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a b s t r a c t

We make a unified analysis of interior proximal methods of solving convex second-order
cone programming problems. These methods use a proximal distance with respect to
second-order cones which can be produced with an appropriate closed proper univariate
function in three ways. Under some mild conditions, the sequence generated is bounded
with each limit point being a solution, and global rates of convergence estimates are
obtained in terms of objective values. A class of regularized proximal distances is also
constructed which can guarantee the global convergence of the sequence to an optimal
solution. These results are illustrated with some examples. In addition, we also study the
central paths associated with these distance-like functions, and for the linear SOCP we
discuss their relationswith the sequence generated by the interior proximalmethods. From
this, we obtain improved convergence results for the sequence for the interior proximal
methods using a proximal distance continuous at the boundary of second-order cones.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following convex second-order cone programming problem (CSOCP):

inf f (x)
s.t. Ax = b, x�K 0,

(1)

where f :Rn → R ∪ {+∞} is a closed proper convex function, A is an m × n matrix with full row rank m, b is a vector in
Rm, x�K 0 means x ∈ K , andK is the Cartesian product of some second-order cones (SOCs), also called Lorentz cones [1].
In other words,

K = Kn1 ×Kn2 × · · · ×Knr (2)

where r, n1, . . . , nr ≥ 1 with n1 + · · · + nr = n, and

Kni :=
{
(x1, x2) ∈ R× Rni−1 | x1 ≥ ‖x2‖

}
with ‖ · ‖ being the Euclidean norm. When f reduces to a linear function, i.e. f (x) = cT x for some c ∈ Rn, (1) becomes
the standard SOCP. Throughout this paper, we denote by X∗ the optimal set of (1), and let V := {x ∈ Rn | Ax = b}. The
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CSOCP, as an extension of the standard SOCP, has a wide range of applications from engineering, control, and finance to
robust optimization and combinatorial optimization; see [2,3] and references therein.
There have proposed various methods for solving the CSOCP, which include the interior point methods [4–6], the

smoothing Newtonmethods [7,8], the smoothing–regularizationmethod [9], the semismooth Newtonmethod [10], and the
merit functionmethod [11]. These methods are all developed by reformulating the KKT optimality conditions as a system of
equations or an unconstrained minimization problem. This paper will focus on an iterative schemewhich is proximal based
and handles directly the CSOCP itself. Specifically, the proximal-type algorithm consists of generating a sequence {xk} via

xk := argmin
{
λkf (x)+ H(x, xk−1) | x ∈ K ∩ V

}
, k = 1, 2, . . . (3)

where {λk} is a sequence of positive parameters, and H:Rn×Rn → R∪ {+∞} is a proximal distance with respect to intK
(see Definition 3.1) which plays the same role as the Euclidean distance ‖x− y‖2 in the classical proximal algorithms (see,
e.g., [12,13]), but possesses certain more desirable properties for forcing the iterates to stay in K ∩ V , thus eliminating
the constraints automatically. As will be shown in Section 4, such proximal distances can be produced with an appropriate
closed proper univariate function.
In this paper, undermild assumptions like those used in interior proximalmethods for convexprogramsover nonnegative

orthant cones (see, e.g., [14–20]), we show that the sequence {xk} is bounded with all limit points, being a solution of (1),
and obtain global rates of convergence in terms of objective values. But, unlike for interior proximal methods for convex
programs over nonnegative orthant cones, the global convergence of {xk} to an optimal solution can be guaranteed for the
class of proximal distances F1(K) or F2(K) under a very restrictive assumption for X∗ (see Theorem 3.2(a)), or for their
subclasses F̂1(K

n) or F̂2(K
n) under mild assumptions for X∗ (see Theorem 3.2(b)), or for the smallest subclass F̄2(K

n).
These results are illustrated with some examples.
Just like proximal point methods with generalized distances, the central paths derived from barrier functions have

been the object of intensive study. Recently, the central paths for semidefinite programming were under active study
(see, e.g., [21–24]). For example, da Cruz Neto et al. [21] established relations among the central paths in semidefinite
programming, generalized proximal pointmethods, and Cauchy trajectories in Riemannianmanifolds, extending the results
of Iusem et al. [25] formonotone variational inequality problems.Motivated by this, we also investigate the properties of the
central paths of (1)with respect to (w.r.t.) the distance-like functions usedby interior proximalmethods (see Propositions 5.2
and 5.3). For the linear SOCP, we discuss the relations between the central paths and the sequences generated by the interior
proximal methods, and show that the sequence generated by interior proximal methods will converge under the usual
assumptions if the proximal distance satisfies a certain continuity at the boundary of second-order cones (see Theorem 5.2).
Auslender and Teboulle [15] provided a unified technique for analyzing and designing interior proximal methods for

convex and conic optimization. However, for the CSOCP, we notice that it seems hard to find a proximal distance example for
the classF+(Kn) such that global convergence results similar to those for [15, Theorem2.2] can apply for it. In this paper, we
extend their unified analysis technique to interior proximal methods using a proximal distance which can be producedwith
an appropriate univariate function in threeways, and establish the global convergence results for the smallest class F̄2(Kn),
and the class F̂2(Kn)with some mild assumptions of X∗. The examples from the two classes of proximal distances are easy
to find. In particular, for the linear SOCP, we obtain improved convergence results for these interior proximal methods, by
exploring the relations between the sequence generated by the interior proximal methods and the central path associated
with the corresponding proximal distances. In view of these contexts, this paper can be regarded as a refinement of [15] for
the second-order cone optimization.
Throughout this paper, I denotes an identitymatrix of suitable dimension andRn denotes the space of n-dimensional real

column vectors. For any x, y ∈ Rn, we write x�Kn y if x− y ∈ Kn; and we write x�Kn y if x− y ∈ intKn. Given a matrix
E, Im(E) means the subspace generated by the columns of E. A function is closed if and only if it is lower semicontinuous
(lsc), and a function is proper if f (x) < ∞ for at least one x ∈ Rn and f (x) > −∞ for all x ∈ Rn. For a lsc proper convex
function f : Rn → R∪ {+∞}, we denote its domain by domf := { x ∈ Rn | f (x) <∞} and the ε-subdifferential of f at x̄ by
∂ε f (x̄) := {w ∈ Rn | f (x) ≥ f (x̄)+〈w, x− x̄〉− ε, ∀x ∈ Rn}. If f is differentiable at x,∇f (x)means the gradient of f at x. For
a differentiable h on R, h′ and h′′ denote its first and second derivatives. For any closed set S, int S denotes the interior of S.
In the rest of this paper, we focus on the case whereK = Kn, and all the analysis can be carried over to the case where

K has the direct product structure as in (2). Unless otherwise stated, we make the following minimal assumption for the
CSOCP (1):

(A1) domf ∩ (V ∩ intKn) 6= ∅ and f∗ := inf{f (x) | x ∈ V ∩Kn
} > −∞.

