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Abstract In this paper, we present a measure of distance in a second-order cone
based on a class of continuously differentiable strictly convex functions on R++.
Since the distance function has some favorable properties similar to those of the
D-function (Censor and Zenios in J. Optim. Theory Appl. 73:451–464 1992), we
refer to it as a quasi D-function. Then, a proximal-like algorithm using the quasi
D-function is proposed and applied to the second-cone programming problem, which
is to minimize a closed proper convex function with general second-order cone con-
straints. Like the proximal point algorithm using the D-function (Censor and Zenios
in J. Optim. Theory Appl. 73:451–464 1992; Chen and Teboulle in SIAM J. Optim.
3:538–543 1993), under some mild assumptions we establish the global convergence
of the algorithm expressed in terms of function values; we show that the sequence
generated by the proposed algorithm is bounded and that every accumulation point is
a solution to the considered problem.
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1 Introduction

We consider the following convex second-order cone programming (CSOCP):

min f (ζ ),

s.t. Aζ + b �Kn 0,

where A is an n × m matrix with n ≥ m, b is a vector in R
n, f : R

m → (−∞,+∞]
is a closed proper convex function, Kn is a second-order cone (SOC for short) in R

n

given by

Kn := {(x1, x2) ∈ R × R
n−1 | ‖x2‖ ≤ x1}, (1)

and x �Kn 0 means that x ∈ Kn. Note that a function is closed if and only if it is
lower semi-continuous (l.s.c. for short) and a function is proper if f (ζ ) < +∞ for at
least one ζ ∈ R

m and f (ζ ) > −∞ for all ζ ∈ R
m. The CSOCP, as an extension of the

standard second-order cone programming (SOCP) (see Sect. 4), has applications in
a broad range of fields from engineering, control and finance to robust optimization
and combinatorial optimization; see [3–7, and references therein].

Recently, the SOCP has received much attention in optimization, particularly in
the context of solutions methods. In this paper, we focus on the solution of the more
general CSOCP. Note that the CSOCP is a special class of convex programs, and
therefore it can be solved via general convex programming methods. One of these
methods is the proximal point algorithm for minimizing a convex function f (ζ ) de-
fined on R

m, which replaces the problem minζ∈Rm f (ζ ) by a sequence of minimiza-
tion problems with strictly convex objectives and generates a sequence {ζ k} by

ζ k = argmin
ζ∈Rm

{f (ζ ) + (1/(2μk))‖ζ − ζ k−1‖2}, (2)

where μk is a sequence of positive numbers and ‖ · ‖ denotes the Euclidean norm in
R

m. The method was due to Martinet [8] who introduced the above proximal mini-
mization problem based on the Moreau proximal approximation [9] of f . The proxi-
mal point algorithm was then further developed and studied by Rockafellar [10, 11].
Later, several researchers [1, 2, 12–14] proposed and investigated nonquadratic prox-
imal point algorithm for the convex programming with nonnegative constraints, by
replacing the quadratic distance in (2) with other distance-like functions. Among oth-
ers, Censor and Zenios [1] replaced the method (2) by a method of the form

ζ k = argmin
ζ∈Rm

{f (ζ ) + (1/μk)D(ζ, ζ k)}, (3)

where D(·, ·), called the D-function, is a measure of distance based on a Bregman
function.

Recall that, given an open convex set S of R
m, a convex real function g defined

on the closure of S, is called a Bregman function [15–17] if it satisfies the properties
listed in Definition 1.1 below; the induced D-function is given by

Dϕ(ζ, ξ) := ϕ(ζ ) − ϕ(ξ) − 〈∇ϕ(ξ), ζ − ξ 〉, (4)

where 〈·, ·〉 denotes the inner product in R
m and ∇ϕ denotes the gradient of ϕ.
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Definition 1.1 Let S ⊆ R
m be an open set and let S̄ be its closure. Then, ϕ : S̄ → R

is called a Bregman function with zone S if the following properties hold:

(i) ϕ is continuously differentiable on S.
(ii) ϕ is strictly convex and continuous on S̄.

(iii) For each γ ∈ R, the partial level sets L1(ξ, γ ) := {ζ ∈ S̄ | Dϕ(ζ, ξ) ≤ γ } and
L2(ζ, γ ) := {ξ ∈ S | Dϕ(ζ, ξ) ≤ γ } are bounded for any ξ ∈ S and ζ ∈ S̄.

(iv) If {ξk} ⊂ S converges to ξ∗, then Dϕ(ξ∗, ξ k) converges to 0.
(v) If {ζ k} and {ξk} are sequences such that ξk → ξ∗ ∈ S̄, {ζ k} is bounded and, if

Dϕ(ζ k, ξk) → 0, then ζ k → ξ∗.

The Bregman proximal minimization (BPM) method described as in (3) was
further extended by Kiwiel [18] with generalized Bregman functions, called B-
functions. Compared with Bregman functions, these functions are possibly nondif-
ferentiable and infinite on the boundary of their domain. For the detailed definition
of B-functions and the convergence of BPM method using B-functions, please refer
to [18].

The main purpose of this paper is to extend the BPM method (3) so that it can be
used to deal with the CSOCP. Specifically, we define a measure of distance in second-
order cone Kn by a class of continuously differentiable strictly convex functions on
R++ which are in fact special B-functions in R (see Property 3.1). The distance mea-
sure, including the entropy-like distance in Kn as a special case, is shown to have
some favorable properties similar to those for a Bregman distance, and hence we
here refer it as a quasi Bregman distance or quasi D-function. The specific definition
is given in Sect. 3. Then, a proximal-like algorithm using quasi D-function is pro-
posed and applied for solving the CSOCP. Like the proximal-point algorithm (3), we
establish, under some mild assumptions, the global convergence of the algorithm ex-
pressed in terms of function values, and show that the sequence generated is bounded
and each accumulation point is a solution of the CSOCP.

The rest of this paper is organized as follows. In Sect. 2, we review some
basic concepts and properties associated with SOC. In Sect. 3, we define a quasi
D-function in Kn and explore the relations among the quasi D-function, the D-
function, and the double-regularized distance function [19]. In Sect. 4, we present a
proximal-like algorithm using quasi D-function and apply it for solving the CSOCP,
and meanwhile, analyze the convergence of the algorithm. Finally, we close this paper
in Sect. 5.

