detailed arguments are provided in Appendix A).
Hence, we consider a real piecewise function defined as

wld) L(p-2)+2% if 2<p<-8V2-1-6+8(2)),
o(p) =
V2141 if p>-8V2i—1-6+8(2%).
Fig. 1 depicts the relation between ao(p) and f0< V2 1). Besides, the following facts
00(2) :fO <2 Vv 2% - 1>7
limag(p) 1
p—2"
1

<£f0<27¢;)7
ap) - 0<—fo<P,\/7 )

1.58
1.57
1.56 —
1.55 +
1 ag(p)

1.54

1.53

1.52 JE.(P, J47_7)

1.51 -

Fig. 1. The graphs of a, and fo.
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indicate the first part of function ao(p) is less than fo( V25— 1) for2 <p< -8V 2 -1-6+ 8(2%). On the other hand, an-
other fact

[l)ijgfo<p,\/2%—1) =2l -1+1

says that the second part of function ao(p) is less than or equal to fy (p, V25 ]) forp > -8V 2 _1-6+ 8(2%). Thus, we
conclude that

ap) <h(pV2-1) w2
(ii) Secondly, we consider a quadratic function defined as
2 4
a(p) = (1 - \/2%—1> (1 +\/2%—1> In (1 +\/2%—1)(p—1)2
2 4
+ (1 ,\/2%,1> <1+\/2%71> [1 —ln<1+\/2%—1)}.
Fig. 2 depicts the relation between a;(p) and f; (p, Vi 1). Again, using the following facts
@@ =292 -1)
a,2) = %fl (2, V2i - 1),
&’ Ir .
ai(p) < Ef] (p, - 1) Vp = 2,

we immediately achieve

ai(p) <fi <P, Vi 1) Vp = 2.
(iii) Thirdly, we consider a function defined as
4 2
~lp-2)+ (1 —\/5——“1) (1 + 2%_1>

0(p) = if 2<p<12 +20(2% - 2%> +V25 -1 (40(2%) — 40 - 10(2%)),

o

if p> 12+20(2%72%)+ 2%71(40(2%)740710(2%))‘

Fig. 2. The graphs of a; and f;.
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Fig. 3. The graphs of a, and f,.

Fig. 3 depicts the relation between a,(p) and f> <p, V2 1). We observe that the function f; is positive and convex on
p = 2, then the following facts

&Q2) =1 (2, Va2io 1),
limd,(p) < if2 (2, \V2i - 1),
p—2* dp
d? 1
GZ(P):0<Ffz(p7\/23f1> Wp>2

yield a(p <f2 p, V25— 1) for all p=2

(iv) Fourthly, we consider a real piecewise function defined as

[\/2 - 2?(24 - 12(2%)) +16(28 - 2%) - s}p

Gy =) FV2-2242h -48)+ 40P -2h+20 if 2<p<i,
~(#2 )@ -2+ (B2l B)e-2) if f<p<is,
0 if p>18

Fig. 4 depicts the relation between as(p) and f3 (p, V25— 1). The relation is clear from the picture, however, we need to go
through three subcases to verify it mathematically.

If 2 < p < 3, we compute f; (p, 25— 1) = (2(2%) —8+ 4p) (2 — 25)P. Moreover, we have
%fg (p, \/;> —(2-2% [4 + (2(2%) ~8+4p)In(2 - 2%)],
:;2 f <p, J:) =222 -2%)[8+ (2(2)) - 8+4p) In2 - 2],
Then, the following facts
w@ = (21/2-1)
o) 4GV )
lima ) < 2.5 (2 E)
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Fig. 4. The graphs of a; and f.

and f3 (p, V25 - 1) being concave on [2,3] imply az(p) < f3 (p, Vi - 1) under this case.
If 3 < p < 18, using the facts that

o 3) 531D 1),
limd,(p) < L5, (5, Va2i - 1),
p3' dp\2
and a;(p) = f5 (p, V2 1) having only one solution at p = 3, we obtain as(p) < f3 (p, Vb l) under this case.

If p > 18, knowing f3(p) > 0 for all p, then it is clear that as3(p) < f3 (p, Vi - 1) under this case.
(v) Finally, notice that the second derivative of f; with respect to p is positive at t = V 25 — 1 for all p= M and

In@2-25)
negative for p < ’21”;% so fu is strictly convex at t=V25—1 for all p > % and strictly concave for all
n(2-25) n(2-25)
1
< %ﬁj?” Hence, we consider a real piecewise function defined as
n(2-23
1.2
~8p 82 -2 + 13 if 2<p<3,
2 1.2
[—%+16(2—23) p+33-482 257 if 3<p<3,
as(p) =
-Bp-% if 3<p<f,
15 i 49
-2 if p>j

Fig. 5 depicts the relation between a4(p) and f4 (p, V25— 1). Again, we need to discuss several subcases to prove the rela-
tion mathematically

For 2 < p < 3, the following facts

a@ =h(22-1).
timay(p) < o212 1),
d)(p) =0 < d—2f4( V1)

yield the first part of function as(p) is less than f4< V2i— ) under this case.
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Fig. 5. The graphs of a4 and fs.