2. Preliminaries

This section recalls some preliminary results that will be used in the subsequent sections. For any x = (x1, x2), y =
(y1, y2) ∈ R× Rn−1, their Jordan product [1] is defined as

x ◦ y := (〈x, y〉, y1x2 + x1y2). (4)

It is easy to verify that the identity element under the Jordan product is e ≡ (1, 0, . . . , 0)T ∈ Rn, i.e., e ◦ x = x for all x ∈ Rn.
Note that the Jordan product is not associative, but it is power associated, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x for all x ∈ Rn. Thus, we
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may without fear of ambiguity write xm for the product of m copies of x and xm+n = xm ◦ xn for all positive integers m and
n. n We stipulate x0 = e. For each x = (x1, x2) ∈ R× Rn−1, let

det(x) := x21 − ‖x2‖
2 and tr(x) := 2x1. (5)

These are called the determinant and the trace of x, respectively. A vector x is said to be invertible if det(x) 6= 0. If x ∈ Rn is
invertible, there is a unique y ∈ Rn satisfying x ◦ y = y ◦ x = e. We call this y the inverse of x and denote it by x−1.
We recall from [1] that each x admits a spectral factorization associated withKn:

x = λ1(x) u(1)x + λ2(x) u
(2)
x , (6)

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values of x = (x1, x2) ∈ R × Rn−1 and the associated spectral vectors,

defined by

λi(x) = x1 + (−1)i‖x2‖, u(i)x =
1
2

(
1, (−1)ix̄2

)
, (7)

with x̄2 =
x2
‖x2‖
if x2 6= 0, otherwise being any vector in Rn−1 such that ‖x̄2‖ = 1. If x2 6= 0, then the factorization is unique.

The following lemma is direct by formula (6).

Lemma 2.1. For any x = (x1, x2), y = (y1, y2) ∈ R× Rn−1, the following results hold:

(a) det(x) = λ1(x)λ2(x), tr(x) = λ1(x)+ λ2(x) and ‖x‖2 = 1
2

[
(λ1(x))2 + (λ2(x))2

]
.

(b) x ∈ Kn
⇐⇒ λ1(x) ≥ 0 and x ∈ intKn

⇐⇒ λ1(x) > 0.
(c) λ1(x)λ2(y)+ λ2(x)λ1(y) ≤ tr(x ◦ y) ≤ λ1(x)λ1(y)+ λ2(x)λ2(y).

With the spectral factorization above, onemay define a vector-valued function using a univariate function. For any given
h: IR → Rwith IR ⊆ R, define hsoc: S → Rn by

hsoc(x) := h(λ1(x)) · u(1)x + h(λ2(x)) · u
(2)
x , ∀x ∈ S. (8)

The definition is unambiguous whether x2 6= 0 or x2 = 0. For example, let h(t) = t−1 for any t > 0; then using formulas
(6) and (8) we can compute that

x−1 := hsoc(x) =
1

x21 − ‖x2‖2
(x1,−x2) =

tr(x)e− x
det(x)

for x ∈ intKn. (9)

Moreover, by Lemma 2.2 of [26], S is open whenever IR is open, and S is closed whenever IR is closed. The following lemma
shows that some favorable properties of h can be transmitted to hsoc, whose proofs were given in Proposition 5.1 of [8] and
Lemma 2.2 of [27].

Lemma 2.2. Given h: IR → R with IR ⊆ R, let hsoc: S → Rn be the vector-valued function induced by h via (8), where S ⊆ Rn.
Then, the following results hold:

(a) If h is continuously differentiable on int IR, then hsoc is continuously differentiable on int S, and for any x ∈ int S with
x = (x1, x2) ∈ R× Rn−1,

∇hsoc(x) =


h′(x1)I if x2 = 0, b c

xT2
‖x2‖

c
x2
‖x2‖

aI + (b− a)
x2xT2
‖x2‖2

 otherwise

where a = h(λ2(x))−h(λ1(x))
λ2(x)−λ1(x)

, b = h′(λ2(x))+h′(λ1(x))
2 , c = h′(λ2(x))−h′(λ1(x))

2 .
(b) If h is continuously differentiable on int IR, then tr(hsoc(x)) is continuously differentiable on int S with ∇tr(hsoc(x)) =
2∇hsoc(x)e = 2(h′)soc(x).

(c) If h is (strictly) convex on IR, then tr(hsoc(x)) is (strictly) convex on S.

Lemma 2.3. (a) The real-valued function ln(det(x)) is strictly concave on intKn.
(b) For any x, y ∈ intKn with x 6= y, it holds that

det(αx+ (1− α)y) > (det(x))α(det(y))1−α, ∀α ∈ (0, 1).

Proof. Clearly, part (b) is a direct consequence of part (a). The proof of part (a) was given in [28, Prop. 2.4(a)] by computing
the Hessian matrix of ln(det(x)). Here, we give a simpler proof. Let ln x be the vector-valued function induced by ln t via
(8). From Lemma 2.1(a), ln(det(x)) = ln(λ1(x)) + ln(λ2(x)) = tr(ln x) for any x ∈ int Kn. The result is then direct by
Lemma 2.2(c) and the strict concavity of ln t (t > 0). �
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To close this section, we review the definition of SOC-convexity and SOC-monotonicity. The two concepts, like matrix-
convexity and the matrix-monotonicity in semidefinite programming, play an important role in the solution methods of
SOCPs.

Definition 2.1 ([28]). Given h: IR → R with IR ⊆ R. Let hsoc: S → Rn with S ⊆ Rn be the vector-valued function induced
by h via formula (8). Then,

(a) h is said to be SOC-convex of order n on IR if for any x, y ∈ S and 0 ≤ β ≤ 1,

hsoc (βx+ (1− β)y)�Kn βhsoc(x)+ (1− β)hsoc(y). (10)

(b) h is said to be SOC-monotone of order n on IR if for any x, y ∈ S,

x�Kn y H⇒ hsoc(x)�Kn hsoc(y).

We say that h is SOC-convex (respectively, SOC-monotone) on IR if h is SOC-convex of all orders n (respectively, SOC-
monotone of all orders n) on IR. A function h is said to be SOC-concave on IR whenever −h is SOC-convex on IR. When h
is continuous on IR, the condition in (10) can be replaced by a more special condition:

hsoc
(
x+ y
2

)
�Kn

1
2
(hsoc(x)+ hsoc(y)). (11)

Obviously, the set of SOC-monotone functions and the set of SOC-convex functions are both closed under positive linear
combinations and under pointwise limits.
For the characterizations of SOC-convexity and SOC-monotonicity, the interested reader may refer to [28,29]. The

following lemma collects some common SOC-concave functions whose proofs can be found in [27] or are direct by Lemma
3.2 of [27].

Lemma 2.4. (a) For any fixed u ∈ R, the function h(t) = (t + u)r with r ∈ [0, 1] is SOC-concave and SOC-monotone on
[−u,+∞).

(b) For any fixed u ∈ R, the function h(t) = −(t + u)−r with r ∈ [0, 1] is SOC-concave and SOC-monotone on (−u,+∞).
(c) For any fixed α ≥ 0, ln(α + t) is SOC-concave and SOC-monotone on [−a,+∞).
(d) For any fixed u ≥ 0, t

u+t is SOC-concave and SOC-monotone on (−u,+∞).

3. Interior proximal methods

First of all, we present the definition of a proximal distance w.r.t. the open cone intKn.

Definition 3.1. An extended-valued function H:Rn×Rn → R∪ {+∞} is called a proximal distance with respect to intKn

if it satisfies the following properties:

(P1) domH(·, ·) = C1 × C2 with intKn
× intKn

⊂ C1 × C2 ⊆ Kn
×Kn.

(P2) For each given y ∈ int Kn,H(·, y) is continuous and strictly convex on C1, and it is continuously differentiable on
intKn with dom∇1H(·, y) = intKn.