Some words about our notation. R+ and R++ denote the nonnegative real num-
ber set and the positive real number set, respectively, and I represents an identity
matrix of suitable dimension. For a differentiable function φ in R, φ′ represents its
derivative. Given a set S, we use S̄, int(S) and bd(S) to denote the closure, the in-
terior and the boundary of S, respectively. For a closed proper convex function f :
R

m → (−∞,+∞], we denote the domain of f by dom(f ) := {ζ ∈ R
m | f (ζ ) < ∞}

and the subdifferential of f at ζ̄ by ∂f (ζ̄ ) := {w ∈ R
m | f (ζ ) ≥ f (ζ̄ ) + 〈w,ζ − ζ̄ 〉,

∀ζ ∈ R
m}. If f is differentiable at ζ , we use ∇f (ζ ) to denote its gradient at ζ . For

any x, y in R
n, we write x �Kn y if x −y ∈Kn; and write x �Kn y if x −y ∈ int(Kn).

In other words, we have x �Kn 0 if and only if x ∈ Kn; and x �Kn 0 if and only if
x ∈ int(Kn).
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2 Preliminaries

In this section, we review some basic concepts and properties related to the SOC
Kn that will be used in the subsequent analysis. For any x = (x1, x2), y = (y1, y2) ∈
R × R

n−1, we define their Jordan product as

x ◦ y := (〈x, y〉, y1x2 + x1y2). (5)

We write x + y to mean the usual componentwise addition of vectors and x2 to mean
x ◦ x. Then ◦, + and e = (1,0, . . . ,0)T ∈ R

n have the following basic properties [20,
21]: (1) e ◦ x = x for all x ∈ R

n. (2) x ◦ y = y ◦ x for all x, y ∈ R
n. (3) x ◦ (x2 ◦ y) =

x2 ◦ (x ◦ y) for all x, y ∈ R
n. (4) (x + y) ◦ z = x ◦ z + y ◦ z for all x, y, z ∈ R

n. Note
that the Jordan product is not associative, but it is power associated, i.e., x ◦ (x ◦ x) =
(x ◦ x) ◦ x for all x ∈ R

n. Thus, we may, without fear of ambiguity, write xm for
the product of m copies of x and xm+n = xm ◦ xn for all positive integers m and n.
We define x0 = e. Besides, we should point out that Kn is not closed under Jordan
product.

For each x = (x1, x2) ∈ R × R
n−1, the determinant and the trace of x are defined

by

det(x) = x2
1 − ‖x2‖2, tr(x) = 2x1. (6)

In general, det(x ◦ y) �= det(x)det(y) unless x and y are collinear, i.e., x = αy for
some α ∈ R. A vector x = (x1, x2) ∈ R × R

n−1 is said to be invertible if det(x) �= 0.
If x is invertible, then there exists a unique y ∈ R

n satisfying x ◦ y = y ◦ x = e. We
call this y the inverse of x and denote it by x−1. In fact, we have

x−1 = (1/(x2
1 − ‖x2‖2))(x1,−x2) = (1/det(x))(tr(x)e − x).

Therefore, x ∈ int(Kn) if and only if x−1 ∈ int(Kn). For any x ∈Kn, it is known that
there exists a unique vector in Kn denoted by x1/2 such that (x1/2)2 = x1/2 ◦x1/2 = x.

Next, we introduce the definition of spectral factorization. Let x = (x1, x2) ∈ R ×
R

n−1; then, x can be decomposed as

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (7)

where λi(x) and u
(i)
x are the spectral value and the associated spectral vector given

by

λi(x) := x1 + (−1)i‖x2‖,
u

(i)
x :=

{
(1/2)(1, (−1)ix2/‖x2‖), if x2 �= 0;

(1/2)(1, (−1)iw̄2), if x2 = 0,

(8)

for i = 1,2 with w̄2 being any vector in R
n−1 satisfying ‖w̄2‖ = 1. If x2 �= 0, the fac-

torization is unique. In the sequel, for any x ∈ R
n, we write λ(x) := (λ1(x), λ2(x)),

where λ1(x), λ2(x) are the spectral values of x.
The spectral decomposition along with the Jordan algebra associated with SOC

has some basic properties as below, whose proofs can be found in [20, 21].
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Property 2.1 For any x = (x1, x2) ∈ R×R
n−1 with the spectral values λ1(x), λ2(x)

and spectral vectors u
(1)
x , u

(2)
x given as above, we have:

(a) u
(1)
x and u

(2)
x are orthogonal under the Jordan product and have length 1/

√
2,

i.e.,

u(1)
x ◦ u(2)

x = 0, ‖u(1)
x ‖ = ‖u(2)

x ‖ = 1/
√

2.

(b) u
(1)
x and u

(2)
x are idempotent under the Jordan product, i.e., u

(i)
x ◦ u

(i)
x = u

(i)
x for

i = 1,2.
(c) The determinant, the trace and the norm of x can be represented by λ1(x), λ2(x):

det(x) = λ1(x)λ2(x),

tr(x) = λ1(x) + λ2(x),

‖x‖2 = (λ2
1(x) + λ2

2(x))/2.

(d) λ1(x), λ2(x) are nonnegative (positive) if and only if x ∈Kn (x ∈ int(Kn)).

Finally, for any g : R → R, one can define a corresponding function gsoc(x) in R
n

by applying g to the spectral values of the spectral decomposition of x with respect
to Kn, i.e.,

gsoc(x) = g(λ1(x))u(1)
x + g(λ2(x))u(2)

x , ∀x = (x1, x2) ∈ R × R
n−1. (9)

If g is defined only on a subset of R, then gsoc is defined on the corresponding subset
of R

n. The definition in (9) is unambiguous whether x2 �= 0 or x2 = 0. The following
lemma states some relations between the vector-valued function gsoc and the scalar
function g, whose proof can be found in [6, 21].

Lemma 2.1 Given a function g : R → R, let gsoc(x) be the vector-valued function
defined by (9). If g is differentiable (respectively, continuously differentiable), then
gsoc(x) is also differentiable (respectively, continuously differentiable), and its Ja-
cobian at x = (x1, x2) ∈ R × R

n−1 is given by ∇gsoc(x) = g′(x1)I , if x2 = 0, and
otherwise

∇gsoc(x) =
[

b cxT
2 /‖x2‖

cx2/‖x2‖ aI + (b − a)(x2x
T
2 )/‖x2‖2

]
, (10)

where

a = [g(λ2(x)) − g(λ1(x))]/[λ2(x) − λ1(x)],
b = [g′(λ2(x)) + g′(λ1(x))]/2, c = [g′(λ2(x)) − g′(λ1(x))]/2.

