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THE ALMOST PERIODIC SOLUTIONS
OF NONAUTONOMOUS ABSTRACT
DIFFERENTIAL EQUATIONS

Yu-Hsien Chang ( B4 ) and Jein-Shan Chen ( [FRIL )

Abstract. In this paper we present some results concerned with the problem
of existence of almost—periodic and asymptotically almost—periodic solutions
of the following nonautonomous abstract differential equation in Banach
space:

dz

—d?:A(t):c+f(t) el

where J = [0,00) or J = (—00,00), f(t) is an almost periodic function
or a SP almost periodic function, A(t) is a continuous operator on J, and
{A(t)|t € J} generates a (totally) evolution system {U(t, s)|t,s € J}.

1. Introduction and Preliminaries

The problem about the existence of almost—periodic solutions of abstract
autonomous differential equations has been the subject of much activity over
the past years (e.g. Krein [5], Henriquez [6], Hengartner [9], Zaidman [11]).
However, the motivation of this paper is a resent paper of Henriquez [6], in which
he proved the existence of asymptotically almost—periodic solutions for abstract
autonomous differential equations.

In this paper we will present a generalization of some results contained in
Krein’s [5], Zaidman’s [11] and Henriquez’s [6] works. With some suitable assump-
tions on the evolution system and the forcing term, using the characterizations of
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(asymptotically) almost periodicity(L. Amerio & G. Prouse [1], Bescicovitch [2],
Zaidman [10]) and results on Bohl exponents and e-dichotomy (Krein [5]), we
obtain new results on the existence of almost—periodic or asymptotically almost—
periodic solutions for abstract non—autonomous differential equations in Banach
space.

Throughout this paper we will denote by X a real or complex Banach space
endowed with norm || - ||. Some of the following preliminaries were proved in the
references. However, for the completion we still list them here.

Definition 1. A continuous function f(t) : J — X is said to be almost-
periodic (in short, a.p.) if for every € > 0, there exists a set P. relatively dense
in J such that

1f(t+7)—Fll <e
for every t € J and every T € P..

Definition 2. A continuous function f(t) : Rt — X is called asymptotically

almost periodic (in short, a.a.p) if there are functions g(t) € a.p.(R : X) and
q(t) € Co(R* : X)) such that

f(t) =g(t) + ¢(2) for every t > 0,

where Co(R* : X) is the space of continuous functions from R* into X which
vanish at infinity.

Definition 3. A function f(t) € LP(J : X) p > 1 is called almost periodic in
the sense of Stepanov (in short, S — a.p.) if the function f(t) : J — LP([0,1]; X)
defined by

f@)(m) = ft+n), te, nelo,]

is almost periodic.
From these definitions one can easily have the following result:

Lemma 1. In order that f(t) € a.a.p.(RT : X) it is necessary and sufficient
that for every € > 0 there is T'(¢) > 0 such that the set of real numbers

{r

is relatively dense on R (see e.g. Zaidman [11]).

70, sup ||f(t+7) - FB)]l < s}
i>T(e)
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We consider the non—autonomous differential equation

(L) & AW+ ), teT=[0,m),

where f(t) : J — X is a continuous function and A(-) : J — [X] is an integrally
t+1
bounded (i.e.: sup/ |A(s)|[ds < M (0 <t < c0)) and continuous operator.
ted Ji

We can define a Cauchy operator U(t) of the homogeneous differential equation

dz
(1.2) e A(t)z, teJ,

by

U(t):I+/OtA(t1)dt1+i/ot/otn---/OtzA(tn)---A(tl)dt1~-dtn.

