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A SELF-CONCORDANT INTERIOR POINT ALGORITHM FOR
NONSYMMETRIC CIRCULAR CONE PROGRAMMING

PENGFEI MA, YANQIN BAI*, AND JEIN-SHAN CHEN

ABSTRACT. In this paper, we consider a particular conic optimization problem
over nonsymmetric circular cone. This class of optimization problem has been
found useful in optimal grasping manipulation problems for multi-fingered robots.
We first introduce a pair of logarithmically homogeneous self-concordant barrier
function for circular cone and its dual cone. Then, based on these two logarithmi-
cally homogeneous self-concordant barrier functions and their related properties,
we present an interior point algorithm for circular cone optimization problem.
Furthermore, we derive the iteration bound for this interior point algorithm.
Finally, we show some numerical tests to demonstrate the performance of the
proposed algorithm.

1. INTRODUCTION

Nonsymmetric circular cone programming problems are convex programming
problems because their objectives are linear functions and their feasible sets are
the intersection of an affine space with the Cartesian product of a finite number of
circular cones. The circular cone [10] is defined as

Cy = {(z1,T0.0)T € R x R" | cosb|z|| < x1}
= {(z1,22:0)T € R x R"7|||zo:n|| < 21 tan 6}.

(1.1)

where 6 € (0, §) is called rotation angle, || - || denotes the Euclidean norm and (Cy')*
is the dual cone of Cy. It is easy to verify that
(1.2) Cy)* = C%Lia = {(x1, 72,)T € R xR | sinf||z|s < 21}

The geometric illustration of a circular cone, its dual cone, and a second order cone
are depicted in Figure 1.

A nonsymmetric circular cone programming problem is an optimization problem
with the following form:

min ¢’z
(1.3) st. Ax =0,
r €K,

where I C R"™ is the Cartesian product of several circular cones, i.e.,
n n n
(1.4) K=Cyl xCpZ x---xCpt,
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FIGURE 1. The graph of circular cone in R3

N
with n = X%nj and 0; € (0, §) for j =1,2,...,N. Furthermore, we partition the
‘7:
vectors x, ¢ and matrix A as x = (x';2?%;...;2") with 27 € ngj, c=(chc?... ¢
with ¢/ € R, and A = (A, A?,..., AN) with A7 € R™*" and b € R™. Without
loss of generality, we assume that the matrix A has full row rank, i.e., rank(A)=m.
Obviously, the problem (1.3) is also expressed as

)

min ¢’z
T
(1.5) st. Az =0,
filz) <0, i=1,2,...,N,
where f;(z) = ||zb.,[|> — (z})? - tan?@; for i = 1,2,..., N.
The problem (1.5) is a second order cone programming (SOCO) problem if 6; = %
for 7 =1,2,..., N. It is well-known that second order cone programming problems

have had widely applications (see, e.g., [1, 13]). Moreover, the circular cone de-
scribed by (1.1) with 6 # 7 naturally arises in many real-life engineering problems
[6, 7, 11, 12]. One example is to formulate optimal grasping manipulation for multi-
fingered robots. The grasping force of the i-th finger can be expressed in the local
coordinate frame n;, o;, t; by fi = (fa,, fo;» ft;)T where f,., fo, and f;, are the com-
ponents of f; along n;, o; and t;, respectively. To ensure no slipping at a contact
point, the components of the contact force f; must satisfy the contact constraint

(16) “(folaftz)” Sﬂfn”

where p is the static friction coefficient of the substrate. In fact, (1.6) geometrically
represent a circular cone with rotation angle 3 = tan~! u (see Figure 2).

By (1.1) and (1.2), as long as rotation angle § = 7, the circular cone and its dual
cone reduce to the well-known second order cone (also known as the Lorentz cone
and the ice-cream cone) given by

(1.7) L7 = {(z1, 22:0)7 € R x R"Y||z2in | < 21}



INTERIOR POINT ALGORITHMS FOR NCCP 227
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It is clear that the second order cone is a symmetric cone. However, the circular
cone is a nonsymmetric cone because it is not self-dual, i.e., K # K* unless ¢ = 7.
A main difference between circular cone constraints and most of the other cone
constraints [2, 5, 22] is that the circular cone is nonsymmetric, which makes the
problem (1.5) more challenging.

