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Abstract Let Lθ be the circular cone in Rn which includes second-order cone as a special
case. For any function f fromR toR, one can define a corresponding vector-valued function
f Lθ onRn by applying f to the spectral values of the spectral decomposition of x ∈ Rn with
respect toLθ . Themain results of this paper are regarding the H -differentiability and calmness
of circular cone function f Lθ . Specifically, we investigate the relations of H -differentiability
and calmness between f and f Lθ . In addition, we propose a merit function approach for
solving the circular cone complementarity problems under H -differentiability. These results
are crucial to subsequent study regarding various analysis towards optimizations associated
with circular cone.

Keywords Circular cone · H -differentiable · Calmness

Mathematics Subject Classification 26A27 · 26B05 · 26B35 · 49J52 · 90C33 · 65K05

Jinchuan Zhou’s work is supported by National Natural Science Foundation of China (11101248, 11271233,
11171247) and Shandong Province Natural Science Foundation (ZR2012AM016).
Jein-Shan Chen’s work is supported by Ministry of Science and Technology, Taiwan.

B Jein-Shan Chen
jschen@math.ntnu.edu.tw

Jinchuan Zhou
jinchuanzhou@163.com

Yu-Lin Chang
ylchang@math.ntnu.edu.tw

1 Department of Mathematics, School of Science, Shandong University of Technology, Zibo 255049,
People’s Republic of China

2 Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-015-0312-5&domain=pdf


812 J Glob Optim (2015) 63:811–833

1 Introduction

Conic programming has drawn a lot of attention in the last decade. Generally speaking, the
research works in this field are divided into two directions. One is on the general convex cone,
see the excellent monograph written by Bonnans and Shapiro [3]; while the other focuses
on some specific convex cones. In the latter case, much attention is paid to the so-called
symmetric cone, which includes positive semi-definite matrices cone [26] and second-order
cone [1] as special cases. The Jordan algebraic structure associated with symmetric cones
allows us to deal with them in an unified way [13]. However, there exists a lot of cones which
are convex but non-symmetric; for example, p-order cone [2], L p-cone [15], and copositive
cone [12], etc. For these non-symmetric cones, until now we don’t know how to tackle with
them in an unified framework. In fact, it needs to investigate them one-by-one because their
structures are rather different. In this paper, we focus on a special non-symmetric convex
cone, called circular cone. More precisely, the circular cone [5,27,28] is a pointed closed
convex cone having hyperspherical sections orthogonal to its axis of revolution about which
the cone is invariant to rotation. Let its half-aperture angle be θ with θ ∈ (0, π

2 ). Then, the
n-dimensional circular cone denoted by Lθ can be expressed as

Lθ := {x = (x1, x2)
T ∈ R × Rn−1 | cos θ‖x‖ ≤ x1}.

Note that L45◦ corresponds the well-known second-order cone Kn (SOC, for short), which
is given by

Kn := {x = (x1, x2)
T ∈ R × Rn−1 | ‖x2‖ ≤ x1}.

For any x = (x1, x2) ∈ R × Rn−1, there is a spectral decomposition for x associated with
circular cone case [27, Theorem 3.1], which is given as

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x (1)

where {
λ1(x) = x1 − ‖x2‖ cot θ
λ2(x) = x1 + ‖x2‖ tan θ

(2)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(1)
x = 1

1 + cot2 θ

[
1 0
0 cot θ I

] [
1

−x̄2

]
=
[

sin2 θ

−(sin θ cos θ)x̄2

]

u(2)
x = 1

1 + tan2 θ

[
1 0
0 tan θ I

] [
1
x̄2

]
=
[

cos2 θ

(sin θ cos θ)x̄2

] (3)

with x̄2 = x2/‖x2‖ if x2 �= 0, and x̄2 being any vector w in Rn−1 satisfying ‖w‖ = 1 if
x2 = 0. With this spectral factorization (1), for any given f : R → R, we can define the
following vector-valued function associated with circular cone (which we call it “circular
cone function” in general):

f Lθ (x) := f (λ1(x)) u
(1)
x + f (λ2(x)) u

(2)
x . (4)

Indeed, we can write out an explicit expression for (4) by plugging in λi (x) and u(i)
x :

f Lθ (x) =

⎡
⎢⎢⎢⎣

f (x1 − ‖x2‖ cot θ)

1 + cot2 θ
+ f (x1 + ‖x2‖ tan θ)

1 + tan2 θ(
− f (x1 − ‖x2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + ‖x2‖ tan θ) tan θ

1 + tan2 θ

)
x̄2

⎤
⎥⎥⎥⎦ . (5)
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In particular, the formula (1) and (4) reduce to the well-known spectral decomposition and
spectral function associated with second-order cone programming; see [6,9,10] for more
details. A natural question is what properties of f Lθ are inhered from f and vice versa.
Once this is done, then we can analyze the property of the vector-valued function f Lθ by
just study the single variable scalar function f . This reduces the difficulty of our analysis
significantly, since f is a real valued function onR. In [5,28], the authors have answered this
question in part, i.e., they show that the properties of continuity, strict continuity, Lipschitz
continuity, directional differentiability, Fréchet differentiability, continuous differentiability,
and (ρ-order) semismoothness are each inherited by f Lθ from f , and vice versa. However,
it should be noted that the properties of Fréchet differentiability, continuous differentiability,
and (ρ-order) semismoothness are requiring the condition of the locally Lipschitz continuity
in advance. Hence, we hope to further study the properties between of f and f Lθ without
imposing Lipschitz continuity. Inspired by these points, we study the properties of Calmness
and H-differentiability. Moreover, the exact formula of calmnessmodulus and H -differential
are also established between f Lθ and f . In addition, we propose a merit function approach
for solving the circular cone complementarity problems under H -differentiability.

It is well known that there exists a variety of definitions regarding nonsmoothness
for extending the classical concept of differentiability. Why do we focus on the H -
differentiability? We clarify our motivation as below. As indicated in [3, Chapter 4], the
topic of studying nonsmoothness is a natural thing in optimization field; for example, for
each fixed x ∈ R consider the following optimization problem:

min
t∈�

t x subject to � := [−1, 1].

Clearly, the optimal value function is −|x |, which is not differentiable at the origin. Note
that the data involved in the above problem is rather simple and is smoothing. An important
concept in the field of nonsmooth analysis is the generalized Jacobian for locally Lipschitz
functions; see [11]. How to deal with the non-Lipschitz function? By this motivation, the
concept of “H -differentiability” is introduced. It is well known that the Fréchet derivative
of a Fréchet differentiable function, the Clarke generalized Jacobian of a locally Lipschitz
continuous function, the Bouligand subdifferential of a semismooth function, and the C-
differential of a C-differentiable function are all examples of H -differentials; see [22] for
more detailed discussion.

In [28], the following important relationship between circular cone and second-order cone
is discovered. In particular, there holds that Lθ = A−1Kn where

A =
[
tan θ 0
0 I

]
.

This simple and basic relation helps us to study the normal cone, tangent cone, second-order
tangent cone, second-order regularity of circular cone by using the corresponding results in
second-order cone [27]. It however does not means that the extension of the results from
second-order cone to circular cone is trivial. Indeed, the following two cases are possible:
(i) one category of results is independent of the angle (i.e., still holds in the framework of
circular cone); (ii) the second category is dependent of the angle, for example, for x, y ∈ Lθ ,
the inequality

det(e + x + y) ≤ det(e + x) det(e + y),

where det(x) := λ1(x)λ2(x) and e := (1, 0, . . . , 0) ∈ Rn , holds in the second-order cone
setting. But, for circular cone setting, we show that this inequality fails for θ ∈ (0, 45◦), but
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holds for θ ∈ [45◦, 90◦); see [29] for more information. In addition, it is surprised that a
necessary condition for f to be the Lθ -convexity is that θ ∈ [45◦, 90◦). Moreover, the exact
formula of various derivative of projection over the circular cone Lθ cannot be obtained by
simple using the above basic relationship between the circular cone and second-order cone;
see [30]. The aforementioned facts and observations give us new insight on circular cone and
attract our attention to figuring out what role played by the angle θ in different settings.

