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Abstract It is known that complementarity functions play an important role in deal-
ing with complementarity problems. The most well known complementarity problem
is the symmetric cone complementarity problem (SCCP) which includes nonlinear
complementarity problem (NCP), semidefinite complementarity problem (SDCP),
and second-order cone complementarity problem (SOCCP) as special cases. More-
over, there is also so-called generalized complementarity problem (GCP) in infinite
dimensional space. Among the existing NCP-functions, it was observed that there are
no differentiable and convex NCP-functions. In particular, Miri and Effati (J Optim
Theory Appl 164:723–730, 2015) show that convexity and differentiability cannot
hold simultaneously for an NCP-function. In this paper, we further establish that such
result also holds for general complementarity functions associated with the GCP.
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1 Introduction

The complementarity problem arises from the KKT conditions of an optimization
problem. Formally, it seeks to find an element x such that

x �K 0, F(x) �K 0, 〈x, F(x)〉 = 0, (1)

where K is usually a symmetric cone [10], �K is the partial order associated with K,
and 〈·, ·〉 is an appropriate inner product.WhenK is the nonnegative orthant, the above
problem (1) reduces to the well known nonlinear complementarity problem (NCP for
short) which consists in finding a point x ∈ IRn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0,

where 〈·, ·〉 is the Euclidean inner product and F = (F1, . . . , Fn)T is a map from
IRn to IRn . NCPs have wide applicability in the fields of economics, engineering,
and operations research, see [8,9,12,18] and references therein. WhenK represents a
positive semidefinite cone Sn+, the complementarity problem (1) reduces to a semidef-
inite complementarity problem (SDCP for short). When K is the second-order cone
(SOC) whose definition will be introduced later, the complementarity problem (1) is
the second-order cone complementarity problem (SOCCP for short). All the above
special cases can be unified as symmetric cone complementarity problem (SCCP)
under Euclidean Jordan algebra.

Besides the symmetric cone complementarity problem which is endowed in a finite
dimensional space, we further consider the generalized complementarity problem
(GCP for short) in infinite dimensional space. More specifically, let (X, ‖ · ‖) denote
a real Banach space, X∗ represent its dual space, we consider a cone K which is solid
(i.e., intK 	= ∅) closed convex in X . Note that its dual cone K+ is defined as

K+ = {
x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0, ∀x ∈ K

}
.

In contrast to the aforementioned symmetric cone, K is not self-dual in general.
Let 〈·, ·〉 : X × X∗ → IR be the canonical bilinear pairing and F : X → X∗. The
generalized complementarity problem (GCP) is to find an element x ∈ X such that

x ∈ K , F(x) ∈ K+, 〈x, F(x)〉 = 0. (2)

TheGCPwas originally proposed byKarmardian in 1971, see [15]. Formore details
regarding GCP including solution methods, properties, and applications, please refer
to the textbook [14].

To deal with various complementarity problems, the so-called complementarity
functions (C-functions) play crucial roles in designing solution methods. In the set-
ting of NCP, the complementarity function is abbreviated as NCP-function, which is
denoted by φ : IR2 → IR and defined as
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φ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0.

During the past four decades, approximately thirty NCP-functions have been pro-
posed, see [11] for a survey. Among the existing NCP-functions, it is observed that
none of them is both convex and differentiable. In fact, Miri and Effati [19] show
that there is no pseudoconvex NCP-function, which implies that the convexity and
differentiability cannot hold simultaneously for a NCP function. The proof is based
on the following lemmas.

Lemma 1.1 ([11, Corollary 2]) Let φ : IR2 → IR be a convex NCP-function. Then,
for any a, b > 0, φ(a, b) < 0.

Lemma 1.2 ([1, Theorem 3.2, Chapter 3]) Let f : IRn → IR be a differentiable
function. Then, f is convex if and only if for any x, y ∈ IRn,

f (y) ≥ f (x) + 〈∇ f (x), y − x〉.

Lemma 1.3 ([19, Lemma 3.1]) Let φ : IR2 → IR be an NCP-function. If the first
order partial derivatives of φ exist at the origin, then ∇φ(0, 0) = (0, 0)T .

With Lemmas 1.1–1.3, it can be shown that an NCP-function is never convex and
differentiable simultaneously. We state this result in Theorem 1.1.

Theorem 1.1 ([19, Corollary 3.1]) Every convex NCP-function is non-differentiable.

Proof Assume that there exists a differentiable convex NCP-function φ : IR2 →
IR. By Lemmas 1.2 and 1.3, for any a, b > 0, we have φ(a, b) ≥ φ(0, 0) +
〈∇φ(0, 0), (a, b)〉 = 0, which contradicts Lemma 1.1. ��

In the setting of SCCP, let A = (V, 〈·, ·〉, ◦) denote an n-dimensional Euclidean
Jordan algebra and K be the symmetric cone in V. We call φ : V × V → V a
complementarity function (C-function) associated with SCCP if

φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, x ◦ y = 0.

