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In this paper, we study geometric properties of surfaces of the generalized Fischer–Burmei-
ster function and its induced merit function. Then, a visualization is proposed to explain
how the convergent behaviors are influenced by two descent directions in merit function
approach. Based on the geometric properties and visualization, we have more intuitive
ideas about how the convergent behavior is affected by changing parameter. Furthermore,
geometric view indicates how to improve the algorithm to achieve our goal by setting
proper value of the parameter in merit function approach.
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1. Introduction

The nonlinear complementarity problem (NCP) is to find a point x 2 Rn such that
x P 0; FðxÞP 0; hx; FðxÞi ¼ 0; ð1Þ
where h�; �i is the Euclidean inner product and F ¼ ðF1; . . . ; FnÞT is a map from Rn to Rn. We assume that F is continuously dif-
ferentiable throughout this paper. The NCP has attracted much attention because of its wide applications in the fields of eco-
nomics, engineering, and operations research [8,11,16], to name a few.

Many methods have been proposed to solve the NCP; see [1,14,16,20,22,25] and the references therein. One of the most
powerful and popular approach is to reformulate the NCP as a system of nonlinear equations [21,23,28], or an unconstrained
minimization problem [9,10,12,15,18,19,24,27]. The objective function that can constitute an equivalent unconstrained min-
imization problem is called a merit function, whose global minima are coincident with the solutions of the original NCP. To
construct a merit function, a class of functions, called NCP-functions and defined below, plays a significant role.

A function / : R2 ! R is called an NCP-function if it satisfies
/ða; bÞ ¼ 0() a P 0; b P 0; ab ¼ 0: ð2Þ
Equivalently, / is an NCP-function if the set of its zeros is the two nonnegative semiaxes. An important NCP-function,
which plays a central role in the development of efficient algorithms for the solution of the NCP, is the well-known
Fischer–Burmeister (FB) NCP-function [12,13] defined as
ence and
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/ða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� ðaþ bÞ: ð3Þ
With the NCP function, we can obtain an equivalent formulation of the NCP by a system of equations:
UðxÞ ¼

/ðx1; F1ðxÞÞ
�
�
�

/ðxn; FnðxÞÞ

0
BBBBBB@

1
CCCCCCA
¼ 0: ð4Þ
In other words, we have
x solves the NCP() UðxÞ ¼ 0:
In view of this, we define a real-valued function W : Rn ! Rþ
WðxÞ :¼ 1
2
kUðxÞk2 ¼ 1

2

Xn

i¼1

/2ðxi; FiðxÞÞ: ð5Þ
It is known that W a merit function of the NCP, i.e., the NCP is equivalent to an unconstrained minimization problem:
min
x2Rn

WðxÞ: ð6Þ
Merit functions is frequently used in designing numerical algorithms for solving the NCP. In particular, we can apply an iter-
ative algorithm to minimize the merit function with hope of obtaining its global minimum.

Recently, the so-called generalized Fischer–Burmeister function was proposed in [3,4]. More specifically, they considered
/p : R2 ! R and
/pða; bÞ :¼ kða; bÞkp � ðaþ bÞ; ð7Þ
where p > 1 is an arbitrary fixed real number and kða; bÞkp denotes the p-norm of ða; bÞ, i.e., kða; bÞkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jajp þ jbjpp

p
. In other

words, in the function /p, the 2-norm of ða; bÞ in the FB function is replaced by a more general p-norm. The function /p is still
an NCP-function, which naturally induces another NCP-function wp : R2 ! Rþ given by
wpða; bÞ :¼ 1
2
j/pða; bÞj

2
: ð8Þ
For any given p > 1, the function wp is shown to possess all favorable properties of the FB function w; see [2–4]. It plays an
important part in our study throughout the paper. Like U, the operator Up : Rn ! Rn defined as
UpðxÞ ¼

/pðx1; F1ðxÞÞ
�
�
�

/pðxn; FnðxÞÞ

0
BBBBBB@

1
CCCCCCA

ð9Þ
yields a family of merit functions Wp : Rn ! Rþ for the NCP:
WpðxÞ :¼ 1
2
kUpðxÞk2 ¼

Xn

i¼1

wpðxi; FiðxÞÞ: ð10Þ
Analogously, the NCP is equivalent to an unconstrained minimization problem:
min
x2Rn

WpðxÞ: ð11Þ
It was shown that if F is monotone [15] or an P0-function [10], then any stationary point of W is a global minima of the
unconstrained minimization minx2Rn WðxÞ, and hence solves the NCP. The similar results were generalized to Wp-case in
[4]. On the other hand, there are many classical iterative methods applied to this unconstrained minimization of the NCP.
Derivative-free methods [29] are suitable for problems where the derivatives of F are not available or expansive. Some deriv-
ative-free algorithms with global convergence results were proposed to solve the NCP based on generalized Fischer–Burmei-
ster merit function. For example, [4,5] pointed out that the performance of the algorithm is influenced by parameter p. In
addition, there have been observed some phenomenon in the derivative-free algorithm studied in [5]. More specifically,
there occurs kind of ‘‘cliff’’ in the convergent behavior depicted as Fig. 1.