The solution of equation (1.2) is represented by z(t) = U(t)zo, where zq is the
initial value (Krein [5]). From this, we can define the evolution system U(t,)
of equation (1.1) or (1.2) by U(t,7) = U(t)U~'(r). It is well-known that the
evolution system U(t, ) satisfies the following properties:

(a) U(t,t) = I
(b)elilt, s)U s, 7) = Ult;m);
(¢) Ut ) = [U(r, 017
(d) U, 7| < e 14Gls,

and the solution of equation

dz
(11)—(1.3):{ dt At)e + (1), t>0,
z(0) = zo

is represented by z(t) = U(t)zo + ./Ot U)U™(r)f(r)dT (Krein [5]).

Definition 4. Let z(t) = U(t)zo be a solution of equation (1.2). By the
(upper) Bohl exponent Kpg(zg) of this solution is meant the greatest lower bound
of all those numbers p for which there exist numbers N, such that

(1.5) l2(®)]] < Npe®=||z(r)]|
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for any t,7 € [0,00), ¢ > 7. If such numbers p do not exist, we put Kp(zq) = oo.
In exactly the same way the lower Bohl exponent K (o) of a solution z(t) is the
least upper bound of those numbers p’ for which there exists a numbers N, > 0
such that ,

(1.6) ()l € Ny - #Eia(r)l (07 <t < o).

From these definitions and properties one can easily get the following Lemma
(see e.g. Krein [5]):

Lemma 2. Let z(t) be a solution of equation (1.2). Then the following
formulas hold:

In izl — el

I(B(ﬂ?o) Tt o et R ¥
(1.7)
Kg(zo)= lim = ”w(t)ll = :
T—00,t—7T—00 o 5

Suppose now P is a projection in X and Xp = PX is the corresponding
subspace. We consider the totality of solutions z(t) = U(t)zo of equation (1.2)
that are initially in Xp : 29 € Xp. By the upper (lower) Bohl exponent Kg(P)
(Kg(P)) of this totality of solutions is meant the greatest lower (least upper)
bound of the exponents p(p') for which formula (1.5) ((1.6)) is valid for all of
the solutions z(t) = U(t)zo with 2o € Xp and a number N, > 0 not depending
on zg. We will call the exponents Kg(P) and Kz(P) the upper and lower Bohl
exponents of equation (1.2), respectively, corresponding to the projection P. In
particular, when P = I we will simply call the Bohl exponents of equation (1.2)
and use the notation

Kp = Kg(I), Kﬁ;:KJ'B(I).
Then it is obvious that

Ky < K3(P) < kn(P) < ks.

Lemma 3. In order for the upper (lower) Bohl ezponent of equation (1.2) to
be finite (i.e. Kp < oo (K > —00) it is necessary and sufficient that

K = sup ”U(taT)” <00,
0<t—7<1
K' = sup ||U(1,t)| < .

0<t—7<1
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Instead of proving this Lemma directly we prove more general result:

Remark 1. Suppose mp = sup ||U(t)PU(t)|| < oo, then the necessary
0<t<oo

and sufficient condition for Kg < oo (K} > —o0) is that

k= swp |[U@PU-I(r)] < oo,
0<t—7<1

kb, = sup ||U(T)PUT(t)| < oo.
0<t—7<1

(note that for P =1, mp =1 < o).
Proof. Suppose Kg(P) < oo. Since z(t) = U(t)zo for some zg € Xp and
U Pz|| < Ne? =D\ U(r)Pz|| (t>7) forevery z€ X,
letting z = U~!(7)y, we have from the hypothesis that
IU@PUT()yll < Npe?EDNU (D) PUTH(7)]| < Npe? I mpljy]

and hence

[U@PU ()| < Nymper®=7) (¢ 2> 7).
Take the supremum, we have

kp= sup ||[UR)PUT(7)| < .
0<t—r<1

Similarlly, we can prove that kb < co whenever kz(P) < oo.
On the other hand, if kp < oo, take n to be the largest nonnegative integer
not greater than ¢t — 75 and set 7 =7+ k (k= 1,2,---,n), 7,41 = t. Then
U@YPU(n)i= Ura)PU M) U (5:.) PU Y 5nn) -« U () PU 1)

n+1

= H U(Tk)PU_l(Tk_l),
k=1
n+1
I0@PU ()| < [TIU(m)PU ()]l < K3+
k=1

< Kp - erlnKp < Kp .e(t-T)InKp
So, for any zg € Xp,

U)ol = IV PU(T)U()zol| < Kp - K2 U (7)o,
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and hence kp(P) <In Kp < oo.