(P3) H(x, y) ≥ 0 for all x, y ∈ Rn, and H(y, y) = 0 for all y ∈ intKn.
(P4) For each fixed y ∈ C2, the sets {x ∈ C1 : H(x, y) ≤ γ } are bounded for all γ ∈ R.

Definition 3.1 has a little difference from Definition 2.1 of [15] for a proximal distance w.r.t. intKn, since here H(·, y) is
required to be strictly convex over C1 for any fixed y ∈ intKn. We denote byD(intKn) the family of functions H satisfying
Definition 3.1. With a given H ∈ D(intKn), we have the following basic iterative algorithm for (1).

Interior Proximal Algorithm (IPA). Given H ∈ D(intKn) and x0 ∈ V ∩ intKn, for k = 1, 2, . . . , with λk > 0 and εk ≥ 0,
generate a sequence {xk} ⊂ V ∩ intKn with gk ∈ ∂εk f (x

k) via the following iterative scheme:

xk := argmin
{
λkf (x)+ H(x, xk−1) | x ∈ V

}
(12)

such that

λkgk +∇1H(xk, xk−1) = ATuk for some uk ∈ Rm. (13)

The following proposition implies that the IPA is well-defined, and moreover, from its proof we see that the iterative
formula (12) is equivalent to the iterative scheme (3). When εk > 0 for any k ∈ N (the set of natural numbers), the IPA can
be viewed as an approximate interior proximal method, and it becomes exact if εk = 0 for all k ∈ N.
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Proposition 3.1. For any given H ∈ D(intKn) and y ∈ intKn, consider the problem

f∗(y, τ ) = inf {τ f (x)+ H(x, y) | x ∈ V} with τ > 0. (14)

Then, for each ε ≥ 0, there exist x(y, τ ) ∈ V ∩ intKn and g ∈ ∂ε f (x(y, τ )) such that

τg +∇1H(x(y, τ ), y) = ATu (15)

for some u ∈ Rm. Moreover, for such x(y, τ ), we have

τ f (x(y, τ ))+ H(x(y, τ ), y) ≤ f∗(y, τ )+ ε.

Proof. Set F(x, τ ) := τ f (x)+H(x, y)+ δV∩Kn(x), where δV∩Kn(x) is the indicator function defined on the setV∩Kn. Since
domH(·, y) = C1 ⊂ Kn, it is clear that

f∗(y, τ ) = inf
{
F(x, τ ) | x ∈ Rn

}
. (16)

Since f∗ > −∞, it is easy to verify that for any γ ∈ R the following relation holds:{
x ∈ Rn | F(x, τ ) ≤ γ

}
⊂
{
x ∈ V ∩Kn

| H(x, y) ≤ γ − τ f∗
}

⊂ {x ∈ C1 | H(x, y) ≤ γ − τ f∗} ,

which together with (P4) implies that F(·, τ ) has bounded level sets. In addition, by (P1)–(P3), F(·, τ ) is a closed proper and
strictly convex function. Hence, the problem (16) has a unique solution, say x(y, τ ). From the optimality conditions of (16),
we get

0 ∈ ∂F(x(y, τ )) = τ∂ f (x(y, τ ))+∇1H(x(y, τ ), y)+ ∂δV∩Kn(x(y, τ ))

where the equality is due to Theorem 23.8 of [30] and domf ∩ (V ∩ intKn) 6= ∅. Notice that dom ∇1H(·, y) = intKn and
dom ∂δV∩Kn(·) = V ∩Kn. Therefore, the last equation implies x(y, τ ) ∈ V ∩ intKn, and there exists g ∈ ∂ f (x(y, τ )) such
that

−τg −∇1H(x(y, τ ), y) ∈ ∂δV∩Kn(x(y, τ )).

On the other hand, by the definition of δV∩Kn(·), it is not hard to derive that

∂δV∩Kn(x) = Im(AT ) ∀x ∈ V ∩ intKn.

The last two equations imply that (15) holds for ε = 0.When ε > 0, (15) also holds for such x(y, τ ) and g since ∂ f (x(y, τ )) ⊂
∂ε f (x(y, τ )). Finally, since for each y ∈ intKn the function H(·, y) is strictly convex, and since g ∈ ∂ε f (x(y, τ )), we have

τ f (x)+ H(x, y) ≥ τ f (x(y, τ ))+ H(x(y, τ ), y)+ 〈τg +∇1H(x(y, τ ), y), x− x(y, τ )〉 − ε
= τ f (x(y, τ ))+ H(x(y, τ ), y)+ 〈ATu, x− x(y, τ )〉 − ε
= τ f (x(y, τ ))+ H(x(y, τ ), y)− ε for all x ∈ V,

where the first equality is from (15) and the last one is by x, x(y, τ ) ∈ V . Thus, f∗(y, τ ) = inf{τ f (x) + H(x, y) | x ∈ V} ≥
τ f (x(y, τ ))+ H(x(y, τ ), y)− ε. �

In the rest of this section, we focus on the convergence behaviors of the IPAwithH from several subclasses ofD(intKn),
which also satisfy one of the following properties.

(P5) For any x, y ∈ intKn and z ∈ C1,H(z, y)− H(z, x) ≥ 〈∇1H(x, y), z − x〉.
(P5′) For any x, y ∈ intKn and z ∈ C2, H(y, z)− H(x, z) ≥ 〈∇1H(x, y), z − x〉.
(P6) For each x ∈ C1, the level sets {y ∈ C2 : H(x, y) ≤ γ } are bounded for all γ ∈ R.

Specifically, we denote as F1(int Kn) and F2(int Kn) the families of functions H ∈ D(int Kn) satisfying (P5) and (P5′),
respectively. If C1 = Kn, we denote as F1(Kn) the family of functions H ∈ D(intKn) satisfying (P5) and (P6). If C2 = Kn,
we write F2(intKn) as F (Kn). It is easy to see that the class of proximal distance F (intKn) (respectively, F (Kn)) in [15]
subsumes the (H,H)with H ∈ F1(intKn) (respectively, F1(Kn)), but it does not include any (H,H)with H ∈ F2(intKn)
(respectively, F2(Kn)).

Theorem 3.1. Let {xk} be the sequence generated by the IPA with H ∈ F1(intKn) or H ∈ F2(intKn). Set σν =
∑ν
k=1 λk. Then,

the following results hold:

(a) f (xν) − f (x) ≤ σ−1ν H(x, x
0) + σ−1ν

∑ν
k=1 σkεk for any x ∈ V ∩ C1 if H ∈ F1(intKn); f (xν) − f (x) ≤ σ−1ν H(x

0, x) +
σ−1ν

∑ν
k=1 σkεk for any x ∈ V ∩ C2 if H ∈ F2(intKn).

(b) If σν →+∞ and εk → 0, then lim infν→∞ f (xν) = f∗.
(c) The sequence {f (xk)} converges to f∗ whenever

∑
∞

k=1 εk <∞.
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(d) If X∗ 6= ∅, then {xk} is bounded with all limit points in X∗ under (d1) or (d2) :
(d1) X∗ is bounded and

∑
∞

k=1 εk <∞;
(d2)

∑
∞

k=1 λkεk <∞ and H ∈ F1(K
n) (or H ∈ F2(K

n)).

Proof. The proofs are similar to those of [15, Theorem 4.1]. For completeness, we here take H ∈ F2(intKn) for example to
prove the results.
(a) Since gk ∈ ∂εk f (x

k), from the definition of the subdifferential, it follows that

f (x) ≥ f (xk)+ 〈gk, x− xk〉 − εk ∀x ∈ Rn.