During these years, we are frequently asked about what is the main factor causing this and how parameter p affects con-
vergent behavior? These are what we are eager to know of. In light of our earlier numerical experience, we find that figuring
out the geometric properties of /p and wp may be a key way to answer the aforementioned puzzles. In view of this



Fig. 1. ‘‘Cliff’’ phenomenon that appears in some derivative-free algorithm.
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motivation, we aim to do analysis from geometric view in this paper. More specifically, the objective of this paper is to study
the relation between convergent behavior and parameter p via aspect of geometry in which the graphs of /p and wp can be
regarded as families of surfaces embedded in R3.

This paper is organized as follows. In Section 2, we propose some geometric properties of /p and present its surface struc-
ture by figures. In Section 3, we study properties of wp, and summarize the comparison between /p and wp. In Section 4, we
investigate a geometric visualization to see possible convergence behavior with different p by a few examples. Finally, we
state the conclusion.

2. Geometric view of /p

In this section, we study some geometric properties of /p and interpret their meanings. We present the family of surfaces
of /pða; bÞwhere p 2 ð1;þ1Þ, see Figs. 2 and 3. When we fix a real number p with 1 < p < þ1, Fig. 3 gives us intuitive image
that the surface shape is indeed influenced by the value of p. From the definition of p-norm, we know that
kða; bÞk1 :¼ jaj þ jbj, and kða; bÞk1 :¼maxfjaj; jbjg. It is trivial that /pða; bÞ ! /1ða; bÞ :¼ jaj þ jbj � ðaþ bÞ pointwisely, see
Fig. 3(a) and (b). On the other hand /pða; bÞ ! /1ða; bÞ :¼maxfjaj; jbjg � ðaþ bÞ pointwisely, see Fig. 3(e) and (f). Note that
/1ða; bÞ is not an NCP function because when a > 0 and b > 0, we have /1ða; bÞ ¼ 0 whereas /1ða; bÞ is an NCP function but
not differentiable when a ¼ b.

Next, we give some lemmas which will be used in subsequent analysis.

Lemma 2.1 [6, Lemma 3.1]. If a > 0 and b > 0, then ðaþ bÞp > ap þ bp for all p 2 ð1;þ1Þ.
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Fig. 2. The surface of z ¼ /2ða; bÞ with ða; bÞ 2 ½�10;10� � ½�10;10�.
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Fig. 3. The surface of z ¼ /pða; bÞ with different p.
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Lemma 2.2 [17, Lemma 1.3]. Let x ¼ ðx1; x2; . . . ; xnÞ 2 Rn and kxkp :¼
Pn

i¼1jxijp
� �1

p. If 1 < p1 < p2, then kxkp2
6 kxkp1

6

n
1

p1
� 1

p2

� �
kxkp2

.

Lemma 2.3 [5, Lemma 3.2]. Let /p : R2 ! R be given as in (7) where p 2 ð1;þ1Þ. Then,
2� 2
1
p

� �
jminfa; bgj 6 j/pða; bÞj 6 2þ 2

1
p

� �
jminfa; bgj:
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Proposition 2.1. Let /p : R2 ! R be given as in (7) where p 2 ð1;þ1Þ. Then,

(a) ða > 0 and b > 0Þ () /pða; bÞ < 0;
(b) ða ¼ 0 and b P 0Þ or ðb ¼ 0 and a P 0Þ () /pða; bÞ ¼ 0;
(c) b ¼ 0 and a < 0) /pða; bÞ ¼ �2a > 0;
(d) a ¼ 0 and b < 0) /pða; bÞ ¼ �2b > 0.
Proof

(a) If a > 0 and b > 0, it is easy to see /pða; bÞ < 0 by Lemma 2.1. Conversely, because
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jajp þ jbjpp

p
P jaj andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jajp þ jbjpp
p

P jbj, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jajp þ jbjpp

p
P maxfjaj; jbjg. Suppose a 6 0 or b 6 0, then we have maxfjaj; jbjgP ðaþ bÞ

which implies /pða; bÞP 0. This is a contradiction.
(b) By definition of /pða; bÞ, we know
/pða;0Þ ¼ jaj � a ¼
0 a P 0;
�2a a < 0;

�
/pð0; bÞ ¼ jbj � b ¼

0 b P 0;
�2b b < 0;

�

which say that ða ¼ 0 and b P 0Þ or ðb ¼ 0 and a P 0Þ ) /pða; bÞ ¼ 0. Conversely, suppose /pða; bÞ ¼ 0. If a < 0 or b < 0,
mimicking the arguments of part (a) yields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jajp þ jbjpp
q

> maxfjaj; jbjg > aþ b;
which implies /pða; bÞ > 0. Thus, there must hold a P 0 and b P 0. Furthermore, one of a and b must be 0 from part (a).

The proofs of (c) and (d) are direct from the proof of part (b). h

Proposition 2.1(a) shows that /pða; bÞ is negative on the first quadrant of R2-plane, see Fig. 4, while Proposition 2.1(b)
shows that /pða; bÞ ¼ 0 can only happen on the nonnegative semiaxes (i.e., a P 0; b ¼ 0 or a ¼ 0; b P 0). In fact, this prop-
osition is also equivalent to saying that /pða; bÞ is an NCP-function. In addition, Proposition 2.1(b)–(d) indicate that the value
of p does not affect the value /pða; bÞ on the a-axis and b-axis.