Lemma 4. If A(t) is integrally bounded, then the Bohl exponents of equation
(1.2) are finite.

Proof. 1t is easy to see (e.g. Pazy [8]) that

e LM < g )| < 1O goran 1> s,

and hence
K= sup |U(7)]|<o.
0<t—7<1
Thus, kp < 0.
Lemma 5. If mp = sup ||U(t)PU(t)|| < co and the Bohl exponents are
0<t<oo

finite, they are representable by the formulas

VIR e L i

7,800 s
by = T BTGl
T,§—=00 s

Instead of proving this Lemma directly we prove more general result:

Remark 2. If mp = sup ||U(t)PU~*(t)|| < oo and the Bohl exponents are
0<t<oo

finite, then
-1
ks(P) = Tm ln”U(T-{—sS)PU (T)“,
o Aty | -1
yp) = g HTEPU
Proof. Set

-1
= T In||U(T + s)PU (7)|| :

H s
At first, let p > kp(P) (as in the proof of Remark 1) which satisfies that

U@ PU ()] < Npmpe?C) (12 7).

So, u < p and hence u < kg(P) < oco. Second, for every p > u, we can easily
see that p > kp(P), which implies u > kg(P). Hence the conclution of the first
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assertion is proved. The proof of the second assertion is the same as the the first
one, and hence the conclusion of this remark is true.

Lemma 6. Suppose the Bohl exponent kg of the equation (1.2) is finite. In
order for it to be negative it is necessary and sufficient that there exist positive
numbers T and q < 1 for which the following condition is satisfied:

for every x € X and t > 0 there ezxists a number 6,; € [0,T] with the
property that

(+) Ut + 0z, 1)z < gl|2]]-

Proof. For convenience, we say the equation (1.2) has the property B(v, N)
provided there exist v € ®, N > 0 such that all solutions z(t) of equation (1.2)
satisfy that

le@ll < Nemt=Dlz(n)]l, (¢ 27);
ie. ||U(t,7)|| < Ne~v(-7), (E=0T ).

If kg is negative, then there exist positive numbers v, N > 0 such that the
equation (1.2) has property B(v, N). So, for every T > 0 such that Ne™*T < 1,
we have

Ut + T,t)|| < Ne=*T.
Take 0,; =T, q= Ne ¥T. Then ||U(t + 6,4,t)z|| < q||z|-
Let 0 < tp < t < o0, from the continuity of U(r,7’), there is a 6 such that

1
1U(r, )l <

—  whenever 7,7’ satisfy to < 7,7 < 2t,|r—1'| < 6.
q

For any z € X,
1
lzll = [|U(r, 7 )U(', )e]l < ;HU(T',T)le-

This implies that ||U(7',7)z| > ¢l|z||-
So, 0+, whenever to < 7 < 74 0, < 2t.
From the hypothesis, for any zg € X, there exist

t1 =to+ 00,05 Z1 = U(t1,%0)%0,
to =t + 0z, 4,5 z2 = U(te,t1)z1 = U(22, t0)%0,
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After finite steps, say m steps (m < (t — t9)/0), we can get t,, <t < tmy1.
Since U(t,t0)z0 = U(tytm)ZTm, ||Zm|l < ¢™||zo|| and kp is finite we have

|U(t,t0)zol| < kg™||zo||, where k= sup ||[U(t,7)||< o00.
0<t—7<T

The fact Oz, t < T,k =1,2,---,m+ 1, implies

bk
t<to+(m+1)T ie m+1> T",

and hence

k
1U (¢, t0)ol| < ;q“-wnzon = Nev(t=t0)||go||,

-1
where N:ﬁ, v= L
q T

Thus, the Bohl exponent of equation (1.2) is negative. The proof of this Lemma
is complete now.