To end this section, we say a few words about notations used in this paper. Define the ball
of radius δ > 0 centered at x as B(x, δ) := {v ∈ Rn | ‖v − x‖ ≤ δ}. For convenience of
notation, the unit ball at origin is written as B, i.e., B := B(0, 1) = {v ∈ Rn | ‖v‖ ≤ 1}. For
a vector x ∈ Rn and a matrix M ∈ Rn×n , let ‖x‖ stand for the Euclidean norm and ‖M‖ for

the norm induced by ‖ · ‖, i.e., ‖x‖ =
√∑n

i=1 x
2
i and ‖M‖ = max‖x‖=1

‖Mx‖.

2 Preliminaries

In this section, we review some basic concepts and materials about H -differentiability and
calmness that will be used in subsequent analysis. We start with the concept of calmness.

Definition 2.1 A mapping F : Rn → Rm is called to be calm at x̄ if there exist δ > 0 and
L > 0 such that

‖F(x) − F(x̄)‖ ≤ L‖x − x̄‖, ∀x ∈ B(x̄, δ). (6)

This is equivalent to saying

cam(F)(x̄) := lim sup
x→x̄
x �=x̄

‖F(x) − F(x̄)‖
‖x − x̄‖ < +∞. (7)

Here we call cam(F)(x̄) the calm modulus of F at x̄ .

Note that (7) means that for any ε > 0 there exists δ > 0 such that

‖F(x) − F(x̄)‖ ≤ (cam(F)(x̄) + ε) ‖x − x̄‖, ∀x ∈ B(x̄, δ). (8)

Recall from [21, Chapter 9] that F is locally Lipschitz at x̄ if and only if lip(F)(x̄) < +∞,
where

lip(F)(x̄) := lim sup
x,x ′→x̄
x �=x ′

‖F(x) − F(x ′)‖
‖x − x ′‖ .

It is clear that cam(F)(x̄) ≤ lip(F)(x̄). However, the inequality can be strict. To see this, we
check the function

f (x) =
⎧⎨
⎩
x sin

(
1

x

)
if x �= 0,

0 if x = 0,

from which we see cam( f )(0) = 1 < +∞ = lip( f )(0). As mentioned in [21, page 351],
the inequality (6) only involves comparisons between x̄ and nearpoint x , not between all
possible pairs of points x and x ′ in some neighborhood of x̄ . Indeed, the locally Lipschitz
continuity can be viewed as “locally uniform calmness”, while Lipschitz continuity is viewed
as “uniform calmness”.
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Next, we talk about the concepts of H -differentiability and H -differential of a function,
which were first proposed by Gowda and Ravindran in [17]. Their motivation was to study a
generalization (to nonsmooth case) of a result of Gale and Nikaido [14] which asserts that if
the Jacobian matrix of a differentiable function f from a closed rectangle K ⊆ Rn into Rn

is a P-matrix at each point of K , then f is one-to-one on K .

Definition 2.2 Given a function F : � ⊆ Rn → Rm , where � is an open set in Rn

and x̄ ∈ �, we say that a nonempty subset T (x̄), also denoted by TF (x̄), of Rm×n is an
H -differential of F at x̄ if for every sequence {xk} ⊆ � converging to x̄ , there exist a
subsequence {xk j } and a matrix A ∈ T (x̄) such that

F(xk j ) − F(x̄) − A(xk j − x̄) = o(‖xk j − x̄‖). (9)

We say that F is H -differentiable at x̄ if the H -differential of F at x̄ is nonempty.

As remarked in [16,17,22–25], the Fréchet derivative of a Fréchet differentiable function,
the Clarke generalized Jacobian of a locally Lipschitz continuous function, the Bouligand
subdifferential of a semismooth function, and the C-differential of an C-differentiable func-
tion are all examples of H -differentials. In addition, any superset of an H -differential is
an H -differential, H -differentiability implies continuity, and H -differentials satisfy simple
sum, product, and chain rules. The class of H -differentiable functions is wider than the class
of semismooth functions, since the former is not required to be locally Lipschitz continuous
or directionally differentiable.

Now we point out that there is a useful equivalent expression for condition (9). For sim-
plicity, let “�” denote the convergence in the sense of taking some subsequence. With
this notation, we see that condition (9) can be equivalently described as follows: For every
sequence {x + tkdk} with tk ↓ 0 and ‖dk‖ = 1 for all k, there exist tk j ↓ 0 and dk j → d and
A ∈ TF (x̄) such that

F(x̄ + tk j d
k j ) − F(x̄)

tk j
→ Ad, (10)

i.e.,

F(x̄ + tkdk) − F(x̄)

tk
� Ad.

Beloware summaries of somewell-known facts about H -differentiability, formore details,
please refer to [16,17,22–25].

Remark 2.1 (i) Any superset of an H -differential is an H -differential.
(ii) H -differentiability implies continuity.
(iii) If a function F : � ⊆ Rn → Rm is H -differentiable at a point x̄ , then F is calm at x̄ .

Note that the set TF (x̄) plays an important role in the definition of H -differentiability. For
example, the converse statement of Remark 2.1(iii) holds by taking TF (x̄) := Rm×n [25,
page 281]. For completeness, we provide a simple proof for this claim as follows. Suppose
that F is H -differentiable at x̄ with TF (x̄) = Rm×n . If (6) fails to hold, then we can find a
sequence {xk} converging to x̄ such that

‖F(xk) − F(x̄)‖
‖xk − x̄‖ → +∞. (11)

123



816 J Glob Optim (2015) 63:811–833

For this sequence {xk}, by the definition of H -differentiability of F at x̄ , there exists a
sequence {xk j } such that

F(xk j ) − F(x̄) − A(xk j − x̄) = o(‖xk j − x̄‖).
This implies

‖F(xk j ) − F(x̄)‖
‖xk j − x̄‖ = ‖A(xk j − x̄) + o(‖xk j − x̄‖)‖

‖xk j − x̄‖
≤ ‖A‖ + o(‖xk j − x̄‖)

‖xk j − x̄‖
→ ‖A‖,

which contradicts (11). To see the converse, we take an arbitrary sequence {xk} satisfying
xk �= x̄ and xk → x̄ . Since

{
F(xk )−F(x̄)

‖xk−x̄‖
}
is bounded by (6) and

{
xk−x̄

‖xk−x̄‖
}
is also bounded,

there exists a subsequence, ξ ∈ Rm , and d ∈ Rn such that

F(xk j ) − F(x̄)

‖xk j − x̄‖ → ξ and
xkj − x̄

‖xkj − x̄‖ → d.

Now, take a matrix A ∈ TF (x) = Rm×n such that ξ = Ad . Note that such matrix always
exists because A has mn variables. Hence,

F(xk j ) − F(x̄) − A(xk j − x̄)

‖xk j − x̄‖ → ξ − Ad = 0,

i.e.,

F(xk j ) − F(x̄) − A(xk j − x̄) = o(‖xk j − x̄‖).
Remark 2.1(i) says that any superset of an H -differential is also an H -differential. This

indicates that if a function g is H -differentiable at x with Tg(x), then g is also H -differentiable
at x with T̃g(x) whenever Tg(x) ⊆ T̃g(x). However, for an arbitrary function g, it is not
guaranteed to become an H -differentiable function by simply taking a larger set. To see this,
we present below that there exists a function that is not H -differentiable even if Tg(x) takes
the whole space. For example, consider the function

g(t) = |t |p with p ∈ (0, 1).