As mentioned in [25], there is a close relation between Cy and L" as below
tan 6 0
0 En—l ’

We point out that, with the above transformation, it is possible to construct a new
inner product which ensures the circular cone Cy to be self-dual. More precisely,
we define an inner product associated with Ay as (x,y)a, := (Apx, Apy). Then, we
have

€)= {x|{z,y)a, >0, Vy € Cy} = {x|(Agx, Agy) >0, Vy € AQ_IL'"}
{z|(Aoz,y) 20, Vy € L} = {z| Agz € L"}
= AL =¢p.

However, under this new inner product the second-order cone is not self-dual, be-
cause

L" = ApCy where Ap:= [

(L") = A{z|{x,y)a, 20, Vy € L} = {x| (A, Ay) > 0, Vy € L}
= {z|(A%r,y) >0, Vyc L") = {z|A2x c L"} = A;2£”.
Since we cannot find an inner product such that the circular cone and second-

order cone are both self-dual simultaneously, we must choose an inner product from
the standard inner product or the new inner product associated with Ay. In view
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of the well-known properties regarding second-order cone and second-order cone
programming (in which many results are based on the Jordan algebra and second-
order cones are considered as self-dual cones), we adopt the standard inner product
in this paper.

Some researchers have investigated circular cones and nonsymmetric circular cone
programming problems. In [9, 24-26], Chen et al. paid a lot attentions to study
some properties of circular cone and vector-valued functions associated with circular
cones. In [27], Zhou et al. established complete characterizations of full and tilt
stability of locally optimal solutions to parameterized circular cone programming
problems. Moreover, Bai et al. considered kernel function-based interior point algo-
rithm for solving the problem (1.3) or (1.5) in [3]. They conclude that the problem
(1.5) is polynomial-time solvable. At the same time, Bai et al. also investigated
kernel function-based interior point algorithm for convex quadratic circular cone
programming problems in [4].

Recently, Nesterov [21] proposed a new interior point algorithm that is based on
an extension of the ideas of self-scaled optimization to the nonsymmetric conic op-
timization. The author developed a 4n-self-concordant barrier for an n-dimensional
p-cone, which is a special case of nonsymmetric cone. Matsukawa and Yoshise [14]
proposed a primal barrier function phase I algorithm for solving conic optimization
problems over doubly nonnegative cone. Skajaa and Ye [23] designed a homoge-
neous interior point algorithm for nonsymmetric convex conic optimization. All
these IPMs are designed based on self-concordant barrier functions for its corre-
sponding cone.

Self-concordant barrier functions are presented by Nesterov and Nemirovski [15].
They play an important role in the powerful polynomial-time IPMs for convex pro-
gramming. Several classes of interior point algorithms for linear programming are
extended to nonlinear setting in terms of self-concordant barrier functions for convex
region. Following the work of Nesterov and Nemirovski, many articles have issued
using this type of function to construct barrier functions for IPMs [16-18]. In [20]
and [8], the authors also presented 3-self-concordant barriers for the nonsymmetric
power cone and the exponential cone, respectively. Therefore, conic programming
problems with the power cone or the exponential cone constraints can be solved by
efficient interior point algorithm [23].

Inspirited by the nice properties of self-concordant barrier functions, in this pa-
per, we consider a particular conic optimization problem over nonsymmetric circu-
lar cone, which has been found useful application in optimal grasping manipulation
problems for multi-fingered robots. We first introduce a pair of logarithmically
homogeneous self-concordant barrier function for circular cone and its dual cone.
Then, based on these two logarithmically homogeneous self-concordant barrier func-
tions and their related properties, we present an interior point algorithm for circular
cone optimization problem. Furthermore, we derive the iteration bound for this in-
terior point algorithm. Finally, we show some numerical tests to demonstrate the
performance of the proposed algorithm.

The paper is organized as follows. In Section 2, we recall basic concepts and
properties on self-concordant barrier functions. In Section 3, we introduce a pair
of logarithmically homogeneous self-concordant barrier functions for circular cone
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and its dual cone, respectively. In Section 4, we discuss optimality conditions and
central paths of nonsymmetric circular cone programming problems. In Section 5,
based on logarithmically homogeneous self-concordant barrier function for circular
cone and its dual cone, we present an interior point algorithm for nonsymmetric
circular cone programming. In Section 6, we implement our algorithm by several
random examples to show the performance of the algorithm. Finally, we conclude
and give further research in Section 7.