Lemma 7. Suppose equation (1.2) has a finite Bohl exponent kp and p is any
positive number. The Bohl exponent of the equation is negative precisely when
there ezists a positive constant C' for which

(%) {/:OHU(t,T)prdt}p < Cllz|| (to £ T < ).

Proof. Suppose the Bohl exponent of equation (1.2) is negative, then ||U(t,7)|| <
Ne=v(t=7) and hence

{ / °°|1U(t,r)z||”dt}” < el

We only need to show that () implies the (%) in Lemma 6. Suppose, on the
contrary, for any 0 < ¢ < 1 and any 7" > 0 there exist zg, 79 such that

1U(¢ 7)ol > gllooll, ¢ € [r0,70+ T7.

This implies

oo T0+T
[ @ msolPar> [ Ut ool 2 ¢zl -

0 T0
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Take T large enough such that ¢ > CP. This contradicts (x)’. Thus, (%)’
implies the (*) in Lemma 6 and hence this Lemma is proved.

Definition 5. An operator function A(t) is said to be precompactly valued
if its range is precompact in [X], (i.e. if every sequence {A(t,)} contains a
subsequence converging to an operator A of [X], where [X] denotes all linear
operatos on X).

Definition 6. An operator C is called an w-limit operator of A(?) if there
exists a sequence t,, — oo such that A(t,) = C

Definition 7. we say an operator function A(t) satisfies S, condition for
some € > 0 and L > 0 if there exists a nember 7" > 0 such that the inequality
||A(s) — A(?)|| < ¢ is satisfied when s,t > T, |s —t| < L. A function A(t) is said
to be stationary at infinity if it satisfies condition S, j for any arbitarily small
€ > 0 and some positive L.

Lemma 8. Suppose A(t) is a precompactly valued operator function that is
stationary at infinity. In order for the Bohl exponent kp of equation (1.2) to be
negative it is necessary and sufficient that the spectra of the w-limit operators of
A(t) lie in some halfplane Re\ < —vg (vo > 0).

Proof. To see this Lemma is true, we prove it in the following several steps:

Step 1: we will show that if A(%) is a precompactly valued operator function
and all spectra of the w-limit operators of A(t) are lying in the same half plane
ReA < —wg (vg > 0), then there is a Ty > 0 such that

||€A(t)TH < Nge~ "7 whenever ¢ > Tp,

where Ng, vg is independent of . Moreover, suppose for sufﬁciently small € > 0
and sufficiently large L > 0, A(t) satisfies condition S, 1 (¢ < §%, L > In w—_"]@),
it will be proved that the equation (1.2) has negative Bohl exponent

The first part of this assertion was proved by Krein (see [5]). He also proved
the following statement: Suppose Ur(t,s) (k = 1,2) are evolution operators of

the equations

dz
— = Ai(t k= il
dt k( ).’E, 1’

If
|UL(2, )| < Ne~2(t=9) where N >0,v; €R, t> s,
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then the following hold:
V(2. 5) = Ua(t, ) < Nemlma)( N Mar=suiller g
[0t )| < Nemrli=sleh [ Mah=tutollér 4> o,
From the assumption we have that
|A(?) — A(7)|| < € (r<t<7+ L) whenever 7 islarge enough.
By taking A;1(t) = A(7), A2(t) = A(t) (1 <t < 7+ L) and using the facts

Ui(t,s) = e(t=3)A(T)  and ||e(t—s)A(f)|| < Nge~vo(t=9)

7

we have that
U@, 9)|| < Noe=*¢=2)  (r<t<71+4+L), where v=my— Noe;

and hence
|U(T+ L,7)|| < Naen 5

Since A(t) is precompactly valued, it is bounded and integrally bounded. Thus,
from Lemma 6 the Bohl exponent kg of the equation (1.2) is negative, and the
assertion of step 1 is proved completely now.