(11)

3 Quasi D-Functions in SOC and Their Properties

In this section, we present a class of distance measures on SOC and discuss its rela-
tions with the D-function and the double-regularized Bregman distance [19]. For this
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purpose, we need a class of functions φ : R+ → R satisfying Property 3.1 below, in
which the function d : R+ × R++ → R is defined by

d(s, t) = φ(s) − φ(t) − φ′(t)(s − t), ∀s ∈ R+, t ∈ R++. (12)

Property 3.1

(a) φ is continuously differentiable on R++.
(b) φ is strictly convex and continuous on R+.
(c) For each γ ∈ R, the level sets {s ∈ R+ | d(s, t) ≤ γ } and {t ∈ R++ | d(s, t) ≤ γ }

are bounded for any t ∈ R++ and s ∈ R+, respectively.
(d) If {tk} ⊂ R++ is a sequence such that limk→+∞ tk = 0, then

limk→+∞ φ′(tk)(s − tk) = −∞ for all s ∈ R++.

The function φ satisfying Property 3.1 (d) is said to be boundary coercive in [22].
If setting φ(t) = +∞ when t /∈ R+, then φ becomes a closed proper strictly convex
on R. Furthermore, by Lemma 2.4 of [18] and Property 3.1 (c), it is not difficult to see
that φ(t) and

∑n
i=1 φ(xi) are a B-function on R and R

n, respectively. Unless other-
wise stated, in the rest of this paper, we always assume that φ satisfies Property 3.1.

From the discussions in Sect. 2, clearly, the following vector-valued functions

φsoc(x) = φ(λ1(x))u(1)
x + φ(λ2(x))u(2)

x (13)

and

(φ′)soc(x) = φ′ (λ1(x))u(1)
x + φ′ (λ2(x))u(2)

x (14)

are well-defined over Kn and int(Kn), respectively. In view of this, we define

H(x,y) :=
⎧⎨
⎩

tr[φsoc(x)−φsoc(y)− (φ′)soc(y) ◦ (x −y)], ∀x ∈Kn, y ∈ int(Kn),

+∞, otherwise.
(15)

In what follows, we will show that the function H : R
n × R

n → (−∞,+∞] enjoys
some favorable properties similar to those of the D-function. Particularly, we prove
that H(x,y) ≥ 0 for any x ∈ Kn, y ∈ int(Kn), and moreover, H(x,y) = 0 if and only
if x = y. Consequently, it can be regarded as a distance measure on the SOC.

We first start with two technical lemmas that will be used in the subsequent analy-
sis.

Lemma 3.1 For any x = (x1, x2), y = (y1, y2) ∈ R × R
n−1, we have tr(x ◦ y) ≤

〈λ(x),λ(y)〉 where λ(x) = (λ1(x), λ2(x)) and λ(y) = (λ1(y), λ2(y)), and the in-
equality holds with equality if and only if x2 = αy2 for some α > 0.

Proof From (5)–(6) and Cauchy-Schwartz inequality,

tr(x ◦ y) = 2〈x, y〉 = 2x1y1 + 2xT
2 y2 ≤ 2x1y1 + 2‖x2‖ · ‖y2‖.
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On the other hand, from the definition of the spectral values given by (8),

〈λ(x),λ(y)〉 = (x1 − ‖x2‖)(y1 − ‖y2‖) + (x1 + ‖x2‖)(y1 + ‖y2‖)
= 2x1y1 + 2‖x2‖ · ‖y2‖.

From the above two sides, we obtain immediately the inequality relation. In addition,
we note that the inequality becomes an equality if and only if xT

2 y2 = ‖x2‖ · ‖y2‖,
which is equivalent to saying that x2 = αy2 for some α > 0. �

Lemma 3.2 Let φsoc(x) and (φ′)soc(x) be given as in (13) and (14), respectively.
Then:

(a) φsoc(x) is continuously differentiable on int(Kn) with the gradient ∇φsoc(x)

satisfying ∇φsoc(x)e = (φ′)soc(x).

(b) tr[φsoc(x)] = ∑2
i=1 φ[λi(x)] and tr[(φ′)soc(x)] = ∑2

i=1 φ′[λi(x)].
(c) tr[φsoc(x)] is continuously differentiable on int(Kn) with ∇ tr[φsoc(x)] =

2∇φsoc(x)e.
(d) tr[φsoc(x)] is strictly convex and continuous on Kn.
(e) If {yk} ⊂ int(Kn) is a sequence such that limk→+∞ yk = ȳ ∈ bd(Kn), then

lim
k→+∞〈∇ tr[φsoc(yk)], x − yk〉 = −∞ for all x ∈ int(Kn).

In other words, the function tr[φsoc(x)] is boundary coercive.

Proof (a) The first part is due to Lemma 2.1, and we next prove the second part. If
x2 �= 0, then by formulas (10)–(11) it is easy to compute that

∇φsoc(x)e =
(

(1/2)[φ′(λ2(x)) + φ′(λ1(x))]
(1/2)[φ′(λ2(x)) − φ′(λ1(x))](x2/‖x2‖)

)
.

In addition, using (8) and (14), we can prove that the vector in the right hand side is
exactly (φ′)soc(x). Therefore, ∇φsoc(x)e = (φ′)soc(x). If x2 = 0, from ∇φsoc(x) =
φ′(x1)I and formula (8), we readily obtain ∇φsoc(x)e = (φ′)soc(x).

(b) The result follows directly from Property 2.1 (c) and (13)–(14).
(c) From part (a) and the fact that tr[φsoc(x)] = tr[φsoc(x) ◦ e] = 2〈φsoc(x), e〉,

clearly, tr[φsoc(x)] is continuously differentiable on int(Kn). Applying the chain
rule for inner product of two functions yields immediately that ∇ tr[φsoc(x)] =
2∇φsoc(x)e.