Proposition 2.2. Let /p : R2 ! R be given as in (7) where p 2 ð1;þ1Þ. Then,

(a) /pða; bÞ ¼ /pðb; aÞ;
(b) /p is convex, i.e.,
/pðawþ ð1� aÞw0Þ 6 a/pðwÞ þ ð1� aÞ/pðw0Þ
for all w;w0 2 R2 and a 2 ½0;1�;
(c) if 1 < p1 < p2, then /p1

ða; bÞP /p2
ða; bÞ.
Proof. The verifications for part (a) and (b) are straightforward, we omit them. Part (c) is true by applying Lemma 2.2. h

Proposition 2.2(a) shows the symmetric property of /pða; bÞwhich means there have a couple of points on plane between
line a ¼ b having the same height. In other words, surface z ¼ /pða; bÞ has the same structure on second and forth quadrant of
the plane, see Figs. 4–6. Proposition 2.2(b) says that the shape of surface is convex because the function /p is convex while
Proposition 2.2(c) implies that the value of /p is decreasing when the value of p is increasing. In summary, the value of p
would affect geometric structure.

Proposition 2.3. If fðak; bkÞg# R2 with ðak ! �1Þ or ðbk ! �1Þ or ðak ! þ1 and bk ! þ1Þ, then j/pðak; bkÞj ! þ1 for
k! þ1.
Proof. This can be found in [26, p. 20]. h

Proposition 2.3 implies the increasing direction on surface. This can be seen from the contour graph of z ¼ /pða; bÞ which
is plotted in Fig. 4, where the deep color presents the lower height. In order to understand the structure of the surface, it is
nature to investigate special curves on the surface. We consider a family of curves ar;p : R! R3 defined as follows:
ar;pðtÞ :¼ r þ t; r � t;/pðr þ t; r � tÞ
� �

ð12Þ
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Fig. 4. Level curves of z ¼ /pða; bÞ with different p.

36 H.-Y. Tsai, J.-S. Chen / Applied Mathematics and Computation 237 (2014) 31–59
where r 2 R and p 2 ð1;þ1Þ are two arbitrary fixed real number. These curves can be viewed as the intersection of surface
z ¼ /pða; bÞ and plane aþ b ¼ 2r, see Fig. 6. We study some properties regarding these special curves.

Lemma 2.4. Let /p : R2 ! R be given as in (7) where p 2 ð1;þ1Þ. Fix any r 2 R, we define f : R! R as f ðtÞ :¼ /pðr þ t; r � tÞ,
then f is a convex function.
Proof. We know that /p is a convex function by Proposition 2.3 and observe that f is a composition of /p and an affine func-
tion. Thus, f is convex since it is a composition of a convex function and an affine function (the composition of two convex
functions is not necessarily convex, however, our case does guarantee the convexity because one of them is affine). h
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Fig. 5. The surface of z ¼ /2ða; bÞ with ða; bÞ 2 ½0;10� � ½0;10�.

Fig. 6. The curve intersected by surface z ¼ /pða; bÞ and plane aþ b ¼ 2r.
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Theorem 2.1. Let /p : R2 ! R be given as in (7) where p 2 ð1;þ1Þ. Suppose a and b are constrained on the curve determined by
aþ b ¼ 2r (r 2 R) and the surface. Then, /pða; bÞ attains its minima /pðr; rÞ ¼ 2

1
pjrj � 2r along this curve at ða; bÞ ¼ ðr; rÞ.
Proof. We know that /pða; bÞ is differentiable except ð0;0Þ, therefore we discuss two cases as follows.
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(i) Case (1): r ¼ 0. Because aþ b ¼ 0; a and b have opposite sign to each other except a ¼ b ¼ 0, from Proposition 2.1, we
know /pða; bÞP 0 under this case. Thus, when ða; bÞ ¼ ð0; 0Þ; /pða; bÞ attains its minima zero.

(ii) Case (2): r – 0. Fix r and p > 1. Let f : R! R and g : R! R be respectively defined as
f ðtÞ :¼ /pðr þ t; r � tÞ; gðtÞ :¼ jr þ tjp þ jr � tjp:
Then, we calculate that
f 0ðtÞ ¼ g0ðtÞ
pðgðtÞÞ

p�1
p

and g0ðtÞ ¼ p sgnðr þ tÞðr þ tÞp�1 � sgnðr � tÞðr � tÞp�1
h i

:

We know gðtÞ > 0 for all t 2 R. It is clear g0ð0Þ ¼ 0, and hence f 0ð0Þ ¼ 0. By Lemma 2.4, f ðtÞ is convex on R. In addition, it is
also continuous, therefore, t ¼ 0 is a critical point of f ðtÞ which is also a global minimizer of f ðtÞ. The proof is done since
a ¼ b ¼ r and /pðr; rÞ ¼ 2

1
pjrj � 2r when t ¼ 0. h

Lemma 2.4 and Theorem 2.1 show that the curve determined by the plane aþ b ¼ 2r and the surface z ¼ /pða; bÞ is convex
and attains minima when a ¼ b, see Fig. 7. We now study curvature of the family of curves ar;p defined as in (12) at point
r; r;/r;pðr; rÞ
� �

. Because function /p is not differentiable at ða; bÞ ¼ ð0;0Þ (i.e., r ¼ 0), we choose two points
�t0; t0;/0;pð�t0; t0Þ
� �

and t0;�t0;/0;pðt0;�t0Þ
� �

where t0 > 0, and calculate the value of cosine function of the angle between
a0;pð�t0Þ;a0;pðt0Þ, see Fig. 8.