For 3 < p < 3, using the following facts

a(3) <fi (3, J:)
limay(p) > hi(3.12 1), -
a(p) =0 <d—22f4(p, J:)

dp
We have a4(p) is less than fy (p7 V25 - 1) under this case.

For 3 < p <3, we know that

limd, (p) > %ﬁ (3, V2i— 1).
p‘;

This together with (13) gives a4(p) is less than f, (p, V25 — 1) under this case.

1 1
For p > 43, from f4(p) being strictly convex for all p < % and being strictly concave for all p > % we know
n(2-23 n(2-23
1
iﬂ; M —0 and limfy(p) =0,
dp In(2 - 2%) poc

which lead to f4(p) > — 2 for all p < 2. Thus, a4(p) < f Qp, V2 - 12 under this case.
Now, we are ready to define a function A : R — R satisfying (12). As the mentioned idea, the function is defined by
A(p) = ao(p)[a1(p) + az(p) + az(p)] + as(p).
According to our ]constructions of a;(p), it is clear that A(p) < F(p, Vb 1) for all p > 2. Fig. 6 shows the relation between
A(p) and F(p, V23 —1).

Step (2); We will show that A(p) > 0 for all p > 2. Notice that A(p) is piecewise smooth, hence A’(p) is a piecewise
function. Indeed, the expression of A’(p) looks very ugly and tedious, we display it Appendix B. Furthermore, we also present
an approximate expression for A'(p) in Appendix C which helps us understand the structure of A’(p). The key point is that
from the expression of the A’(p), we can verify the following facts:

A(2) =0,
1 2 5
Al -8y2:-1-6+8(2%)) >A 5 >0,

and

Ap)<0 if pe(,-8V2 -1-6+8(2%),
A(p) >0 otherwise,
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Fig. 6. The graphs of A and F.

with the exception of points of discontinuity. Thus, we conclude A(p) > 0 for all p > 2 and (12) is satisfied, which imply
F(p, Vi - 1) > 0 for all p > 2. Then, the proof is complete. O

Lemma 2.3

(a) Let f be a convex function defied on a convex set C in R" and g be a nondecreasing convex function defined on an interval I in
R. Suppose f(C) C I. Then, the composite function g o f defined by (g o f)(x) = g(f(x)) is convex on C.

(b) Suppose ¢, : U — Ris a twice continuously differentiable function with a compact set U € R" and ¢, : X — R is a twice con-
tinuously differentiable function such that the minimum eigenvalue of its Hessian matrix V2,¢, (x) is greater than ¢ (> 0) for
all x € X, where X C U. Then there exists a constant p > 0 such that ¢, + B¢, is a strictly convex function on X for > p.

Proof

(a) See [2, Chaplll, Lemmal.4].
(b) See [9, Theorem3.1]. O

Proposition 2.1. Let ¢, and y, be defined as in (3) and (4), respectively. Then, for any fixed p > 2, the following hold.

(a) The function ¢,(1+t,1 —t) is strictly convex for all t € R. i i
(b) The function y,(1+t,1 —t) is strictly convex for all t ¢ {—\/ 23 -1,V2s-1].

Proof

(a) It is known know that ¢, is a convex function [4-6]. Note that fis a composition of ¢, and an affine function. Thus, fis
convex since it is a composition of a convex function and an affine function (the composition of two convex functions
is not necessarily convex, however, our case does guarantee the convexity because one of them is affine).

(b) Due to the symmetry of y,(1 +t,1 —t), it is enough to show that (1 +¢,1 — t) is strictly convex for t > Vv 2 - 1.To
proceed, we discuss two cases.

(i) If t > 1, the function ,(1+¢,1—t) can be regard as a composite function of ¢,(1+t,1—t) and h(-) = ()%
Because h(-) is nondecreasing convex function on [0, o] and ¢,(1 +t,1 —t) is positive strictly convex for t > 1,
from Lemma 2.3, we obtain (1 +t,1 — t) is strictly convex for t > 2.

(i) If 1 > t > V25 — 1, we know that
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—np’p(1+t71 —t):—(/)p(l—i-t,l —t)¢;(l +t,1-1t),
YA +E1 =0 = [~ (1 + 61 Og,(1+ 61— = g,(1+ 61— g1 +£1-1)].