Let d = 1 and tk ↓ 0. Then, (g(tk) − g(0))/tk = |tk |p−1 → +∞, since p < 1. Hence,
Tg(0) = ∅, which implies g is not H -differentiable at 0. Indeed, g(t) = |t |p is not calm at 0.

3 Calmness

This section is devoted to properties of calmness. First, we explore some basic properties
about composite function and then establish the calmness relation between f Lθ and f .

For mappings F,G : Rn → Rm and S : Rl → Rn , we define (F · G)(x) :=
F(x)T G(x), (F ◦ S)(x) := F(S(x)), and (y ◦ F)(x) := yT F(x) = ∑m

i=1 yi Fi (x) where
y = (y1, · · · , ym)T ∈ Rm and Fi is the component function of F . Inspired by [21,Chapter 9],
we obtain the following results.
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Proposition 3.1 Given three mappings F,G : Rn → Rm, S : Rl → Rn, x̄ ∈ Rn, and
z̄ ∈ Rl . Suppose that S is continuous at z̄. Then,

(a) cam(βF)(x̄) = |β|cam(F)(x̄) for all β ∈ R;
(b) cam(F + G)(x̄) ≤ cam(F)(x̄) + cam(G)(x̄);
(c) cam(F · G)(x̄) ≤ cam(F)(x̄) cam(G)(x̄) + ‖F(x̄)‖ cam(G)(x̄) + ‖G(x̄)‖ cam(F)(x̄);
(d) cam(F ◦ S)(z̄) ≤ cam(F)(S(z̄)) cam(S)(z̄);
(e) If cam(F)(x̄) < +∞, then cam(F)(x̄) = max

y∈B (y ◦ F)(x̄) = max‖y‖=1
(y ◦ F)(x̄);

(f) cam(Fi )(x̄) ≤ cam(F)(x̄) for i = 1, · · · ,m and

cam(F)(x̄) ≤ ‖(cam(F1)(x̄), cam(F2)(x̄), · · · , cam(Fm)(x̄))‖ . (12)

Proof (a) The result follows from (7) because

cam(βF)(x̄) = lim sup
x→x̄
x �=x̄

‖βF(x) − βF(x̄)‖
‖x − x̄‖ = |β| lim sup

x→x̄
x �=x̄

‖F(x) − F(x̄)‖
‖x − x̄‖ = |β|cam(F)(x̄).

(b) The result follows from

cam(F + G)(x̄) = lim sup
x→x̄
x �=x̄

‖(F + G)(x) − (F + G)(x̄)‖
‖x − x̄‖

≤ lim sup
x→x̄
x �=x̄

{‖F(x) − F(x̄)‖
‖x − x̄‖ + ‖G(x) − G(x̄)‖

‖x − x̄‖
}

≤ lim sup
x→x̄
x �=x̄

‖F(x) − F(x̄)‖
‖x − x̄‖ + lim sup

x→x̄
x �=x̄

‖G(x) − G(x̄)‖
‖x − x̄‖

= cam(F)(x̄) + cam(G)(x̄).

(c) It is trivial if F is not calm at x̄ , since cam(F)(x̄) = +∞ in this case. If F is calm at x̄ ,
then for any ε > 0, there exists δ > 0 such that

‖F(x) − F(x̄)‖ ≤ (cam(F)(x̄) + ε) ‖x − x̄‖, ∀x ∈ B(x̄, δ).

For any x ∈ B(x̄, δ̂) with δ̂ := min{δ, 1}, we have

‖F(x)‖ ≤ ‖F(x) − F(x̄)‖ + ‖F(x̄)‖ ≤ (cam(F)(x̄) + ε) ‖x − x̄‖ + ‖F(x̄)‖
≤ cam(F)(x̄) + ‖F(x̄)‖ + ε,
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which means that F is locally bounded at x̄ . Thus,

cam(F · G)(x̄) = lim sup
x→x̄
x �=x̄

‖(F · G)(x) − (F · G)(x̄)‖
‖x − x̄‖

= lim sup
x→x̄
x �=x̄

‖F(x)T G(x) − F(x̄)T G(x̄)‖
‖x − x̄‖

≤ lim sup
x→x̄
x �=x̄

{‖F(x)T G(x)−F(x)T G(x̄)‖
‖x− x̄‖ + ‖F(x)T G(x̄)−F(x̄)T G(x̄)‖

‖x − x̄‖
}

≤ lim sup
x→x̄
x �=x̄

{‖F(x)‖‖G(x) − G(x̄)‖
‖x − x̄‖ + ‖G(x̄)‖‖F(x) − F(x̄)‖

‖x − x̄‖
}

≤ (cam(F)(x̄) + ‖F(x̄)‖ + ε) cam(G)(x̄) + ‖G(x̄)‖ cam(F)(x̄).

Since ε > 0 can be taken sufficiently small, the desired result follows.
(d) Notice that

cam(F ◦ S)(z̄) = lim sup
z→z̄
z �=z̄

‖(F ◦ S)(z) − (F ◦ S)(z̄)‖
‖z − z̄‖

= lim sup
z→z̄
z �=z̄

‖F(S(z)) − F(S(z̄))‖
‖S(z) − S(z̄)‖

‖S(z) − S(z̄)‖
‖z − z̄‖

≤ lim sup
z→z̄
z �=z̄

‖F(S(z)) − F(S(z̄))‖
‖S(z) − S(z̄)‖ lim sup

z→z̄
z �=z̄

‖S(z) − S(z̄)‖
‖z − z̄‖

≤ cam(F)(S(z̄)) cam(S)(z̄).

(e) Given y ∈ B, for the linear mapping y : Rn → R defined as y(v) := 〈y, v〉, it is clear
that cam(y)(v) = ‖y‖ for all v ∈ Rn , since

cam(y)(v) = lim sup
u→v
u �=v

y(u) − y(v)

‖u − v‖

= lim sup
u→v
u �=v

〈y, u − v〉
‖u − v‖

= ‖y‖,
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where the “limsup” can be attained by taking u = v + t y with t > 0. Hence

cam(y ◦ F)(x̄) = lim sup
x→x̄
x �=x̄

(y ◦ F)(x) − (y ◦ F)(x̄)

‖x − x̄‖

= lim sup
x→x̄
x �=x̄

〈y, F(x) − F(x̄)〉
‖x − x̄‖

≤ ‖y‖ lim sup
x→x̄
x �=x̄

‖F(x) − F(x̄)‖
‖x − x̄‖

= ‖y‖ cam(F)(x̄)

≤ cam(F)(x̄),

where the last step is due to the fact ‖y‖ ≤ 1 since y ∈ B. Hence,

cam(F)(x̄) ≥ max
y∈B cam(y ◦ F)(x̄). (13)

Conversely,

cam(F)(x̄)= lim sup
x→x̄
x �=x̄

‖F(x)−F(x̄)‖
‖x − x̄‖ = lim

xk→x̄
xk �=x̄

‖F(xk)−F(x̄)‖
‖xk − x̄‖ = lim

xk→x̄
xk �=x̄

〈yk, F(xk) − F(x̄)〉
‖xk − x̄‖

(14)
where the last step comes from the fact

‖F(xk) − F(x̄)‖ = max
y∈B 〈y, F(xk) − F(x̄)〉 = 〈yk, F(xk) − F(x̄)〉

for some yk with ‖yk‖ = 1. Since {yk} is bounded, we assume yk converges to ȳ with
‖ȳ‖ = 1. Thus, it follows from (14) that

cam(F)(x̄) = lim
xk→x̄
xk �=x̄

〈ȳ, F(xk) − F(x̄)〉
‖xk − x̄‖ + lim

xk→x̄
xk �=x̄

〈yk − ȳ, F(xk) − F(x̄)〉
‖xk − x̄‖

= lim
xk→x̄
xk �=x̄

〈ȳ, F(xk) − F(x̄)〉
‖xk − x̄‖

= lim
xk→x̄
xk �=x̄

(ȳ ◦ F)(xk) − (ȳ ◦ F)(x̄)

‖xk − x̄‖

≤ lim sup
x→x̄
x �=x̄

(ȳ ◦ F)(x) − (ȳ ◦ F)(x̄)

‖x − x̄‖

= cam(ȳ ◦ F)(x̄) ≤ max‖y‖=1
cam(y ◦ F)(x̄) ≤ max

y∈B cam(y ◦ F)(x̄),

where the second equality is due to the fact cam(F)(x̄) < +∞ and yk → ȳ. This together
with (13) yields the desired result.
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(f) Notice that

cam(Fi )(x̄) = lim sup
x→x̄
x �=x̄

|Fi (x) − Fi (x̄)|
‖x − x̄‖ ≤ lim sup

x→x̄
x �=x̄

‖F(x) − F(x̄)‖
‖x − x̄‖

= cam(F)(x̄), ∀i = 1, . . . ,m.