Proposition 2.4. Let ar;p : R! R3 be defined as in (12), and cospðhÞ be cosine function of the angle between two vectors a0;pð�t0Þ
and a0;pðt0Þ where t0 > 0. Then,

(a) cospðhÞ ¼ 2
2
p�6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2
p�2

� �2
þ32

q ;

(b) cospðhÞ ! � 1
3 as p! 1, and cospðhÞ ! � 5

33 as p! þ1;

(c) if 1 < p1 < p2, then cosp1 ðhÞ < cosp2 ðhÞ.
Proof

(a) By direct computation, we obtain
cospðhÞ ¼
a0;pð�t0Þ � a0;pðt0Þ
ka0;pð�t0Þkka0;pðt0Þk

¼ 2
2
p � 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2
p þ 6

� �
þ 2

1
pþ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2
p þ 6

� �
� 2

1
pþ2

r ¼ 2
2
p � 6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
2
p � 2

� �2
þ 32

r :
(b) From part (a), let f : ð1;þ1Þ ! R be f ðpÞ :¼ cospðhÞ. Then f ðpÞ is continuous on ð1;þ1Þ. By taking the limit, we have
cospðhÞ ! � 1

3 as p! 1, and cospðhÞ ! � 5
33 as p! þ1.

(c) From part (b), we know f 0ðpÞ ¼ 6� 1�ln 2
pð Þ22

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2

2
p�2Þ

2
þ32

q which implies f 0ðpÞ > 0 for all p > 1. Therefore, f ðpÞ is a strictly increasing

function on ð1;þ1Þ. h
Proposition 2.5. Let ar;p : R! R3 be defined as in (12). Then the following hold.

(a) The curvature at point ar;pð0Þ ¼ r; r;/pðr; rÞ
� �

is jpð0Þ ¼ ðp�1Þ2
1
p�1

jrj .

(b) jpð0Þ ! 0 as p! 1 and jpð0Þ ! þ1 as p! þ1.
(c) If 1 < p1 < p2, then jp1

ð0Þ < jp2
ð0Þ.
Proof

(a) Because ar;pðtÞ ¼ r þ t; r � t;/pðr þ t; r � tÞ
� �

, we know
a0r;pð0Þ ¼ ð1;�1;0Þ and a00r;pð0Þ ¼ 0; 0;
ðp� 1Þ2

1
p

jrj

 !
:
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Recall the formulation of curvature
jpðtÞ ¼
ja0r;pðtÞ ^ a00r;pðtÞj
ja0r;pðtÞj

3 ;
where wage operator means the outer product of two vectors. Thus, we have
jpð0Þ ¼
ja0r;pð0Þ ^ a00r;pð0Þj
ja0r;pð0Þj

3 ¼ ðp� 1Þ2
1
p�1

jrj :
(b) Let f : ð1;þ1Þ ! R be defined as
f ðpÞ :¼ jpð0Þ ¼
ðp� 1Þ2

1
p�1

jrj ;
then obviously f ðpÞ is continuous on R. Thus, the desired result follows by taking the limit directly.
(c) From part (b), we compute that
f 0ðpÞ ¼ 2
1
p�1

jrj 1� ln 2
p
þ ln 2

p2

� 	
;

which implies f 0ðpÞ > 0 for all p 2 ð1;þ1Þ. Then f ðpÞ is strictly increasing on ð1;þ1Þ. h
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The above two propositions shows how p affect the geometric structure, see Fig. 9(a) and (b). Proposition 2.5(b) says that
when p! 1 the curve becomes a straight line, see Fig. 9(c). Note that when p! þ1 the curve becomes more and more sharp
at the point. This curve is not differentiable when t ¼ 0, see Fig. 9(d). To sum up, from all properties we presented in this
section we realize that p indeed affect the geometric behavior of surface z ¼ /pða; bÞ both locally and globally.

3. Geometric view of wp

In previous section, we see that generalized FB function /p is convex and differentiable everywhere except ð0;0Þ. To the
contrast, the function wpða; bÞ defined as in (8) is non-convex, but continuously differentiable everywhere. Nonetheless, /p

and wp have many similar geometric properties as will be seen later. In this section, we study some properties like what we
have done in Section 2 and compare the difference between wp and /p (see Figs. 10 and 11).