2. PRELIMINARIES

As mentioned in the Introduction, self-concordant barrier functions are crucial
to IPMs. In order to proceed with our discussion, we recall some basic concepts
and properties of self-concordant barrier functions which will be used in this paper.
The materials can be found in [15] and [19], we here omit their proofs.

Given a closed convex function f(x)(dom f) with open domain and fix a point
x € domf and a direction u € R", we consider the function

o(t) = flz +tu),
depending on the variable ¢ € dom¢(x;-) € R. Then, we denote
Df(z)[u] = ¢'(t) = (Vf(z),u),
D*f(@)[u,u] = ¢"(t) = (V2 f(x)u, u),
D3 f(x)[u, u,u] = ¢"(t).

With these notations, self-concordant function and self-concordant barrier function
are defined as follows.

Definition 2.1. A closed convex function F' € C? (three times continuously differ-
entiable) with open domain C' is called self-concordant if

(2.1) |D3F ()[h, h, b)| < 2(D*F(z)[h, h])*/?,
for all x € domF and for all A € R™.

Definition 2.2. A self-concordant function F' is a v-self-concordant barrier for a
closed convex set IC if

VF(z)T(V?F(z))"'VF(z) <v, Yz € K°.
The value v is called the parameter of the barrier F' and K° is interior of the set K.

In order to prove our Theorem 3.3, we need a property regarding v-self-concordant
barrier under an affine transformation.

Lemma 2.3. Let F': C° CR"™ — R be a v-self-concordant barrier, A: RP — R"™
such that A(y) = By+b for B € R™? and b € R". Assume A(RP)NC # 0. Define
Ct=A1C)={yeRP: A(y) € C} CRP. Then F : CT — R defined as

F(y) = F(A(y))

is a v-self-concordant barrier for C.

For proper cones, Nesterov and Nemirovski have presented a special class of
barriers in [15] and [19]. The definition is stated as follows.
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Definition 2.4. Let K be a proper cone, F' : K° — R a twice continuously

differentiable, convex barrier function. F'is called v-logarithmically homogeneous
for IC if

(2.2) F(tr) = F(x) —vint
for any x € KL and any t > 0.

In order to introduce logarithmically homogeneous barrier of dual cone of the
circular cone, we employ the following Definition 2.5 and Lemma 2.6.

Definition 2.5. Let F' be a v-logarithmically homogeneous barrier for K. Its
conjugate is defined as
F.(s) = sup {—sTz — F(z)}.
zEeK°
Lemma 2.6. Let F': K° — R be a v-self-concordant barrier for K. Then Fi(s) is
a v-self-concordant barrier for K*.

For the positive orthant, the second order cone, and the cone of positive semidef-
inite matrices, we list their self-concordant barriers in Table 1. Note that the three
cones lead to linear programming problems, second order cone programming prob-
lems, and semidefinite programming problems, respectively. In all these examples,
the cones are symmetric and the barriers are self-scaled [17]. However, in general,
this cannot be true.

TABLE 1. self-concordant barriers over some convex cones

Cones Self-concordant barriers Parameters Conjugate functions
n
Ry ={reR":x >0} F(z):—;m(zi) v=n F.(s)=F(s)—n
{(z1,720)T € R X RV [|7am| < 71} | F(21, 72:0) = — In(2? — || 700 [1?) v=2 F.(s)=F(s) +2n2 -2
St={Xes":X >0} F(X) = —Indet(X) v=n F.(s)=F(s)—n

3. THE BARRIER FUNCTION FOR CIRCULAR CONE

In this section we introduce logarithmically homogeneous self-concordant barrier
functions for the circular cone and its dual cone.

First, we recall an important Lemma in [3, Theorem 2.3]. The Lemma is critical
to our subsequent analysis. Given a rotation angle 6, let

[ tand 0
(3.1) Ay = 0 B, ]
where F,,_1 is an n — 1 dimensional unit matrix. It is straightforward to verify that
1 [ cotd 0
(3.2) Ay” = 0 E, . ] .