The relation (12) holds trivially if Fi is not calm at x̄ for some i = 1, . . . ,m. Hence we need
to show that (12) holds when Fi is calm at x̄ for all i = 1, . . . ,m. In this case, for any ε > 0
we get from (8) that

|Fi (x) − Fi (x̄)| ≤ (cam(Fi )(x̄) + ε) ‖x − x̄‖, ∀x ∈ B(x̄, δi ), i = 1, . . . ,m.

For x ∈ B(x̄, δ) with δ := min{δ1, . . . , δm}, we have

‖F(x) − F(x̄)‖ =
(

m∑
i=1

|Fi (x) − Fi (x̄)|2
) 1

2

≤
(

m∑
i=1

(cam(Fi )(x̄) + ε)2

) 1
2

‖x − x̄‖.

Hence

cam(F)(x̄) ≤ ‖(cam(F1)(x̄) + ε, cam(F2)(x̄) + ε, · · · , cam(Fm)(x̄) + ε)‖ .

Since ε > 0 can be taken sufficiently small, the desired result follows. ��

Note that Prop. 3.1(a) means that cam(F)(x̄) is positive homogeneous on F , and Prop.
3.1(b) indicates cam(F)(x̄) is sublinear on F . These two facts imply that cam(F)(x̄) is convex
in F . As mentioned above, we know that F is calm at x̄ if and only if cam(F)(x̄) < +∞.
Hence, the above results further indicate the following statements.

Remark 3.1 (a) If F and G are calm at x̄ , then F +G and βF for β ∈ R are calm at x̄ , i.e.,
the set of all functions being calm at x̄ constitutes a linear subspace.

(b) If F and G are calm at x̄ , then F · G is calm at x̄ .
(c) F is calm if and only if Fi is calm for i = 1, 2, · · · ,m.
(d) If F is calm at S(z̄) and S is calm at z̄, then F ◦ S is calm at z̄.

The relation of calmness and calm modulus between f Lθ and f are given below.

Theorem 3.1 Let f : R → R be a real-valued function and f Lθ be defined as in (4).
Suppose x has spectral factorization given as in (1–3). Then,

(a) f Lθ is calm at x if and only if f is calm at λi (x) for i = 1, 2. Moreover, if f Lθ is calm
at x, then

cam( f )(λi (x)) ≤ cam( f Lθ )(x), ∀ i = 1, 2;
if f is calm at λi (x) for i = 1, 2, then

cam( f Lθ )(x) ≤
√
2max{tan θ, cot θ}(tan θ + cot θ + 2)

tan θ + cot θ
cam( f )(x1), (15)
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when x2 = 0; otherwise

cam( f Lθ )(x)

≤
√
2max{tan θ, cot θ}
tan θ + cot θ

{(1 + tan θ)cam( f )(λ1(x)) + (1 + cot θ)cam( f )(λ2(x))}

+ | f (λ2(x)) − f (λ1(x))|
λ2(x) − λ1(x)

(16)

(b) f Lθ is calm over Rn if and only if f is calm over R.

Proof (a) “⇒” Suppose that f Lθ is calm at x . To proceed the arguments, we discuss two
cases.

Case 1 x2 = 0. Note that

cam( f )(x1) = lim sup
t→0

| f (x1 + t) − f (x1)|
|t |

= lim sup
t→0

‖ f Lθ (x + te) − f Lθ (x)‖
|t |

≤ cam( f Lθ )(x).

This says that f is calm at λi (x) = x1 with cam( f )(λi (x)) ≤ cam( f Lθ )(x) for i = 1, 2.

Case 2 x2 �= 0. Let y = x + tu(1)
x for t ∈ (λ1(x) − λ2(x), λ2(x) − λ1(x)). Then, λ1(y) =

λ1(x) + t , λ2(y) = λ2(x), u
(i)
y = u(i)

x for i = 1, 2. Note that

‖y − x‖ = |t |‖u(1)
x ‖ and

∥∥ f Lθ (y) − f Lθ (x)
∥∥ = | f (λ1(x) + t) − f (λ1(x))| · ‖u(1)

x ‖.
Hence

cam( f )(λ1(x)) = lim sup
t→0

| f (λ1(x) + t) − f (λ1(x))|
|t |

= lim sup
y=x+tu(1)

x
t→0

‖ f Lθ (y) − f Lθ (x)‖
‖y − x‖

≤ cam( f Lθ )(x).

Hence, f is calm at λ1(x)with cam( f )(λ1(x)) ≤ cam( f Lθ )(x). By following the same argu-
ments, we readily obtain the calmness of f at λ2(x) with cam( f )(λ2(x)) ≤ cam( f Lθ )(x).
“⇐” Suppose that f is calm at λi (x) for i = 1, 2. Consider the following two cases.

Case 1 x2 �= 0. Let φ(z2) = z̄2 = z2‖z2‖ for z2 �= 0. Since x2 �= 0, then φ(z2) is continuously

differentiable near x2 with ∇φ(z2) = 1
‖z2‖ (I − z̄2 z̄T2 ). According to [10, Lemma 1]

I − z̄2 z̄
T
2 = (u1, . . . , un−2)diag[1, 1, . . . , 1](u1, . . . , un−2)

T

where {u1, . . . , un−2} is any orthonormal set of vectors that spans the subspace of Rn−1

orthogonal to z̄2. This implies ‖∇φ(z2)‖ = 1
‖z2‖‖I − z̄2 z̄T2 ‖ = 1

‖z2‖ . For any given ε ∈
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(0, ‖x2‖), we have ‖z2‖ ≥ ‖x2‖ − ε as z2 sufficiently close x2, and hence ‖∇φ(z2)‖ ≤
1/(‖x2‖ − ε). Thus, as y is sufficiently close to x we have

‖φ(y2) − φ(x2)‖ =
∥∥∥∥
∫ 1

0
∇φ (x2 + t (y2 − x2)) (y2 − x2)dt

∥∥∥∥
≤
∫ 1

0
‖∇φ (x2 + t (y2 − x2))‖ ‖y2 − x2‖dt

≤ 1

‖x2‖ − ε
‖y2 − x2‖

≤ 1

‖x2‖ − ε
‖y − x‖. (17)

Then, it follows from (5) that

‖ f Lθ (y) − f Lθ (x)‖

= 1

tan θ + cot θ

∥∥∥∥∥∥
⎡
⎣tan θ [ f (λ1(y)) − f (λ1(x))] + cot θ [ f (λ2(y)) − f (λ2(x))]

([ f (λ1(x)) − f (λ1(y))] + [ f (λ2(y)) − f (λ2(x))]) φ(y2)
+ [ f (λ2(x)) − f (λ1(x))] (φ(y2) − φ(x2))