Then, it suffices to show that (1 +t,1 —t) < 0 for p > 2. To this end, we compute the third derivative of ¢,(1+¢,1 —1t)
with respect to t and prove that it is negative. To see this,

A[A+07+ (1= P PA+0PA —tP(p—1) §
A+03t-1°[1+0°+(1 -0t
where T is a real valued function defined by

T(p,t) = (1+tP(2p —1-3t)— (1 - t)P(2p + 3t — 1).

P+l —t) =

T(p, ), (14)

It is not hard to verify the first term of the right side of (14) is always negative for all p > 2. Thus, we only need to show
T(p,t) > 0 for all p > 2 which is equivalent to verifying T(2,t) > 0 and T(p,t) > T(2,t) for all p > 2. These can be done as
below.

(i) Because T(2,t) = 6t — 6¢3, it is clear T(2,t) > 0.
(ii) To show that T(p,t) > T(2,t) for p > 2, we first argue that

A+6°>1-t"'2p+3t-1) Vp>2, (15)

It is equivalent to show that - a+” is greater than 1 for all p > 2. Therefore, we consider the derivative of the

£ T(2p+3t-1)
following function with respect to p as follows:

d (1+1t)P B (1+¢t)7
dp (1t "2p+3t—1) (1—-tF'(2p+3t—1)°

Observing both terms of the right side of (16) are positive for all p > 2 and using
achieve (15). Secondly, we know that

2p—-1-3t>1-t Vp>2. (17)
Combining (15) and (17), we have T(p, t) = T(2,t). Hence,
¢y (1+t,1-t)<0 Vp >

x [(1=3t=2p)In(1 —t) + (2p+3t — 1)In(1 +£) - 2]. (16)

(1+8)P _
Cisuana ™ > 1 when p =2, we can

Then, applying Lemma 2.1 gives the desired result for which we set f(t) = —¢,(1 +t,1 - t) and g(t) = ¢, (1 +t,1-1t). O

The result of Proposition 2.1(b) could be improved under some sense. More specifically, the interval where (1 +¢,1 —t)
is strictly convex varies as long as p changes. We originally wish to figure out the exact interval where y,(1 +t,1 —t) is
strictly convex for each p. However, it is very hard to find a closed form depending p to reflect this feature (indeed, it

1.8 T T T - - - :
—— p=1.1
16 — — p=15
o=z |
p=3
tar ——p=10 ||

08 |

06

04 X,

02

0
-2 -1.5 -1 -0.5 0 0.5

Fig. 7. The graphs of y,(1 +t,1 —t) for different p.
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z-axis

0.5

y-axis
Fig. 8. The graph of y,,(1 +¢t,1 — t) with a fixed p.
may be not possible in our opinion). To compromise, we try to find such an appropriate common interval for all p > 2 as

shown in Proposition 2.1(b). The following two figures (Figs. 7 and 8) depict the geometric view regarding what we just
mentioned.

3. Global continuation algorithm for BQP

Due to the logarithmic barrier function being strictly convex and Proposition 2.1, we now introduce the quadratic penalty
i, (1 +x;,1 —x;) for the equality constraints and the logarithmic barrier =31, [In(1 + x;) + In(1 — x;)] of the box con-
straints into the (9). Construct a global smoothing function

dx,00,7) =f(x)+ azn)//p(l +xi,1—%) — rzn:[ln(l +x) +In(1 — x;)] (18)

i=1 i=1
where 7 > 0 is a barrier parameter and « > 0 is a penalty parameter. The next property indicates that the strictly convexity of
function ¢(x, o, 7) on (—1,1)" when the barrier parameter is large enough, and the strictly convexity of function ¢(x, «, 7) in a
large subset of its domain for all T > 0.
Proposition 3.1. Let ¢(x, o, T) be the function defined by (18). Then, the following hold.
(a) There exists a constant T > 0 such that if T > 7 and o > 0, ¢(x, &, T) is strictly convex on (—1,1)".

(b) There exists a constant <15c>0 such that if o>& and t>0,4(x,a,T) is strictly convex on the set
D::{xe(—l,l)”||x,-\>\/2§—1,i:l,2,...,n}.

