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We consider an extended second-order cone linear complementarity problem (SOCLCP),
including the generalized SOCLCP, the horizontal SOCLCP, the vertical SOCLCP, and the
mixed SOCLCP as special cases. In this paper, we present some simple second-order cone
constrained and unconstrained reformulation problems, and under mild conditions prove
the equivalence between the stationary points of these optimization problems and the
solutions of the extended SOCLCP. Particularly, we develop a proximal gradient descent
method for solving the second-order cone constrained problems. This method is very
simple and at each iteration makes only one Euclidean projection onto second-order cones.
We establish global convergence and, under a local Lipschitzian error bound assumption,
linear rate of convergence. Numerical comparisons are made with the limited-memory
BFGS method for the unconstrained reformulations, which verify the effectiveness of the
proposed method.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider an extended second-order cone linear complementarity problem (SOCLCP) which is to find a pair of vectors
x, y ∈ R

n and z ∈ R
p such that{

Mx − N y + P z ∈ Ω,

x ∈ K, y ∈ K, 〈x, y〉 = 0
(1)

where M and N are m × n real matrices, P is an m × p real matrix, Ω is defined by

Ω := {
u ∈ R

m
∣∣ Eu − r ∈ E

}
(2)

with E ∈ R
l×m , r ∈ R

l , and E ⊆ R
l being a closed convex cone, and K is the Cartesian product of second-order cones (SOCs),

also called Lorentz cones. In other words,

K = Kn1 × Kn2 × · · · × Knq (3)
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where q,n1, . . . ,nq � 1, n1 + n2 + · · · + nq = n, and

Kni := {
(x1, x2) ∈ R × R

ni−1
∣∣ x1 � ‖x2‖

}
.

Throughout this paper, we assume that the SOCLCP (1) is feasible, i.e.,{
(x, y, z) ∈ R

n × R
n × R

p
∣∣ Mx − N y + P z ∈ Ω, x ∈ K, y ∈ K

} �= ∅. (4)

The SOCLCP (1) is a generalization of the extended linear complementarity problem that is known to have wide appli-
cations in linear and quadratic programming problems, bimatrix game problems, market and network equilibrium problems
[2,20,24]. As will be illustrated in Section 2, the problem includes many special types of SOCLCPs, such as the generalized
SOCLCP, the horizontal SOCLCP, the vertical SOCLCP, and the mixed SOCLCP, which can all be rewritten as (1) with E = {0}.
In view of the work in [16], we conjecture that the special cases of (1) with E being an SOC or nonnegative orthant cone
will arise from some engineering and practical problems directly.

In recent ten years, there has been active interest in reformulating a nonpolyhedral symmetric cone complementarity
problem as an optimization problem with suitable merit functions. For example, Tseng [25] first considered such reformu-
lations for the semidefinite complementarity problem, Chen and Tseng [5] studied the Fischer–Burmeister unconstrained
minimization reformulation for the second-order cone complementarity problem (SOCCP), Andreani et al. [1] proposed
box-constrained minimization reformulations for a generalization of the SOCCP, and Kong et al. [17] studied the implicit
Lagrangian reformulation for the general symmetric cone complementarity problem.

Motivated by Solodov’s work [24] for the extended linear complementarity problem, in this paper we propose some
simple SOC constrained reformulations and unconstrained reformulations for (1), and under mild conditions establish the
equivalence between the stationary points of these optimization problems and the solutions of (1). Moreover, for these
simple SOC constrained reformulation problems, we develop a proximal gradient descent method. The method has very
small computation work at each iteration, and makes one Euclidean projection onto SOCs to generate a feasible descent
direction. As will be demonstrated in Section 4, the method can be subsumed into the framework proposed in [8,26] for
minimizing a sum of a smooth function and a convex separable function. Nevertheless, the analysis of its global convergence,
and linear rate of convergence under a local Lipschitzian error bound, will become much simpler now.

In addition, for the proximal gradient descent method, we report numerical experience for solving (1) with P = 0 and
E being the Cartesian product of SOCs or nonnegative orthant cone, and numerical comparisons with the limited-memory
BFGS method [4] for the unconstrained minimization reformulation based on the Fischer–Burmeister merit function. The
comparison results show that among the proposed constrained reformulations (see Section 3), the one based on the loga-
rithmic function ψ4 has better performance than those derived from the entropy function ψ3 and the quadratic functions
ψ2 and ψ5, and now Algorithm 4.1 has comparable performance with the limited-memory BFGS method when l is not
close to m. To our best knowledge, there are no papers to discuss numerical performance of such equivalent constrained
reformulation problems.

This paper is organized as follows. Section 2 reviews some background materials about SOCs and Jordan product, and
illustrates that (1) includes many special SOCLCPs. In Section 3, we present some simple SOC constrained reformulations and
unconstrained reformulations, and establish the equivalence between the stationary points of these optimization problems
and the solutions of (1) under some mild conditions. In Section 4, a proximal gradient algorithm is developed for solving
the equivalent SOC constrained reformulation problems, and the linear convergence of the algorithm is also established. In
Section 5, numerical results are reported for the special cases of (1) in which P = 0, and E is the Cartesian product of SOCs
or the nonnegative orthant cones R

l+ .
Throughout this paper, I represents an identity matrix of suitable dimension, ‖ · ‖ denotes the Euclidean norm, int(Kn)

means the interior of Kn , and R
n denotes the space of n-dimensional real column vectors, and R

n1 × · · · × R
nq is identified

with R
n1+···+nq . For any x, y ∈ R

n , we write x �K y and x 
K y to mean x − y ∈ K and x − y ∈ int(K), respectively. For any
closed convex cone E , the notation [x]+E means the minimum Euclidean norm projection of x onto E , and E ◦ denotes the
polar cone of E , defined by

E ◦ := {
v ∈ R

l
∣∣ 〈v, u〉 � 0 for all u ∈ E

}
.

In addition, we denote 0+Ω by the recession cone of Ω , and from [23] it follows that

0+Ω = {
d ∈ R

m
∣∣ Ed ∈ E

}
,

and therefore the polar cone of 0+Ω is given by(
0+Ω

)◦ = {
v ∈ R

m
∣∣ 〈v,d〉 � 0 for all d ∈ 0+Ω

}
= {

v ∈ R
m

∣∣ v = E T w for some w ∈ E ◦}.
We recall that a square matrix Q is said to be copositive on E if 〈Q v, v〉 � 0 for all v ∈ E , and strictly copositive if the
latter inequality is strict for all 0 �= v ∈ E . A pair of matrices M, N ∈ R

m×n is said to be X-row-block-sufficient with respect
to (w.r.t.) Ω if〈(

MT υ
)

i,
(
N T υ

)
i

〉
� 0, i = 1, . . . ,q

υ ∈ (
0+Ω

)◦

}
�⇒ 〈(

MT υ
)

i,
(
N T υ

)
i

〉 = 0, i = 1,2, . . . ,q.
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When q = n, this reduces to the definition of X-row-sufficiency w.r.t. Ω in [13]. Clearly, the copositiveness of MN T on
(0+Ω)◦ implies X-row-block-sufficiency of M and N .

2. Preliminaries and examples

We start with the definition of Jordan product [7] associated with the cone Kn . For any x = (x1, x2), y = (y1, y2) ∈
R × R

n−1, the Jordan product of x and y is defined as

x ◦ y := (〈x, y〉, y1x2 + x1 y2
)
. (5)

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a main source on complication in the
analysis of SOCCP. The identity element under this product is e := (1,0, . . . ,0)T ∈ R

n . Given a vector x = (x1, x2) ∈ R×R
n−1,

let

Lx :=
[

x1 xT
2

x2 x1 I

]
,

which can be viewed as a linear mapping from R
n to R

n . It is not hard to verify that Lx y = x ◦ y and Lx+y = Lx + L y for
any x, y ∈ R

n , Lx is positive semidefinite if and only if x ∈ Kn , and Lx is positive definite if and only if x ∈ int(Kn). Also, if
Lx is invertible,

L−1
x = 1

det(x)

[
x1 −xT

2

−x2
det(x)

x1
I + 1

x1
x2xT

2

]
(6)

where det(x) := x2
1 − ‖x2‖2 denotes the determinant of x.

We recall from [7,9] that each x = (x1, x2) ∈ R × R
n−1 admits a spectral factorization associated with Kn in the form of

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x ,

where λi(x) and u(i)
x for i = 1,2 are the spectral values of x and the corresponding spectral vectors, defined by

λi(x) := x1 + (−1)i‖x2‖, u(i)
x := 1

2

(
1, (−1)i x̄2

)
(7)

with x̄2 = x2‖x2‖ if x2 �= 0, and otherwise x̄2 being any vector in R
n−1 satisfying ‖x̄2‖ = 1. If x2 �= 0, the factorization is unique.