⎤
⎦
∥∥∥∥∥∥

≤ 1

tan θ + cot θ

∥∥∥∥
[
tan θ [ f (λ1(y)) − f (λ1(x))] + cot θ [ f (λ2(y)) − f (λ2(x))]
([ f (λ1(x)) − f (λ1(y))] + [ f (λ2(y)) − f (λ2(x))]) φ(y2)

]∥∥∥∥
+ 1

tan θ + cot θ
| f (λ2(x)) − f (λ1(x))|‖φ(y2) − φ(x2)‖ (18)

≤ 1

tan θ + cot θ
{|tan θ [ f (λ1(y)) − f (λ1(x))] + cot θ [ f (λ2(y)) − f (λ2(x))]|

+ |[ f (λ1(x)) − f (λ1(y))] + [ f (λ2(y)) − f (λ2(x))]|}
+ | f (λ2(x)) − f (λ1(x))|

(tan θ + cot θ)(‖x2‖ − ε)
‖y − x‖

≤ 1

tan θ+cot θ
{(1+tan θ) | f (λ1(y))− f (λ1(x))|+(1+cot θ)| f (λ2(y))− f (λ2(x)) |}

+ | f (λ2(x)) − f (λ1(x))|
λ2(x) − λ1(x)

‖x2‖
‖x2‖ − ε

‖y − x‖,

where the second inequality is due to (17) and the last step comes from the fact

| f (λ2(x)) − f (λ1(x))|
(tan θ + cot θ)(‖x2‖ − ε)

= | f (λ2(x)) − f (λ1(x))|
(tan θ + cot θ)‖x2‖

‖x2‖
‖x2‖ − ε

= | f (λ2(x)) − f (λ1(x))|
λ2(x) − λ1(x)

‖x2‖
‖x2‖ − ε

due to λ2(x) − λ1(x) = (tan θ + cot θ)‖x2‖. Hence
f Lθ (y) − f Lθ (x)

‖y − x‖
≤ 1

tan θ + cot θ

×
{
(1 + tan θ)

| f (λ1(y)) − f (λ1(x))|
‖y − x‖ + (1 + cot θ)

| f (λ2(y)) − f (λ2(x))|
‖y − x‖

}

+ | f (λ2(x)) − f (λ1(x))|
λ2(x) − λ1(x)

‖x2‖
‖x2‖ − ε
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≤
√
2max{tan θ, cot θ}
tan θ + cot θ

×
{
(1 + tan θ)

| f (λ1(y)) − f (λ1(x))|
|λ1(y) − λ1(x)| + (1 + cot θ)

| f (λ2(y)) − f (λ2(x))|
|λ2(y) − λ2(x)|

}

+ | f (λ2(x)) − f (λ1(x))|
λ2(x) − λ1(x)

‖x2‖
‖x2‖ − ε

, (19)

where the last step comes from

| f (λi (y)) − f (λi (x))|
‖y − x‖ = | f (λi (y)) − f (λi (x))|

|λi (y) − λi (x)|
|λi (y) − λi (x)|

‖y − x‖
≤ √

2max{tan θ, cot θ} | f (λi (y)) − f (λi (x))|
|λi (y) − λi (x)|

because ‖λi (y)−λi (x)‖ ≤ √
2max{tan θ, cot θ}‖y− x‖ for i = 1, 2 by [28]. Taking limsup

on both sides of (19) and using the fact that ε > 0 can be sufficiently small, it follows that
f Lθ is calm at x with the upper bound of cam( f Lθ )(x) given as in (16).

Case 2 x2 = 0. In this case, take x̄2 = ȳ2 (i.e., φ(x2) = φ(y2)). Following the similar
argument as (18) and (19), we have

‖ f Lθ (y) − f Lθ (x)‖
‖y − x‖

≤
√
2max{tan θ, cot θ}
tan θ + cot θ

{(1 + tan θ)cam( f )(λ1(x)) + (1 + cot θ)cam( f )(λ2(x))}

=
√
2max{tan θ, cot θ}(tan θ + cot θ + 2)

tan θ + cot θ
cam( f )(x1),

where the last step follows from the fact cam( f )(λi ) = cam( f )(x1) since λi (x) = x1 for
i = 1, 2. Hence, f Lθ is calm at x with the upper bound of cam( f Lθ )(x) given as in (15).
(b) This is an immediate consequence of part (a). ��

4 H-differentiability

In this section,we answer the question aboutwhether, as like the properties of continuity, strict
continuity, Lipschitz continuity, directional differentiability, Fréchet differentiability, contin-
uous differentiability, and (ρ-order) semismoothness (see [5,28]), the H -differentiability of
f Lθ can be inherited by that of f and vise versa? In addition, whether there exists some
relationship between T f and T fLθ ? The following theorem provides an affirmative answer.

Theorem 4.1 Let f : R → R be a real-valued function and f Lθ be defined as in (4).
Suppose x has spectral factorization given as in (1–3). Then, the following hold.
(a) If f is H-differentiable at λi (x) with T f (λi (x)) as the H-differential for i = 1, 2, then

f Lθ is H-differentiable at x with

T fLθ (x)

=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

1 + cot2 θ
a1 + 1

1 + tan2 θ
a2

(
− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
wT

(
− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
w

(
cot2 θ

1 + cot2 θ
a1 + tan2 θ

1 + tan2 θ
a2

)
I

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
ai ∈ T f (x1)
i = 1, 2
‖w‖ = 1

⎫⎪⎪⎬
⎪⎪⎭

(20)

123



824 J Glob Optim (2015) 63:811–833

when x2 = 0; otherwise

T fLθ (x)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

a1
1 + cot2 θ

+ a2
1 + tan2 θ

(
− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
x̄ T2(

− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
x̄2

(
cot2 θ

1 + cot2 θ
a1 + tan2 θ

1 + tan2 θ
a2

)
x̄2 x̄ T2

+ f (λ2(x)) − f (λ1(x))

λ2(x) − λ1(x)

(
I − x̄2 x̄

T
2

)

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣

ai ∈ T f (λi (x))
i = 1, 2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(21)

(b) If f Lθ is H-differentiable at x with T fLθ (x) as the H-differential, then f is H-
differentiable at λi (x) with

T f (λi (x)) =
{

1

‖u(i)
x ‖2

(u(i)
x )T Au(i)

x

∣∣ A ∈ T fLθ (x)

}
, i = 1, 2

when x2 �= 0; otherwise

T f (λi (x)) =
{
eT Ae | A ∈ T fLθ (x)

}
, i = 1, 2.

Proof (a) Let tk ↓ 0 and dk → d with ‖dk‖ = 1. We proceed the arguments by discussing
two cases.

Case 1 For x2 = 0, we know x + tkdk = (x1 + tkdk1 , tkd
k
2 )

T . Hence,

f Lθ (x + tkd
k) − f Lθ (x)

=

⎡
⎢⎢⎢⎣

f (x1 + tkdk1 − tk‖dk2‖ cot θ)

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ)

1 + tan2 θ(
− f (x1 + tkdk1 − tk‖dk2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ) tan θ

1 + tan2 θ

)
d̄k2

⎤
⎥⎥⎥⎦

−
[
f (x1)
0

]

=

⎡
⎢⎢⎢⎣

f (x1 + tkdk1 − tk‖dk2‖ cot θ)

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ)

1 + tan2 θ
− f (x1)(

− f (x1 + tkdk1 − tk‖dk2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ) tan θ

1 + tan2 θ

)
d̄k2

⎤
⎥⎥⎥⎦ .