Proof
(a) Let X = (—1,1)" and denote

ba(X) == F(X) + Y Wp(1+x,1 ),
i=1

op(X) = —i[ln(l +x;) + In(1 — x;)].
i=1

Then the expression of the Hessian matrix of ¢,(x) at any x € X is given by

1 1 1
+ +
1=x1)% (1+x)? 1=x)% (1+x,)°

Vadp(x) = diag
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where diag(x) denotes a diagonal matrix with the components of x as the diagonal elements. Moreover, the function

ﬁ‘i’ﬁ has minimum 2 at point x; = 0, and so every diagonal element of V2,¢,(x) is at least 2. Thus, by letting

U =[-1,1]",& = 2 and using Lemma 2.3(b) yield the desired result.
(b) Set ¢, = f(x) and

n

- T
by = ;¢p(1 +xi,1-x;) — &Z[ln(l +x) +In(1 = x;)].

i=1

From the proof of Lemma 2.2, it follows that
n
\E (Z%(l 1 —x,-)> = diag(y;(1 —x1,1+x) - Y1 =0 1 +%)),
i1

where /(1 — x;, 1 +x;) can be found in (11). Now taking f(t) = —¢,(1 +t,1 —t),g(t) = $,(1 + ¢, 1 — t) and applying the proof
(ii) of Lemma 2.1, we have
Yp(1=t,14+0) > y5(1-t,1+1) Vp>2.

In addition, from [11] (Lemma 3.1), we also have

2\/(2t2 +2)° -8
vyl —t,1+1t)= % > 0.0004 Vit| > 0.51.
22 +2)
Therefore, the above two inequalities imply
Y,(1—-t,141)>0.0004 V|t|>051 and Vp > 2.

This indicates that every diagonal element of Vﬁxwp is at least 0.0004. Using the fact that the Hessian matrix of
=I5 [In(1 +x;) + In(1 — x;)] is positive definite, we obtain that every diagonal element of V2. ¢, is at least 0.0004. Now
taking

U=[-1,1", X=D and &= 0.0004

and applying Lemma 2.3 gives the desired conclusion. O

As remarked in [11], the result of Proposition 3.1 offers motivation to use the function ¢(x, «, t) to develop a global con-
tinuation algorithm for the constrained optimization problem (9). This method will generate a global optimal solution or at
least a desirable local solution via a sequence of unconstrained minimization

mine(x, oy, Tx) (19)
XeR

with an increasing penalty parameter sequence {oy} and a decreasing barrier parameter sequence {7, }. Note that to ensure
the strict convexity of ¢(x, o, Tx), we have to utilize a sufficiently large initial value 7, to start with the algorithm. As the
iteration goes on, the convexity of logarithmic barrier —7, 3" ;[In(1 + x;) + In(1 — x;)] will become weak, but the strict con-
vexity of ¢(x, o, Tx) can still be guaranteed due to the increasing of the penalty parameter o,. This means that for each k € IN,
the minimization problem (19) can be easily solved if we have skillful technique to adjust the parameter o and 7.

Algorithm 3.1

Step O Given parameters o, T, 01 > 1,0, € (0,1) and € > 0. Select a starting point X° and set k = 0.
Step 1 Solve the unconstrained minimization problem (19) with the starting point ¥, and denote by x* its optimal solution.

Step 2 If T, (1 —xk 1 — xK) < ¢, terminate the algorithm, else go to Step 3.
i=17p i i

Step 3 Update the parameters o, = 010 and Ty, 1 = 02Tk
Step 4 Set X1 =Xk k =k + 1 and go to Step 1.

Is Algorithm 3.1 well-defined? To answer this, we give an existence theorem of solution for the unconstrained minimi-
zation problem (19). In fact, its proof can be found in [11] Lemma 3.2, we give a brief proof here for completeness.

Proposition 3.2. Let ¢(x, o, Ty) be the function defined as in (18). Then, the following hold.

(a) For each k e IN, the minimization problem (19) has a solution x.
(b) From (a), there exists an 1 such that the solution to problem (19) is unique when 1) > 1.
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Proof

(a) We first show the existence of x* for each k € IN. Let X; = [—3,3]. Since ¢(x, o4, Tx) is continuous and X; is a compact
set, there exist two real numbers L; and U; such that

Ly < ¢p(x,00,Tk) < Uy Vx e Xy.

On the other hand, we note that ¢(x, o, Tx) — +o0o whenx;, — 1~ orx;, — 1" for some iy € {1,2,...,n}. Hence, the continuity
of function ¢(x, o, T) implies that there exists an  with 0 < 6 < 1/4 such that

G, o, Tk) = Uy Vxe ((-1,-1+8 Ul -6 1)" (20)
Let X = [-1+ 45,1 — d]". Again, ¢(x, o, T) being continuous on a compact set X implies that there exists an % € X such that for
each k € IN

DX, 0, Tk) < P(X, 0, Tk) VX E€X.
Moreover, due to X; C X, we know

d(&, o, T) < Uy (21)
Combining (20) and (21) yields that

(R, 0, T) < (X, 04, T) VX € (=1, )"\ X.