Proposition 3.1. Let wp : R2 ! R be given as in (8) where p 2 ð1;þ1Þ. Then,

(a) wpða; bÞP 0; 8ða; bÞ 2 R2;
(b) wpða; bÞ ¼ wpðb; aÞ; 8ða; bÞ 2 R2;
(c) ða ¼ 0 and b P 0Þ or ðb ¼ 0 and a P 0Þ () wpða; bÞ ¼ 0;
(d) b ¼ 0 and a < 0) wpða; bÞ ¼ 2a2 > 0;
(e) a ¼ 0 and b < 0) wpða; bÞ ¼ 2b2

> 0;
(f) wp is continuously differentiable everywhere.
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Proof. Parts (d) and (e) come from Propositions 2.5(c) and 2.1(d), please see [2–4] for the rest. h

Proposition 2.2(c) says that the value of /p is decreasing with respect to p. To the contrast, wp does not have such property.
More specifically, it is true for wp to hold such property only on certain quadrants.

Proposition 3.2. Suppose 1 < p1 < p2 and ða; bÞ 2 R2. Then,

(a) if a < 0 or b < 0, then wp1
ða; bÞP wp2

ða; bÞ;
(b) if a > 0 and b > 0, then wp1

ða; bÞ 6 wp2
ða; bÞ.
Proof

(a) This is clear from Proposition 2.2(c).
(b) Suppose a > 0 and b > 0, from Proposition 2.1(a), we have /pða; bÞ < 0. Then Proposition 2.2(c) yields

/p1
ða; bÞP /p2

ða; bÞ, and hence /2
p1
ða; bÞ 6 /2

p2
ða; bÞ. h

Since wp is not convex in general. The counterpart of Theorem 2.1 is as below.

Theorem 3.1. Let wpða; bÞ be defined as (8) with aþ b ¼ 2r. Then, the following hold.

(a) If r 2 Rþ and a > 0; b > 0, then wpða; bÞ attains maxima 2
2
p�1 � 2

1
pþ1 þ 2

� �
r2 when ða; bÞ ¼ ðr; rÞ.

(b) If r 2 R� [ f0g, then wpða; bÞ attains minima 2
2
p�1 þ 2

1
pþ1 þ 2

� �
r2 when ða; bÞ ¼ ðr; rÞ.
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Proof

(a) When a > 0 and b > 0, Proposition 2.1(a) says that /pða; bÞ < 0. Since /2
pða; bÞ > 0, by Theorem 2.1, the minima of

/pða; bÞ becomes maxima of wpða; bÞ.
(b) This is a consequence of Theorem 2.1. h

The aforementioned results show wp has many similar properties like /p hold, see Figs. 11 and 12, where we denote

w1ða; bÞ :¼ 1
2 j/1ða; bÞj

2 and w1ða; bÞ ¼ 1
2 j/1ða; bÞj

2. However, there still are some differences between /p and wp. For example,
wp is not convex whereas /p is. Fig. 13 depicts the increasing direction of wp. Note that wpða; bÞ is nonnegative and has dif-
ferent properties when a > 0 and b > 0, see Fig. 11.

In order to further understand the geometric properties, we define a family of curves as follows:
br;pðtÞ :¼ r þ t; r � t;wpðr þ t; r � tÞ
� �

; ð13Þ
where r is a fixed real number, and t 2 R. This family of curves can be regarded as intersection of plane aþ b ¼ 2r and surface
z ¼ wpða; bÞ, see Fig. 14.

Proposition 3.3. Let br;p : R! R3 be defined as in (13). Then the following hold.

(a) The curvature at point br;pð0Þ ¼ r; r;wpðr; rÞ
� �

is �jpð0Þ ¼ ðp� 1Þ2
1
p 1� 2

1
p�1

� �
.

(b) �jpð0Þ ! 0 as p! 1 and �jpð0Þ ! þ1 as p! þ1.
(c) If 1 < p1 < p2, then �jp1

ð0Þ < �jp2
ð0Þ.
Proof

(a) From br;pðtÞ ¼ r þ t; r � t;wpðr þ t; r � tÞ
� �

, we know
b0r;pð0Þ ¼ ð1;�1;0Þ and b0r;pð0Þ ¼ 0;0; ðp� 1Þ2
2
p � sgnðrÞðp� 1Þ2

1
pþ1

� �
;

which yields
�jpðrÞ ¼
jb0r;pð0Þ ^ b0r;pð0Þj
jb0r;pð0Þj

3 ¼ ðp� 1Þ2
1
p 1� 2

1
p�1

� �
:

(b) Let f : ð1;þ1Þ ! R be defined as f ðpÞ :¼ �jpð0Þ ¼ ðp� 1Þ2
1
p 1� 2

1
p�1

� �
.