For
(
f Lθ (x + tkdk) − f Lθ (x)

)
/tk , the first component is

1

tk

[
f (x1 + tkdk1 − tk‖dk2‖ cot θ)

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ)

1 + tan2 θ
− f (x1)

]

= 1

tk

[
f (x1 + tk(dk1 − ‖dk2‖ cot θ)) − f (x1)

1 + cot2 θ
+ f (x1 + tk(dk1 + ‖dk2‖ tan θ)) − f (x1)

1 + tan2 θ

]

�
a1(d1 − ‖d2‖ cot θ)

1 + cot2 θ
+ a2(d1 + ‖d2‖ tan θ)

1 + tan2 θ
as tk ↓ 0, (22)
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since f is H -differentiable at λi (x) = x1 for i = 1, 2 and a1, a2 ∈ T f (x1). For the second
component, similar to (22) (as tk ↓ 0), we have

1

tk

[
− f (x1 + tkdk1 − tk‖dk2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + tkdk1 + tk‖dk2‖ tan θ) tan θ

1 + tan2 θ

]
d̄k2

�
[
− cot θ

1 + cot2 θ
a1(d1 − ‖d2‖ cot θ) + tan θ

1 + tan2 θ
a2(d1 + ‖d2‖ tan θ)

]
d̄2,

where d̄k2 converges to d̄2 if d2 �= 0, and converges to some w ∈ Rn−1 satisfying ‖w‖ = 1
if d2 = 0, and in the latter case we can take d̄2 = w. The above two limits show that

f Lθ (x + tkdk) − f Lθ (x)

tk

�
1

1 + cot2 θ
a1(d1 − ‖d2‖ cot θ)

[
1 0
0 cot θ

] [
1

−d̄2

]

+ 1

1 + tan2 θ
a2(d1 + ‖d2‖ tan θ)

[
1 0
0 tan θ

] [
1
d̄2

]

=
[ 1

1+cot2 θ
a1(d1 − ‖d2‖ cot θ) + 1

1+tan2 θ
a2(d1 + ‖d2‖ tan θ)(

− cot θ
1+cot2 θ

a1(d1 − ‖d2‖ cot θ) + tan θ
1+tan2 θ

a2(d1 + ‖d2‖ tan θ)
)
d̄2

]

=
⎡
⎣
(

1
1+cot2 θ

a1 + 1
1+tan2 θ

a2
)
d1 +

(
− cot θ

1+cot2 θ
a1 + tan θ

1+tan2 θ
a2
)

‖d2‖(
− cot θ

1+cot2 θ
a1 + tan θ

1+tan2 θ
a2
)
d1d̄2 +

(
cot2 θ

1+cot2 θ
a1 + tan2 θ

1+tan2 θ
a2
)
d2

⎤
⎦ (23)

=
⎡
⎣ 1

1+cot2 θ
a1 + 1

1+tan2 θ
a2

(
− cot θ

1+cot2 θ
a1 + tan θ

1+tan2 θ
a2
)
d̄T2(

− cot θ
1+cot2 θ

a1 + tan θ
1+tan2 θ

a2
)
d̄2

(
cot2 θ

1+cot2 θ
a1 + tan2 θ

1+tan2 θ
a2
)
I

⎤
⎦ d,

where we used the fact that ‖d2‖ = d̄T2 d2, which is true even if d2 = 0.

Case 2 For x2 �= 0, then x + tkdk = (x1 + tkdk1 , x2 + tkdk2 )
T . Hence,

f Lθ (x + tkd
k ) − f Lθ (x)

=
⎡
⎢⎣

f (x1+tk d
k
1−‖x2+tk d

k
2 ‖ cot θ)

1+cot2 θ
+ f (x1+tk d

k
1+‖x2+tk d

k
2 ‖ tan θ)

1+tan2 θ(
− f (x1+tk d

k
1−‖x2+tk d

k
2 ‖ cot θ) cot θ

1+cot2 θ
+ f (x1+tk d

k
1+‖x2+tk d

k
2 ‖ tan θ) tan θ

1+tan2 θ

)
x2+tk d

k
2

‖x2+tk d
k
2 ‖

⎤
⎥⎦

−
⎡
⎣

f (x1−‖x2‖ cot θ)

1+cot2 θ
+ f (x1+‖x2‖ tan θ)

1+tan2 θ(
− f (x1−‖x2‖ cot θ) cot θ

1+cot2 θ
+ f (x1+‖x2‖ tan θ) tan θ

1+tan2 θ

)
x2‖x2‖

⎤
⎦ .

Since x2 �= 0, we know ‖x2‖ is continuously differentiable and

‖x2 + tkd
k
2‖ = ‖x2‖ + tk x̄

T
2 d

k
2 + o(tk).
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The first component of
(
f Lθ (x + tkdk) − f Lθ (x)

)
/tk is (when tk ↓ 0)

1

tk

[
f (x1 + tkd

k
1 − ‖x2 + tkd

k
2‖ cot θ)

1 + cot2 θ
+ f (x1 + tkd

k
1 + ‖x2 + tkd

k
2‖ tan θ)

1 + tan2 θ

− f (x1 − ‖x2‖ cot θ)

1 + cot2 θ
− f (x1 + ‖x2‖ tan θ)

1 + tan2 θ

]

= 1

tk

[
f (x1 + tkd

k
1 − ‖x2 + tkd

k
2‖ cot θ) − f (x1 − ‖x2‖ cot θ)

1 + cot2 θ

+ f (x1 + tkd
k
1 + ‖x2 + tkd

k
2‖ tan θ) − f (x1 + ‖x2‖ tan θ)

1 + tan2 θ

]

= 1

tk

⎡
⎣ f

(
x1 + tkd

k
1 − ‖x2‖ cot θ − tk x̄

T
2 dk2 cot θ + o(tk )

)
− f (x1 − ‖x2‖ cot θ)

1 + cot2 θ

+
f
(
x1 + tkd

k
1 + ‖x2‖ tan θ + tk x̄

T
2 dk2 tan θ + o(tk )

)
− f (x1 + ‖x2‖ tan θ)

1 + tan2 θ

⎤
⎦

� a1(d1 − x̄ T2 d2 cot θ)

1 + cot2 θ
+ a2(d1 + x̄ T2 d2 tan θ)

1 + tan2 θ
,

where ai ∈ T f (λi (x)) for i = 1, 2.
The second component of

(
f Lθ (x + tkdk) − f Lθ (x))/tk is (when tk ↓ 0)

1

tk

{[
− f (x1 + tkd

k
1 − ‖x2 + tkd

k
2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1+tkd

k
1 + ‖x2+tkd

k
2‖ tan θ) tan θ

1+tan2 θ

]
x2 + tkd

k
2

‖x2 + tkd
k
2‖

−
[
− f (x1 − ‖x2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + ‖x2‖ tan θ) tan θ

1 + tan2 θ

]
x2

‖x2‖
}

�
[
− cot θ

1 + cot2 θ
a1

(
d1 − x̄ T2 d2 cot θ

)
+ tan θ

1 + tan2 θ
a2

(
d1 + x̄ T2 d2 tan θ

)]
x̄2

+
[
− f (x1 − ‖x2‖ cot θ) cot θ

1 + cot2 θ
+ f (x1 + ‖x2‖ tan θ) tan θ

1 + tan2 θ

] [
1

‖x2‖
(
I − x̄2 x̄

T
2

)]
d2.

The above two limits show that

f Lθ (x + tkdk) − f Lθ (x)

tk

�

⎡
⎢⎢⎣

a1
1+cot2 θ

+ a2
1+tan2 θ

(
− cot θ

1+cot2 θ
a1 + tan θ

1+tan2 θ
a2
)
x̄ T2(

− cot θ
1+cot2 θ

a1 + tan θ
1+tan2 θ

a2
)
x̄2

(
cot2 θ

1+cot2 θ
a1 + tan2 θ

1+tan2 θ
a2
)
x̄2 x̄ T2

+ f (λ2(x))− f (λ1(x))
λ2(x)−λ1(x)

(
I − x̄2 x̄ T2

)

⎤
⎥⎥⎦ d.