Thus, together with (20), it shows that X is exactly the desired solution x*.
(b) From conclusion of Proposition 3.1(a), ¢ (X, o, Tx) is strictly convex on (—1,1)". Hence x* is unique. O

4. Numerical experiments

In this section, we report numerical results of Algorithm 3.1 for solving the unconstrained binary quadratic programming
problem. Our numerical experiments are carried out in Matlab (version 7.8) running on a PC Inter core 2 Q8200 of 2.33 GHz
CPU and 2.00 GB Memory.

In our numerical experiments, we employ BFGS algorithm with strong Wolfe-Powell line search to solve the uncon-
strained minimization problem (19), and terminate the current iteration as long as x* satisfies the following criterion:

([ Vxh(¥*, o, Tw) || < 5.0e — 3.
The values for the parameters involved in Algorithm 3.1 are chosen as follows:
=0, 0,=2, 0,=05 ¢=1.0e-3,

and the initial barrier parameter 7, varies with the scale of problems (here we choose its value the same as that in [11]). The
starting point £ = 0.9(1,1,...,1)" € R" is used for all test problems. To obtain an integer solution x* from the final iterate
point x* of Algorithm 3.1, we let

. {—1 if % +1] <1.0e—2
X =

fori=1,2,...,n.
1 if g —1]<10e—2 ' ool

The test problems are all from the OR-Library and have the following formulation

max 2z'Qz
st. ze{0,1}, i=1.2,...,n

To solve these problems with Algorithm 3.1, we use the formula z = (x + e)/z to transform them into the following
formulation

—min —1x"Qx —1x"Qe —Je"Qe
st. x;e{-1,1}, i=1,2,...,n

The optimal values generated by Algorithm 3.1 with different p (p = 1.1,2,4,5,10,20,50,100) are listed in Tables 1-5 (see
Appendix D), where ‘-’ means that the algorithm fails to get an optimal solution when the maximum CPU time arrives.
Moreover, to present the objective evaluation and comparison of the performance of Algorithm 3.1 with different p, we
adopt the performance profile introduced in [7] as a means. In particular, we regard Algorithm 3.1 corresponding to a
p as a solver and assume that there are n, solvers and n; test problems from the OR-Library collection ;7. We are interested
in using the optimal values calculated by Algorithm 3.1 as performance measure for different p. For each problem j and
solver s, let

tjs := the optimal value of problem j by solvers, u; := tl
j.s
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p=1.1
—— p=2 u
- — —p=4
p=5
— p=10
p=20
— .~ p=50 u
- — —p=100

The values of performance profile

0.2 1 1 1 1 1 1 1
1 1.005 1.01 1.015 1.02 1.025 1.03 1.035 1.04

The values of tau

Fig. 9. Performance profile of the reciprocals of optimal values by Algorithm 3.1 with different p.

We compare the performance on problem j by solver s with the best performance by any one of the n; solvers on this prob-
lem, i.e., we employ the performance ratio

M _ max{tjs:s € S}
min{f:s € S tjs

rjvs =
where S is the set of eight solvers. An overall assessment of each solver is obtained from
1. .
Ps(T) = E51ze{] € J :1js < T},
]

which is called the performance profile of the reciprocal of optimal solution obtained by Algorithm 3.1 for solver s.

Fig. 9 shows the performance profile of the reciprocals of optimal values obtained by Algorithm 3.1 in the range of [1, 1.04]
for eight solvers on 50 test problems. The eight solvers correspond to Algorithm 3.1 withp=1.1,p=2,p=4,p=5,p=10
,p =20,p =50 and p = 100, respectively. From this figure, we see that Algorithm 3.1 are considerably efficient no matter
which value of p is chosen. In fact, Algorithm 3.1 with the aforementioned p values can solve all the 50 test problems except
for p = 5,20, 100. Moreover, Algorithm 3.1 with p = 4 has the best numerical performance (has the highest probability of
being the optimal solver) and the probability of its being the winner on a given BQP is around 0.48. Besides, p = 1.1 and
p = 2 have a comparable performance with p = 4, please refer to Appendix D for more detailed numerical reports.

Appendix A

Here is the proof of the strictly convexity of f, (p., Vb 1) forallp > 2
To see this, it is enough to verify that ;’%fo <p7 V2 - 1) > 0 for all p > 2. In fact,

e T ; “n(HeV2 1) wing) + Bin) 1
gt (/2 1) oV = T e

(22)
wherea:1+v2%—l,b:1—v2%—l and

2((p Jz_—l))p in (s (p Jz_:))p - 2p(a>2p<lna>]

+ [ (2- 2%)p(1n b —2p*(2 - 2%)p(1n a)(inb)| + [p*(2 - 2%)p(1n a)* - 2p(2 - 2%)p(1n a)
+ [—2p<2 - 2%>p(ln b) — 2p(b®)(Inb) — 2p(b®)(Inb) } (23)