Lemma 3.1. For any x € Cj and s € (Cp)*, there exist T € L™ and 5 € L™ such
that

(1) & = Agz and § = Ay's.

(2) 275 = 0 if and only if z7s = 0.
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Then, we prove the following Lemma 3.2 to obtain a self-concordant barrier of
dual cone.

Lemma 3.2. Let h be a conver function on R"™, and let
f(@) = h(Az +b) + a’z + q,

where A is a one-to-one linear transformation from R™ to R"™, a and b are vectors
i R", and « € R. Then

fu(s) = ha (A7) (a +5)) + (A7) s + o,
where a* = —a + (A71b)Ta.
Proof. The substitution y = Ax + b enables us to calculate f, as follows
fi(s) = sup{—sTz — h(Az + b) —alz — o}

=%ME§YA”@—®)—Mw—%A*@—mfﬁ—a}

= Sl;p{—(A_ly)T(S +a) = h(y)} + (AT0) (s +a) ~

= sup{—yL (A H (s +a) — h(y)} + (A7) s+ (A7) a—a
y

=he (A7) (s +a)) + (A7) Ts + ™.
U

Based on the self-concordant barrier for the second order cone, Lemma 2.3,
Lemma 2.6, Lemma 3.1 and Lemma 3.2, we introduce self-concordant barriers for
the circular cone and its dual cone.

Theorem 3.3. The function

(3.3) Fy(z) = —1In(z? - tan? 0 — ||z ||?)
is a 2-self-concordant barrier for x € Cy and the function
(3.4) (Fy)+(s) = —In(s? - cot? § — ||s0.p]|?) + 2In2 — 2

is a 2-self-concordant barrier for s € (Cy)*. Furthermore,

N
(3.5) Fi(@) = =Y In ((@])? - tan?0; — |l24,,]?)
j=1

is 2N -self-concordant barrier for K.

Proof. Obviously, the function
F(z) = —In(a? - ||oza]?)

is 2-self-concordant barrier for the second order cone and its conjugate function is
Fi.(s) =F(s)+2n2 - 2.

Using Lemma 2.3 and Lemma 3.2, one has

tan 0 95
Folz) =F ([ 0 En } [ 372:1n ]) = —In(af - tan® § — [|z2:n|?)
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is a 2-self-concordant barrier for Cy. According to Lemma 3.1, Lemma 2.6 and
Lemma 3.2, we obtain

(Fy)«(s) = Fi ([ CO(;CH EO ] { S'Zl ]) = —In(s? - cot? O — ||s9:n||?) + 2In2 — 2
n—1 m

is a 2-self-concordant barrier for (Cy)*. By using [19, Theorem 4.2.2], we complete
the proof. O

Suppose that Fy is a 2-self-concordant barrier of the circular cone. It is clear that
the Hessian of Fj is a positive definite matrices. Using the Hessian of Fy for any
x € (Cy)°, we can define the following local norms on Cy and (Cy')*:

(3.6) Ihlle = \/WT(V2Fy(a))h, for heCp.

(3.7) Isllz = \/sT(VEA(@))s, for s € ()"
Other properties of Fy is refer to [17, 18].

4. SELF-CONCORDANT BARRIER AND CENTRAL PATH

In this section, we define central path in terms of Fi(x). We assume that the
problem (1.5) is strictly feasible, i.e., there exists xy such that Axg = b and f;(xg) <
0 for ¢ =1,..., N. This means that Slater’s constraint qualification holds, so there
exits dual optimal A\* = (A}, A%,...,Ay) € RY, v* € R™, which together with
optimal solution z* satisfy the KKT conditions

Az* =b, fi(z*)<0,i=1,2,...,N
>0, i=1,2,...,N

(4.1) N .
c+ZAfoi(:c*) + A'v* =0,

i=1

Afi(z*)=0,i=1,2,...,N.

N
We refer to a pair (A\*, v*) with \¥ >0, i =1,2,...,N and ¢+ > AV f;(z*) +
=1

ATy* = 0 as dual feasible.
Based on Fi(z) and the basic idea of barrier function, a suitable equality con-
strained problem is given by ¢ > 0:

(4.2) min{fi(z) = t(e, ) + Fic(z) : Az = b},

which is a penalty problem as nonsymmetric circular cone programming (1.5). The
problem (4.2) is an equality constrained problem to which Newton’s method can be
applied. By using strongly convex of t(c, x) + Fic(z), the problem (4.2) has a unique
solution for each ¢t > 0.