This, together with Eq. (13), implies that

λk(f (xk)− f (x)) ≤ 〈∇1H(xk, xk−1), x− xk〉 + λkεk ∀x ∈ V ∩ C2.

Using (P5′)with x = xk, y = xk−1 and z = x ∈ V ∩ C2, it then follows that

λk(f (xk)− f (x)) ≤ H(xk−1, x)− H(xk, x)+ λkεk ∀x ∈ V ∩ C2. (17)

Summing over k = 1, 2, . . . , ν in this inequality yields that

− σν f (x)+
ν∑
k=1

λkf (xk) ≤ H(x0, x)− H(xν, x)+
ν∑
k=1

λkεk. (18)

On the other hand, setting x = xk−1 in (17), we obtain

f (xk)− f (xk−1) ≤ λ−1k
[
H(xk−1, xk−1)− H(xk, xk−1)

]
+ εk ≤ εk. (19)

Multiplying the inequality by σk−1 (with σ0 ≡ 0) and summing over k = 1, . . . , ν, we get
ν∑
k=1

σk−1f (xk)−
ν∑
k=1

σk−1f (xk−1) ≤
ν∑
k=1

σk−1εk.

Noting that σk = λk + σk−1 with σ0 ≡ 0, the above inequality can reduce to

σν f (xν)−
ν∑
k=1

λkf (xk) ≤
ν∑
k=1

σk−1εk. (20)

Adding the inequalities (18) and (20) and recalling that σk = λk + σk−1, it follows that

f (xν)− f (x) ≤ σ−1ν
[
H(x0, x)− H(xν, x)

]
+ σ−1ν

ν∑
k=1

σkεk ∀x ∈ V ∩ C2,

which immediately implies the desired result due to the nonnegativity of H(xν, x).
(b) If σν → +∞ and εk → 0, then applying Lemma 2.2(ii) of [15] with ak = εk and bν := σ−1ν

∑ν
k=1 λkεk yields

σ−1ν
∑ν
k=1 λkεk → 0. From part (a), it then follows that

lim inf
ν→∞

f (xν) ≤ inf
{
f (x) | x ∈ V ∩ intKn} .

This together with f (xν) ≥ inf {f (x) | x ∈ V ∩Kn} implies that

lim inf
ν→∞

f (xν) = inf
{
f (x) | x ∈ V ∩ intKn}

= f∗.

(c) From (19), 0 ≤ f (xk) − f∗ ≤ f (xk−1) − f∗ + εk. Using Lemma 2.1 of [15] with γk ≡ 0 and vk = f (xk) − f∗, we have that
{f (xk)} converges to f∗ whenever

∑
∞

k=1 εk <∞.
(d) If the condition (d1) holds, then the sets {x ∈ V ∩Kn

| f (x) ≤ γ } are bounded for all γ ∈ R, since f is closed proper
convex and X∗ = {x ∈ V∩Kn

| f (x) ≤ f∗}. Note that (19) implies {xk} ⊂ {x ∈ V∩Kn
| f (x) ≤ f (x0)+

∑k
j=1 εj}. Combining

with
∑
∞

k=1 εk < ∞, clearly we have that {x
k
} is bounded. Since {f (xk)} converges to f∗ and f is lsc, passing to the limit and

recalling that {xk} ⊂ V ∩Kn yields that each limit point of {xk} is a solution of (1).
Suppose that the condition (d2) holds. If H ∈ F2(K

n), then inequality (17) holds for each x ∈ V ∩Kn, and particularly
for x∗ ∈ X∗. Consequently,

H(xk, x∗) ≤ H(xk−1, x∗)+ λkεk ∀x∗ ∈ X∗. (21)

Summing over k = 1, 2, . . . , ν for the last inequality, we obtain

H(xν, x∗) ≤ H(x0, x∗)+
ν∑
k=1

λkεk.
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This, by (P4) and
∑
∞

k=1 λkεk < ∞, implies that {x
k
} is bounded, and hence has an accumulation point. Without loss of

generality, let x̂ ∈ Kn be an accumulation point of {xk}. Then there exists a subsequence {xkj} such that xkj → x̂ as j→+∞.
From the lower semicontinuity of f and part (c), we get f (x̂) ≤ limj→+∞ f (xkj) = f∗, which means that x̂ is a solution of (1).
If H ∈ F1(K

n), then the last inequality becomes

H(x∗, xν) ≤ H(x∗, x0)+
ν∑
k=1

λkεk.

By (P6) and
∑
∞

k=1 λkεk < ∞, we also have that {x
k
} is bounded, and hence has an accumulation point. Using the same

arguments as above, we get the desired result. �

An immediate by-product of the above analysis yields the following global rate of convergence estimate for the IPA with
H ∈ F1(K

n) or H ∈ F2(K
n).

Corollary 3.1. Let {xk} be the sequence given by the IPA with H ∈ F1(K
n) or F2(K

n). If X∗ 6= ∅ and
∑
∞

k=1 εk < ∞, then
f (xν)− f∗ = O(σ−1ν ).

Proof. The result is direct on setting x = x∗ for some x∗ ∈ X∗ in the inequalities of Theorem 3.1(a), and noting that
0 < σk

σν
≤ 1 for all k = 1, 2, . . . , ν. �

To establish the global convergence of {xk} to an optimal solution of (1), we need tomake further assumptions on X∗ or the
proximal distances in F1(K

n) and F2(K
n). We denote as F̂1(Kn) the family of functions H ∈ F1(K

n) satisfying (P7)–(P8),
as F̂2(K

n) the family of functions H ∈ F2(K
n) satisfying (P7′)–(P8′), and as F̄ (Kn) the family of functions H ∈ F2(K

n)
satisfying (P7′)–(P9′):

(P7) For any {yk} ⊆ intKn converging to y∗ ∈ Kn, we have H(y∗, yk)→ 0.
(P8) For any bounded sequence {yk} ⊆ int Kn and any y∗ ∈ Kn with H(y∗, yk) → 0, it holds that λi(yk) → λi(y∗) for

i = 1, 2.
(P7′) For any {yk} ⊆ intKn converging to y∗ ∈ Kn, we have H(yk, y∗)→ 0.
(P8′) For any bounded sequence {yk} ⊆ int Kn and any y∗ ∈ Kn with H(yk, y∗) → 0, it holds that λi(yk) → λi(y∗) for

i = 1, 2.
(P9′) For any bounded sequence {yk} ⊆ intKn and any y∗ ∈ Kn with H(yk, y∗)→ 0, it holds that yk → y∗.

It is easy to see that all previous subclasses ofD(intKn) have the following relations:

F̂1(K
n) ⊂ F1(K

n) ⊂ F1(intKn), F̄2(K
n) ⊂ F̂2(K

n) ⊂ F2(K
n) ⊂ F2(intKn).

Theorem 3.2. Let {xk} be generated by the IPA with H ∈ F1(intKn) or F2(intKn). Suppose that X∗ is nonempty,
∑
∞

k=1 λkεk <

∞ and
∑
∞

k=1 εk <∞.

(a) If X∗ is a single point set, then {xk} converges to an optimal solution of (1).
(b) If X∗ includes at least two elements and for any x∗ = (x∗1, x

∗

2), x̄
∗
= (x̄∗1, x̄

∗

2) ∈ X∗ with x
∗
6= x̄∗, it holds that x∗1 6= x̄

∗

1 or
‖x∗2‖ 6= ‖x̄

∗

2‖, then {x
k
} converges to an optimal solution of (1) whenever H ∈ F̂1(K

n) (or H ∈ F̂2(K
n)).