Step 2: We will prove that if A(t) is precompactly valued, the Bohl exponent
kp is negative and A(t) satisfies condition S, r, for sufficiently small ¢ > 0 and
sufficiently large L > 0, then all spectra of the w-limit operators of A(%) are lying
in the same half plane ReX < —vg (vg > 0).

Suppose C' is a w-limit operator of A(t) (i.e. ther exists a sequence ¢, — 00
such that A(¢,) — C), then for any small § > 0, there is a sufficiently large n
such that ||C — A(t,)|| < 4. Since A(t) satisfies condition S, 1, ||A(t,)— A(t)]| < €
for large n, and hence ||C — A(t)|| < e+ 6 (t, <t <t,+ L). So, from the result
of Krein in Step 1 we have |[¢“L|| < Ne™"t, where v’ = v— N(e + 6). Hence, the
spectrum o(C') of C lies in the half plane

InN

Re) < — v = —vg, where vy > 0 isindependent of C,

and the assertion of Step 2 is proved. The conclusion of this Lemma follows
immediately.

Definition 8. Let X7, X, be a pair of nonzero disjoint subspaces of a Banach
space X (i.e. X7 N Xy = {0}). We define the angular distance between X3, X»
as

STZ(X],XQ) = I-eXithf_;;“:l “.’l)] + 1132“ -
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Lemma 9. Suppose the space X decomposes into a direct sum X = X; + X>
of closed subspaces and Py, P, = I — Py are the corresponding supplementary
projections. Then the following is valid:

2
[Pl [Pl

Hence, the boundedness from above of a set {Py, P>} of projections in a Banach
space X s equivalent to the bonundedness from below of the set {Sn(PX, (I —
P)X)} of angular distances between the subspace PX and its complement (I —
P)X.

< S'I‘L(Xl,Xz)

(=1,2).

Proof. Take any é > Sn(X;,X2), there exists zx € X, ||lzk]| = 1, k = 1,2
such that ||zq 4+ 2z2]| < 6. Let ¢ = 21 + z2. Then Prz = x4 and 1 = ||zg| <
| Pe|l - [|z]| < || Pxl| - 0, and hence 1/||Pg|| < 6. This implies 1/||Px|| < Sn(X1, X32).
For any z € X,

P]il? P2(II 1 ”P117”
Sn(X1,X2) < ‘ + Pz + ———= P
|Przl| || Pz]| || Paz||
1 | Prz|| — || Pz]|
= + Pz
[P ‘ [Pl
| Pzl + || Poz|
o |1‘ + ‘ Pzd)
1Pral {‘ | 1Bzl
ozl
||P1$||
and hence lell 5
STL(X],XQ) <2 lIIf = .
x ||z |P]
Similarly, one can show that
el & o
PRV =R

Thus, the assertion of this Lemma is true.

Definition 9. we say that equation

dz
dt

is e—dichotomic on J with exponents v; > 0, vy > 0 if for some tg € J the space
X decomposes into a direct sum X = X;(%o) + X2(to) of closed subspaces such
that the following conditions are satisfied:

(1.2") = Az, teJ = (—00,00)
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(a) The solutions z1(t) = U(t,t0)z? of equation (1.2) in the subspace X;(to)
at t = to (22 € X;1(to)) are subject to the estimate
lz1 ()l < Nre™1 =z (s))], t2s, tisel,
with some exponent vy > 0.

(b) The solutions z5(t) = U(t,%0)z3 of equation (1.2') in the subspace X»(o)
at t = to (29 € X2(%0)) are subject to the estimate

lle2(®)]] < Nae™2C Dl (s)]], t<s, tseld,
with some exponent vy > 0.

(c) The angular distance between the subspaces X;(t) = U(t,t0)X1(to) and
Xo(t) = U(t,to)X2(to) cannot become arbitrarily small under a variation
of t; more precisely, there exists a constant r > 0 such that

STL(Xl(t),XQ(t)) > T, te J.