(d) It is clear that φsoc(x) is continuous on Kn. We next prove that it is strictly
convex on Kn. For any x, y ∈ Kn with x �= y and α,β ∈ (0,1) with α + β = 1,
we have that

λ1(αx + βy) = αx1 + βy1 − ‖αx2 + βy2‖ ≥ αλ1(x) + βλ1(y),

λ2(αx + βy) = αx1 + βy1 + ‖αx2 + βy2‖ ≤ αλ2(x) + βλ2(y),

implying that

αλ1(x) + βλ1(y) ≤ λ1(αx + βy) ≤ λ2(αx + βy) ≤ αλ2(x) + βλ2(y).
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On the other hand,

λ1(αx + βy) + λ2(αx + βy) = 2αx1 + 2βy1

= [αλ1(x) + βλ1(y)] + [αλ2(x) + βλ2(y)].

The last two equations imply that there exists ρ ∈ [0,1] such that

λ1(αx + βy) = ρ[αλ1(x) + βλ1(y)] + (1 − ρ)[αλ2(x) + βλ2(y)],
λ2(αx + βy) = (1 − ρ)[αλ1(x) + βλ1(y)] + ρ[αλ2(x) + βλ2(y)].

Thus, from Property 2.1, it follows that

tr[φsoc(αx + βy)] = φ[λ1(αx + βy)] + φ[λ2(αx + βy)]
= φ[ρ(αλ1(x) + βλ1(y)) + (1 − ρ)(αλ2(x) + βλ2(y))]

+φ[(1 − ρ)(αλ1(x) + βλ1(y)) + ρ(αλ2(x) + βλ2(y))]
≤ ρφ(αλ1(x) + βλ1(y)) + (1 − ρ)φ(αλ2(x) + βλ2(y))

+(1 − ρ)φ(αλ1(x) + βλ1(y)) + ρφ(αλ2(x) + βλ2(y))

= φ(αλ1(x) + βλ1(y)) + φ(αλ2(x) + βλ2(y))

< αφ(λ1(x)) + βφ(λ1(y)) + αφ(λ2(x)) + βφ(λ2(y))

= α tr[φsoc(x)] + β tr[φsoc(y)],

where the first equality and the last one follow from part (b), and the two inequalities
are due to the strict convexity of φ on R++. By the definition of strict convexity, the
conclusion holds.

(e) From part (a) and part (c), we can obtain readily the following equality:

∇ tr[φsoc(x)] = 2(φ′)soc(x), ∀x ∈ int(Kn). (16)

Using the relation and Lemma 3.1, we then have that

〈∇ tr[φsoc(yk)], x − yk〉 = 2〈(φ′)soc(yk), x − yk〉
= tr[(φ′)soc(yk) ◦ (x − yk)]
= tr[(φ′)soc(yk) ◦ x] − tr[(φ′)soc(yk) ◦ yk]

≤
2∑

i=1

φ′[λi(y
k)]λi(x) − tr[(φ′)soc(yk) ◦ yk]. (17)

In addition, by Property 2.1 (a)–(b), for any y ∈ int(Kn), we can compute

(φ′)soc(y) ◦ y = φ′(λ1(y))λ1(y)u(1)
y + φ′(λ2(y))λ2(y)u(2)

y , (18)
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which implies that

tr[(φ′)soc(yk) ◦ yk] =
2∑

i=1

φ′[λi(y
k)]λi(y

k). (19)

Combining (17) and (19) immediately yields that

〈∇ tr[φsoc(yk)], x − yk〉 ≤
2∑

i=1

φ′[λi(y
k)][λi(x) − λi(y

k)]. (20)

Note that λ2(ȳ) ≥ λ1(ȳ) = 0 and λ2(x) ≥ λ1(x) > 0 since ȳ ∈ bd(Kn) and x ∈
int(Kn). Hence, if λ2(ȳ) = 0, then by Property 3.1 (d) and the continuity of λi(·)
for i = 1,2, we have

lim
k→+∞φ′[λi(y

k)][λi(x) − λi(y
k)] = −∞, i = 1,2,

which means that

lim
k→+∞

2∑
i=1

φ′[λi(y
k)][λi(x) − λi(y

k)] = −∞. (21)

If λ2(ȳ) > 0, then limk→+∞ φ′[λ2(y
k)][λ2(x) − λ2(y

k)] is finite and

lim
k→+∞φ′[λ1(y

k)][λ1(x) − λ1(y
k)] = −∞;

therefore, the result in (21) also holds under such case. Combining (21) with (20), we
prove that the conclusion holds. �

Using the relation (16), we have that, for any x ∈Kn and y ∈ int(Kn),

tr[(φ′)soc(y) ◦ (x − y)] = 2〈(φ′)soc(y), x − y〉 = 〈∇ tr[φsoc(y)], x − y〉.
As a consequence, the function H(x,y) in (15) can be rewritten as

H(x,y) =

⎧⎪⎨
⎪⎩

tr[φsoc(x)] − tr[φsoc(y)]
− 〈∇ tr[φsoc(y)], x − y〉 ∀x ∈ Kn, y ∈ int(Kn),

+∞ otherwise.

(22)

By the representation, we next investigate several important properties of H(x,y).

Proposition 3.1 Let H(x,y) be the function defined as in (15) or (22). Then,

(a) H(x,y) is continuous on Kn × int(Kn) and, for any y ∈ int(Kn), the function
H(·, y) is strictly convex on Kn.

(b) For any given y ∈ int(Kn), H(x,y) is continuously differentiable on int(Kn) with

∇xH(x, y) = ∇ tr[φsoc(x)] − ∇ tr[φsoc(y)] = 2[(φ′)soc(x) − (φ′)soc(y)]. (23)



104 J Optim Theory Appl (2008) 138: 95–113

(c) H(x,y) ≥ ∑2
i=1 d(λi(x), λi(y)) ≥ 0 for any x ∈ Kn and y ∈ int(Kn), where

d(·, ·) is defined by (12). Moreover, H(x,y) = 0 if and only if x = y.
(d) For each γ ∈ R, the level sets LH (y, γ ) := {x ∈ Kn | H(x,y) ≤ γ } and

LH (x, γ ) := {y ∈ int(Kn) | H(x,y) ≤ γ } are bounded for any y ∈ int(Kn) and
x ∈ Kn, respectively.