Scholars in the field of optimization are interested in this class of functions and the
inducedmerit functions in the sense that these functions help develop algorithms for the
symmetric cone complementarity problem and the symmetric cone programming, see
[16,20,22] and references therein. As for the GCP setting, a function� : X×X∗ → Y
is called a complementarity function associated with the GCP if

�(x, x∗) = 0 ⇐⇒ x ∈ K , x∗ ∈ K+,
〈
x, x∗〉 = 0 (3)

where X,Y are Banach spaces.
In this paper, we extend the fact that NCP-functions cannot be simultaneously

convex and differentiable to general complementarity functions associated with the
general GCP. The key idea is exploiting the concept of cone convexity. In addition, the
concept about cone pseudoconvexity is needed, too. To close this section, we recall
the definition of cone convexity, which will be used in the main result. Let X,Y be
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two real Banach spaces and L be a pointed (i.e., L ∩ (−L) = {0}) closed convex cone
in Y .

(a) For x, y ∈ Y such that x − y ∈ L , we say x ≥L y (or y ≤L x).
(b) For x, y ∈ Y such that x − y ∈ L \ {0}, we say x >L y (or y <L x). By x 	>L y

(y 	<L x) we denote the negation of x >L y (respectively, y <L x).
(c) A mapping f : X → Y is said to be L-convex if for any v,w ∈ X and λ ∈ (0, 1),

one has

f ((1 − λ)v + λw) ≤L (1 − λ) f (v) + λ f (w) .

In particular, if X = Y = IRn , L = Kn is the second-order cone in IRn (also known
as the Lorentz cone), which is defined by

Kn =
{
x = (x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ is the Euclidean norm, then the L-convexity reduces to the Kn-convexity
(SOC-convexity), see [2,4,5] for more details.

2 The main result

In this section, we show that the differentiability and convexity cannot be held simulta-
neously for complementarity functions associated with the GCP. Recall that the GCP
given as in (2) is to find an element in X such that

x ∈ K , F(x) ∈ K+, 〈x, F(x)〉 = 0.

Here, we require K solid (i.e., intK 	= ∅) closed convex cone in X , and K+ is
defined as

K+ = {
x∗ : 〈x, x∗〉 ≥ 0, ∀x ∈ K

}
.

To achieve the main result for GCP case, we also need some technical lemmas and
the concepts about cone-convexity and cone-pseudoconvexity.

Lemma 2.1 Let (X, ‖ · ‖) be a real Banach space and K be a solid closed convex
cone in X. Then, we have K − K = X.

Proof Let x ∈ X, and pick k ∈ intK. Then, there exists t > 0 such that k + t x ∈ K,
which yields

x = 1

t
(k + t x) − 1

t
k ∈ K − K .

Thus, the proof is complete. ��
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We assume that K+ is solid, too. (In connection with this assumption, see [7,
Theorem 3.6 and Corollary 3.8–3.9]). Hence, by Lemma 2.1, one has

K+ − K+ = X∗.

Lemma 2.2 Let f : X → Y be a Fréchet differentiable mapping and D f (x) denote
the derivative of f at x. Then, f is L-convex if and only if for any v, v ∈ X one has

f (v) ≥L f (v) + Df (v)(v − v).

Proof For any v,w ∈ X and λ ∈ (0, 1), denote vλ = (1 − λ)v + λw.
“⇐�” Note that from the assumption, we know

f (v) ≥L f (vλ) + Df (vλ)(v − vλ) = f (vλ) + λDf (vλ)(v − w)

and

f (w) ≥L f (vλ) + Df (vλ)(w − vλ) = f (vλ) + (1 − λ)Df (vλ)(w − v).

Adding these two inequalities after multiplying them by 1 − λ and λ, respectively,
we obtain

(1 − λ) f (v) + λ f (w) ≥L f (vλ),

which says f is L-convex.
“�⇒” Suppose that f is L-convex, then for every v, v ∈ V and λ ∈ (0, 1), one

has f ((1 − λ)v + λv) ≤L (1 − λ) f (v) + λ f (v). Thus,

f (v)− f (v)− f (v+λ(v−v))− f (v)

λ
= (1−λ) f (v)+λ f (v)− f ((1−λ)v+λv)

λ
∈ L .

Letting λ → 0, we obtain that f (v) − f (v) − Df (v)(v − v) ∈ L. Then, the proof
is complete. ��

A Fréchet differentiable mapping f : X → Y is said to be L-pseudoconvex if the
following implications hold true:

Df (v)(v − v) ≥L 0 �⇒ f (v) ≥L f (v),

f (v) <L f (v) �⇒ Df (v)(v − v) <L 0.