For any ¢ > 0, we define z(¢) as the solution of (4.2). The central path associated
with problem (1.3) is defined as the set of points z(¢) for ¢ > 0. The points on the
central path are characterized by the following necessary and sufficient conditions:

{ tc+ VFc(z(t)) + ATv(t) =0

(43) Ax(t) = b, a(t) € K°.
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By (4.3), we have

0 = tc+ VFx(z(t)) + ATw

(4.4) B N 1 ' p
=tc+ ; mVﬂ(l’(t» + A w.

From (4.4), we can yield a dual feasible point

233

1 v

45 Nt =——— i=1,2,...,N, v(t) = -.
&2 L TAE0) ©=7
It is clear that A\;(t) > 0 because f;(z(t)) <0, i =1,2,..., N. Moreover, by (4.4),
we have

N

c+ Y MOV i) + ATv(t) =0.
i=1

We see that z(t) minimizes the Lagrangian

N
L(z, A\ v) =Tz + Z Nifi(z) + 0T (b — Az),

i=1
for A= A(t) = (A1(t), Aa(t),..., An(t)), v =wv(t). Therefore the dual function
g (A(®),v(t)) = iIzlfL (z,A(t),v(t))

is finite, and

In particular, the duality gap associated with x(¢) and the dual feasible point

N
A(t), v(t) is e As an important consequence, we have

(4.6) Fxt) —cTz* < -

By the above inequality, it implies that z(¢) converges to optimal point z* as t — oo.

5. INTERIOR POINT ALGORITHM FOR NONSYMMETRIC CIRCULAR CONE
PROGRAMMING

In this section, we discuss the search direction from Newton-type system of (4.3).
Then, based on the search direction, we describe the scheme of our algorithm.

Moreover, the iteration bound of the algorithm is computed.
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5.1. The search direction. We will go along Newton direction towards the min-
imizer of (4.2). To compute the Newton direction, we use the gradient and the
Hessian of the objective function f;(z), which is given by

Vfi(x) = te+ VFx(z), V2fi(z) = V?Fx(x).
The Newton direction Ax(t) is then defined as the direction of linear system

o [ 4] [3] [

By (5.1), we have Ax(t) = —(V2f,(z)) Y (Vfi(x) + AT Av(t)). We denote the New-
ton decrement for (4.2) at the point x by

5ot = A2 (D)]lc = /A2(t)TV2fy(z) Aat).

Obviously, we have 6, ; = ||V fi(z) + AT Av(t)]|2.
To complete the following Theorem 5.2, we need the following technical Lemma.

Lemma 5.1 ([8, Theorem 2.3.4]). Let F(x) be a self-concordant function, A €
R™*™ b e R™ and x € domF such that Ax = b and 6, < 1. Then

(5.2) w(dz) < F(x) — F(z¥) < wi(dz),

(5.3) W' (0z) < llz — 2%[le < wi'(d2),

where ™ denotes an optimal solution for the following problem
(5.4) min{F(z) : Az = b},

0z denotes Newton decrement for (5.4) at the point x, w(t) =t —In(1+1t), t > —1
and wy(t) = —t —In(1 —1t), t < 1.

Theorem 5.2. For anyt >0 and 6,1 < B <1, then
1
Mz —z*) < ZR(B, N).

where k(B,N) = (BJ“/_)B + N.
Proof. By using tc = Vft( ) — VFx(x), we have
te! (z — (1)) = (Vfilz) — VFx ()T (x — (1))
= (Vfi(z) + ATv(t) — VFx(z) — ATo(t)" (z — (1))
= (Vfi(e) + AT(t) = VFx(2))' (z — 2(t)) - v(t) Alz — z(t))
< (IV fi(@) + ATo@)II5 + IV Ec(@)]3) - llz — 2(6) e
< (0zt + V2N) - W (00r)
< (0t + \/ﬁ)%ém
. (B+V2N)B
< -8
We use Lemma 5.1 on the above second inequality. From (4.6) and the above
inequality, we immediately yield the desired result. O
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5.2. Interior point algorithm. In this subsection, we describe our algorithm.
First, we denote by Ax;, the Newton direction at the point 2 towards the target

point x(t) on the central path. Furthermore, &;, (2()) = HAQZE?Hx@) is the Newton

decrement of ALIZE}? with respect to the current iterate z(?. The algorithm is as
follows.