(c) If H ∈ F̄2(K
n), then {xk} converges to an optimal solution of (1).

Proof. Part (a) is direct by Theorem 3.1(d1). We next consider part (b). Assume that H ∈ F̂2(K
n). Since

∑
∞

k=1 λkεk < ∞,
from (21) and Lemma 2.1 of [15], it follows that the sequence {H(xk, x)} is convergent for any x ∈ X∗. Let x̄ be the limit of
a subsequence {xkl}. By Theorem 3.1(d2), x̄ ∈ X∗. Consequently, {H(xk, x̄)} is convergent. By (P7′), H(xkl , x̄) → 0, and so
H(xk, x̄)→ 0. Combining with (P8′), we have λi(xk)→ λi(x̄) for i = 1, 2, i.e.,

xk1 − ‖x
k
2‖ → x̄1 − ‖x̄2‖ and xk1 + ‖x

k
2‖ → x̄1 + ‖x̄2‖ as k→∞.

This implies that xk1 → x̄1 and ‖xk2‖ → ‖x̄2‖. Combining thiswith the given assumption for X∗, we have that x
k
→ x̄. Suppose

that H ∈ F̂1(K
n). The inequality (21) becomes

H(x∗, xk) ≤ H(x∗, xk−1)+ λkεk ∀x∗ ∈ X∗,

and using (P7)–(P8) and the same arguments as above then yields the result. Part (c) is direct by the arguments above and
the property (P9′). �

When all points in the nonempty X∗ lie on the boundary of Kn, we must have x∗1 6= x̄∗1 or ‖x
∗

2‖ 6= ‖x̄
∗

2‖ for any
x∗ = (x∗1, x

∗

2), x̄
∗
= (x̄∗1, x̄

∗

2) ∈ X∗ with x
∗
6= x̄∗, and the assumption for X∗ in (b) is automatically satisfied. Since the

solutions of (1) are generally on the boundary ofKn, the assumption for X∗ in (b) is much weaker than the one in (a).
Up to now, we have studied two kinds of convergence results for the IPA using the class in which the proximal distance

H lies. Theorem 3.1 and Corollary 3.1 show that the largest, and least demanding, classes F1(int Kn) and F2(int Kn)
provide reasonable convergence properties for the IPA under minimal assumptions on the problem’s data. This coincides
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with interior proximal methods for convex programming over nonnegative orthant cones; see [15]. The smallest subclass
F̄2(K

n) ofF2(intKn) guarantees that {xk} converges to an optimal solution provided that X∗ is nonempty. The smaller class
F̂2(K

n)may guarantee the global convergence of the sequence {xk} to an optimal solution under an additional assumption
besides X∗ being nonempty. Moreover, we illustrate in the next section that there are indeed examples for the class F̄2(Kn).
For the smallest subclass F̂1(Kn) ofF1(intKn), the analysis in the next section shows that it seems hard to find an example,
although it guarantees the convergence of {xk} to an optimal solution by Theorem 3.2(b).

4. Proximal distances over SOCs

In this section, we provide three kinds of ways to construct a proximal distancew.r.t. intKn and analyze their advantages
and disadvantages. All of theseways exploit a lsc proper univariate function to produce such a proximal distance. In addition,
with such a proximal distance and the Euclidean distance, we obtain the regularized ones.
The first way produces the proximal distances for the class F1(int Kn). This approach is based on the compound of a

univariate function φ and the determinant function det(·), where φ : R→ R∪ {+∞} is a lsc proper function satisfying the
following conditions:
(B1) domφ ⊆ [0,+∞), int(domφ) = (0,+∞), and φ is continuous on its domain;
(B2) for any t1, t2 ∈ domφ, it holds that

φ(t r1t
1−r
2 ) ≤ rφ(t1)+ (1− r)φ(t2), ∀r ∈ [0, 1]; (22)

(B3) φ is continuously differentiable on int(domφ)with domφ′ = (0,+∞);
(B4) φ′(t) < 0 for all t ∈ (0,+∞), limt→0+ φ(t) = +∞, and limt→+∞ t−1φ(t2) ≥ 0.

With such a univariate φ, we define the function H:Rn × Rn → R ∪ {+∞} by

H(x, y) :=
{
φ(det(x))− φ(det(y))− 〈∇φ(det(y)), x− y〉 ∀x, y ∈ int(Kn);

+∞ otherwise. (23)

By the conditions (B1)–(B4), we may prove that H has the following properties.

Proposition 4.1. Let H be defined as in (23) with φ satisfying (B1)–(B4). Then,
(a) for any fixed y ∈ intKn,H(·, y) is strictly convex over intKn.
(b) For any fixed y ∈ intKn,H(·, y) is continuously differentiable on intKn with

∇1H(x, y) = 2φ′(det(x))
(
x1
−x2

)
− 2φ′(det(y))

(
y1
−y2

)
(24)

for all x ∈ intKn, where x = (x1, x2), y = (y1, y2) ∈ R× Rn−1.
(c) H(x, y) ≥ 0 for all x, y ∈ Rn, and H(y, y) = 0 for all y ∈ intKn.
(d) For any y ∈ intKn, the sets {x ∈ intKn:H(x, y) ≤ γ } are bounded for all γ ∈ R.
(e) For any x, y ∈ intKn and z ∈ intKn, the following three-point identity holds:

H(z, y) = H(z, x)+ H(x, y)+ 〈∇1H(x, y), z − x〉. (25)

Proof. (a) It suffices to prove that φ(det(x)) is strictly convex on intKn. By Lemma 2.3(b),

det(αx+ (1− α)z) > (det(x))α(det(z))1−α ∀α ∈ (0, 1)

for all x, z ∈ intKn and x 6= z. Since φ′(t) < 0 for all t ∈ (0,+∞), we have that φ is decreasing on (0,+∞). This, together
with the condition (B2), yields that

φ [det(αx+ (1− α)z)] < φ
[
(det(x))α(det(z))1−α

]
≤ αφ[det(x)] + (1− α)φ[det(z)] ∀α ∈ (0, 1)

for all x, z ∈ intKn and x 6= z. This means that φ(det(x)) is strictly convex on intKn.
(b) Since det(x) is continuously differentiable onRn andφ is continuously differentiable on (0,+∞), we have thatφ(det(x))
is continuously differentiable on intKn. This means that for any fixed y ∈ intKn,H(·, y) is continuously differentiable on
intKn. By a simple computation, we immediately obtain the formula in (24).
(c) Since φ(det(x)) is strictly convex and continuously differentiable on intKn, we have

φ(det(x)) > φ(det(y))− 〈∇φ(det(y)), x− y〉 ∀x, y ∈ intKn with x 6= y

for any x, y ∈ intKn with x 6= y. This implies that H(y, y) = 0 for all y ∈ intKn. In addition, from the inequality and the
continuity of φ on its domain, it follows that

φ(det(x)) ≥ φ(det(y))− 〈∇φ(det(y)), x− y〉

for any x, y ∈ intKn. By the definition of H , we have H(x, y) ≥ 0 for all x, y ∈ Rn.
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(d) Let {xk} ⊂ intKn be a sequence with ‖xk‖ → ∞. For any fixed y = (y1, y2) ∈ intKn, we next prove that the sequence
{H(xk, y)} is unbounded for three cases, and then the desired result follows. For convenience, we write xk = (xk1, x

k
2) for

each k.
Case 1: the sequence {det(xk)} has a zero limit point. Without loss of generality, we assume that det(xk) → 0 as k → ∞.
Combining with limt→0+ φ(t) = +∞, it readily follows that limk→∞ φ(det(xk)) → +∞. In addition, for each k we have
that