Lemma 10. In order for equation (1.2") to be e-dichotomic on J = R with
ezponents v1 > 0, vy > 0, it is necessary and sufficient that the conditions

U@)PLUL(s)|| < Npe~va(t=3) t 2=3);
o { U BUs)) (t2 )

[U@PUT ()| £ Noe™2C70 (s> 1)
with certain constants Ny be satisfied on this interval.

Proof. Let Pi(t) be the corresponding supplementary projections of the sub-
spaces X(t), k = 1,2. Taking t = s, we have

1Bl = IU@) PO (B)]| < Ni -

From Lemma 9, the condition (c) of Definition 9 is satisfied. For 2(0) = P;z(0)
and t > s,

lz(®)ll = 1U(©)Prz(0)]| = [U@PU ™ (s)z(s)] < N1 - e ja(s)]].

Hence, the condition (a) of Definition 9 is satisfied. Similarly, the condition (b)
of Definition 9 is also satisfied.
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On the other hand, taking z{ = P,U~1(s)z {(z € X) in the condition (a) of
Definition 9, we have from Lemma 9 and the condition (c) of Definition 9

U@ PU(s)e]|

|U®)23]| < Nremvr(t=9)||U(s)a?)|
< Nie =9\ U(s)PU 1 (s)z|
< NyMe 1 (=9)||g]|.

Similarly, for ¢ < s, the second assertion of (x)” also holds and Lemma 10 is
proved now.

We now consider the non—autonomous equation:

(1.4) % = Atz + f(t), te€J=(—00,00).

Let Py, P, be a pair of mutually complementary projections: Py + P, = [. If
U(t) is the Cauchy operator of equation (1.4), we put

{ U)PU(s), t> 8,
G(t,3) =
-U)PUY(s), t<s.

It immediately follows from the definition of the G(¢,s) that G(¢,s) satisfies the
following properties:

() 2282 _ 4)6(t,), 1 # 5
) 285 _Glr,0)a(s), 1 # 5

(c) G(st,s)—G(s7,s)=1I;
(d) G@t,t") - G(t,t7) = -1

(e) z(t) = /oo G(t,s)f(s)ds is the solution of equation (1.4).

2. Main Results

Theorem 1. If A(-): J — [X] is continuous on J and is integrally bounded,
f(t):J — X is S —a.p., and for any p > 0 there ezists a positive number C > 0
such that

{/Too”U(t’T)xll”dt}p <Cllall  (to <7< 0),
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then the solution of equation (1.1) — (1.3):

dz
5 = Al + f(®)

z(0) = 29
s asymptotically almost periodic.
Proof. From Lemma 7 it follows that kg < oo and kg < 0, i.e.
U@, s)]| < Nem®t=2) N >0,a>0, t>s.

Since the solution of equation (1.1)~(1.3) is formulated by

¢
2(8) = U(t,0)z0 + / U(t,s)f(s)ds,
0
and tlim |1U(t,0)z0]| < tlim Ne=*(t=9)||zg|| = 0, we have U(t,0)zo € Co(RT : X).

¢
Let u(t) = / U(t,s)f(s)ds, we will prove that u(t) € a.a.p.. Hence we will
0

conclude that z(t) = U(t,0)zo + u(t) belongs to a.a.p..