By the spectral factorization, we readily have

[x]+Kn = max
{

0, λ1(x)
}

u(1)
x + max

{
0, λ2(x)

}
u(2)

x . (8)

Next we review some properties of the Fischer–Burmeister (FB) merit function studied by [5] for the second-order com-
plementarity problem. The merit function is defined as

ψFB(x, y) := 1

2

∥∥φFB(x, y)
∥∥2

(9)

where φFB : R
n × R

n → R
n is the vector-valued FB function given by

φFB(x, y) = (
x2 + y2)1/2 − (x + y).

Lemma 2.1. (See [5].) Let ψFB : R
n × R

n → R be given by (9). Then, for any x, y ∈ R
n,

(a) ψFB(x, y) � 0, and ψFB(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.
(b) ψFB is continuously differentiable. Moreover, ∇xψFB(0,0) = ∇yψFB(0,0) = 0, and

∇xψFB(x, y) = (
LxL−1

(x2+y2)1/2 − I
)
φFB(x, y),

∇yψFB(x, y) = (
L y L−1

(x2+y2)1/2 − I
)
φFB(x, y)

if x2 + y2 ∈ int(Kn), and if x2 + y2 /∈ int(Kn) and (x, y) �= (0,0),

∇xψFB(x, y) =
(

x1√
x2

1 + y2
1

− 1

)
φFB(x, y),

∇yψFB(x, y) =
(

y1√
x2

1 + y2
1

− 1

)
φFB(x, y).
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(c) 〈∇xψFB(x, y),∇yψFB(x, y)〉 � 0, and the equality holds if and only if ψFB(x, y) = 0.
(d) 〈x,∇xψFB(x, y)〉 + 〈y,∇yψFB(x, y)〉 = 2ψFB(x, y).
(e) ψFB(x, y) = 0 ⇐⇒ ∇ψFB(x, y) = 0 ⇐⇒ ∇xψFB(x, y) = 0 ⇐⇒ ∇yψFB(x, y) = 0.

To close this section, we present some special examples of the extended SOCLCP (1).

2.1. The generalized SOCLCP

Given matrices A, B ∈ R
m×n , C ∈ R

m×p , and a vector b ∈ R
m , the generalized SOCLCP is to find x, y ∈ R

n and z ∈ R
p such

that

Ax + B y + C z = b, z ∈ K̂, x ∈ K, y ∈ K, 〈x, y〉 = 0 (10)

where K̂ ⊂ R
p is the Cartesian product of SOCs. Clearly, when K and K̂ degenerate into R

n+ and R
p
+ , respectively, (10)

becomes the generalized LCP of [28]. Letting

M = [A C], N = −[B C], x′ =
(

x
0

)
, y′ =

(
y
z

)
,

we can rewrite (10) as (1) with P = 0, E = I , r = b and E = {0}, i.e.,

Mx′ − N y′ ∈ Ω, x′ ∈ K × K̂, y′ ∈ K × K̂, 〈x′, y′〉 = 0.

2.2. The horizontal SOCLCP

Given matrices A, B ∈ R
m×n and a vector b ∈ R

m , the horizontal SOCLCP is to find x, y ∈ R
n such that

Ax − B y = b, x ∈ K, y ∈ K, 〈x, y〉 = 0. (11)

If m = n and A = I , this reduces to the standard SOCLCP [14]; whereas if K = R
n+ , it reduces to the horizontal linear

complementarity problem [10,27]. Obviously, (11) is an extended SOCLCP with M = A, N = B , P = 0 and E = I , r = b,
E = {0}.

2.3. The vertical SOCLCP

Given matrices A, B ∈ R
n×p and vectors c,d ∈ R

n , the vertical SOCLCP is to find z ∈ R
p such that

Az + c ∈ K, Bz + d ∈ K, 〈Az + c, Bz + d〉 = 0. (12)

When K = R
n+ , this reduces to the vertical linear complementarity problem [12]. Letting x = Az + c and y = Bz + d, we can

reformulate the vertical SOCLCP as (1) with

M =
[

I
0

]
, N =

[
0

−I

]
, P = −

[
A
B

]
, E = I, r =

[
c
d

]
, E = {0}.

2.4. The mixed SOCLCP

Given A ∈ R
m×p , B ∈ R

m×n , C ∈ R
n×p and D ∈ R

n×n , and vectors c ∈ R
m , d ∈ R

n , the mixed SOCLCP is to find z ∈ R
p ,

y ∈ R
n such that

Az + B y + c = 0, y ∈ K, C z + D y + d ∈ K, 〈y, C z + D y + d〉 = 0. (13)

When K = R
n+ , this reduces to the mixed linear complementarity problem [11]. Letting x = C z + D y + d, this problem can

be rewritten as (1) with

M =
[

0
−I

]
, N = −

[
B
D

]
, P =

[
A
C

]
, E = I, r =

[ −c
−d

]
, E = {0}.

3. Constrained and unconstrained reformulations

In this section, we give some simple SOC constrained reformulations and unconstrained reformulations for the SO-
CLCP (1), and then under some mild assumptions establish the equivalence between the stationary points of these problems
and the solutions of (1). In the sequel, we write x = (x1, . . . , xq), y = (y1, . . . , yq) ∈ R

n with xi, yi ∈ R
ni , and let

∇xψ(x, y) := (∇x1ψ(x, y),∇x2ψ(x, y), . . . ,∇xq ψ(x, y)
)
,

∇yψ(x, y) := (∇y1ψ(x, y),∇y2ψ(x, y), . . . ,∇yq ψ(x, y)
)
.
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From [15, p. 121], x ∈ E if and only if (iff for short) [x]+E ◦ = 0. This means that

Mx − N y + P z ∈ Ω ⇐⇒ [
E(Mx − N y + P z) − r

]+
E ◦ = 0, (14)

and finding (x, y, z) so that Mx − N y + P z ∈ Ω is equivalent to seeking a global minimum of ‖[E(Mx − N y + P z) − r]+E ◦‖2

with zero optimal value. If ψ : R
n × R

n → R satisfies

(i) ψ(x, y) � 0 for all x, y ∈ K, and ψ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0,

then the SOCLCP (1) can be reformulated as an SOC constrained problem

min
1

2

∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2 + γ ψ(x, y)

s.t. x ∈ K, y ∈ K
(15)

where γ > 0 is a constant to balance the feasibility and the complementarity in (1). If ψ is a merit function for the
complementarity condition involved in (1), i.e.,

(I) ψ(x, y) � 0 for all x, y ∈ R
n , and ψ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

then (1) can be reformulated as an unconstrained minimization problem

min
(x,y,z)∈R2n+p

1

2

∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2 + γ ψ(x, y). (16)

There are many functions satisfying the requirement in (i). A direct choice for ψ is

ψ(x, y) =
q∑

i=1

h
(〈xi, yi〉

)
,

with h : R → R satisfying h(t) � 0 for all t � 0 and h(t) = 0 iff t = 0; for example,

the linear function ψ1(x, y) := 〈x, y〉 =
q∑

i=1

xT
i yi,

the quadratic function ψ2(x, y) := 1

2

q∑
i=1

(
xT

i yi
)2

,

the entropy function ψ3(x, y) :=
q∑

i=1

[(
1 + xT

i yi
)

ln
(
1 + xT

i yi
) − xT

i yi
]
,

the logarithmic function ψ4(x, y) :=
q∑

i=1

ln
[
1 + (

xT
i yi

)2]
.

Noting that x, y ∈ K and 〈x, y〉 = 0 iff x, y ∈ K and x ◦ y = 0, another choice for ψ is

ψ(x, y) = g(x ◦ y)

with g : R
n → R+ satisfying g(u) = 0 iff u = 0. For example, taking g(u) = 1

2 ‖u‖2,

ψ5(x, y) = 1

2
‖x ◦ y‖2 =

q∑
i=1

1

2
‖xi ◦ yi‖2.

This function will become ψ2 used in [24] when K degenerates to R
n+ and the Jordan product becomes the componentwise

product of vectors. In addition, we may choose ψ as a merit function for the complementarity condition in (1), such as the
FB merit function

ψFB(x, y) =
q∑

i=1

ψFB(xi, yi)

where ψFB(xi, yi) is defined as in (9), the regularized FB merit function

ψYF(x, y) :=
q∑[

1

2

(
max

{
0, xT

i yi
})2 + ψFB(xi, yi)

]
, (17)
i=1
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and the implicit Lagrangian function defined by

ψα(x, y) := 〈x, y〉 + 1

2α

(∥∥[x − αy]+K
∥∥2 − ‖x‖2 + ∥∥[y − αx]+K

∥∥2 − ‖y‖2) α > 1.

To establish the equivalence between the stationary point set of (15) and the solution set of (1), we require that ψ also
possesses (some of) the following favorable properties:

(ii) ψ is continuously differentiable everywhere in K × K.
(iii) For all x, y ∈ K, 〈∇xi ψ(x, y),∇yi ψ(x, y)〉 � 0, i = 1,2, . . . ,q.
(iv) 〈∇xψ(x, y),∇yψ(x, y)〉 = 0 and x, y ∈ K �⇒ ψ(x, y) = 0.
(v) If there exist vectors w, s ∈ K such that 〈w, x〉 = 0 and 〈s, y〉 = 0 for x, y ∈ K, then 〈wi,∇yi ψ(x, y)〉 = 0 and

〈si,∇xi ψ(x, y)〉 = 0 for all i = 1,2, . . . ,q.
(vi) ψ(x, y) = 0 and x, y ∈ K �⇒ ∇xψ(x, y) = ∇yψ(x, y) = 0.