M(p) =
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The value of M(p) is always positive for all p > 2 since the four terms on the right-hand side of (23) are all positive. This
together with the fact that all terms on the right-hand side of (22) are also positive yields the desired result. [

Appendix B

We present the expression of the function A’(p) as below.
L(p) if 2<p<3
Lp) if 3<p<-8V2_1-6+8(2)
Lp) if -8V2-1-6+82)<p
<12+202%) + V25 -1 [40(2%) — 40— 10(2%)] ~20(2%)

—

Ii(p) if 12+202%) + V2 -1 [40(2%) —40- 10(2%)] —20(2%)

Is(p) if 3<p<$
Ie(p) if $2<p<18
I;(p) if p>18

where
Il(p):[—%ln<1 2?—1>—ln(l+\/;%——71>(% 21n< \/—-1>\/2?—*1+1n<1+\/5%——71>(2%)
+21n< \/71> %\/;—fln(l+\/23—l> 2%\/2%—}
+Fln(1+ 25— 1) (2%) — 625 - 1+—+—ln(1+ 25— >+4(2%)
( 1) +—ln<1+\/2§—1) %\/23—1+3\/2 2523
—%ln(1+\/E)\/E+§ln(l+\/E)(Zﬂp—?ln(IJr\/E)
+18 2—2%(25)—%+22(2%) g(z% ——1n<1+\/23—1> %\/23—1—24(23)\/;
+12 272%+33—21n<1+\/E)\/E—§ln(l+\/ﬁ>(2%)+l3—61n<l+\/E>(2%)
(12

Iz(p):{—%m(u\/;)—ln(H\/E)(%) 21n< +\/:>\/:
+ln<1+\/E> ( \/23—1>2%)\/2%—1—11n<1+\/E>(2%) 2%71};;2
+Eln<]+ 25— ) \/2371+ \/2- l+ ln( +\/2‘%:>7§1n<1+\/2_%:>(2%)
+§ln 1+4/28 - >23\/23—1——\/2 2(2%) § <1+\/E>(2%)
) 2%
n

_Eln
2

2525 -1

N————

wIN

lnE }p7—1n< \/2371) \/272%(23 +%765( 2
(2%)85 —13—61n(l \/2%—> %\/23—1—— _24 %(2) 2-2
+—ln(1 25— ) % 1——1n<1+\/ﬁ>(2%)

( ) <1+\/2%—1>(2%)\/2%—1
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I3(p):{7§1n< 2%71+1>fijln<\/ﬁ+l>(2%)+@ln(\/71+1>(2%)
+?ln<\/23—1+1>\/23—1——ln(ﬁ+1>(2%)\/;
—? n< 2%—1+1)(2%)\/2%—]p——1n<\/23—1+1>\/23—1+16(23) 64(2%)
+23—81n< 2%—1+1>(2%)—£§—Oln<\/ﬁ+l>(2%)+%+% 222

7%1 272%% 2%71+% 272%(2%)\/2%71+§1n<\/2%—1+1>
+§ln< 2%71+1>(2%) 2%—1+§ln(\/2% 1+1)\/1 (2%) — \/2 254/25 -

—53—61n<\/E+1)(2%)+—1n<\/—1+1>( )
\/2%—1—§ln<\/;+1>(2%) 1——ln< % >2‘f 2 - ]
\/2%—1+16(2%)—64(2%)+§1n<\/ﬁ+1> %——1n<\/%7 ) 2%
+%+% 2-232%) - \/ﬁ,,\/; 2-22 %)\/E+fln(\/;+l)
ln(\/__:+l)(2%) 2%71+§1n<\/__‘1+1>\/‘~5 \/z 23\/2371+1\/2371+7

{ 1n< 2 1+1>—?6 ( 1+1>(2%)+83—01n<\/;+1>(2%)
+—ln<\/2%—1+1> 2 —1——1n<\/71+1)(2%)\/;—E1n< 2%—14—1)(2%)\/;};7
)V
)=

w|~

72?01n (\/2371+1 371+—1n (\/ 1+l)(2%)—?1n (\/2%71“)(2%)
7,

-5 3] \/2 25— \/2371+ \/272%(2%)\/2%71+ﬂln<\/2%71+1>
+§1n<\/2%—1+1>(2%)\/2%—1+§1n(\/ 1+1>\/ (2%) - \/2 23\/23—1+1\/23—1+—

Ie(p):{jln( +1>——1n< 1+l>(2%)+83—01n<\/E+1>(2%)
+*‘“(V23*1+1)¢2371ffln(\/iul)(z%)mfgﬁm( )2 )y
,71n (\/23—1+1>\/2571+—1n (\/_‘1“)(23)7?111 <\/£i‘1+1>(2;)
+160 37 V2-2@h - \/2 23——\/23—1+ \/2 22— 142 ln<\/—1+]>
+§1n< 2%_1+1>(2%)\/E+§1n<\/;+1>\/7 SRR TEER YT