Interior point algorithm for nonsymmetric circular cone programming

Input: A € R™*"™ with full row rank, b € R™, c € R", 0; for
i=1,2,...,N and Fi(x).
Parameter: Choose ¢ >0, 0 < 8 < %, 1> 1 and define
k(B N) = CL2N0 | .
Initialize: £ =0, i =0, tg > 0 and x satisfies Axg = b, 2o € K and
5150(56(0)) <B.
while € -t < k(8,N) do

1) compute Newton direction Axgi) from (5.1)
2) compute Newton decrement &, (1) = ||A33§i)||$(i>
while 6;, () > 8 do
i+1) _ (i 1 (4)
a) 20D = 200 ¢ 56, G0) Az,
b)i=i+1
c¢) compute Newton direction A:cgl? from (5.1)
d) compute Newton decrement &y, (z(V) = HAJ?IEQH 20
end while
3) update tj11 = p -ty
Hk=k+1
end while

FIGURE 3. Interior point algorithm for nonsymmetric circular cone programming.

5.3. The iteration bound. In this subsection, we analyze the iteration bound for
algorithm 5.2. To proceed, two technical Lemmas are needed.

Lemma 5.3 ([8, Theorem 2.3.6]). Let F(z) be a self-concordant function, A €
R™m b e R™ and x € domF such that Ax = b and we define the new iterate

T =x+ Ax.

146,
Then T € domF and Ax™ =b. Moreover, we have
F(zT) < F(z) — w(dy),

where Ax denote the Newton direction for (5.4) at the point x and d, denotes Newton
decrement.
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By using the above Lemma 5.3, an upper bound on the functional difference is
given in the process of inner iterations. From the upper bound, we can yeild an
upper bound on the number of iterations from z to z(ut)

Lemma 5.4. Let x € K, Az = b and 6,4 < (. If we update t to ut and im-
pose additionally that p < %, then we have the following bound on the functional
difference:

(5.5) Furl@) = Fale(ut) < u(N +2(VIN + 1)),
Proof. If we denote p = fu(x) — fu(x(pt)), pr = fu(x) — fu(x(t)) and py =
fut(z(t)) — fue(z(pt)), then

p = p1+p2.

The upper bound on p is obtained by adding upper bounds for p; and po.
First, we drive an upper bound on p;. By convexity of Fi(z) on x, one has

p1 = fut(x) — fue(z(t))
)=

= utcl'z + Fe(x) — ptcl x(t) — Fie(z(t))

= ptc” (z — x(t)) + (Fi(z) — Fi(x(t)))

< ptc” (z — x(t)) + (VFx(2),x — z(t))

< ptc’ (z — x(t)) + HVcm(w)Hw |z —2(t)|ls
(B +Vv2N)B

a 1- 5 * \/ﬁ - (5:c,t

< 7(BJ;\_/2;N)5+\/W-%

< (p+1)(V2N +1)

< 2u(V2N +1).

Then, we drive an upper bound on ps as follows:
p2 = fur (x(t)) — fue (2(pt))
— utc"x(t) + Fie (2(t)) - utCTﬂr(wf) — Fi (a(ut))

:MtcT( t) — x(ut)) +Z 111 — pti(t) fi (z(p )))
—In (= pti(t) fi (2 ()))]

= ptct (x(t) — x(ut) —|—Zln — ptXi(t) fi(z(ut))) — Nlnp
< ptel (x(t) — z(pt)) utZ)\ —N—-Nlny

= ptclx(t) — pt[c=(ut) —1—2/\ (x(pt))
i=1
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+o®)T(b— Az(ut))] = N = Nlnp
< ptcz(t) — ptg(A(t),v(t)) = N = Nlnp
=N(p—1-—1Inp)
< Npu.