〈∇φ(det(y)), xk〉 = 2φ′(det(y))(xk1y1 − (x
k
2)
Ty2)

≤ 2φ′(det(y))y1(xk1 − ‖x
k
2‖) ≤ 0 (26)

where the first inequality uses φ′(t) < 0 for all t > 0, the Schwartz inequality, and y ∈ int Kn. Now from (23), it then
follows that limk→∞ H(xk, y) = +∞.
Case 2: the sequence {det(xk)} is unbounded. Noting that det(xk) > 0 for each k, we must have det(xk)→ +∞ as k→∞.
Since φ is decreasing on its domain, we have that

φ(det(xk))
‖xk‖

=

√
2φ(λ1(xk)λ2(xk))√

(λ1(xk))2 + (λ2(xk))2
≥
φ[(λ2(xk))2]
λ2(xk)

.

Note that λ2(xk)→∞ in this case, and from the last equation and (B4) it follows that

lim
k→∞

φ(det(xk))
‖xk‖

≥ lim
k→∞

φ[(λ2(xk))2]
λ2(xk)

≥ 0.

In addition, since
{
xk

‖xk‖

}
is bounded, we without loss of generality assume that xk

‖xk‖
→ x̂ = (x̂1, x̂2) ∈ R × Rn−1. Then,

x̂ ∈ Kn, ‖x̂‖ = 1, and x̂1 > 0 (if not, x̂ = 0), and hence

lim
k→∞

〈
∇φ(det(y)),

xk

‖xk‖

〉
= 〈∇φ(det(y)), x̂〉 = 2φ′(det(y))(x̂1y1 − x̂T2y2)

≤ 2φ′(det(y))x̂1(y1 − ‖y2‖) < 0.

The two sides show that limk→∞
H(xk,y)
‖xk‖

> 0, and consequently limk→∞ H(xk, y) = +∞.

Case 3: the sequence {det(xk)} has some limit point ω with 0 < ω < +∞. Without loss of generality, we assume that
det(xk) → ω as k → ∞. Since {xk} is unbounded and {xk} ⊂ intKn, we must have xk1 → +∞. In addition, by (26) and
φ′(t) < 0 for t > 0,

−〈∇φ(det(y)), xk〉 ≥ −2φ′(det(y))(xk1y1 − ‖x
k
2‖ ‖y2‖) ≥ −2φ

′(det(y))xk1(y1 − ‖y2‖).

This along with y ∈ intKn implies that −〈∇φ(det(y)), xk〉 → +∞ as k → ∞. Noting that φ(det(xk)) is bounded, from
(23) it follows that limk→∞ H(xk, y)→+∞.
(e) For any x, y ∈ intKn and z ∈ intKn, from the definition of H it follows that

H(z, y)− H(z, x)− H(x, y) = 〈∇φ(det(x))−∇φ(det(y)), z − x〉
= 〈∇1H(x, y), z − x〉

where the last equality is by part (b). The proof is thus completed. �

Proposition 4.1 shows that the function H defined by (23) with φ satisfying (B1)–(B4) is a proximal distance w.r.t. intKn

and dom H = int Kn
× int Kn. Also, H ∈ F1(int Kn). The conditions (B1) and (B3)–(B4) are easy to check, whereas by

Lemma 2.2 of [31] we have the following important characterizations for the condition (B2).

Lemma 4.1 ([31, Lemma 2.2]). A function φ: (0,+∞)→ R satisfies (B2) if and only if one of the following conditions holds:

(a) The function φ(exp(·)) is convex on R.
(b) φ(t1t2) ≤ 1

2

(
φ(t21 )+ φ(t

2
2 )
)
for any t1, t2 > 0.

(c) φ′(t)+ tφ′′(t) ≥ 0 if φ is twice differentiable.

Example 4.1. Take φ(t) = − ln t if t > 0, and otherwise φ(t) = +∞. It is easy to verify that φ satisfies (B1)–(B4). By
formula (23), the induced proximal distance is

H(x, y) :=

− ln det(x)det(y)
+
2xT Jny
det(y)

− 2 ∀x, y ∈ int(Kn)

+∞ otherwise
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where Jn is a diagonal matrix with the first entry being 1 and the rest of the (n − 1) entries being −1. This is exactly the
proximal distance given by [15]. Since H ∈ F1(intKn), we have the results of Theorem 3.1(a)–(d1) if the proximal distance
is used for the IPA.

Example 4.2. Take φ(t) = t1−q/(q− 1) (q > 1) if t > 0, and otherwise φ(t) = +∞. It is not hard to check that φ satisfies
(B1)–(B4). By (23), we compute that

H(x, y) :=

 (det(x))
1−q
− (det(y))1−q

q− 1
+
2xT Jny
(det(y))q

− (det(y))1−q ∀x, y ∈ int(Kn)

+∞ otherwise

where Jn is the same diagonal matrix as in Example 4.1. Since H ∈ F (intKn), when using the proximal distance for the IPA,
the results of Theorem 3.1(a)–(d1) hold.

We should emphasize that using the first approach cannot produce the proximal distances of the class F1(K
n), and so

F̂1(K
n), since the condition limt→0+ φ(t) = +∞ is necessary for guaranteeing that H has the property (P4), but it implies

that the domain of H(·, y) for any y ∈ intKn cannot be continuously extended toKn. Thus, when choosing such proximal
distances for the IPA, we cannot apply Theorem 3.1(d2) and Theorem 3.2.
The other two ways are both based on the compound of the trace function tr(·) and a vector-valued function induced

by a univariate φ via (8). For convenience, in the sequel, for any lsc proper function φ : R → R ∪ {+∞}, we write
d : R× R→ R ∪ {+∞} as

d(s, t) :=
{
φ(s)− φ(t)− φ′(t)(s− t) if s ∈ domφ, t ∈ domφ′,

+∞ otherwise. (27)

The second approach also produces the proximal distances for the class F1(intKn), which requires φ : R→ R∪ {+∞}
to be a lsc proper function satisfying the conditions:

(C1) domφ ⊆ [0,+∞) and int(domφ) = (0,+∞);
(C2) φ is continuous and strictly convex on its domain;
(C3) φ is continuously differentiable on int(domφ)with domφ′ = (0,+∞);
(C4) for any fixed t > 0, the sets {s ∈ domφ | d(s, t) ≤ γ } are bounded with all γ ∈ R; for any fixed s ∈ domφ, the sets
{t > 0 | d(s, t) ≤ γ } are bounded with all γ ∈ R.

Let φsoc be the vector-valued function induced by φ via (8) and write domφsoc = C1. Clearly, C1 ⊆ Kn and int C1 = intKn.
Define the function H:Rn × Rn → R ∪ {+∞} by

H(x, y) :=
{
tr(φsoc(x))− tr(φsoc(y))− 〈∇tr(φsoc(y)), x− y〉 ∀x ∈ C1, y ∈ intKn,

+∞ otherwise. (28)

By Lemmas 2.1 and 2.2, the conditions (C1)–(C4), and arguments similar to those of [32, Prop. 3.1], it is not difficult to argue
that H has the following favorable properties.