Since
i+T

w(t+71) = : U(t+1,s)f(s)ds

= /0 Uit+r1,s+7)f(s+ 7)ds

—n

t
+/ Ut+r,s+7)f(s+7)ds
0

/(-)TU(t—i—T,T——'S)f(T—S)dS

t
+/ Ut+7,s+7)f(s+ 7)ds,
0
we have that
it o) = / U(t+ 1,7 — 8)f(r — 8)ds
0
t
+ [ W+ ns+0f(s+7)- UL f()ds.
0
From the assumption ||U(t,s)|| < Ne=*(#=2) it follows that

lu+7) = u@ll < [ N sz = s)jds

+ [ NI s 4 1) - Sl
0

= h+bh,
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where [y, I are two constants. By choosing n such that n <t < n + 1, we have

0 k+1
L < Neet.Y ek /k 1£(s)lds
k=0

< Ne—ot. ie—ak.c e M
- i l—e @

and

o= Neot [ el f(s+ 1)~ f(s)]ds

IN

Ne—ot . i e (k+1) /k+1||f(s +7) = f(s)||ds
k=0 k

/

n or]
< NfME:fWW-a<AE—i,
R k=0 =5

and hence we obtain that

NCe " = Ne*-z
ke =l
l—e@ b—ez%

llu(t +7) —w(t)]| <

From the last inequality we deduce that for every ¢ > 0 there exist a relatively
dense set P. (P. = P, for ¢’ appropriate) and a constant 7. > 0 such that

lu(t+7) —u(@®)]| <€

for all t > T., 7 € P.. It follows from Lemma 1 that u(¢) € a.a.p. and Theorem
1 is proved.

Remark 3. Obviously, any a.p. function is a S? — a.p. function and from the
fact that 1 < p; < py implies SP* C 572 (see e.g. Amerio and Prouse [1]), any
SP — a.p. function is a ST — a.p. function. Theorem 1 also can be similarily proved
provided A(t) is replaced by a periodic or bounded operator and f(t) is replaced
by a S? — a.p. function or an a.p. function in Theorem 1.

Theorem 2. If A(:): J — [X] is continuous on J and is integrally bounded,
f(t):J — X is S* — a.p., and if there exist positive numbers T and ¢ < 1 for
which the following condition is satisfied:

for every z € X and t > 0 there ezists a number 6, € [0,T] with the
property that
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Ut + 0z, )] < glll,
then the solution of equation (1.1) — (1.3):

dz
H:A(t)zﬁ-f(t), >0,

&(0)= 2o

ts asymptotically almost periodic.

Theorem 3. Suppose A(t) is a precompactly valued operator function that is
stationary at infinity, and all the spectra of the w-limit oprtators of A(t) lie in
some halfplane ReX < —vg (vg > 0), and f(t): J — X is ST — a.p..

Then the solution of equation (1.1) — (1.3):

dz
— =AMz +f(1), >0,
#(0) = zq

1s asymptotically almost periodic.

Applying Lemma 4, Lemma 6, Lemma 8 and the technique used in the proof
of Theorem 1, one can easily get Theorem 2 and Theorem 3. The detail of the
proof is omitted here.

Theorem 4. Suppese equation (1.2') is e-dichotomic on J = R with ezpo-
nents v; > 0, vo > 0, and f(t) is a.p.. Then the solution of equation (1.4):

dz
—- =AWz + (1), €T =(~00,00)

s almost periodic.

Proof. Since the solution of equation (1.4) can be represented by

Et) = /_Z G(t,s)f(s)ds

/ L UWPU () f(s)ds

—0o0

+ /t T _U@) B (s)f(s)ds,
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we can write

t+71
2+ 1) =~/ U(t + 7)PLU(s)f(s)ds

—0o0

— /t: U(t+ 1)PU(s)f(s)ds

¢
= / VT Dl e b et ryds
—00
- / Ut +r)PU (s +7)f(s+7)ds.
¢
From Lemma 10, it follows that

[U@PU ()| € Naemnl=2) (3> )
{ [U@PU ()| € N6 (s21)
Hence, we obtain that
ot +m) -2l < [ Fe I g(s )= f(s)lds
+ [ Fae I f(s 4 1) = f(S)lds.
From the fact that f(t) is a.p., we obtain the estimate:
Nie N _

+

(%1 U2

lz(t+7) —2@)|| <

It follows that the solution of equation (1.4) is almost periodic and Theorem 4 is
proved.
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