(b) Let ξk → 0. Again, we discuss two cases.

Case 1 For x2 �= 0, we have x+ξku1x = (λ1(x)+ξk)u
(1)
x +λ2(x)u

(2)
x as k sufficiently large,

since ξk → 0. Because f Lθ is H -differentiable at x , there exists A ∈ T fLθ (x) (by taking a
subsequence if necessary) such that

f Lθ (x + ξku
(1)
x ) − f Lθ (x) − Aξku

1
x = o(|ξk |),

which implies 〈
f Lθ (x + ξku

(1)
x ) − f Lθ (x) − Aξku

(1)
x , u(1)

x

〉
= o(|ξk |).
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Hence 〈
[ f (λ1(x) + ξk) − f (λ1(x))] u

(1)
x − Aξku

(1)
x , u(1)

x

〉
= o(|ξk |),

i.e.,

[ f (λ1(x) + ξk) − f (λ1(x))] ‖u(1)
x ‖2 − ξk(u

(1)
x )T Au(1)

x = o(|ξk |).
Thus,

f (λ1(x) + ξk) − f (λ1(x)) − 1

‖u(1)
x ‖2

(u(1)
x )T Au(1)

x ξk = o(|ξk |),

which means 1
‖u(1)

x ‖2 (u
(1)
x )T Au(1)

x ∈ T f (λ1(x)). Similarly, we can also conclude

1

‖u(2)
x ‖2

(u(2)
x )T Au(2)

x ∈ T f (λ2(x)).

Case 2 For x2 = 0, the result follows immediately from the same arguments by taking
u(1)
x = e. ��
We know that if a mapping F : Rn → Rm is Fréchet differentiable at x̄ , then TF (x̄)

is singleton with TF (x̄) = {∇F(x̄)}. It should be pointed out that the converse statement
may fail in general, i.e., if F is H -differentiable at x̄ and TF (x̄) is singleton, then F is not
necessarily Fréchet differentiable at x̄ . Of course, these two concepts can be equivalent under
some particular case, which is illustrated below.

Theorem 4.2 A function g : R → R is Fréchet differentiable at γ ∈ R if and only if g is
H-differentiable at γ ∈ R with Tg(γ ) being a singleton set.

Proof The necessity is clear. To show the sufficiency, let Tg(γ ) = {η}. Consider

lim sup
t↓0

g(γ + t) − g(γ )

t
= lim

tk↓0
g(γ + tk) − g(γ )

tk
= η

where the last step follows from (10) with dk = d = 1. Similarly,

lim inf
t↓0

g(γ + t) − g(γ )

t
= lim

tk↓0
g(γ + tk) − g(γ )

tk
= η.

Hence

g′+(γ ) = lim
t↓0

g(γ + t) − g(γ )

t
= η.

On the other hand,

lim sup
t↑0

g(γ + t) − g(γ )

t
= lim

tk↑0
g(γ + tk) − g(γ )

tk
= − lim−tk↓0

g(γ − (−tk)) − g(γ )

−tk

= − lim
t ′k :=−tk
t ′k↓0

g(γ − t ′k) − g(γ )

t ′k
= −η(−1) = η

where the last step follows from (10) with dk = d = −1. Similarly, we have

lim inf
t↑0

g(γ + t) − g(γ )

t
= η.

123



828 J Glob Optim (2015) 63:811–833

Hence

g′−(γ ) = lim
t↑0

g(γ + t) − g(γ )

t
= η.

Since the left and right derivative of g at γ are the same, then g is differentiable at γ . ��
The foregoing result shows that if T f (λi (x)) for i = 1, 2 is singleton, then f is

differentiable at λi (x), which in turn implies that f Lθ is also differentiable at x with
T fLθ (x) = {∇ f Lθ (x)}; see [5, Theorem 3.3] and [28, Theorem 2.3] for the relation of

f and f Lθ on differentiability and the exact formula of ∇ f Lθ .
In [4, Theorem 2.4], it is pointed out that at x = (x1, 0) if T f (x1) is not a singleton set, i.e.,

a1 �= a2 in (20), then T fLθ is not a singleton, i.e., in this case f Lθ cannot be H -differentiable
if requiring that T fLθ just have a one element. There leaves an interesting and important

question: whether f Lθ can be H -differentiable by taking larger set. It is indeed the main
contribution of Theorem 4.1. The answer is affirmative. This is clear from the formula of
T fLθ (x) given in (20) due to the multi-choice of w with ‖w‖ = 1. In other words, Theorem
4.1 in this paper improves the result of [4, Theorem 2.4] when Lθ reduces to SOC case (one
direction cannot be guaranteed in [4, Theorem 2.4] due to the aforementioned reason).

5 CCCP under H-differentiability

The application of H -differentiability to nonlinear complementarity problem, symmetric
cone complementarity problem, and variational inequalities have been studied in [4,22,24,
25]. In this section, we further study the circular cone complementarity problem under H -
differentiability. More precisely, the circular cone complementarity problem (CCCP) is to
find x ∈ Rn such that

F(x) ∈ Lθ G(x) ∈ L∗
θ 〈F(x),G(x)〉 = 0. (24)

CCCP is a type of nonsymmetric cone complementarity problem and includes the second-
order cone complementarity (SOCCP) problem as a special case (θ = 45◦). The CCCP is
introduced in [19], where some merit functions related with natural residual (NR) functions
are presented. Here we study the merit function associated with the Fisher-Burmeister (FB)
complementarity function.

In the framework of second-order cone, the Fisher-Burmeister (FB) complementarity
function is defined by

φFB(x; y) := (x2 + y2)
1
2 − x − y,

where x2 := x ◦ x means the Jordan product associated with second-order cone, i.e., for any
x, y ∈ Rn ,

x ◦ y =
[ 〈x, y〉
x1y2 + y1x2

]
.

Let
f (x) := ψFB

(
F̃(x), G̃(x)

)
, (25)

where

F̃(x) := AF(x), G̃(x) := A−1G(x), ψFB(x, y) := 1

2
‖φFB(x, y)‖2.
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Lemma 5.1 If F and G are H-differentiable at x, then

(i) F̃ and G̃ are H-differentiable at x with

TF̃ (x) = ATF (x) and TG̃(x) = A−1TG(x).

(ii) The function f is H-differentiable at x with

T f (x)

=
{
∇xψFB

(
AF(x), A−1G(x)

)T
AM

+∇yψFB
(
AF(x), A−1G(x)

)T
A−1N |M ∈ TF (x), N ∈ TG(x)

}
.

Proof The result (i) follows from the definition of H -differentiability. The result (ii) comes
from the fact that ψFB is continuous differentiable [8, Proposition 2]. ��
Theorem 5.1 x is a solution of CCCP if and only if ψFB

(
AF(x), A−1G(x)

) = 0.

Proof Notice that

F(x) ∈ Lθ G(x) ∈ L∗
θ 〈F(x),G(x)〉 = 0,

⇐⇒ F(x) ∈ A−1K G(x) ∈ L∗
θ = L π

2 −θ = AK 〈AF(x), A−1G(x)〉 = 0,

⇐⇒ F̃(x) ∈ K G̃(x) ∈ K 〈F̃(x), G̃(x)〉 = 0.

Hence x is a solution of CCCP if and only if x is a solution of SOCCP(F̃, G̃). Thus

ψFB
(
AF(x), A−1G(x)

) = ψFB
(
F̃(x), G̃(x)

) = 0,

which is the desired result. ��
The above result shows that CCCP (24) can be expressed as an unconstrainedminimization

problem:
min
x∈Rn

f (x) (26)

where f is defined as in (25).
When applying (26) to solve CCCP, we must answer the following questions: (i) under

which conditions, the stationary point of (26) is a solution of CCCP; (ii) how to find the
descend direction at non-stationary point.