(vii) 〈x,∇xψ(x, y)〉 + 〈y,∇yψ(x, y)〉 � 0 for all x, y ∈ K, and the equality holds iff 〈x, y〉 = 0 or x ◦ y = 0.

Proposition 3.1. The function ψ1 satisfies all the properties except (vi), the functions ψ2–ψ5 satisfy all the properties (i)–(vii), ψFB and
ψYF satisfy all the properties except (v), and ψα satisfies all the properties except (iv) and (v).

Proof. It is easily seen that ψ1 satisfies all the properties except (vi). For ψ2 and ψ4, it is easy to check that they
satisfy (i)–(vii). For ψ3, using the properties of (1 + t) ln(1 + t) − t and noting that ∇xi ψ3(x, y) = ln(1 + xT

i yi)yi and
∇yi ψ3(x, y) = ln(1 + xT

i yi)xi , we can verify that ψ3 satisfies (i)–(vi). Also, from ln(1 + t) � t for all t � 0, it follows that〈
x,∇xψ3(x, y)

〉 + 〈
y,∇yψ3(x, y)

〉
� 2ψ3(x, y),

which together with (i) implies that ψ3 satisfies (vii). Clearly, ψ5 satisfies the properties (i), (ii) and (vi), and it suffices to
check that it satisfies (iii)–(v) and (vii). Since〈

x,∇xψ5(x, y)
〉 + 〈

y,∇yψ5(x, y)
〉 = 〈

x, y ◦ (x ◦ y)
〉 + 〈

y, x ◦ (x ◦ y)
〉 = 2‖x ◦ y‖2,

it follows that ψ5 satisfies (vii). If there exist w = (w1, . . . , wq), s = (s1, . . . , sq) ∈ K such that 〈w, x〉 = 0 and 〈s, y〉 = 0 for
x, y ∈ K, then we must have wi ◦ xi = 0 and si ◦ yi = 0 for all i = 1,2, . . . ,q. Consequently, ψ5 satisfies (v) since for all
i = 1,2, . . . ,q,〈

wi,∇yi ψ5(x, y)
〉 = 〈

wi, xi ◦ (xi ◦ yi)
〉 = 〈wi ◦ xi, xi ◦ yi〉 = 0,〈

si,∇xi ψ5(x, y)
〉 = 〈

si, yi ◦ (xi ◦ yi)
〉 = 〈si ◦ yi, xi ◦ yi〉 = 0.

In addition, for all x, y ∈ K, we can compute that for all i = 1,2, . . . ,q,〈∇xi ψ5(x, y),∇yi ψ5(x, y)
〉 = 〈

xi ◦ (xi ◦ yi), yi ◦ (xi ◦ yi)
〉
.

From Lemma 1 of Appendix A, it follows that ψ5 satisfies the property (iii), and moreover,〈∇xi ψ5(x, y),∇yi ψ5(x, y)
〉 = 0 �⇒ xT

i yi = 0 for i = 1,2, . . . ,q.

This implies that ψ5 also satisfies the property (iv).
From Lemma 2.1, ψFB satisfies all the properties except (v). By the expression of ψYF and Lemma 2.1, it is easy to check

that ψYF satisfies all the properties except (v). From Lemma 4.2, Theorem 4.3, and Prop. 4.4(1) of [17], ψα satisfies (i)–(iii)
and (vi). In addition, using the gradient formulas of ψα , 〈x,∇xψα(x, y)〉 + 〈y,∇yψα(x, y)〉 = 2ψα(x, y). This together with
(i) implies that ψα also satisfies the property (vii). �

Proposition 3.1 shows that ψ2–ψ5 share with the same favorable properties. But, it should be noted that their growth in
the cone K × K is different. It is easy to verify that

ψ5(x, y) � ψ2(x, y) � ψ3(x, y) � ψ1(x, y) � ψ4(x, y) ∀x, y ∈ K × K, (18)

where ψ � φ means ψ has faster growth than φ.

Theorem 3.1. Suppose that one of the following conditions is satisfied:

(a) ψ satisfies (i)–(vi), and M and N are X-row-block-sufficient w.r.t. Ω .
(b) ψ satisfies (i)–(vi), and MN T is copositive on (0+Ω)◦ .
(c) ψ satisfies (i)–(iii) and (v)–(vii), and MN T is strictly copositive on (0+Ω)◦ .
(d) ψ satisfies (i)–(ii) and (vi)–(vii), and MT v ∈ K and −N T v ∈ K for all v ∈ (0+Ω)◦ .
(e) ψ satisfies (i) and (vii), and 0 ∈ Ω .

Then, (x, y, z) is a stationary point of (15) iff it solves (1).
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Proof. Suppose that (x, y, z) is a solution of (1). Then, (x, y, z) is feasible for (15) and the corresponding objective value
is zero. This means that (x, y, z) is a solution of (15). Notice that the constraints of (15) are convex and satisfy the Slater
constraint qualification, and hence (x, y, z) is a stationary point of (15).

Let (x, y, z) be a stationary point of (15). Then, there exist w, s ∈ R
n such that

MT v + γ ∇xψ(x, y) − w = 0, (19)

−N T v + γ ∇yψ(x, y) − s = 0, P T v = 0, (20)

w ∈ K, x ∈ K, 〈w, x〉 = 0, (21)

s ∈ K, y ∈ K, 〈s, y〉 = 0 (22)

where v := E T [E(Mx − N y + P z) − r]+E ◦ . Since [E(Mx − N y + P z) − r]+E ◦ ∈ E ◦ , we have v ∈ (0+Ω)◦ . We next show that
(x, y, z) solves (1) under the given assumptions.

(a) From Eqs. (19) and (20), it follows that for all i = 1,2, . . . ,q,(
MT v

)
i = wi − γ ∇xi ψ(x, y),

(
N T v

)
i = −si + γ ∇yi ψ(x, y),

where wi, si ∈ R
ni are ith subvectors of w and s, respectively. By this, we have〈(

MT v
)

i,
(
N T v

)
i

〉 = −γ 2〈∇xi ψ(x, y),∇yi ψ(x, y)
〉 − 〈wi, si〉

+ γ
〈
si,∇xi ψ(x, y)

〉 + γ
〈
wi,∇yi ψ(x, y)

〉
= −γ 2〈∇xi ψ(x, y),∇yi ψ(x, y)

〉 − 〈wi, si〉
� −γ 2〈∇xi ψ(x, y),∇yi ψ(x, y)

〉
� 0 for all i = 1,2, . . . ,q

where the second equality is due to (v), and the first inequality is using wi, si ∈ Kni , and the last inequality is
from (iii). Since v ∈ (0+Ω)◦ , and M and N are X-row-block-sufficient w.r.t. Ω , we have 〈(MT v)i, (N T v)i〉 = 0 for all
i = 1,2, . . . ,q. Combining with the last inequality yields 〈∇xi ψ(x, y),∇yi ψ(x, y)〉 = 0 for all i = 1,2, . . . ,q, which means
that 〈∇xψ(x, y),∇yψ(x, y)〉 = 0. This along with (iv) and x, y ∈ K gives ψ(x, y) = 0, and consequently, 〈x, y〉 = 0. Since
x ∈ K and y ∈ K, to prove that (x, y, z) is a solution of (1), it remains to prove that Mx − N y + P z ∈ Ω . Since ψ(x, y) = 0,
from (vi) we get ∇xψ(x, y) = ∇yψ(x, y) = 0. Thus, (19)–(22) reduce to the KKT conditions of

min
1

2

∥∥[
E
(
Mx′ − N y′ + P z′) − r

]+
E ◦

∥∥2

s.t. x′ ∈ K, y′ ∈ K.

Since this is a convex program, (x, y, z) is its solution. Noting that the convex program has a zero optimal value by the
assumption (4), we have Mx − N y + P z ∈ Ω from (14).

(b) The result follows by part (a) and the fact that copositiveness of MN T implies X-row-block-sufficiency w.r.t. Ω of M
and N .

(c) Using Eqs. (19)–(20) and the properties (iii) and (v), we have〈
MN T v, v

〉 = −γ 2〈∇xψ(x, y),∇yψ(x, y)
〉 − 〈w, s〉

− γ
〈
w,∇yψ(x, y)

〉 − γ
〈
s,∇xψ(x, y)

〉
= −γ 2〈∇xψ(x, y),∇yψ(x, y)

〉 − 〈w, s〉
� 0.