(e) If {yk} ⊂ int(Kn) is a sequence converging to y∗ ∈ int(Kn), then H(y∗, yk) → 0.
(f) If {xk} ⊂ int(Kn) and {yk} ⊂ int(Kn) are sequences such that {yk} → y∗ ∈

int(Kn), {xk} is bounded, and H(xk, yk) → 0, then xk → y∗.

Proof (a) Note that φsoc(x), (φ′)soc(y), (φ′)soc(y) ◦ (x − y) are continuous for any
x ∈ Kn and y ∈ int(Kn) and the trace function tr(·) is also continuous, and hence
H(x,y) is continuous on Kn × int(Kn). From Lemma 3.2 (d), tr[φsoc(x)] is strictly
convex over Kn, whereas − tr[φsoc(y)] − 〈∇ tr[φsoc(y)], x − y〉 is clearly convex in
Kn for fixed y ∈ int(Kn). This means that H(·, y) is strictly convex for any y ∈
int(Kn).

(b) By Lemma 3.2 (c), the function H(·, y) for any given y ∈ int(Kn) is continu-
ously differentiable on int(Kn). The first equality in (23) is obvious and the second is
due to (16).

(c) The result follows directly from the following equalities and inequalities:

H(x,y) = tr[φsoc(x)] − tr[φsoc(y)] − tr[(φ′)soc(y) ◦ (x − y)]
= tr[φsoc(x)] − tr[φsoc(y)] − tr[(φ′)soc(y) ◦ x] + tr[(φ′)soc(y) ◦ y]

≥ tr[φsoc(x)] − tr[φsoc(y)] −
2∑

i=1

φ′(λi(y))λi(x) + tr[(φ′)soc(y) ◦ y]

=
2∑

i=1

[φ(λi(x)) + φ(λi(y)) − φ′(λi(y))λi(x) + φ′(λi(y))λi(y)]

=
2∑

i=1

[φ(λi(x)) − φ(λi(y)) − φ′(λi(y))(λi(x) − λi(y))]

=
2∑

i=1

d(λi(x), λi(y)) ≥ 0,

where the first equality is due to (15), the second and fourth are obvious, the third
follows from Lemma 3.2 (b) and (18), the last one is from (12), and the first inequality
follows from Lemma 3.1 and the last one is due to the strict convexity of φ on R+.
Note that tr[φsoc(x)] is strictly convex for any x ∈ Kn by Lemma 3.2 (d), and so
H(x,y) = 0 if and only if x = y by (22).

(d) From part (c), we have LH (y, γ ) ⊆ {x ∈ Kn| ∑2
i=1 d(λi(x), λi(y)) ≤ γ }. By

Property 3.1 (c), the set in the right-hand side is bounded. So, LH (y, γ ) is bounded
for y ∈ int(Kn). Similarly, LH (x, γ ) is bounded for x ∈Kn.

From part (a)–(d), we obtain immediately the results in (e) and (f). �
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Remark 3.1

(i) From (22), it is not difficult to see that H(x,y) is exactly a distance measure
induced by tr[φsoc(x)] via formula (4). Therefore, if n = 1 and φ is a Bregman
function with zone R++, i.e., φ also satisfies the property: (e) if {sk} ⊆ R+
and {tk} ⊂ R++ are sequences such that tk → t∗, {sk} is bounded, and
d(sk, tk) → 0, then sk → t∗; then H(x,y) reduces to the Bregman distance
function d(x, y) in (12).

(ii) When n > 1, H(x,y) is generally not a Bregman distance even if φ is a Bregman
function with zone R++, since Proposition 3.1 (e) and (f) do not hold for {yk} ⊆
bd(Kn) and y∗ ∈ bd(Kn). By the proof of Proposition 3.1 (c), the main reason
is that, to guarantee that

tr[(φ′)soc(y) ◦ x] =
2∑

i=1

φ′(λi(y))λi(x),

for any x ∈ Kn and y ∈ int(Kn), the relation [(φ′)soc(y)]2 = αx2 with some
α > 0 is required, where [(φ′)soc(y)]2 is a vector composed of the last n − 1
elements of (φ′)soc(y). It is very stringent for φ to satisfy such relation. By this,
tr[φsoc(x)] is not a B-function [18] on R

n either, even if φ itself is a B-function.
(iii) We observe that H(x,y) is inseparable, whereas the double-regularized distance

function proposed by [19] belongs to the separable class of functions. In view
of this, H(x,y) cannot become a double-regularized distance function in Kn ×
int(Kn), even when φ is such that d̃(s, t) = d(s, t)/φ′′(t)+ μ

2 (s − t)2 is a double
regularized component (see [19]).

By Proposition 3.1 and Remark 3.1, we call H(x,y) a quasi D-function in this
paper. In the following, we present several specific examples of quasi D-functions.

Example 3.1 Let φ(t) = t log t − t (with the convention 0 log 0 = 0). It is easy to
verify that φ satisfies Property 3.1. By Proposition 3.2 (b) of [21] and (13)–(14),
we can compute φsoc(x) = x ◦ logx − x and (φ′)soc(y) = logy for any x ∈ Kn and
y ∈ int(Kn). Therefore,

H(x,y) = tr(x ◦ logx − x ◦ logy + y − x), ∀x ∈ Kn, y ∈ int(Kn).

Example 3.2 Let φ(t) = t2 − √
t . It is not hard to verify that φ satisfies Prop-

erty 3.1. Notice that, for any x ∈ Kn, x2 = x ◦ x = λ2
1(x)u

(1)
x + λ2

2(x)u
(2)
x and

√
x =√

λ1(x)u
(1)
x +√

λ2(x)u
(2)
x , and a direct computation then yields φsoc(x) = x ◦x −√

x

and (φ′)soc(y) = 2y − (1/2)[tr(√y )e − √
y ]/√det(y). This implies that, for any

x ∈Kn, y ∈ int(Kn),

H(x,y) = tr

[
(x − y)2 − (

√
x − √

y ) + (tr(
√

y )e − √
y ) ◦ (x − y)

2
√

det(y)

]
.

Example 3.3 Take φ(t) = t log t −(1+ t) log(1+ t)+(1+ t) log 2 (with 0 log 0 = 0).
It is easily shown that φ satisfies Property 3.1. Using Property 2.1 (a)–(b), we can
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compute

φsoc(x) = x ◦ logx − (e + x) ◦ log(e + x) + (e + x) log 2, x ∈Kn

and

(φ′)soc(y) = logy − log(e + y) + e log 2, y ∈ int(Kn).