Then the result follows by taking the limit directly.
(c) From part (b), it can be verified that f 0ðpÞ > 0 for all p 2 ð1;þ1Þ. Thus, f ðpÞ is strictly increasing on ð1;þ1Þ. h

Fig. 14 depicts the change of the curve when we have different value of p in which we can see the change of curvature
when p is close to one or infinity. We state an addendum to part (a) here: the curvature at another two special points
br;pð�rÞ ¼ ð0;2r;0Þ, br;pðrÞ ¼ ð2r;0;0Þ is the same, namely, �jpðrÞ ¼ �jpð�rÞ ¼ 1

2. Note that although wp is differentiable every-
where, the mean curvature at ð0; 0Þ does not exist. To end up this section, we summarize the similarity and difference be-
tween /p and wp as below.
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/pða; bÞ
 wpða; bÞ
Difference
 Convex
 Nonconvex

differentiable everywhere except ð0;0Þ/pða; bÞ < 0 when
a > 0 and b > 0
differentiable everywhere
wpða; bÞP 0;8ða; bÞ 2 R2
Similarity
 (1) NCP-function
(2) Symmetry (i.e. /pða; bÞ ¼ /pðb; aÞ and wpða; bÞ ¼ wpðb; aÞ)
(3) The function is not affected by p on axes

(4) When ðak ! �1Þ or ðbk ! �1Þ or ðak; bk ! þ1Þ there have j/pðak; bkÞj ! 1 and jwpðak; bkÞj ! 1
(5) Non-coercive
4. Geometric analysis of merit function in descent algorithms

In this section, we employ derivative-free descent algorithms presented in [4,5] to solve the unconstrained minimization
problem (11) by using the merit function (10). We then compare two algorithms and study their convergent behavior by
investigating an intuitive visualization. We first list these two algorithms as below.

Algorithm 4.1 [4, Algorithm 4.1].

(Step 0) Given real numbers p > 1 and a starting point x0 2 Rn. Choose the parameters r 2 ð0;1Þ; b 2 ð0;1Þ and e P 0. Set
k :¼ 0.

(Step 1) If WpðxkÞ 6 e, then stop.
(Step 2) Let mk be the smallest nonnegative integer m satisfying
Wpðxk þ bmdkÞ 6 ð1� rb2mÞWpðxkÞ;
where
dk
:¼ �rbwpðxk; FðxkÞÞ
and
rbwpðx; FðxÞÞ :¼ rbwpðx1; F1ðxÞÞ; . . . ;rbwpðxn; FnðxÞÞ
� �T

:

(Step 3) Set xkþ1 :¼ xk þ bmk dk, k :¼ kþ 1 and go to Step 1.
Algorithm 4.2 [5, Algorithm 4.1].

(Step 0) Given real numbers p > 1 and a P 0 and a starting point x0 2 Rn. Choose the parameters
r 2 ð0;1Þ; b 2 ð0;1Þ; c 2 ð0;1Þ and e P 0. Set k :¼ 0.

(Step 1) If Wa;pðxkÞ 6 e, then stop.
(Step 2) Let mk be the smallest nonnegative integer m satisfying
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44 H.-Y. Tsai, J.-S. Chen / Applied Mathematics and Computation 237 (2014) 31–59
Wa;pðxk þ bmdkðcmÞÞ 6 ð1� rb2mÞWa;pðxkÞ;
where
dkðcmÞ :¼ �rbwa;pðxk; FðxkÞÞ � cmrawa;pðxk; FðxkÞÞ
and
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rawa;pðx; FðxÞÞ :¼ rawa;pðx1; F1ðxÞÞ; . . . ;rawa;pðxn; FnðxÞÞ
� �T

;

rbwa;pðx; FðxÞÞ :¼ rbwa;pðx1; F1ðxÞÞ; . . . ;rbwa;pðxn; FnðxÞÞ
� �T

:

(Step 3) Set xkþ1 :¼ xk þ bmk dkðcmk Þ, k :¼ kþ 1 and go to Step 1.
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In Algorithm 4.2, wa;p : R2 ! Rþ is an NCP-function defined by
wa;pða; bÞ :¼ a
2

maxf0; abgð Þ2 þ wpða; bÞ ¼
a
2
ðabÞ2þ þ

1
2
ðkða; bÞkp � ðaþ bÞÞ2
with a P 0 being a real parameter. When a ¼ 0, the function wa;p reduces to wp. For comparing these two algorithms, we take
a ¼ 0 when we use Algorithm 4.2 in this section. Note that the descent direction in Algorithm 4.1 is lack of a certain sym-
metry whereas Algorithm 4.2 adopts a symmetric search direction. Under the assumption of monotonicity, i.e.,
hx� y; FðxÞ � FðyÞiP 0 for all x; y 2 Rn;
the error bound is proposed and Algorithm 4.2 is shown to have locally R-linear convergence rate in [5]. In other words, there
exists a positive constant j2 such that
kxk � x�k 6 j2 max Wa;pðxkÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wa;pðxkÞ

q� 
� 	1
2

when a ¼ 0:
Furthermore, the convergence rate of Algorithm 4.2 has a close relation with the constant
logc
b

L1 þ
r

CðB;a;pÞ

� 	� �
where CðB;a;pÞ ¼

2� 2
1
p

� �4

aB2 þ 2þ 2
1
p

� �2 :
Therefore, when the value of p decreases, the convergence rate of Algorithm 4.2 becomes worse and worse, see Remark 4.1 in
[5].