— (28

wl—

I7(p):{7§m( 2%’1“)*53*61 (\/;+1>(2%)+83—01n<\/71+1>(2%)
+2—01n<\/2%71+1>\/2%717 ln(\/—“l+1)(2%)\/é%‘,~1,13761 <\/2_%i‘]+1>(2%) 2%7]}1)
_23_01“<\/2%_1+1>\/2%—1+—ln<\/ﬁ+l)(2%)—ég—01 ( 2%_1+1>(2%)+%_1 2% _1
+é1“<\/E+1>+‘§11n(\/;+1)(2%) 2%71+§ln<\/2?—1+1> 212+ 1 23,1%
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Appendix C
Here is an approximate expression for the function A’(p).
—0.1285995252p% + 1.021170584p — 1.237710478 if 2<p<25
—0.1285995252p? + 1.430290495p — 2.872510153 if 2.5 < p < 2.62061219
1.035534493p — 2.203712390 if 2.620612190 < p < 2.658005104
A(p)=< 1.035534493p — 1.901747484 if 2.658005104 < p <3
1.035534493p — 2.025217119 if 3<p<3.769230769
1.035534493p — .7252171187 if 3.769230769 < p <18
1.035534493p — .5177672467 if p>18
Appendix D
See Tables 1-5.
Table 1
Numerical results for BQPs with 50 variables (7o = 20).
Prob. p=1.1 p=2 p=4 p=5 p=10 p=20 p=50 p=100
Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time
1 2098 1.28 2098 1.58 2098 0.76 2098 1.10 2098 194 2098  1.22 2098 0.86 2098  1.69
2 3702 1.61 3702 1.03 3702 1.07 3702 1.62 3702 234 3702 0.93 3702 217 3702 1.26
3 4626 0.73 4626 0.62 4626 0.77 4626 0.81 4626 0.97 4626 0.80 4626 0.78 4626 0.98
4 3544  1.10 3544 171 3544 244 3544  0.96 3544 296 3544 283 3438 148 3544 096
5 4012 0.87 4012 0.64 4012 1.11 4012 1.14 4012 1.24 4012 1.20 4012 0.83 4012 0.84
6 3693 1.67 3693 1.97 3693 2.56 3693 1.01 3693 2.47 3693 2.96 3693 2.09 3693 1.05
7 4510 1.29 4510 1.28 4510 2.08 4510 1.06 4510 2.67 4510 1.24 4510 1.22 4510 1.10
8 4216 1.31 4216 1.07 4216 2.46 4212 2.51 4216 2.58 4212 2.70 4216 1.26 4216 2.51
9 3744 1.74 3780 1.94 3780 1.19 3748 1.46 3748 2.98 3744 145 3732 2.25 3732 245
10 3507 1.55 3505 1.78 3507 2.03 3461 1.86 3499 3.39 3507 1.89 3507 3.01 3505 1.67
Table 2
Numerical results for BQPs with 100 variables (7o = 20).
Prob. p=1.1 p=2 p=4 p=5 p=10 p=20 p=50 p=100
Obj. Time Obj. Time Obj. Time  Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time
1 7840 4.55 7822  3.30 7840 5.08 7840 4.80 7812  4.19 7812 3.28 7838 6.22 - -
2 11036 4.62 10994 4.57 10996 1028 11018 2.38 11028 3.98 10994 3.01 11030 4.01 11018 3.01
3 12723  3.00 12723  3.68 12652 2.65 12723 3.83 12723  5.09 12723 297 12723 325 12723 495
4 10362 5.15 10368 3.15 10368 794 10362 3.01 10368 4.46 10368 3.18 10368 3.53 10368 3.37
5 9083 5.26 9083 7.03 9040 2.16 9040 2.87 9040 2.15 9040 4.61 9045 2.96 9045 4.11
6 10130 6.76 10101 3.84 10202 6.69 10168 9.10 10202 3.86 10101 493 10092 4.22 10184 5.13
7 10063 3.83 10098 3.23 10098 492 10094 6.10 10098 4.78 10094 3.00 10094 2.61 10094 5.02
8 11435 3.65 11419 5.27 11435 447 11435 467 11435 8.03 11415 5.20 11415 5.50 11435 4.23
9 11455 3.28 11455 2.76 11455 2.62 11455 4.18 11380 4.37 11357 5.97 11437 332 11380 4.93
10 12547 391 12565 2.16 12565 3.63 12565 5.53 12523 251 12503 2.84 12565 2.01 12547 1.72
Table 3
Numerical results for BQPs with 250 variables (7, = 40).
Prob. p=1.1 p=2 p=4 p=>5 p=10 p=20 p=50 p=100
Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time
1 45607 32.30 45571 32.66 45499 3132 45463 21.04 45434 2226 45571 30.77 45374 26.65 45607 34.02
2 44329 19.60 44810 19.33 44355 28.74 44738 2845 44505 23.19 44273 21.14 44337 2472 44810 18.64
3 49037 3243 49037 21.83 48978 20.27 48947 3648 48964 30.14 - - 48978 24.75 48951 2241
4 41188 19.99 41219 1935 41254 28.08 41215 3041 41199 17.08 41202 35.10 41199 38.74 40993 22.62
5 47821 2842 47758 2236 47876 27.72 47877 2858 47823 2280 47877 18.82 47928 23.62 47937 22.05
6 40625 34.13 40996 20.91 40768 24.00 41006 3594 41006 24.28 40771 21.94 40839 28.15 40679 28.56
7 46484 23.62 46757 15.56 46732 20.70 46713 1938 46689 3230 46753 19.60 46667 29.59 46753 15.38
8 35572 21.63 35294 2140 35666 16.17 35666 2837 35416 37.27 35473 27.77 35726 20.51 35282 28.27
9 48605 18.06 48605 20.50 48733 37.23 48562 22.18 48733 2298 48683 31.82 48677 18.94 48788 29.38
10 40442 30.15 40252 32.09 40442 26.57 39992 3533 40308 30.46 40252 26.37 40330 20.59 40288 43.26
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Table 4
Numerical results for BQPs with 500 variables (7o = 70).