Consequently, for any x ∈ Kn and y ∈ int(Kn),

H(x,y) = tr[x ◦ (logx − logy) − (e + x) ◦ (log(e + x) − log(e + y))].

In addition, from [14, 22], it follows that
∑m

i=1 φ(ζi) generated by φ in the above
examples is a Bregman function with zone S = R

m+, and consequently
∑m

i=1 d(ζi, ξi)

defined as in (12) is a D-function induced by
∑m

i=1 φ(ζi).
To close this section, we present another important property of H(x,y).

Proposition 3.2 Let H(x,y) be defined as in (15) or (22). Then, for all x, y ∈
int(Kn) and z ∈Kn, the following three-points identity holds:

H(z, x) + H(x,y) − H(z, y) = 〈∇ tr[φsoc(y)] − ∇ tr[φsoc(x)], z − x〉
= tr[((φ′)soc(y) − (φ′)soc(x)) ◦ (z − x)].

Proof Using the definition of H given as in (22), we have that

〈∇ tr[φsoc(x)], z − x〉 = tr[φsoc(z)] − tr[φsoc(x)] − H(z, x),

〈∇ tr[φsoc(y)], x − y〉 = tr[φsoc(x)] − tr[φsoc(y)] − H(x,y),

〈∇ tr[φsoc(y)], z − y〉 = tr[φsoc(z)] − tr[φsoc(y)] − H(z, y).

Subtracting the first two equations from the last one gives the first equality. By (16),

〈∇ tr[φsoc(y)] − ∇ tr[φsoc(x)], z − x〉 = 2〈(φ′)soc(y) − (φ′)soc(x), z − y〉.
This, together with the fact that tr(x ◦ y) = 〈x, y〉, leads to the second equality. �

4 Proximal-Like Algorithm for the CSOCP

In this section, we propose a proximal-like algorithm for solving the CSOCP based on
the quasi D-function H(x,y). For the sake of notation, we denote F by the feasible
set

F := {ζ ∈ R
m | Aζ + b �Kn 0}. (24)

It is easy to verify that F is convex and its interior int(F) is given by

int(F) = {ζ ∈ R
m | Aζ + b �Kn 0}. (25)
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Let ψ : R
m → (−∞,+∞] be the function defined by

ψ(ζ ) :=
{

tr[φsoc(Aζ + b)], if ζ ∈F ,

+∞, otherwise.
(26)

By Lemma 3.2, it is easily shown that the following conclusions hold for ψ(ζ ).

Lemma 4.1 Let ψ(ζ ) be given as in (26). If the matrix A has full rank m, then:

(a) ψ(ζ ) is continuously differentiable on int(F) with ∇ψ(ζ ) = 2AT (φ′)soc ×
(Aζ + b).

(b) ψ(ζ ) is strictly convex and continuous on F .
(c) ψ(ζ ) is boundary coercive, i.e., if {ξk} ⊂ int(F) is such that limk→+∞ ξk =

ξ ∈ bd(F), then for all ζ ∈ int(F), there holds that limk→+∞ ∇ψ(ξk)T ×
(ζ − ξk) = −∞.

Let D(ζ, ξ) be the function induced by the above ψ(ζ ) via formula (4), i.e.,

D(ζ, ξ) := ψ(ζ ) − ψ(ξ) − 〈∇ψ(ξ), ζ − ξ 〉. (27)

Then, from (26) and (22), it is not difficult to see that

D(ζ, ξ) = H(Aζ + b,Aξ + b). (28)

So, by Proposition 3.1 and Lemma 4.1, we can prove the following conclusions.

Lemma 4.2 Let D(ζ, ξ) be given by (27) or (28). If the matrix A has full rank m,
then:

(a) D(ζ, ξ) is continuous on F × int(F) and, for any given ξ ∈ int(F), the function
D(·, ξ) is strictly convex on F .

(b) For any fixed ξ ∈ int(F), D(·, ξ) is continuously differentiable on int(F) with

∇ζD(ζ, ξ) = ∇ψ(ζ ) − ∇ψ(ξ) = 2AT [(φ′)soc(Aζ + b) − (φ′)soc(Aξ + b)].
(c) D(ζ, ξ) ≥ ∑2

i=1 d(λi(Aζ + b),λi(Aξ + b)) ≥ 0 for any ζ ∈ F and ξ ∈ int(F),
where d(·, ·) is defined by (12). Moreover, D(ζ, ξ) = 0 if and only if ζ = ξ .

(d) For each γ ∈ R, the partial level sets of LD(ξ, γ ) = {ζ ∈ F | D(ζ, ξ) ≤ γ }
and LD(ζ, γ ) = {ξ ∈ int(F) : D(ζ, ξ) ≤ γ } are bounded for any ξ ∈ int(F) and
ζ ∈ F , respectively.

The proximal-like algorithm that we propose for the CSOCP is defined as follows:

ζ 0 ∈ int(F), (29)

ζ k = argmin
ζ∈F

{f (ζ ) + (1/μk)D(ζ, ζ k−1)}, k ≥ 1, (30)

where {μk}k≥1 is a sequence of positive numbers.
To establish the convergence of the algorithm, we make the following assump-

tions:
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(A1) inf{f (ζ ) | ζ ∈F} := f∗ > −∞ and dom(f ) ∩ int(F) �= ∅.
(A2) The matrix A is of maximal rank m.

Remark 4.1 Assumption (A1) is elementary for the solution of the CSOCP. Assump-
tion (A2) is common in the solution of SOCPs and it is obviously satisfied when
F = Kn. Moreover, if we consider the standard SOCP

min cT x,

s.t. Ax = b, x ∈Kn,
(31)

where A ∈ R
m×n with m ≤ n, b ∈ R

m, and c ∈ R
n, the assumption that A has full

row rank m is standard. Consequently, its dual problem, given by

max bT y,

s.t. c − AT y �Kn 0,
(32)

satisfies Assumption (A2). This shows that we can solve the SOCP by applying the
proximal-like algorithm in (29)–(30) to the dual problem (32).

In what follows, we are ready to prove the convergence of the proximal-like algo-
rithm in (29)–(30) under Assumptions (A1) and (A2). We first show that the algorithm
is well-defined.