Recall that merit function WpðxÞ is sum of n nonnegative functions wp, i.e.,
WpðxÞ ¼
Xn

i¼1

wpðxi; FiðxÞÞ:
This encourages us to view each component wpðxk
i ; FiðxkÞÞ for i ¼ 1;2 . . . ;n as the motion with different velocity on the same

surface z ¼ wpða; bÞ at each iteration. Due to our study in Sections 2 and 3, we observe a visualization that help us understand
the convergent behavior in details. Fig. 20 depicts the visualization in a four-dimensional NCP in Example 4.3. The merit

function of this NCP is WpðxÞ ¼
P4

i¼1wpðxi; FiðxÞÞ. We plot point sequences ðxk
i ; FiðxkÞÞ


 �
for i ¼ 1;2;3;4 together with different

color and level curve of surface w1:1ða; bÞ in Fig. 20(a). Vertical line represents value of xi, horizontal line represents value of
FiðxÞ and skew line means xi ¼ FiðxÞ. We take initial point x0 ¼ ð0;0;0;0Þwhich implies Fðx0Þ ¼ ð�6;�2;�1;�3Þ, and observe
convergent behavior separately with different i from initial point to the solution x� ¼ ð

ffiffiffi
6
p

=2;0;0;1=2Þ which is on the hor-
izontal line in this figure. Furthermore, we observe the position of point sequence on the surface in Fig. 20(a) and merit func-
tion which is the sum of their height at each iteration shown as in Fig. 20(b).

In one-dimensional NCP, F is continuously differentiable and there is only one variable x in F, so ðx; FðxÞÞ is continuous
curve on R2 and merit function WpðxÞ ¼ wpðx; FðxÞÞ is obviously a curve on the surface z ¼ wpða; bÞ, see Fig. 16(a) and (b).

Therefore, point sequence in one-dimensional problem can only lie on the curve x; FðxÞ;wpðx; FðxÞÞ
� �

.
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Example 4.1. Consider the NCP, where F : R! R is given by
FðxÞ ¼ ðx� 3Þ3 þ 1:



1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
−1

−0.5

0

0.5

1

1.5

x

F(
x)

−1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

x

F(
x)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

Ψ
p(x

,F
(x

))

p=1.1
p=1.5
p=2
p=3
p=100

Fig. 16. Geometric view of NCP in Example 4.1.

48 H.-Y. Tsai, J.-S. Chen / Applied Mathematics and Computation 237 (2014) 31–59
The unique solution of this NCP is x� ¼ 2. Note that F is strictly monotone, see geometric view of this NCP problem in Fig. 16.
The value of merit function with each iteration is plotted in Fig. 16(c) which presents the different behavior of the functions
with different value p near by the solution. Fig. 17(a)–(d) depict convergent behavior in Algorithm 4.1 from two direction
with two different initial points, and Fig. 17(e) and (f) show convergent behavior with different p. Fig. 19(a)–(d) depict con-
vergent behavior in Algorithm 4.2 from two direction with two different initial points. We found that Algorithm 4.2 always
produce point sequence in or close to the boundary of feasible set, i.e., ðx; FðxÞÞ : x P 0 and FðxÞP 0f g. Based on Proposition
3.2, the speed of the decreasing of merit function with different initial point in Algorithm 4.1 is different when we increase p.
But it is similar with different initial point in Algorithm 4.2. This phenomena is consistent with geometric properties studied
in Section 3.

To show the importance of inflection point, we give an extreme example as follows:
Example 4.2. Consider the NCP, where F : R! R is given by
FðxÞ ¼ 1:
The unique solution of this NCP is x� ¼ 0. From above discussion, we know that point sequence is on the curve x;1;wpðx;1Þ
� �

,
see Fig. 18(a). Fig. 18(c) shows there is rapid decreasing of merit function form the 80th to 120th iteration. Fig. 18(b) shows
the behavior during 80th to 120th iteration. Observing the width of the level curve in Fig. 18(b), we found that rapid decreas-
ing may arise from the existence of inflection point on the surface. Figs. 18(c)–(f) and Fig. 19(e) and (f) show that the position
of inflection point may change with different p.



−1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

x

F(
x)

20

40

60

80

100

120

140

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 10−3

Iteration

M
er

it 
fu

nc
tio

n

−1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

F(
x)

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10−5

Iteration

M
er

it 
fu

nc
tio

n

−1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

x

F(
x)

20

40

60

80

100

120

140

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10−3

Iteration

M
er

it 
fu

nc
tio

n

Fig. 17. Convergent behavior of Algorithm 4.1 and the value of merit function in Example 4.1.
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Example 4.3. Consider the NCP, where F : R4 ! R4 is given by
FðxÞ ¼

3x2
1 þ 2x1x2 þ 2x2

2 þ x3 þ 3x4 � 6
2x2

1 þ x1 þ x2
2 þ 3x3 þ 2x4 � 2

3x2
1 þ x1x2 þ 2x2

2 þ 2x3 þ 3x4 � 1
x2

1 þ 3x2
2 þ 2x3 þ 3x4 � 3
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Fig. 18. Convergent behavior of Algorithm 4.1 and merit function with initial point x0 ¼ 1 in Example 4.2.
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This is non-degenerate NCP and the solution is x� ¼
ffiffiffi
6
p