This is equivalent to saying that −〈MN T v, v〉 � 0. Since v ∈ (0+Ω)◦ and MN T is strictly copositive on (0+Ω)◦ , we then
have v = 0. Combining it with (19)–(22) yields that

0 = 〈w, x〉 + 〈s, y〉 = γ
〈
x,∇xψ(x, y)

〉 + γ
〈
y,∇yψ(x, y)

〉
,

and 〈x, y〉 = 0 holds by (vii). The proof of Mx − N y + P z ∈ Ω is the same as before by (vi).
(d) From Eqs. (19)–(22), it follows that

0 = 〈x, w〉 + 〈y, s〉
= 〈

x, γ ∇xψ(x, y)
〉 + 〈

y, γ ∇yψ(x, y)
〉 + 〈

x, MT v
〉 − 〈

y, N T v
〉

�
〈
x, MT v

〉 − 〈
y, N T v

〉
� 0 (23)
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where the first inequality is due to (vii) and the second is from the assumption that MT v ∈ K and −N T v ∈ K. This
means that 〈x,∇xψ(x, y)〉 + 〈y,∇yψ(x, y)〉 = 0 since each term on the left hand side of the first inequality is nonnega-
tive. From (vii), it then follows that 〈x, y〉 = 0. By (vi), the proof that Mx − N y + P z ∈ Ω follows as before.

(e) Using the equality (23) and noting that P T v = 0, we have

0 = 〈
x, γ ∇xψ(x, y)

〉 + 〈
y, γ ∇yψ(x, y)

〉 + 〈Mx − N y + P z, v〉
= 〈

x, γ ∇xψ(x, y)
〉 + 〈

y, γ ∇yψ(x, y)
〉

+ 〈
E(Mx − N y + P z) − r + r,

[
E(Mx − N y + P z) − r

]+
E ◦

〉
= γ

[〈
x,∇xψ(x, y)

〉 + 〈
y,∇yψ(x, y)

〉] + ∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2

+ 〈
r,

[
E(Mx − N y + P z) − r

]+
E ◦

〉
.

Notice that −r ∈ E since 0 ∈ Ω , and [E(Mx − N y + P z) − r]+E ◦ ∈ E ◦ . Hence, we have 〈−r, [E(Mx − N y + P z) − r]+E ◦ 〉 � 0 by
the definition of the polar cone. This shows that the last term on the right hand side of the last equality is nonnegative,
whereas the first term is also nonnegative by (vii). Thus, from the last equality it follows that 〈x, y〉 = 0 and [E(Mx − N y +
P z) − r]+E ◦ = 0. Together with (14), x, y ∈ K, and the property (i), it follows that (x, y, z) solves the SOCLCP (1). �

By Proposition 3.1 and Theorem 3.1, when ψ is chosen as one of ψ2–ψ5, the stationary point set of (15) coincides with
the solution set of (1) under any of the assumptions of Theorem 3.1; when ψ = ψFB, ψYF or ψα , the two sets are equivalent
only under the assumptions (d) and (e); whereas when ψ = ψ1, the equivalence holds only under the assumption (e). This
means that the constrained reformulations associated with ψ2–ψ5 are superior to those with other functions.

Next we establish the equivalence between the stationary points of (16) and the solutions of (1). We require that ψ

satisfies (some of) the following properties except (I):

(II) ψ is continuously differentiable in R
n × R

n .
(III) For all x, y ∈ K, 〈∇xi ψ(x, y),∇yi ψ(x, y)〉 � 0, i = 1,2, . . . ,q.
(IV) 〈∇xψ(x, y),∇yψ(x, y)〉 = 0 �⇒ ψ(x, y) = 0.
(V) ψ(x, y) = 0 �⇒ ∇xψ(x, y) = 0,∇yψ(x, y) = 0.

(VI) 〈x,∇xψ(x, y)〉 + 〈y,∇yψ(x, y)〉 = cψ(x, y), where c > 0.

Theorem 3.2. Suppose that one of the following conditions is satisfied:

(a) ψ satisfies (I)–(V), and M and N are X-row-block-sufficient with respect to Ω .
(b) ψ satisfies (I)–(V), and MN T is copositive on (0+Ω)◦ .
(c) ψ satisfies (I)–(III) and (VI), and MN T is strictly copositive on (0+Ω)◦ .
(d) ψ satisfies (I) and (VI), and 0 ∈ Ω .

Then (x, y, z) is a stationary point of (16) if and only if it solves (1).

Proof. Suppose that (x, y, z) is a solution of (1). Then, (x, y, z) is a solution of (16) since the objective value of (16) at this
point is zero. Consequently, (x, y, z) is a stationary point of (16). Next, let (x, y, z) be a stationary point of (16). Then,

MT v + γ ∇xψ(x, y) = 0, −N T v + γ ∇yψ(x, y) = 0, P T v = 0, (24)

where v := E T [E(Mx − N y + P z) − r]+E ◦ . From the first two equalities, we have(
MT v

)
i = −γ ∇xi ψ(x, y),

(
N T v

)
i = γ ∇yi ψ(x, y), i = 1,2, . . . ,q. (25)

(a) Using Eq. (25) and the property (III), it follows that〈(
MT v

)
i,

(
N T v

)
i

〉 = −γ 2〈∇xi ψ(x, y),∇yi ψ(x, y)
〉
� 0, i = 1,2, . . . ,q.

This, by the given assumption, implies that 〈(MT v)i, (N T v)i〉 = 0 for all i = 1,2, . . . ,q. Consequently,
〈∇xψ(x, y),∇yψ(x, y)〉 = 0. Combining with the properties (IV) and (I), we have x ∈ K, y ∈ K and 〈x, y〉 = 0. To prove
that (x, y, z) is a solution of (1), it remains to argue that Mx − N y + P z ∈ Ω . Since ψ(x, y) = 0, by (V), (24) reduces to

MT v = 0, N T v = 0, P T v = 0.

This means that (x, y, z) is a stationary point of the following convex program

min
(x,y,z)∈R2n+p

1

2

∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2
,

which has a zero optimal value by the assumption (4). Thus, Mx − N y + P z ∈ Ω by (14).
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(b) The result is direct by part (a).
(c) From (25) and (III), 〈MN T v, v〉 = −γ 2〈∇xψ(x, y),∇yψ(x, y)〉 � 0. This, by the strict copositivity of MN T on (0+Ω)◦ ,

implies v = 0. Substituting v = 0 into (24), we have ∇xψ(x, y) = ∇yψ(x, y) = 0. From (VI) and (I), we get x ∈ K, y ∈ K and
〈x, y〉 = 0. Using the same arguments as before leads to Mx − N y + P z ∈ Ω .

(d) From (24), clearly, 〈Mx − N y + P z, v〉 = −γ 〈x,∇xψ(x, y)〉 − γ 〈y,∇xψ(x, y)〉. Hence,

0 = γ
〈
x,∇xψ(x, y)

〉 + γ
〈
y,∇xψ(x, y)

〉 + 〈Mx − N y + P z, v〉
= γ

〈
x,∇xψ(x, y)

〉 + γ
〈
y,∇xψ(x, y)

〉
+ 〈

E(Mx − N y + P z) − r + r,
[

E(Mx − N y + P z) − r
]+

E ◦
〉

= γ
〈
x,∇xψ(x, y)

〉 + γ
〈
y,∇xψ(x, y)

〉
+ ∥∥[

E(Mx − N y + P z) − r
]+

E ◦
∥∥2 + 〈

r,
[

E(Mx − N y + P z) − r
]+

E ◦
〉
.

By (I) and (VI), using the same arguments as in Theorem 3.1(e) yields the result. �
From the proof of Proposition 3.1, ψFB and ψYF satisfy (I)–(VI), whereas ψα satisfies all the properties except (IV). Thus,

by Theorem 3.2, the stationary point set of (16) with ψ = ψFB and ψYF coincides with the solution set of (1) under any of
the assumptions of Theorem 3.2; whereas for ψ = ψα their equivalence holds only under (c) or (d).

For convenience, from now to the end of Section 4, we assume K = Kn , and all analysis can be carried over to the case
where K has the structure as in (3). Next, we study two important properties of the objective function of (15) with ψ being
one of ψ2–ψ5, ψFB, ψYF and ψα . Let w := (x, y, z) ∈ R

n × R
n × R

p , and write

f (w) := 1

2

∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2 + γ ψ(x, y). (26)

In addition, we denote the feasible set of (15) by S := {w = (x, y, z) | x �K 0, y �K 0}.

Proposition 3.2. Let f be given by (26). Then, f is smooth, and its gradient function ∇ f (w) is Lipschitz continuous on any bounded
set S1 ⊆ S when ψ is chosen as one of ψ2–ψ5 and ψYF , and when ψ is chosen as ψFB or ψα , it is globally Lipschitz continuous.

Proof. The smoothness of f is due to the smoothness of ‖[·]+E ◦‖2 and property (ii). Let

f1(w) := 1

2

∥∥[
E(Mx − N y + P z) − r

]+
E ◦

∥∥2
.