Proposition 4.1 Suppose that Assumptions (A1)–(A2) hold. Then, the algorithm de-
scribed as in (29)–(30) generates a sequence {ζ k} ⊂ int(F) such that

−2μ−1
k AT [(φ′)soc(Aζ k + b) − (φ′)soc(Aζ k−1 + b)] ∈ ∂f (ζ k). (33)

Proof The proof proceeds by induction. For k = 0, clearly, ζ 0 ∈ int(F). Assume
that ζ k−1 ∈ int(F). Let fk(ζ ) := f (ζ ) + μ−1

k D(ζ, ζ k−1). Then Assumption (A1)
and Lemma 4.2 (d) imply that fk has bounded level sets in F . By the lower semi-
continuity of f and Lemma 4.2 (a), the minimization problem minζ∈F fk(ζ ), i.e.
the subproblem (30), has solutions. Moreover, the solution ζ k is unique due to the
convexity of f and the strict convexity of D(·, ξ). In the following, we prove that
ζ k ∈ int(F).

By Theorem 23.8 of [23] and the optimal condition for (30), ζ k is the only ζ ∈ R
n

such that

2μ−1
k AT (φ′)soc(Aζ k−1 + b) ∈ ∂(f (ζ ) + μ−1

k ψ(ζ ) + δ(ζ | F)), (34)

where δ(ζ | F) = 0 if ζ ∈ F and +∞ otherwise. We will show that

∂(f (ζ ) + μ−1
k ψ(ζ ) + δ(ζ | F)) = ∅, for all ζ ∈ bd(F), (35)

which by (34) implies that ζ k ∈ int(F). Take ζ ∈ bd(F) and assume that there exists
w ∈ ∂(f (ζ ) + μ−1

k ψ(ζ ) + δ(ζ |F)). Take ζ̂ ∈ dom(f ) ∩ int(F) and let

ζ l = (1 − εl)ζ + εl ζ̂ (36)
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with liml→+∞ εl = 0. From the convexity of int(F) and dom(f ), it then follows that
ζ l ∈ dom(f ) ∩ int(F) and, moreover, liml→+∞ ζ l = ζ . Consequently,

εlw
T (̂ζ − ζ ) = wT (ζ l − ζ )

≤ f (ζ l) − f (ζ ) + μ−1
k [ψ(ζ l) − ψ(ζ )]

≤ f (ζ l) − f (ζ ) + μ−1
k 〈2AT (φ′)soc(Aζ l + b), ζ l − ζ 〉

≤ εl(f (̂ζ ) − f (ζ )) + μ−1
k

εl

1 − εl

tr[(φ′)soc(Aζ l + b) ◦ (Aζ̂ − Aζ l)],

where the first equality is due to (36), the first inequality follows from the definition
of subdifferential and the convexity of f (ζ ) + μ−1

k ψ(ζ ) + δ(ζ |F) in F , the second
one is due to the convexity and differentiability of ψ(ζ ) in int(F), and the last one is
from (36) and the convexity of f . Using Lemma 3.1 and (18), we then have that

μk(1 − εl)[f (ζ ) − f (̂ζ ) + wT (̂ζ − ζ )]
≤ tr[(φ′)soc(Aζ l + b) ◦ (Aζ̂ + b)] − tr[(φ′)soc(Aζ l + b) ◦ (Aζ l + b)]

≤
2∑

i=1

[φ′(λi(Aζ l + b))λi(Aζ̂ + b) − φ′(λi(Aζ l + b))λi(Aζ l + b)]

=
2∑

i=1

φ′(λi(Aζ l + b))[λi(Aζ̂ + b) − λi(Aζ l + b)].

Since ζ ∈ bd(F), i.e., Aζ + b ∈ bd(Kn), it follows that liml→+∞ λ1(Aζ l + b) = 0.
Thus, using Property 3.1 (d) and following the same line as the proof of Lemma 3.2 (d),
we can prove that the right-hand side of the last inequality goes to −∞ when l

tends to +∞, whereas the left-hand side has a finite limit. This gives a contradic-
tion. Hence, (35) follows, which means that ζ k ∈ int(F).

Finally, let us prove ∂δ(ζ k| F) = {0}. From p. 226 of [23], it follows that

∂δ(z|Kn) = {υ ∈ R
n | υ �Kn 0, tr(υ ◦ z) = 0}.

Using Theorem 23.9 of [23] and the assumption dom(f ) ∩ int(F) �= ∅, we have

∂δ(ζ | F) = {AT υ ∈ R
n | υ �Kn 0, tr(υ ◦ (Aζ + b)) = 0}.

In addition, from the self-dual property of the symmetric cone Kn, we know that
tr(x ◦ y) = 0 for any x �Kn 0 and y �Kn 0 implies x = 0. Thus, we obtain
∂δ(ζ k| F) = {0}. This together with (34) and Theorem 23.8 of [23] yields the de-
sired result. �

Proposition 4.1 implies that the second-order cone constrained subproblem in (30)
is actually equivalent to an unconstrained one,

ζ k = argmin
ζ∈Rm

{f (ζ ) + μ−1
k D(ζ, ζ k−1)},
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which is obviously simpler than the original CSOCP. This means that the proximal-
like algorithm proposed transforms the CSOCP into the solution of a sequence of sim-
pler problems. We next present some properties satisfied by {ζ k}. For convenience,
we denote the optimal set of the CSOCP by F∗ := {ζ ∈F | f (ζ ) = f∗}.
Proposition 4.2 Let {ζ k} be the sequence generated by the algorithm described as
in (29)–(30), and let σN = ∑N

k=1 μk . Then, the following results hold.

(a) {f (ζ k)} is a nonincreasing sequence.
(b) μk(f (ζ k) − f (ζ )) ≤D(ζ, ζ k−1) −D(ζ, ζ k) for all ζ ∈ F .
(c) σN(f (ζN) − f (ζ )) ≤D(ζ, ζ 0) −D(ζ, ζN) for all ζ ∈ F .
(d) D(ζ, ζ k) is nonincreasing for any ζ ∈F∗ if the optimal set F∗ �= ∅.
(e) D(ζ k, ζ k−1) → 0 if the optimal set F∗ �= ∅.

Proof (a) By the definition of ζ k given as in (30), we have

f (ζ k) + μ−1
k D(ζ k, ζ k−1) ≤ f (ζ k−1) + μ−1

k D(ζ k−1, ζ k−1).