=2;0;0;1=2
� �

. Fig. 20 shows that the behavior of merit function is

consistent with Proposition 3.2(b) in Algorithm 4.1. Fig. 20 shows that the convergent behaviors are different by various ini-
tial points in Algorithm 4.1. Fig. 22 says that the convergent behavior is also different with different initial point in Algorithm
4.2. But we see that the behavior is still different between two algorithms even with the same initial point from Figs. 21 and
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Fig. 19. Convergent behavior of Algorithm 4.2 and the value of merit function in Examples 4.1 and 4.2.
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22. Fig. 23(e) shows that merit function decreases more and more quickly when p is smaller. However, Fig. 24(e) shows that
merit function decreases more and more quickly when p is bigger.
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Fig. 20. Convergent behavior of Algorithm 4.1 and merit function with initial point x0 ¼ ð0;0;0;0Þ in Example 4.3.
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Fig. 21. Convergent behavior of Algorithm 4.1 with different initial point and p ¼ 2 in Example 4.3.
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Fig. 22. Convergent behavior of Algorithm 4.2 with different initial point and p ¼ 2 in Example 4.3.
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Fig. 23. Merit function in the first 200 iterations of Algorithm 4.1 with different p and initial point x0 ¼ ð2;1;1;1Þ of Fig. 21(f).
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Fig. 24. Merit function of Algorithm 4.2 with different p and initial point x0 ¼ ð2;1;1;1Þ of Fig. 22(f).
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Example 4.4. Consider the NCP, where F : R5 ! R5 is given by
FðxÞ ¼

x1 þ x2x3x4x5=50
x2 þ x1x3x4x5=50� 3
x3 þ x1x2x4x5=50� 1

x4 þ x1x2x3x5=50þ 1=2
x5 þ x1x2x3x4=50
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Fig. 25. Convergent behavior with different p and merit function of Algorithm 4.2 with initial point x0 ¼ ð3;4;2;2;2Þ in Example 4.4.
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This NCP has only one solution x� ¼ ð0;3;1;0;0Þ. We choose initial point x0 ¼ ð3;4;2;2;2Þ in Algorithm 4.2, see Fig. 25.
Figs. 25(e) and 24(e) show different result with different p.

The results of above examples suggest that the convergent behavior is influenced by the position of initial point,
properties of FðxÞ, and the geometric structure of the NCP function wp. Indeed, the convergent behavior of Algorithm 4.1 can
be classified into three cases when starting from different initial points.

� Case 1: the point sequence ðxk
i ; FiðxkÞÞ


 �
i ¼ 1;2; . . . ;n is almost located in or close to the boundary of surface z ¼ wpða; bÞ

where a > 0 and b > 0, see Fig. 20(f).
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� Case 2: the point sequence ðxk
i ; FiðxkÞÞ


 �
i ¼ 1;2; . . . ;n is almost located in or close to the boundary of surface z ¼ wpða; bÞ

where a > 0 and b < 0, see Fig. 16(a) and (e).
� Case 3: the point sequence does not belong to cases 1 and 2, see Fig. 20(a).

In addition, the value of merit function decreases more quickly when the value of p increases in case 1, see Fig. 23. The
value of merit function decreases more quickly when the value of p increases in case 2, see Fig. 20. The value of merit func-
tion seems to depend on the slope of the surface, as visualization shows. Thus, the above two cases can be explained by Prop-
osition 3.2 geometrically. Although the convergent behavior is complicated in case 3, if there exists some initial point x0 such
that Fiðx0Þ < 0 for some i and p is small, for example, p 2 ð1;2Þ, we can easily deduce that the value of merit function de-
creases more quickly when the value of p increases, like case 2 and see Fig. 17. This is because the surface z ¼ wpða; bÞ is much
higher when a > 0 and b < 0 than when a > 0 and b > 0, see Figs. 13 and 15(d). Therefore the value of merit function is dom-
inated by the component of FðxÞ with initial point satisfy Fiðx0Þ < 0 for some i. Such observations match up with those con-
vergence results discussed in [4].

Convergent behavior in Algorithm 4.2 belongs to case 1, see Figs. 19(a) and 21. The behavior of merit function seems to
depend on the height scale of surface with steady step length at each iteration, as visualization shows. Therefore surface in
case 1 is closer to zero but becomes flatter when p is smaller. This is the geometrical reason why Algorithm 4.2 has a better a
global convergence and a worse convergence rate when p decreases, see concluding remark in [5] and Fig. 24(e).

According to [4,5], Algorithm 4.2 has different global convergence result compared to Algorithm 4.1. However, this phe-
nomena depends on initial point. In fact, we can choose suitable initial point by observing our visualization such that these
two algorithms having similar global convergence result with different p, see Figs. 25(e) and 23(e). This is another benefit of
analyzing visualization.

5. Conclusion

In this paper, we view graphs of function /p and function wp as families of surfaces in R3 and study their geometric prop-
erties. It is shown that when using two descent methods to solve NCP with merit function Wp, the convergent behaviors are
influenced by descent directions and geometric structure of surface of wp. By looking at the visualization, we observe that the
existence of inflection point (in the graphs of wp) is the main factor causes rapid decreasing (‘‘cliff’’) of merit function. In addi-
tion, the convergent behavior of both algorithms is sensitive to initial points which also matches what is remarked in [5,7].
The proposed geometric view and visualization greatly help us realize that how convergent behavior is influenced by chang-
ing or adding parameters in NCP-functions.
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