From the nonexpansive property of the projection operator [3, Prop. 2.1.3], ∇ f1(w) and ∇ψα are Lipschitz continuous. In
addition, ∇ψFB is Lipschitz continuous by [6]. Thus, ∇ f (w) with ψ = ψFB or ψα is Lipschitz continuous. To prove that
∇ f (w) with ψ being one of ψ2–ψ5 and ψYF is Lipschitz continuous on the bounded set S1, it suffices to show that ∇xψ

is Lipschitz continuous on S1 due to the Lipschitz continuity of ∇ f1 and the symmetry between ∇xψ(x, y) and ∇yψ(x, y).
For any (x, y), (a,b) ∈ S1, we have∥∥∇xψ2(x, y) − ∇xψ2(a,b)

∥∥ = ∥∥max
{

0, xT y
}

y − max
{

0,aT b
}

b
∥∥

� max
{

0, xT y
}‖y − b‖ + ∣∣max

{
0, xT y

} − max
{

0,aT b
}∣∣‖b‖

� max
{

0, xT y
}‖y − b‖ + ∣∣xT y − aT b

∣∣‖b‖
� max

{
0, xT y

}‖y − b‖ + (‖x‖‖y − b‖ + ‖x − a‖‖b‖)‖b‖
� C2

(‖x − a‖ + ‖y − b‖)
where C2 > 0 is a constant, and the last inequality is due to the boundedness of S1;∥∥∇xψ4(x, y) − ∇xψ4(a,b)

∥∥ =
∥∥∥∥ 2xT y

1 + (xT y)2
y − 2aT b

1 + (aT b)2
b

∥∥∥∥
� 2xT y‖y − b‖

1 + (xT y)2
+

∥∥∥∥ 2xT y

1 + (xT y)2
− 2aT b

1 + (aT b)2

∥∥∥∥‖b‖

� ‖y − b‖ + 2|xT y − aT b| · |1 − xT yaT b|
[1 + (xT y)2][1 + (aT b)2] ‖b‖

� ‖y − b‖ + 6
∣∣xT y − aT b

∣∣‖b‖
� ‖y − b‖ + 6

(‖x‖‖y − b‖ + ‖x − a‖‖b‖)‖b‖
� C4

(‖x − a‖ + ‖y − b‖), C4 > 0 is a constant;
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∥∥∇xψ3(x, y) − ∇xψ3(a,b)
∥∥ = ∥∥ln

(
1 + xT y

)
y − ln

(
1 + aT b

)
b
∥∥

� ln
(
1 + xT y

)‖y − b‖ + ∣∣ln(
1 + xT y

) − ln
(
1 + aT b

)∣∣‖b‖

� ln
(
1 + xT y

)‖y − b‖ + |xT y − aT b|
1 + aT b

‖b‖
� ln

(
1 + xT y

)‖y − b‖ + (‖x‖‖y − b‖ + ‖x − a‖‖b‖)‖b‖
� C3

(‖x − a‖ + ‖y − b‖)
where C3 > 0 is a constant, and the second inequality uses ln t � t − 1 (t > 0);∥∥∇xψ5(x, y) − ∇yψ5(a,b)

∥∥ = ∥∥y ◦ (y ◦ x) − b ◦ (a ◦ b)
∥∥

� 3‖x ◦ y‖‖y − b‖ + 3‖y ◦ x − a ◦ b‖‖b‖
� 3‖x ◦ y‖‖y − b‖ + 9

(‖y − b‖‖x‖ + ‖x − a‖‖b‖)‖b‖
� C5

(‖x − a‖ + ‖y − b‖)
where C5 > 0 is a constant, and the first inequality and the second one use ‖x ◦ y‖ � 3‖x‖‖y‖. The above inequalities show
that ∇xψ(x, y) with ψ being one of ψ2–ψ5 and ψYF is Lipschitz continuous on the bounded set S1. �

The following proposition provides a condition to guarantee that the level sets of f

L f (c) := {
w = (x, y, z) ∈ S

∣∣ f (w) � c
}

are bounded for all c � 0. The property is very important since it ensures that the feasible descent sequence of f always
has an accumulation point.

Proposition 3.3. The level sets L f (c) are bounded for all c � 0, if for any w = (x, y, z) ∈ S satisfying ‖w‖ = 1 and 〈x, y〉 = 0, there
holds that Mx − N y + P z /∈ 0+Ω .

Proof. Assume on the contrary there exists an unbounded sequence {wk = (xk, yk, zk)} ⊂ L f (c) for some c � 0. Then
f (wk) � c for all k. Since {wk} is unbounded, there exists a subsequence {wk}k∈K1 satisfying ‖wk‖ → +∞. By passing to a
subsequence if necessary, we assume that {wk/‖wk‖}k∈K1 → w∗ = (x∗, y∗, z∗). Then, w∗ ∈ S and ‖w∗‖ = 1. If 〈x∗, y∗〉 = 0,
by the given assumption Mx∗ − N y∗ + P z∗ /∈ 0+Ω , and so∥∥[

E
(
Mx∗ − N y∗ + P z∗)]+

E ◦
∥∥ �= 0.

Noting that [βx]+E ◦ = β[x]+E ◦ for any β � 0, the last equation is equivalent to

lim
k→∞,k∈K1

‖[E(Mxk − N yk + P zk) − r]+E ◦‖
‖wk‖ �= 0,

which implies limk→∞,k∈K1 f1(wk) = ∞. Combining with the nonnegativity of ψ , we have limk→∞ f (wk) = +∞, a contra-
diction to the fact f (wk) � c for all k.

If 〈x∗, y∗〉 �= 0, then 〈x∗, y∗〉 > 0, which implies that limk→∞,k∈K1 〈xk, yk〉 = +∞. Since max{0, t}2, ln(1 + t2), and
(1 + t) ln(1 + t) − t are increasing on [0,+∞), we have limk→∞,k∈K1 ψ(xk, yk) = +∞ when ψ is chosen as one of ψ2–ψ4

and ψYF. Since ‖x◦ y‖ � |〈x, y〉|, we also have limk→∞,k∈K1 ψ5(xk, yk) = +∞. In addition, 〈x∗, y∗〉 �= 0 implies that x∗ ◦ y∗ �= 0
since x∗ ∈ K and y∗ ∈ K. Therefore, (xk/‖wk‖) ◦ (yk/‖wk‖) � 0. Using Lemma 5.2(b) of [21] and Proposition 4.2(ii) of [22],
limk→∞,k∈K1 ψFB(xk, yk) = +∞ and limk→∞,k∈K1 ψα(xk, yk) = +∞. Thus, we prove limk→∞,k∈K1 ψ(xk, yk) → ∞, and hence
limk→∞,k∈K1 f (wk) = +∞ when ψ is chosen as one of ψ2–ψ5 or the functions ψFB, ψYF and ψα . This gives a contradiction
to the fact that f (wk) � c for all k. �
4. The solution of SOC constrained problem

In this section, we develop a proximal gradient descent method for solving the equivalent SOC constrained reformulation
problem (15). This method will generate a direction d = (dx,dy,dz) ∈ R

n × R
n × R

p at a given point w = (x, y, z) ∈ S by
solving

min
〈∇ f (w),d′〉 + 1

2
ρ
∥∥d′∥∥2

s.t. x + d′
x �K 0

y + d′ � 0

(27)
y K
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where d′ = (d′
x,d′

y,d′
z) ∈ R

n × R
n × R

p , and ρ > 0 is an arbitrary constant, and then seek a stepsize α > 0 along the
direction d. The idea of this method is not new. In fact, the subproblem (27) can be regarded as a special case of the ones
used by [8,26] for minimizing the sum of a smooth function and a separable convex function since, using the indicator
function δ(·| K), it can be rewritten as

min
〈∇ f (w),d′〉 + 1

2
ρ
∥∥d′∥∥2 + P

(
w + d′) (28)

where P (w + d′) := δ(x + d′
x | K) + δ(y + d′

y | K) is convex, and separable when q > 1.
Before describing our algorithm, we present two technical lemmas, where Lemma 4.1 implies that the nonzero solution

of (27) at w ∈ S must be a feasible descent direction of f at this point, and Lemma 4.2 provides an alternative characteri-
zation for the stationary points of (15) which will be used as the termination condition of our algorithm.

Lemma 4.1. Let w = (x, y, z) be any given point in S and d = (dx,dy,dz) be the solution of (27). Then, for any α ∈ [0,1], w +αd ∈ S
and 〈∇ f (w),d

〉
� −1

2
ρ‖d‖2. (29)

Proof. Since w = (x, y, z) ∈ S , we have x �K 0 and y �K 0. Notice that x + dx �K 0 and y + dy �K 0. Hence, for any
α ∈ [0,1], x+αdx = (1−α)x+α(x+dx) ∈ K and y+αdy = (1−α)y+α(y+dy) ∈ K. This means that w +αd ∈ S . Noting that
d′ = 0 is a feasible solution of (27) since x, y �K 0, whereas d is the optimal solution, we have 〈∇ f (w),d〉 + 1

2 ρ‖d‖2 � 0,
which implies the desired result in (29). �
Lemma 4.2. Let w = (x, y, z) be any given point in S and d = (dx,dy,dz) be the solution of (27). Then, w is a stationary point of (15)
iff d = 0.