To obtain the fourth equality from the third, we use \;(t) = In the first

1
tfi(t)
inequality we use the fact that Iny < y — 1 for y > 0. To obtain fifth equality
from the first inequality, we use Az (ut) = b. The second inequality follows from the

definition of dual function:

N
g(A\(t),v(t)) = irzlf (cTz + Z i) fi(z) +ot)T (b~ Az))
i=1

N
< Ta(pt) + D X(t) fi(m(ut)) + v(t)T (b — Az(ut)).

i=1
The last equality follows from g(A(¢),v(t)) = cTz(t) — N/t.
In a word, we have p < u(N + 2(v2N + 1)). O

Next, we state our main result as follows.
Theorem 5.5. Let f < % Then, the algorithm 5.2 terminates after at most k <

N
O(N In t_) iterations with a point xy, such that
0€

(c,xp —x¥) <e.

Proof. According to Theorem 5.2, we have
1
'z —2%) < zn(ﬁ, N).

If we desire ¢! (x — 2*) < ¢, then this is guaranteed by finding a point = such that
0t(x) < B and %H(B,N) < €. The latter condition is satisfied if ﬁn(ﬁ,N) < e,
where k1 is the number of outer iterations. Then, k7 is no more than

Ink(B,N) — In(tge) O(ln ﬁ)
In g N toe/

By Lemma 5.3, we have
w(dz) < F(x) — F(z™).
As long as 0, > 3, we can reduce the function f,.(z) at least w(5) by w(dz) > w(p).

Using Lemma 5.4, that means the optimality gap fy:(x)— fut(2(ut)) will be reduced
at most

Fur(®) = Fur(@(ut)) _ p(N +2(V2N + 1))
w(p) w(B)
times before 6, < 8. We complete the proof. O

<

= O(N)
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6. NUMERICAL RESULTS

In this section, we give some numerical examples to illustrate the performance
of the proposed algorithm for solving nonsymmetric circular cone programming
problems described in Section 5.

Numerical examples are generated randomly and the number of constraints is
set as half of dimension for its corresponding problem. For these circular cones, we
choose the rotation angles as 0 = 5, &, 7, 5, %, respectively. The test problems are
divided into three categories for every fixed rotation angle. In the first group, the
problems’ dimension is between 10 and 90, and the problems’ dimension is between
100 and 900 in the second group, whereas it is between 1000 and 2000 in the third
group.

The numerical experiments are implemented by using MATLAB R2008b, and
on a PC with Intel 2.20 GHz CPU, 2 GB RAM. The parameters were selected as:
S =0.2925 and e = 1 x 1075,

The numerical results are listed in Table 2, Table 3 and Table 4. The following
notations are used: iter, number of iterations; CPU(s), CPU time (in seconds).

TABLE 2. The numerical results on circular cone programming (small size)

[ s [ [ [ 5T
(n,m) iter é}zPU(s) iter CGPU(S) iter éPU(s) iter C3PU(S) iter gPU(s)
(10,5) 28 | 0.085950 | 23 | 0.007586 | 24 | 0.064620 | 23 | 0.009108 | 23 | 0.008762
(20,10) 28 | 0.014009 | 25 | 0.027221 | 25 | 0.029289 | 24 | 0.116081 | 23 | 0.127255
(30,15) 29 | 0.018051 | 26 | 0.036856 | 25 | 0.103724 | 24 | 0.015807 | 24 | 0.084869
(40,20) 29 | 0.089729 | 27 | 0.145478 | 26 | 0.048549 | 25 | 0.074739 | 24 | 0.021951
(
(
(
(
(

50,25) 30 | 0.117831 | 27 | 0.133267 | 26 | 0.076434 | 26 | 0.072427 | 26 | 0.034333
60,30) 30 | 0.071203 | 27 | 0.102295 | 26 | 0.101482 | 26 | 0.045275 | 25 | 0.099405
70,35) 30 | 0.139458 | 28 | 0.064778 | 27 | 0.122284 | 26 | 0.117338 | 26 | 0.114639
80,40) 31 1 0.277781 | 29 | 0.157181 | 27 | 0.101396 | 26 | 0.120880 | 26 | 0.151339
90,45) 30 | 0.110020 | 29 | 0.264767 | 27 | 0.123550 | 26 | 0.097459 | 26 | 0.185536

TABLE 3. The numerical results on circular cone programming (medium size)