Theorem 5.2 Suppose that F and G are H-differentiable and the H-differentials of F and
G satisfy one of the following conditions

(i) for every x ∈ Rn, M ∈ TF (x), N ∈ TG(x), (AM,−A−1N) is column monotone, i.e.,

uT AM − vT A−1N = 0 �⇒ 〈u, v〉 ≥ 0, ∀u, v ∈ Rn . (27)

(ii) for every x ∈ Rn, M ∈ TF (x), N ∈ TG(x), M (or N) is invertible and NM−1 (or MN−1)
is positive semidefinite.

Then the following statements are equivalent:

(a) x is a solution of CCCP;
(b) 0 ∈ T f (x).
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Proof The proof technique is adopted from [4]. If x solves the CCCP, thenψFB
(
AF(x), A−1

G(x)
) = 0 by Theorem 5.1. According to [20, Proposition 3.3], we have

∇xψFB
(
AF(x), A−1G(x)

) = ∇yψFB
(
AF(x), A−1G(x)

) = 0,

which together with Lemma 5.1 yields 0 ∈ T f (x).
Conversely, if 0 ∈ T f (x), then according to the formula of T f given in Lemma 5.1, there

exists M ∈ TF (x) and N ∈ TG(x) such that

∇xψFB
(
AF(x), A−1G(x)

)T
AM + ∇yψFB

(
AF(x), A−1G(x)

)T
A−1N = 0. (28)

Case (i). Since (AM,−A−1N ) is column monotone, then

〈∇xψFB
(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉 ≤ 0,

i.e.,

〈∇xψFB
(
F̃(x), G̃(x)

)
,∇yψFB

(
F̃(x), G̃(x)

)〉 ≤ 0.

This together with [20, Proposition 3.3] yields

〈∇xψFB
(
F̃(x), G̃(x)

)
,∇yψFB

(
F̃(x), G̃(x)

)〉 = 0,

and hence

ψFB
(
AF(x), A−1G(x)

) = ψFB
(
F̃(x), G̃(x)

) = 0.

Case (ii). It only consider the case of M being invertible, since the case of N being invertible
is similar. It follows from (28) that

∇xψFB
(
AF(x), A−1G(x)

) + A−1(M−1)T NT A−1∇yψFB
(
AF(x), A−1G(x)

) = 0.

Since NM−1 is positive semidefinite, then

0 ≤ 〈∇xψFB
(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉
=

〈
−A−1(M−1)T NT A−1∇yψFB

(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉

= − 〈
A−1∇yψFB

(
AF(x), A−1G(x)

)
, NM−1A−1∇yψFB

(
AF(x), A−1G(x)

)〉
≤ 0.

Hence 〈∇xψFB
(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉 = 0,

i.e., 〈∇xψFB
(
F̃(x), G̃(x)

)
,∇yψFB

(
F̃(x), G̃(x)

)〉 = 0.

Hence

ψFB
(
AF(x), A−1G(x)

) = ψFB
(
F̃(x), G̃(x)

) = 0.

Thus, x is a solution of CCCP by Theorem 5.1. ��
The above result shows that under some conditions x is a solution to the CCCP if and only

if x is a stationary point of f . For a non-stationary point, a descent direction is proposed as
below.
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Theorem 5.3 Suppose F and G are H-differentiable and the H-differentials of F and G
satisfy (27). If 0 /∈ T f (x) then one of the following holds. In particular, if

(i) there exists a invertible matrix M ∈ TF (x), then

dFB(x) := −M−1A−1∇yψFB
(
AF(x), A−1G(x)

)
(ii) there exists a invertible matrix N ∈ TG(x) , then

dFB(x) := −N−1A∇xψFB
(
AF(x), A−1G(x)

)
is a descent direction of f at x.

Proof Consider the case ofM being invertible. Since 0 /∈ T f (x),ψFB
(
AF(x), A−1G(x)

) �=
0 by Theorems 5.1 and 5.2. It then follows from [20, Proposition 3.3] that〈∇xψFB

(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉
> 0. (29)

According to the expression in Lemma 5.1 (ii), we have(
∇xψFB

(
AF(x), A−1G(x)

)T
AM + ∇yψFB

(
AF(x), A−1G(x)

)T
A−1N

)
dFB(x)

= − 〈∇xψFB
(
AF(x), A−1G(x)

)
,∇yψFB

(
AF(x), A−1G(x)

)〉
− 〈

A−1∇yψFB
(
AF(x), A−1G(x)

)
, NM−1A−1∇yψFB

(
AF(x), A−1G(x)

)〉
< 0,

where the last step is due to (29) and the fact that NM−1 is positive semidefinite by (27).
This completes the proof. ��

The above results further enrich those given in [4] and [19]; for example, a merit function
associated with FB function is given and the case of M being invertible is also considered.

6 Final remarks

In this paper, the exact formula of calmness modulus and H -differential are established
between f Lθ and f . In addition, we also study a merit function approach to solve the CCCP
under H -differentiability. In other words, the results of this paper have an important applica-
tion for complementarity problems. For example, characterize the P0- and P-properties via
H -differentials; every local minimizer or a stationary point of the merit function correspond-
ing to the Fisher-Burmeister complementarity function of an H -differentiable function is a
solution of the corresponding nonlinear complementarity problem [7,18].

In addition, second-order cone complementarity problem (SOCCP) is the extension of
nonlinear complementarity problem to second-order cone settings. At present, the merit
function for SOCCP is restricted in Lipschitz functions. To study the merit functions and
characterizing P0 and P-properties for SOCCP in the non-Lipschitz settings, the first target
is to give the exact formula of H -differentiability. This is the main contribution of this paper.
Indeed, we have established the corresponding result in the more general setting of circular
cone. Nonetheless, there leave two rather important and interesting topics which wewill keep
an eye on them in our future research. We outline them as below.

1. Is it possible to establish the exact estimate or obtain more lower upper bound for
cam( f Lθ )?

123



832 J Glob Optim (2015) 63:811–833

2. Note that (23) can be rewritten as⎡
⎣ 1

1+cot2 θ
a1 + 1

1+tan2 θ
a2

(
− cot θ

1+cot2 θ
a1 + tan θ

1+tan2 θ
a2
)
d̄T2(

− cot θ
1+cot2 θ

a1 + tan θ
1+tan2 θ

a2
)
d̄2

(
cot2 θ

1+cot2 θ
a1 + tan2 θ

1+tan2 θ
a2
)
d̄2d̄T2

⎤
⎦ d

where we use the fact that d2 = d̄2d̄T2 d2, which also holds for d2 = 0. Hence, for x with
x2 = 0, we have

T fLθ (x)

=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1

1 + cot2 θ
a1 + 1

1 + tan2 θ
a2

(
− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
wT

(
− cot θ

1 + cot2 θ
a1 + tan θ

1 + tan2 θ
a2

)
w

(
cot2 θ

1 + cot2 θ
a1 + tan2 θ

1 + tan2 θ
a2

)
wwT

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
ai ∈ T f (x1)
i = 1, 2
‖w‖ = 1

⎫⎪⎪⎬
⎪⎪⎭

(30)

This is not contradicting to the results given in Theorem 4.1, because the expression
of H -differential is not unique according to the Definition 2.2 or Remark 2.1(i). Note
that the expression (30) is consistent with (21) if defining 0/0 := 0. However, as f is
differentiable at x1, thenwe know f Lθ is also differentiable at x with T fLθ (x) = f ′(x1)I .

In this case (30) takes the form f ′(x1)
[
1 0
0 wwT

]
, while (20) takes f ′(x1)I . Due to this

consideration, we adopt (20) as the H -differentials. This yields a question: does there
exist other expression for T fLθ and can we establish their relationship?
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