Proof. Suppose that w is a stationary point of (15). Then there exist ξ and η such that

∇x f (w) − ξ = 0, ∇y f (w) − η = 0, ∇z f (w) = 0,

〈x, ξ〉 = 0, 〈y, η〉 = 0, ξ �K 0, η �K 0. (30)

The last two equations imply that for any w ′ = (x′, y′, z′) with x′, y′ ∈ K,〈∇ f (w), w ′ − w
〉 = 〈

ξ, x′ − x
〉 + 〈

η, y′ − y
〉 = 〈

ξ, x′〉 + 〈
η, y′〉 � 0. (31)

If d �= 0, then from (29) d is a feasible descent direction of f at the feasible point w , which contradicts (31). We next
consider the sufficiency. Since (27) is a convex program whose constraints satisfy the Slater constraint qualification, there
exist ζ and ν such that

∇x f (w) + dx − ζ = 0, ∇y f (w) + dy − ν = 0, ∇z f (w) = 0,

〈x + dx, ζ 〉 = 0, 〈y + dy, ν〉 = 0, ζ �K 0, ν �K 0.

When d = (dx,dy,dz) = 0, these conditions are the same as those in (30), i.e., the KKT conditions of the problem (15).
Consequently, w is a stationary point of (15). �
Algorithm 4.1 (The PGD method).

Step 0. Choose w0 = (x0, y0, z0) ∈ S , β ∈ (0,1), σ ∈ (0,1), and ε > 0. Set k := 0.
Step 1. Choose ρk > 0, and solve (27) with w = wk to get its solution dk = (dk

x,dk
y,dk

z).

Step 2. If ‖dk‖ � ε , then stop; and otherwise go to Step 3.
Step 3. Let αk be the largest element of {1, β,β2, . . .} satisfying

f
(

wk + αkdk) � f
(

wk) + σαk〈∇ f
(

wk),dk〉. (32)

Step 4. Set wk+1 := wk + αkdk and k := k + 1, and go to Step 1.

From Lemmas 4.1 and 4.2, we see that Algorithm 4.1 is well defined and generates a feasible sequence {wk} =
{(xk, yk, zk)} such that the objective value sequence { f (wk)} is monotonically decreasing. In each iteration, the main work
of Algorithm 4.1 is to solve the subproblem (27) with w = wk , which is equivalent to making one Euclidean projection on
the closed convex cone S since the subproblem can be rewritten as

min
〈∇ f

(
wk), w

〉 + 1
ρk

∥∥w − wk
∥∥2

. (33)

w∈S 2
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By a simple computation, dk = (dk
x,dk

y,dk
z) has the following explicit expression

dk
x = [

xk − ρ−1
k ∇x f

(
wk)]+

K − xk,

dk
y = [

yk − ρ−1
k ∇y f

(
wk)]+

K − yk,

dk
z = −ρ−1

k ∇z f
(

wk).
It is worthwhile to mention that the solution of the more general subproblem

min
〈∇ f

(
wk),d′〉 + 1

2

(
d′)T

Hkd′

s.t. xk + d′
x �K 0, yk + d′

y �K 0

as used in [26] with Hk being a (2n+ p)×(2n+ p) symmetric positive definite matrix to approximate the Hessian of f at wk ,
is equivalent to the solution of a SOCLCP instead of the scaled projection onto K. This is different from the nonnegative
orthant cone case.

Now we concentrate on the convergence of Algorithm 4.1. We first establish the global convergence under the assumption
that the parameter ρk is uniformly bounded.

Theorem 4.1. Let wk = {(xk, yk, zk)} be a sequence generated by Algorithm 4.1 with 0 < ρ1 � ρk � ρ2 for all k. Then each cluster
point of {wk} is a stationary point of (15).

Proof. Let {wk}K be a subsequence of {wk} converging to some ŵ . Then ŵ ∈ S since {wk} ⊆ S and S is closed. Also,
since f is continuous, we have limk→∞,k∈K f (wk) = f (ŵ). This means that the sequence { f (wk)}K is convergent and
{ f (wk+1) − f (wk)}K → 0.

Case 1: lim infk∈K ,k→∞ αk > 0. In this case, by Step 3 of Algorithm 4.1 and Lemma 4.1,

f
(

wk+1) − f
(

wk) � σαk〈∇ f
(

wk),dk〉 � −1

2
σρ1α

k
∥∥dk

∥∥2 ∀k.

Taking the limit k → ∞ with k ∈ K on the both sides and using { f (wk+1) − f (wk)}K → 0, we get {αk‖dk‖2}k∈K → 0, which
implies {dk}k∈K → d̂ = 0 since lim infk∈K ,k→∞ αk > 0. On the other hand, for any d′ = (d′

x,d′
y,d′

z) ∈ R
n × R

n × R
p satisfying

x̂ + d′
x �K 0 and ŷ + d′

y �K 0, we have xk + d′
x �K 0, yk + d′

y �K 0 for sufficiently large k, and moreover,〈∇ f
(

wk),dk〉 + 1

2
ρk

∥∥dk
∥∥2 �

〈∇ f
(

wk),d′〉 + 1

2
ρk

∥∥d′∥∥2 �
〈∇ f

(
wk),d′〉 + 1

2
ρ2

∥∥d′∥∥2
.

Taking the limit k → ∞ with k ∈ K yields 0 � 〈∇ f (ŵ),d′〉 + 1
2 ρ2‖d′‖2. This means that d̂ = 0 is a solution of the subprob-

lem (27) with w = ŵ and ρ = ρ2. From Lemma 4.2, it then follows that ŵ is a stationary point of (15).

Case 2: limk∈K ,k→∞ αk = 0. Suppose that {dk}K � 0. By passing to a subsequence if necessary, we can assume that
for some δ > 0, ‖dk‖ � δ for all k ∈ K . Since αk is chosen by the Armijo rule, we have f (wk + (αk/β)dk) − f (wk) >

σ(αk/β)〈∇ f (wk),dk〉 for any k ∈ K . Dividing both sides by ‖dk‖, this inequality becomes

f (wk + α̂kd̂k) − f (wk)

α̂k
> σ

〈∇ f
(

wk), d̂k〉 ∀k ∈ K , (34)

where d̂k = dk/‖dk‖ and α̂k = αk‖dk‖/β . Since {d̂k}K is bounded, we assume {d̂k}K → d̂ (by passing to a subsequence if
necessary). From Case 1, we know that {αk‖dk‖2}k∈K → 0, which, by ‖dk‖ � δ for all k ∈ K , implies {α̂k}K → 0. Taking the
limit k → ∞ with k ∈ K in the inequality (34), we obtain

(1 − σ)
〈∇ f (ŵ), d̂

〉
� 0. (35)

On the other hand, using Lemma 4.1 and noting that ‖dk‖ � δ for all k ∈ K , we have〈∇ f
(

wk), d̂k〉 � −1

2
ρk

∥∥dk
∥∥ � −1

2
ρ1δ ∀k ∈ K .

Taking the limit k → ∞ with k ∈ K in the inequality yields 〈∇ f (ŵ), d̂〉 � − 1
2 ρ1δ, which clearly contradicts (35). So,

{dk}K → 0. Using the same arguments as in Case 1, we have that ŵ is a stationary point of (15). �
Notice that the sequence {wk = (xk, yk, zk)} generated by Algorithm 4.1 is contained in the level set L f ( f (w0)). Therefore,

{wk} always has a cluster point, provided that the matrices M, N and P satisfy the assumption of Proposition 3.3.
Next we concentrate on analyzing the linear rate of convergence of Algorithm 4.1. The following technical lemma will be

used in the subsequent analysis.
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Lemma 4.3. For any w = (x, y, z) ∈ S, let d = (dx,dy,dz) be the solution of (27) with ρ > 0. Then, for any w̄ = (x̄, ȳ, z̄) ∈ S and
w ′ = w + αd with α ∈ [0,1], we have〈∇ f (w), w ′ − w̄

〉
� −〈∇ f (w),d

〉 + ρ‖d‖‖w̄ − w‖. (36)

Proof. By the definition of d, it is not hard to verify that d is also a solution of

min
u

〈∇ f (w) + ρd, u
〉

s.t. x + ux �K 0

y + u y �K 0

(37)

where u = (ux, u y, uz) ∈ R
n × R

n × R
p . Since w̄ − w is a feasible solution of (37), we get 〈∇ f (w) + ρd,d〉 � 〈∇ f (w) +

ρd, w̄ − w〉, which implies that〈∇ f (w), w − w̄
〉
� −〈∇ f (w) + ρd,d

〉 + ρ〈d, w̄ − w〉.
Using this inequality and the definition of w ′ , we have〈∇ f (w), w ′ − w̄

〉 = 〈∇ f (w), w − w̄
〉 + α

〈∇ f (w),d
〉

� −(1 − α)
〈∇ f (w),d

〉 − ρ‖d‖2 + ρ〈d, w̄ − w〉
� −〈∇ f (w),d

〉 + ρ‖d‖‖w̄ − w‖,
where the last inequality is since 〈∇ f (w),d〉 � 0 and α ∈ [0,1]. �

Similar to [26], we also need a local Lipschitzian error bound assumption on the distance to the set of stationary point
of (15), denoted by Ŝ . Such assumption was often used to establish the rate of convergence for iterative methods, such as
gradient projection and coordinate descent methods of constrained smooth optimization; see [18,19].