Prob. p=1.1 p=2 p=4 p=5 p=10 p=20 p=50 p=100

Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

115822 1582 116458 178.1 116563 1304 116310 112.5 115163 181.1 115944 118.7 115966 171.3 115976 158.1
127997 1479 127895 1569 127796 150.2 128036 139.1 127994 121.7 128045 100.8 127795 135.6 127690 140.5
130812 128.6 130790 189.8 130523 222.6 130714 169.6 130295 1727 130782 120.6 130782 1403 130744 1375
129802 199.1 129992 191.5 129805 1804 129706 127.7 129711 1427 129860 192.0 129521 217.9 129706 1124
125173 160.7 125243 1229 125245 138.1 125399 137.7 125251 125.8 125135 141.1 125151 1459 125333 1374
121611 164.5 121586 133.4 121535 169.0 121603 1129 121225 1345 121589 98.6 120773 152.7 121480 146.6
121769 165.6 121721 1324 121475 1675 122104 1235 121744 1294 121240 2042 121941 170.8 121800 114.0
123526 157.0 122330 189.5 123360 159.1 123401 184.1 123001 188.8 123323 148.2 123301 163.4 123391 943
119968 1604 119977 171.5 120748 168.7 119780 180.3 120100 209.6 120594 1745 120263 147.6 120697 104.4
130109 156.8 130181 165.8 129977 189.4 130180 141.4 129977 164.2 129797 180.0 129635 137.9 130273 1953

CLVWoKONOOUA WN =

—_

Table 5
Numerical results for BQPs with 1000 variables (7o = 180).

Prob. p=1.1 p=2 p=4 p=5 p=10 p=20 p=50 p=100

Ob;j. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time  Obj. Time

1 371013 9483 370515 948.7 370481 1001.3 370033 946.5 370618 1197.6 370723 969.7 370269 780.3 - -

2 354453 1347.9 352389 1066.4 353768 762.0 352769 1100.7 354031 1009.2 352245 863.3 352667 903.3 353886 1033.3
3 370097 864.1 369638 841.0 369400 1230.1 370984 909.6 368351 917.6 369895 1270.0 370537 908.2 369622 848.0
4 370058 987.3 370426 1162.3 370171 1047.4 369628 14215 370113 9457 369860 976.4 369800 818.8 369906 889.1
5 352187 868.4 352299 1053.4 351881 763.4 352410 668.8 352064 1013.0 352296 7062 351846 12719 351753 886.5
6 357631 12319 358436 809.5 358528 862.2 358580 766.5 358425 837.3 357771 1056.5 358808 9356 - -

7 370033 856.1 369437 962.4 370198 1133.1 370192 8504 369967 794.6 370062 928.0 369615 802.5 369982 660.0
8 350389 869.7 350727 780.7 350781 931.3 351013 7957 350346 986.9 350982 747.1 350931 810.2 350128 1012.0
9 349038 1130.4 348232 1136.8 349205 679.6 348911 710.8 347864 716.7 347510 1031.6 347469 1094.8 347541 1219.2
10 349729 7045 350476 916.6 350593 9703 - - 350366 7952 350096 742.3 349842 644.1 349583 974.3
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