Since D(ζ k, ζ k−1) ≥ 0 and D(ζ k−1, ζ k−1) = 0 by Lemma 4.2 (c), it follows that

f (ζ k) ≤ f (ζ k−1), k ≥ 1.

(b) By Proposition 4.1, 2μ−1
k AT [(φ′)soc(Aζ k−1 + b) − (φ′)soc(Aζ k + b)] ∈

∂f (ζ k). Hence, from the definition of subdifferential, it follows that, for any ζ ∈ F ,

f (ζ ) ≥ f (ζ k) + 2μ−1
k 〈(φ′)soc(Aζ k−1 + b) − (φ′)soc(Aζ k + b), Aζ − Aζk〉

= f (ζ k) + μ−1
k tr[[(φ′)soc(Aζ k−1 + b) − (φ′)soc(Aζ k + b)]

◦ [(Aζ + b) − (Aζ k + b)]]
= f (ζ k) + μ−1

k [H(Aζ + b,Aζ k + b) + H(Aζk + b,Aζ k−1 + b)

− H(Aζ + b,Aζ k−1 + b)]
= f (ζ k) + μ−1

k [D(ζ, ζ k) +D(ζ k, ζ k−1) − D(ζ, ζ k−1)], (37)

where the first equality is due to (6) and the second follows from Proposition 3.2.
From this inequality and the nonnegativity of D(ζ k, ζ k−1), we readily obtain the
conclusion.

(c) From the result in part (b), we have

μk[f (ζ k−1) − f (ζ k)] ≥D(ζ k−1, ζ k) −D(ζ k−1, ζ k−1) = D(ζ k−1, ζ k)

Multiplying this inequality by σk−1 and noting that σk = σk−1 + μk , one has

σk−1f (ζ k−1) − (σk − μk)f (ζ k) ≥ σk−1μ
−1
k D(ζ k−1, ζ k). (38)

Summing up the inequalities in (38) for k = 1,2, . . . ,N and using σ0 = 0 yields

−σNf (ζN) +
N∑

k=1

μkf (xk) ≥
N∑

k=1

σk−1μ
−1
k D(ζ k−1, ζ k). (39)
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On the other hand, summing the inequality in part (b) over k = 1,2, . . . ,N , we get

−σNf (ζ ) +
N∑

k=1

μkf (ζ k) ≤D(ζ, ζ 0) −D(ζ, ζN). (40)

Now, subtracting (39) from (40) yields that

σN [f (ζN) − f (ζ )] ≤D(ζ, ζ 0) −D(ζ, ζN) −
N∑

k=1

σk−1μ
−1
k D(ζ k−1, ζ k).

This together with the nonnegativity of D(ζ k−1, ζ k), implies the conclusion.
(d) Note that f (ζ k)− f (ζ ) ≥ 0 for all ζ ∈ F∗. So, the result follows from part (b)

directly.
(e) From part (d), we know that D(ζ, ζ k) is nonincreasing for any ζ ∈ F∗. This,

together with D(ζ, ζ k) ≥ 0 for any k, implies that D(ζ, ζ k) is convergent. Thus, we
have that

D(ζ, ζ k−1) −D(ζ, ζ k) → 0. (41)

On the other hand, from (37) it follows that

0 ≤ μk[f (ζ k) − f (ζ )] ≤D(ζ, ζ k−1) −D(ζ, ζ k) −D(ζ k, ζ k−1), ∀ζ ∈F∗,

which implies that

D(ζ k, ζ k−1) ≤D(ζ, ζ k−1) −D(ζ, ζ k), ∀ζ ∈F∗.

This, together with (41) and the nonnegativity of D(ζ k, ζ k−1), yields the result. �

We have proved that the proximal-like algorithm in (29)–(30) is well-defined and
satisfies some favorable properties. By this, we next establish the convergence of the
algorithm.

Proposition 4.3 Let {ζ k} be the sequence generated by the algorithm described as
in (29)–(30), and let σN = ∑N

k=1 μk . Then, under Assumptions (A1)–(A2),

(a) if σN → ∞, then limN→+∞ f (ζN) → f∗;
(b) if σN → ∞ and the optimal set F∗ �= ∅, then the sequence {xk} is bounded and

every accumulation point is a solution of the CSOCP.

Proof (a) From the definition of f∗, there exists a ζ̂ ∈ F such that

f (̂ζ ) < f∗ + ε, ∀ε > 0.

However, from Proposition 4.2 (c) and the nonnegativity of D(ζ, ζN), we have that

f (ζN) − f (ζ ) ≤ σ−1
N D(ζ, ζ 0), ∀ζ ∈F .
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Let ζ = ζ̂ in the above inequality and take the limit with σN → +∞; we then obtain

lim
N→+∞f (ζN) < f∗ + ε.

Considering that ε is arbitrary and f (ζN) ≥ f∗, we thus have the desired result.
(b) Suppose that ζ ∗ ∈F∗. Then, from Proposition 4.2 (d), D(ζ ∗, ζ k) ≤D(ζ ∗, ζ 0)

for any k. This implies that {ζ k} ⊆ LD(ζ ∗,D(ζ ∗, ζ 0)). By Lemma 4.2 (d), the se-
quence {ζ k} is then bounded. Let ζ̄ ∈ F be an accumulation point of {ζ k} with sub-
sequence {ζ kj } → ζ̄ . Then, from part (a), it follows that f (ζ kj ) → f∗. On the other
hand, since f is lower-semicontinuous, we have f (ζ̄ ) = lim infkj →+∞ f (ζ kj ). The
two sides show that f (ζ̄ ) ≤ f (ζ ∗). Consequently, ζ̄ is a solution of the CSOCP. �

5 Conclusions

In this paper, we have extended the proximal-like algorithm associated with some
D-function for solving the convex programming with nonnegative constraints to the
general CSOCP. The extension is based on a measure of distance H(x,y) on the
second-order cone, which can be generated by a single-valued function φ satisfying
Property 3.1. Some examples are also presented, which includes the entropy-like dis-
tance. Like the proximal-like algorithm using the D-function, the algorithm has been
shown, under mild assumptions, to generate a bounded sequence and its every accu-
mulation point is a solution of the CSOCP. However, at present, we do not know what
additional conditions for φ will guarantee that the sequence {ζ k} itself converges to
the solution of the considered problem, and we leave it as a future research topic.
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