Assumption 1. Ŝ �= ∅ and, there exist τ > 0 and ε > 0 such that dist(w, Ŝ) � τ‖d‖ whenever w ∈ L f ( f (w0)) and ‖d‖ � ε ,
where d is the solution of (27) with ρ > 0.

Theorem 4.2. Let {wk} and {dk} be generated by Algorithm 4.1 with 0 < ρ1 � ρk � ρ2 for all k. If M, N and P satisfy the assumption
of Proposition 3.3 and Assumption 1 holds, then { f (wk)} converges at least Q-linearly and {wk} converges at least R-linearly.

Proof. The proof is similar to that of [26, Theorem 2], but the arguments here are much simpler. First, f is Lipschitz
continuous over any bounded set S2 due to its smoothness. This implies that there exists a scalar δ > 0 such that∥∥w − w ′∥∥ > δ whenever w, w ′ ∈ S2, f (w) �= f

(
w ′). (38)

By Proposition 3.3, L f ( f (w0)) is bounded. Since {wk} ⊂ L f ( f (w0)) by the construction of Algorithm 4.1, {wk} is bounded.
By passing to a subsequence if necessary, we can assume that {wk} converges to some ŵ . Using the same arguments as in
Theorem 4.1, we then have {dk} → 0. From Assumption 1 and {wk} ⊂ L f ( f (w0)), it follows that∥∥wk − w̄k

∥∥ � τ
∥∥dk

∥∥ ∀k � some k̄, (39)

where τ > 0 and w̄k ∈ Ŝ satisfies ‖wk − w̄k‖ = dist(wk, Ŝ). Noting that {wk} is bounded, the inequality (39) implies that
{w̄k}k�k̄ is bounded. By (38), there exist an index k̂ � k̄ and a scalar ῡ such that f (w̄k) = ῡ for all k � k̂.

Now, fixing any k � k̂ and using the Mean Value Theorem, it follows that

f
(

wk+1) − ῡ = ∇ f
(

w̃k)T (
wk+1 − w̄k)

= (∇ f
(

w̃k) − ∇ f
(

wk))T (
wk+1 − w̄k) + ∇ f

(
wk)T (

wk+1 − w̄k)
where w̃k is a point lying on the segment joining wk+1 with w̄k . Since {wk} and {w̄k}k�k̄ are bounded, the sequence

{w̃k}k�k̂ is also bounded. Using Proposition 3.2, we have∥∥∇ f
(

w̃k) − ∇ f
(

wk)∥∥ � L
∥∥w̃k − wk

∥∥ � L
[∥∥w̄k − wk+1

∥∥ + ∥∥w̄k − wk
∥∥] ∀k � k̂,

for some constant L > 0. Combining the last two equations, we obtain
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f
(

wk+1) − ῡ � L
∥∥wk+1 − w̄k

∥∥2 + L
∥∥wk+1 − w̄k

∥∥∥∥wk − w̄k
∥∥ + ∇ f

(
wk)T (

wk+1 − w̄k)
� L

∥∥wk+1 − w̄k
∥∥2 + L

∥∥wk+1 − w̄k
∥∥∥∥wk − w̄k

∥∥ − 〈∇ f
(

wk),dk〉 + ρ2
∥∥dk

∥∥∥∥w̄k − wk
∥∥

� L
(
αk

∥∥dk
∥∥ + ∥∥wk − w̄k

∥∥)2 + L
(
αk

∥∥dk
∥∥∥∥wk − w̄k

∥∥ + ∥∥wk − w̄k
∥∥2)

− 〈∇ f
(

wk),dk〉 + ρ2
∥∥dk

∥∥∥∥w̄k − wk
∥∥

� C1
∥∥dk

∥∥2 − 〈∇ f
(

wk),dk〉 for all k � k̂, (40)

where the second step uses Lemma 4.3 with w̄ = w̄k and w ′ = wk+1, the third step is from ‖wk+1 − w̄k‖ � ‖wk+1 − wk‖+
‖wk − w̄k‖ and ‖wk+1 − wk‖ = αkdk , the fourth step is due to (39), and C1 is a constant depending on L, τ ,ρ2 only. In
addition, using (29),∥∥dk

∥∥2 � −2ρ−1
1

〈∇ f
(

wk),dk〉.
This means that the right hand side of (40) is bounded above by

−C2
〈∇ f

(
wk),dk〉 for all k � k̂,

where C2 > 0 is depending on L, τ ,ρ1,ρ2 only. Then, by Step 3 of Algorithm 4.1,

f
(

wk+1) − ῡ � C3
(

f
(

wk) − f
(

wk+1)) ∀k � k̂, (41)

where C3 = C2/(σαk). On the other hand, for all k � k̂, we have

ῡ − f
(

wk) = ∇ f
(

ŵk)T (
w̄k − wk)

� ∇ f
(

ŵk)T (
w̄k − wk) + ∇ f

(
w̄k)T (

wk − w̄k)
= (∇ f

(
w̄k) − ∇ f

(
ŵk))T (

wk − w̄k)
� L

∥∥wk − w̄k
∥∥2

(42)

which the first step uses the Mean Value Theorem with ŵk being a point on the segment joining wk with w̄k , the second
step follows since ∇ f (w̄k)T (wk − w̄k) � 0, implied by w̄k ∈ Ŝ , and the last step is due to the Lipschitz continuity of ∇ f in
any bounded set. Combining with {wk − w̄k} → 0, the inequality (42) implies

lim inf
k→∞

f
(

wk) � ῡ. (43)

From Eqs. (41) and (43), it then follows that

0 � f
(

wk+1) − ῡ � C3

1 + C3

(
f
(

wk) − ῡ
) ∀k � k̂.

This shows that { f (wk)} converges at least Q -linearly.
Using Step 3 of Algorithm 4.1, the inequality (29) and wk+1 − wk = αkdk , we have

f
(

wk+1) − f
(

wk) � −1

2
σαkρk

∥∥dk
∥∥2 � −1

2
σρ1

(
αk)−1∥∥wk+1 − wk

∥∥2

which in turn implies that ‖wk+1 − wk‖ �
√

2αk( f (wk) − f (wk+1))(σρ1)−1 for any k. Since { f (wk) − f (wk+1)} converges
to 0 at least Q -linearly and supk αk � 1, this implies that the sequence {wk} converges at least R-linearly. �

Assumption 1 seems to be a little stronger, and now we do not know what properties of f can guarantee it to hold,
except the strong convexity of f over the set S , which is clearly not satisfied by f with ψ being any of functions introduced
in Section 3. In addition, since the feasible set of (15) is nonpolyhedral, the results obtained in [18,19] cannot be utilized.
We will leave this problem as our future research topic.

5. Numerical experience

In this section, we test the numerical performance of Algorithm 4.1 with solving the SOC constrained reformulations for
two classes of special extended SOCLCPs, where P = 0 and E is the nonnegative orthant cone R

l+ or the Cartesian product
of second-order cones K̃ = Kn1 × · · · × Knp with n1, . . . ,np � 1 and n1 + · · · + np = l.

All test problems were generated randomly. The matrices M , N and E were generated by “sprandn” of Matlab with
approximately 0.01 mn normally distributed nonzero entries. The vector r was obtained from r = E(Mu − N v), where
u = (u1, . . . , uq) ∈ K and v = (v1, . . . , vq) ∈ K with ui, vi ∈ Kni were generated in the following way: let the elements of ui



178 S. Pan, J.-S. Chen / J. Math. Anal. Appl. 366 (2010) 164–180
Table 1
Numerical results of Algorithm 4.1 for the SOCLCP with E = K̃.

No. ψ2 ψ4 ψ3

It NF Obj Cpu It NF Obj Cpu It NF Obj Cpu

1 893 1298 1.22e–5 302.5 68 175 7.12e–7 48.0 622 836 1.07e–5 225.3
2 681 1013 1.08e–5 245.4 36 135 2.22e–11 36.6 763 1082 1.15e–5 297.1
3 650 933 1.05e–5 216.3 55 169 3.12e–7 46.9 201 380 6.15e–6 107.3
4 436 582 8.83e–6 27.9 33 154 0 42.3 369 515 8.16e–6 141.5
5 714 1095 1.07e–5 258.2 64 163 5.06e–7 45.6 592 816 9.78e–6 225.4
6 673 947 1.06e–5 223.7 74 157 1.05e–6 43.9 90 219 3.82e–6 61.7
7 609 853 9.89e–6 201.1 61 144 4.57e–7 38.8 69 210 7.66e–7 58.9
8 683 1027 1.06e–5 245.1 44 125 1.02e–7 34.7 562 745 9.39e–6 200.6
9 695 1012 1.10e–5 232.0 36 129 8.97e–9 35.8 600 804 1.01e–5 232.0

10 729 1066 1.07e–5 251.3 37 158 3.11e–10 43.5 208 426 5.99e–6 116.2

Table 2
Numerical results of Algorithm 4.1 and L-BFGS for E = K̃.