0 = z z z T

n,m) iter éZPU(s) iter C6PU(S) iter C4PU(S) iter éPU(s) iter gPU(s)
100,50) | 31 | 0.191587 | 29 | 0.122548 | 27 | 0.150536 | 26 | 0.112776 | 26 | 0.119702
32 | 0.718956 | 30 | 0.699293 | 28 | 0.661747 | 28 | 0.876931 | 27 | 0.556061
33 | 2.237525 | 30 | 1.822652 | 29 | 1.553632 | 29 | 3.204657 | 28 | 1.749023
33 | 4.153084 | 31 | 3.754879 | 30 | 3.025065 | 29 | 3.204657 | 29 | 3.734951

(

(

( )

(o020

(500,250)| 33 | 6.700060 | 31 | 6.510338 | 30 | 5.288580 | 29 | 6.166231 | 29 | 5.865587
( )

( )

( )

( )

34 | 10.678081 | 32 | 10.461737 | 30 | 8.000719 | 29 | 9.698626 | 29 | 8.716132
34 | 15.733862 | 32 | 14.290476 | 30 | 11.815231 | 29 | 13.848642 | 29 | 13.128566
35 [20.898460 | 32 | 20.421453 | 30 | 16.041597 | 30 | 19.409672 | 29 | 17.971985
35 | 29.560119 | 32 | 27.392799 | 31 | 23.314514 | 30 | 25.578036 | 30 | 24.746241

From Table 2, Table 3 and Table 4, we see that the iterative number of our
algorithm ranges from 25 to 40. In particular, when the rotation angle is getting
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TABLE 4. The numerical results on circular cone programming (large size)

0 o T T T 5w
(n,m) iter gPU(s) iter éPU(s) iter éPU(s) iter éPU(s) iter CIJZPU(S)
(1000,500) | 35 | 37.090044 | 32 | 35.099251 | 31 | 27.448155 | 30 | 32.902582 | 30 | 33.633529
(1100,550) | 35 | 44.537521 | 33 | 45.148683 | 31 | 35.335342 | 30 | 43.566852 | 30 | 42.799847
(1200,600) | 34 | 54.978862 | 33 | 56.331029 | 31 | 43.534430 | 31 | 52.749817 | 30 | 51.741102
(1300,650) | 35 | 62.850570 | 33 | 70.953161 | 32 | 53.073101 | 30 | 64.660031 | 31 | 61.763158
(1400,700) | 36 | 82.304524 | 33 | 81.420084 | 32 | 64.888901 | 31 | 77.799324 | 31 | 75.506688
(1500,750) | 35 | 94.100085 | 33 | 91.887821 | 32 | 77.277800 | 31 | 92.013727 | 31 | 88.459140
( )
( )
( )
( )
( 0

1600,800) | 36 | 111.545756 | 34 | 112.266897 | 31 | 86.991472 | 31 | 107.168125 | 31 | 104.693379
1700,850) | 36 | 128.554900 | 33 | 136.690869 | 32 | 102.955529 | 31 | 122.958628 | 31 | 123.637996
1800,900) | 35 | 141.416163 | 34 | 156.262517 | 31 | 116.271943 | 31 | 138.461658 | 31 | 136.811174
1900,950) | 36 | 166.054804 | 33 | 178.260190 | 32 | 139.689364 | 31 | 159.19593 | 31 | 154.884698
2000,1000) 36 | 189.208820 | 33 | 198.598245 | 32 | 163.310439 | 32 | 202.917734 | 31 | 182.404055

smaller, the iterations become larger. The computing time for § = 7 is always less,
no matter what size the problem is. Another phenomenon is that, with the increase
of the dimension, the iterations of our algorithm become more and the computing
time gets longer.

7. CONCLUSIONS

In this paper, based on the algebraic relationship between the second cone and the
circular cone, we introduce a logarithmically homogeneous self-concordant barrier
functions for circular cone and its dual cone. By using logarithmically homogeneous
self-concordant barrier function of circular cone, we investigate an interior point al-
gorithm to solve nonsymmetric circular cone programming and derive the iteration
bound. Finally, The numerical results show the effectiveness of the proposed algo-
rithm.

At last, we point out that the proposed algorithm may be extended as infeasible
initial point for nonsymmetric circular cone programming. Moreover, we can explore
how to solve large scale problems. We leave them as our future research work.
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