Proposition 4.2. Let H be defined by (28) with φ satisfying (C1)–(C4). Then:
(a) For any fixed y ∈ intKn,H(·, y) is continuous and strictly convex on C1.
(b) For any fixed y ∈ intKn,H(·, y) is continuously differentiable on intKn with

∇1H(x, y) = ∇tr(φsoc(x))−∇tr(φsoc(y)) = 2
[
(φ′)soc(x)− (φ′)soc(y)

]
.

(c) H(x, y) ≥ 0 for all x, y ∈ Rn, and H(y, y) = 0 for any y ∈ intKn.
(d) H(x, y) ≥

∑2
i=1 d(λi(x), λi(y)) ≥ 0 for any x ∈ C1 and y ∈ intKn.

(e) For any fixed y ∈ int Kn, the sets {x ∈ C1:H(x, y) ≤ γ } are bounded for all γ ∈ R; for any fixed x ∈ C1, the sets
{y ∈ intKn:H(x, y) ≤ γ } are bounded for all γ ∈ R.

(f) For any x, y ∈ intKn and z ∈ C1, the following three-point identity holds:

H(z, y) = H(z, x)+ H(x, y)+ 〈∇1H(x, y), z − x〉.

Proposition 4.2 shows that the function H defined by (28) with φ satisfying (C1)–(C4) is a proximal distance w.r.t. intKn

with dom H = C1 × intKn, and furthermore, such proximal distances belong to the class F1(intKn). In particular, when
domφ = [0,+∞), they also belong to the class F1(Kn). We next present some specific examples.

Example 4.3. Take φ(t) = t ln t − t if t ≥ 0, and otherwise φ(t) = +∞, where we stipulate 0 ln 0 = 0. It is easy to verify
thatφ satisfies (C1)–(C4)with domφ = [0,+∞). By formulas (8) and (28), we compute thatH has the following expression:

H(x, y) =
{
tr(x ◦ ln x− x ◦ ln y+ y− x) ∀x ∈ Kn, y ∈ int(Kn),

+∞ otherwise. (29)
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Example 4.4. Take φ(t) = tp − tq if t ≥ 0, and otherwise φ(t) = +∞, where p ≥ 1 and 0 < q < 1. We can show that φ
satisfies the conditions (C1)–(C4) with domφ = [0,+∞). When p = 1 and q = 1/2, from formulas (8) and (28), we derive
that

H(x, y) =

tr
[
y
1
2 − x

1
2 +

(tr(y
1
2 )e− y

1
2 ) ◦ (x− y)

2
√
det(y)

]
∀x ∈ Kn, y ∈ intKn,

+∞ otherwise.

Example 4.5. Take φ(t) = −tq if t ≥ 0, and otherwise φ(t) = +∞, where 0 < q < 1. We can show that φ satisfies the
conditions (C1)–(C4) with domφ = [0,+∞). Now

H(x, y) =
{
(1− q)tr(yq)− tr(xq)+ tr(qyq−1 ◦ x) ∀x ∈ Kn, y ∈ intKn,

+∞ otherwise.

Example 4.6. Take φ(t) = − ln t + t − 1 if t > 0, and otherwise φ(t) = +∞. It is easy to check that φ satisfies (C1)–(C4)
with domφ = (0,+∞). The induced proximal distance is

H(x, y) =
{
tr(ln y)− tr(ln x)+ 2〈y−1, x〉 − 2 ∀x, y ∈ intKn,

+∞ otherwise.

By a simple computation, we have that the proximal distance is the same as the one given by Example 4.1, and the one
induced by φ(t) = − ln t (t > 0) via formula (28).

Clearly, the proximal distances in Examples 4.3–4.5 belong to the class F1(K
n). Also, by Proposition 4.3, the proximal

distances in Examples 4.3 and 4.4 also satisfy (P8) since the corresponding φ also satisfies the following condition (C5):

(C5) For any bounded sequence {ak} ⊂ int(domφ) and a ∈ domφ such that limk→∞ d(a, ak) = 0, it holds that a =
limk→∞ ak, where d is defined as in (27).

Proposition 4.3. Let H be defined as in (28)withφ satisfying (C1)–(C5) anddomφ = [0,+∞). Then, for any bounded sequence
{yk} ⊆ intKn and y∗ ∈ Kn such that H(y∗, yk)→ 0, we have λi(yk)→ λi(y∗) for i = 1, 2.

Proof. From Proposition 4.2(d) and the nonnegativity of d, for each kwe have

H(y∗, yk) ≥ d(λi(y∗), λi(yk)) ≥ 0, i = 1, 2.

This, together with the given assumption H(y∗, yk)→ 0, implies that

d(λi(y∗), λi(yk))→ 0, i = 1, 2.

Notice that {λi(yk)} ⊂ int(domφ) and λi(y∗) ∈ Kn for i = 1, 2 by Lemma 2.1(b). From the condition (C5), we immediately
obtain λi(yk)→ λi(y∗) for i = 1, 2. �

Nevertheless, we should point out that the proximal distance H given by (28) with φ satisfying (C1)–(C4) and domφ =
[0,+∞) generally does not have the property (P7), even if φ satisfies the condition (C6). This fact will be illustrated by
Example 4.7.

(C6) For any {ak} ⊂ (0,+∞) converging to a ∈ [0,+∞), limk→∞ d(a∗, ak)→ 0.

Example 4.7. Let H be the proximal distance induced by the entropy function φ in Example 4.3. It is easy to verify that φ
satisfies the conditions (C1)–(C6). Here we shall present a sequence {yk} ⊂ int(K3)which converges to y∗ ∈ K3, but where
H(y∗, yk)→∞. Let

yk =


√
2(1+ e−k3)√
1+ k−1 − e−k3√
1− k−1 + e−k3

 ∈ int(K3) and y∗ =

√21
1

 ∈ K3.

By the expression for H(y∗, yk), i.e., H(y∗, yk) = tr(y∗ ◦ ln y∗) − tr(y∗ ◦ ln yk) + tr(yk − y∗), it suffices to prove that
limk→∞−tr(y∗ ◦ ln yk) = +∞ since limk→∞ tr(yk − y∗) = 0 and tr(y∗ ◦ ln y∗) = λ2(y∗) ln(λ2(y∗)) < +∞. By the
definition of ln yk, we have

tr(y∗ ◦ ln yk) = ln(λ1(yk))
(
y∗1 − (y

∗

2)
T ȳk2
)
+ ln(λ2(yk))

(
y∗1 + (y

∗

2)
T ȳk2
)

(30)
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for y∗ = (y∗1, y
∗

2), y
k
= (yk1, y

k
2) ∈ R× R2 with ȳk2 = y

k
2/‖y

k
2‖. By computing,

ln(λ1(yk)) = ln
√
2− ln

(
1+

√
1+ e−k3

)
− k3,

y∗1 − (y
∗

2)
T ȳk2 =

1
‖yk2‖

(
−k−1 + e−k

3

1+
√
1+ k−1 − e−k3

+
k−1 − e−k

3

1+
√
1− k−1 + e−k3

)
.

The last two equalities imply that limk→∞ ln(λ1(yk))
(
y∗1 − (y

∗

2)
T ȳk2
)
= −∞. In addition, by noting that yk2 6= 0 for each k,

we compute that

lim
k→∞

ln(λ2(yk))
(
y∗1 − (y

∗

2)
T ȳk2
)
= ln(λ2(yk))

(
y∗1 + (y

∗

2)
T y
∗

2

‖y∗2‖

)
= λ2(y∗) ln(λ2(y∗)).