By Lemma 2.2, every differentiable L-convex function is L-pseudoconvex. More-
over, for real valued functions, L-pseudoconvexity reduces to the classical notion of
pseudoconvexity.

Lemma 2.3 Let � : X × X∗ → Y be L-pseudoconvex and a C-function associated
with the GCP. Then, �(x, x∗) 	>L 0 for any x ∈ K and x∗ ∈ K+.
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Proof If we had �(x, x∗) >L 0, since �(2x, 0) = 0 the second implication in
the definition of L-pseudoconvexity would yield D�(x, x∗)(x,−x∗) <L 0. Similarly,
from the equality �(0, 2x∗) = 0 we would obtain D�(x, x∗)(−x, x∗) <L 0, which
is a contradiction, since D�(x, x∗)(−x, x∗) = −D�(x, x∗)(x,−x∗). ��
Lemma 2.4 Let � : X × X∗ → Y be a C-function for the GCP. If � is differentiable
at the origin, then D�(0, 0) = 0.

Proof First, we recall that the linear map D�(0, 0) : X × X∗ → Y satisfies

lim
(x,x∗)→(0,0)

‖�(x, x∗) − �(0, 0) − D�(0, 0) (x, x∗) ‖
‖ (x, x∗) ‖ = 0. (4)

Then, we claim that D�(0, 0)(x, 0) = 0 for any x ∈ K. To see this, applying (4),
we see that for x ∈ K\ {0} there holds

0 = lim
t→0+

‖�(t x, 0) − �(0, 0) − D�(0, 0)(t x, 0)‖
‖t x‖ = ‖D�(0, 0)(x, 0)‖

‖x‖ ,

which yields D�(0, 0)(x, 0) = 0. Similarly, we can also obtain D�(0, 0)(0, x∗) = 0
for any x∗ ∈ K+.

Since K and K+ are solid, by Lemma 2.1, for every x ∈ X and x∗ ∈ X∗ there exist
x1, x2 ∈ K and x∗

1 , x
∗
2 ∈ K+ such that x = x1 − x2 and x∗ = x∗

1 − x∗
2 . Hence

D�(0, 0)
(
x, x∗)

= D�(0, 0)(x1, 0) − D�(0, 0)(x2, 0) + D�(0, 0)(0, x∗
1 ) − D�(0, 0)(0, x∗

2 )

= 0,

which says D�(0, 0) = 0. ��
Theorem 2.1 There is no L-pseudoconvex C-function for the GCP.

Proof Assume that there exists an L-pseudoconvex C-function � : X × X∗ −→ Y
for the GCP. Taking x ∈ intK and x∗ ∈ K+ \ {0}, applying Lemma 2.4 and the first
implication in the definition of L-pseudoconvexity, we have �(x, x∗) ≥L �(0, 0) =
0; which, by Lemma 2.3, implies that �(x, x∗) = 0. Therefore, in view of (3) we must
have 〈x, x∗〉 = 0, which is a contradiction, since from x ∈ intK and x∗ ∈ K+\ {0} it
follows that 〈x, x∗〉 > 0. Hence, the proof is complete. ��

3 Final remark

In this paper, we establish that the result done byMiri and Effati’s in [19] also holds for
general complementarity functions associated with the GCP. Since the GCP includes
NCP, SDCP, SOCCP, and SCCP as special cases, this is indeed a nice property for a
wide range of complementarity problems.
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With this,we point out something in the setting of SOCCP. In such setting, a function
� : IRn × IRn → IRn is called a complementarity function (C-function) associated
with SOCCP if

�(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn .

Here are some C-functions associated with SOCCP which are extended from some
well-known and popular NCP-functions via Jordan algebra:

(1) �1(x, y) = x + y − (x2 + y2)1/2 (see [6])
(2) �3(x, y) = x − (x − y)+, (see [13])
(3) �2(x, y) = x + y − (|x |p + |y|p)1/p, for p > 1 (see [21])
(4) �4(x, y) = x p − [(x − y)+]p, for p > 1 being an odd integer (see [17])

(5) �5(x, y) =
(√

x2 + y2
)p − (x + y)p, for p > 1 being an odd integer (see [17])

For more otherC-functions associated with SOCCP, please refer to [3,5]. Note that
the second-order coneKn is self-dual, and it is also a solid closed convex cone. From the
main result, we also conclude every Kn-convex complementarity function associated
with SOCCP is non-differentiable as well. Therefore, several new C-functions like
�4, �5 which are recently proved continuously differentiable in [17], must not be
Kn-convex.
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