No. Algorithm 4.1 L-BFGS

Iter NF Obj Gap Cpu Iter NF Obj Gap Cpu

1 90 231 2.95e–6 5.43e–6 288.7 99 127 9.34e–10 1.55e–6 152.5
2 80 209 1.51e–6 3.89e–6 264.8 92 120 1.38e–9 8.92e–6 138.0
3 85 209 2.10e–6 4.58e–6 255.2 105 131 2.37e–9 7.03e–6 157.9
4 79 222 1.52e–6 3.90e–6 275.3 136 183 9.50e–9 9.96e–6 206.7
5 93 259 3.75e–6 6.12e–6 323.1 86 120 2.99e–9 2.53e–6 129.5
6 49 195 1.99e–10 4.54e–8 251.6 121 160 1.36e–9 8.35e–6 187.0
7 77 206 1.22e–6 3.49e–6 262.0 73 98 2.20e–9 5.83e–6 112.3
8 324 492 6.64e–6 8.13e–6 625.3 109 141 7.33e–9 2.06e–6 163.3
9 90 235 3.01e–6 5.49e–6 297.4 142 172 7.20e–9 5.27e–6 208.7

10 87 227 2.42e–6 4.92e–6 287.1 105 130 9.68e–10 1.06e–5 159.3

be chosen randomly from a normal distribution with mean −1 and variance 4, and then set ui1 = ‖ui2‖; let the elements
of vi be chosen randomly from a normal distribution with mean 0 and variance 1, and then set vi1 = ‖vi2‖, where ui1
and vi1 are the first elements of ui and vi , respectively. Such way guarantees that the assumption in (4) holds. We chose
n1 = · · · = nq and n1 = · · · = np to construct K and K̃, respectively.

All experiments were done with a PC of 2.8 GHz CPU and 512 MB memory, and the computer codes were all written in
Matlab 7.0. During our tests, we adopted γ = 105 for the reformulation problems, and chose the following parameters for
Algorithm 4.1:

ε = 10−5, β = 0.5, σ = 0.1, ρk+1 = min
{

1.05ρk,103} with ρ0 = 10.

The starting point (x0, y0) of Algorithm 4.1 was chosen as x0 = (x0
1, . . . , x0

q) and y0 = (y0
1, . . . , y0

q) with x0
i = (10,ωi/‖ωi‖)

and y0
i = (10, ηi/‖ηi‖), where ωi, ηi ∈ R

ni−1 for all i = 1,2, . . . ,m were generated by Matlab’s rand.m.
We first applied Algorithm 4.1 for solving a group of problems generated as above for E = K̃ with m = 2000, n = 2000,

l = 1500, q = 50, and p = 50 to test the performance of the SOC constrained reformulation problem (15) with different ψ .
The numerical results corresponding to ψ2,ψ3 and ψ4 are summarized in Table 1, where It records the number of iteration
required to satisfy the termination condition, NF indicates the number of function evaluations of f (w), Obj means the
objective value of (15) at the final iteration, and Cpu denotes the CPU time in second for solving each test problem. For the
function ψ5, we cannot obtain the favorable results. From the results in Table 1 and the growth relation between ψ2–ψ5,
we may conclude that the reformulation problem (15) has better performance if it is derived from the function ψ(x, y) with
slower growth over K × K.

We also compared the numerical performance of Algorithm 4.1 for solving (15) based on ψ4 with the limited-memory
BFGS method [4] for solving (16) based on ψFB. Among others, the L-BFGS method utilized 5 limited-memory vector-update
and the Armijo line search rule same as (32) except σ = 10−4. We used the two methods to solve two groups of test
problems with E = K̃ and E = R

l+ . The test problems for E = K̃ have the size of m = 3000, n = 3000, l = 2500, q = 50 and
p = 50; whereas the test problems for E = R

l+ have the size of m = 2000, n = 2000, l = 1500, q = 50. Algorithm 4.1 and
the L-BFGS method started from the same initial point generated as above. When E = R

l+ , the parameter ρk was modified
by ρk+1 = min{1.01ρk,103} with ρ0 = 10. Numerical results are listed in Tables 2–3, in which It, NF, Obj and Cpu have the
same meaning as in Table 1, and Gap means the value of max{0, xT y} at the final iteration.

From Tables 2–3, we see that for most of test problems Algorithm 4.1 requires fewer iterations than the L-BFGS method,
and moreover, the solutions generated have smaller Gap. However, Algorithm 4.1 needs more function evaluations than the
L-BFGS method, and consequently a little more CPU time. Consider that Algorithm 4.1 exploits first-order information of the
objective function, whereas the L-BFGS method exploits approximate second-order information of the objective function.
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Table 3
Numerical results of Algorithm 4.1 and L-BFGS for E = R

l+ .

No. Algorithm 4.1 L-BFGS

Iter NF Obj Gap Cpu Iter NF Obj Gap Cpu

1 95 445 0 1.17e–14 115.4 214 255 1.26e–9 7.26e–6 67.9
2 88 423 1.11e–10 3.47e–10 108.3 205 255 4.97e–9 9.63e–6 69.5
3 99 376 2.81e–6 5.30e–7 98.8 272 325 8.62e–9 2.67e–6 91.5
4 133 531 4.56e–8 6.75e–7 135.2 229 270 9.80e–9 1.02e–6 76.2
5 128 596 1.41e–8 3.75e–7 154.8 221 262 6.92e–10 8.69e–7 72.3
6 97 478 2.89e–10 5.38e–8 121.5 193 236 5.13e–9 5.26e–6 65.3
7 112 552 4.44e–11 1.92e–8 142.0 271 231 8.15e–9 2.03e–6 88.2
8 124 439 4.91e–8 7.01e–7 114.8 220 269 4.93e–9 2.14e–6 72.9
9 84 408 2.22e–10 4.64e–8 105.4 307 365 1.48e–9 3.40e–6 99.3

10 155 563 7.35e–8 8.57e–7 142.1 230 273 1.19e–9 1.20e–6 74.4

This shows that Algorithm 4.1 is effective if a suitable ρk is selected. Notice that Algorithm 4.1 is parallelizable when q > 1,
and therefore it is easily modified to solve the large-scale problems.

We want to point out that solving (15) with Algorithm 4.1 and solving (16) with the L-BFGS method will yield different
solutions if the solution of (1) is not unique. The solution yielded by the former always lies in K × K, whereas the one
given by the latter satisfies the property approximately. In addition, we find that for the problems where E = {0}, applying
Algorithm 4.1 for (15) with ψ = ψ4 and applying L-BFGS method for (16) cannot yield favorable numerical results, although
many special SOCLCPs are reformulated as (1) with E = {0}. This means that the penalized reformulations proposed are
unsuitable for this class of SOCLCPs.

6. Conclusions

We proposed some SOC constrained reformulations and unconstrained reformulations for the extended SOCLCP (1), and
established the equivalence between the stationary points of these optimization problems and the solutions of (1) under
mild conditions. We also developed a proximal gradient descent method for solving the SOC constrained reformulation
problems, and established the linear rate of convergence under a local Lipschitz error bound assumption. Numerical exper-
iments indicated that these reformulation problems are effective for the case where E is nonnegative orthant cone or SOC,
and the SOC constrained reformulations derived from ψ with slower growth in K × K have better performance. In addition,
numerical comparisons with the L-BFGS method for solving (16) with ψ = ψFB verify the effectiveness of Algorithm 4.1 for
solving (15) with ψ = ψ4.

Further studies are also needed to find suitable properties of f to guarantee that the local Lipschitz error bound assump-
tion holds. Another direction is to analyze the properties of the solution set of (1) under suitable conditions of M, N and P .
We note that the SOC constrained reformulation problems and the proximal gradient descent method in this paper can be
extended to general symmetric cone linear complementarity problems.

Appendix A

Lemma 1. For any u = (u1, u2), v = (v1, v2) ∈ R×R
l−1 with l � 1, if u1 v1 � 0 and 〈u, v〉 � 0, we have 〈u ◦ (u ◦ v), v ◦ (u ◦ v)〉 � 0,

and when the equality holds, 〈u, v〉 = 0.

Proof. By the definition of Jordan product, we compute that〈
u ◦ (u ◦ v), v ◦ (u ◦ v)

〉 = (
uT v

)3 + 3uT v
(
u2

1‖v2‖2 + v2
1‖u2‖2)

+ 6u2
1 v2

1uT
2 v2 + 5u1 v1

(
uT

2 v2
)2 + u1 v1‖u2‖2‖v2‖2

�
(
uT v

)3 + 3uT v
(
u2

1‖v2‖2 + v2
1‖u2‖2)

+ 6u2
1 v2

1uT
2 v2 + 5u1 v1

(
uT

2 v2
)2 + u1 v1

(
uT

2 v2
)2

= (
uT v

)3 + 3uT v‖u1 v2 + v1u2‖2 � 0

where the first inequality uses u1 v1 � 0 and ‖u2‖2‖v2‖2 � (uT
2 v2)

2, and the second one is due to the nonnegativity of uT v .
This shows that the first part holds. The second part follows directly from the above inequality. �
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