From the last two equations, we immediately have limk→∞−tr(y∗ ◦ ln yk) = +∞.

Thus, when the proximal distance in the IPA is chosen as the one given by (28) with φ satisfying (C1)–(C6) and domφ =
[0,+∞), Theorem 3.2(b) may not apply, i.e. the global convergence to an optimal solution may not be guaranteed. This is
different from the case for interior proximal methods for convex programming over nonnegative orthant cones as we see by
noting that φ is now a univariate Bregman function. Similarly, it seems hard to find examples for the class F+(K

n) in [15]
such that Theorem 2.2 can apply, since it also requires (P7).
The third approach will produce the proximal distances for the class F2(int Kn), which needs a lsc proper function

φ : R→ R ∪ {+∞} satisfying the following conditions:

(D1) φ is strictly convex and continuous on domφ, and φ is continuously differentiable on a subset of domφ, where
domφ′ ⊆ domφ ⊆ [0,+∞) and int(domφ′) = (0,+∞);

(D2) φ is twice continuously differentiable on int(domφ) and limt→0+ φ′′(t) = +∞;
(D3) φ′(t)t − φ(t) is convex on domφ′, and φ′ is strictly concave on domφ′;
(D4) φ′ is SOC-concave on domφ′.

With such a univariate φ, we define the proximal distance H:Rn × Rn → R ∪ {+∞} by

H(x, y) :=
{
tr(φsoc(y))− tr(φsoc(x))− 〈∇tr(φsoc(x)), y− x〉 ∀x ∈ C1, y ∈ C2

+∞ otherwise (31)

where C1 and C2 are the domains of φsoc and (φ′)soc, respectively. By the relation between domφ and domφ′, obviously,
C2 ⊆ C1 ⊆ Kn and int C1 = int C2 = intKn.

Lemma 4.2. Let φ:R→ R ∪ {+∞} be a lsc proper function satisfying (D1)–(D4). Then:

(a) tr
[
(φ′)soc(x) ◦ x− φsoc(x)

]
is convex in C1 and continuously differentiable on int C1.

(b) For any fixed y ∈ Rn, 〈(φ′)soc(x), y〉 is continuously differentiable on int C1, and moreover, it is strictly concave over C1
whenever y ∈ intKn.

Proof. (a) Let ψ(t) := φ′(t)t − φ(t). Then, by (D2) and (D3), ψ(t) is convex on domφ′ and continuously differentiable on
int(domφ′) = (0,+∞). Since tr

[
(φ′)soc(x) ◦ x− φsoc(x)

]
= tr[ψ soc(x)], using Lemma 2.2(b) and (c) immediately yields

part (a).
(b) From (D2) and Lemma 2.2(a), (φ′)soc(·) is continuously differentiable on int C1. This implies that 〈y, (φ′)soc(x)〉 for any
fixed y is continuously differentiable on int C1. We next show that it is also strictly concave in C1 whenever y ∈ int Kn.
Note that tr[(φ′)soc(·)] is strictly concave on C1 since φ′ is strictly concave on domφ′. Consequently,

tr[(φ′)soc(βx+ (1− β)z)] > βtr[(φ′)soc(x)] + (1− β)tr[(φ′)soc(z)] ∀ 0 < β < 1

for any x, z ∈ C1 and x 6= z. This implies that

(φ′)soc(βx+ (1− β)z)− β(φ′)soc(x)− (1− β)(φ′)soc(z) 6= 0.

In addition, since φ′ is SOC-concave on domφ′, from Definition 2.1 it follows that

(φ′)soc[βx+ (1− β)z] − β(φ′)soc(x)− (1− β)(φ′)soc(z)�Kn 0.

Thus, for any fixed y ∈ intKn, the last two equations imply that

〈y, (φ′)soc[βx+ (1− β)z] − β(φ′)soc(x)− (1− β)(φ′)soc(z)〉 > 0.

This shows that 〈y, (φ′)soc(x)〉 for any fixed y ∈ intKn is strictly convex on C1. �

Using the conditions (D1)–(D4) and Lemma 4.2, and following the same arguments as for Propositions 4.1 and 4.2 of [27],
we may prove the following proposition.
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Proposition 4.4. Let H be defined as in (31) with φ satisfying (D1)–(D4). Then:

(a) H(x, y) ≥ 0 for any x, y ∈ Rn, and H(y, y) = 0 for any y ∈ intKn.
(b) For any fixed y ∈ C2,H(·, y) is continuous in C1, and it is strictly convex on C1 whenever y ∈ intKn.
(c) For any fixed y ∈ C2,H(·, y) is continuously differentiable on intKn with

∇1H(x, y) = 2∇(φ′)soc(x)(x− y). (32)

Moreover, dom∇1H(·, y) = intKn whenever y ∈ intKn.
(d) H(x, y) ≥

∑2
i=1 d(λi(y), λi(x)) ≥ 0 for any x ∈ C1 and y ∈ C2.

(e) For any fixed y ∈ C2, the sets {x ∈ C1:H(x, y) ≤ γ } are bounded for all γ ∈ R.
(f) For all x, y ∈ intKn and z ∈ C2,H(x, z)− H(y, z) ≥ 2〈∇1H(y, x), z − y〉.

Proposition 4.4 demonstrates that the function H defined by (31) with φ satisfying (D1)–(D4) is a proximal distance
w.r.t. the cone int Kn and possesses the property (P5′), and therefore belongs to the class F2(int Kn). If, in addition,
domφ = [0,+∞), then H belongs to the class F2(K

n). The conditions (D1)–(D3) are easy to check, and for the condition
(D4), we can employ the characterizations in [28,29] to verify whether φ′ is SOC-concave or not. Some examples are
presented as follows.

Example 4.8. Let φ(t) = t ln t − t + 1 if t ≥ 0, and otherwise φ(t) = +∞. It is easy to verify that φ satisfies (D1)–(D3)
with domφ = [0,+∞) and domφ′ = (0,+∞). By Lemma 2.4(c), φ′ is SOC-concave on (0,+∞). Using formulas (8) and
(31), we have

H(x, y) =
{
tr(y ◦ ln y− y ◦ ln x+ x− y) ∀x ∈ intKn, y ∈ Kn

;

+∞ otherwise. (33)

Example 4.9. Take φ(t) = tq+1
q+1 if t ≥ 0, and otherwise φ(t) = +∞, where 0 < q < 1. It is easy to show that φ satisfies

(D1)–(D3) with domφ = [0,+∞) and domφ′ = [0,+∞). By Lemma 2.4(a), φ′ is also SOC-concave on [0,+∞). By (8) and
(31), we compute that

H(x, y) =


1
q+ 1

tr(yq+1)+
q
q+ 1

tr(xq+1)− tr(xq ◦ y) ∀ x ∈ intKn, y ∈ Kn
;

+∞ otherwise.

Example 4.10. Take φ(t) = (1+ t) ln(1+ t)+ tq+1
q+1 if t ≥ 0, and otherwise φ(t) = +∞, where 0 < q < 1. We can verify

that φ satisfies (D1)–(D3) with domφ = domφ′ = [0,+∞). From Lemma 2.4(a) and (c), φ′ is also SOC-concave on [0,+∞).
Using (8) and (31), it is not hard to compute that for any x, y ∈ Kn,

H(x, y) = tr [(e+ y) ◦ (ln(e+ y)− ln(e+ x))]− tr(y− x)+
1
q+ 1

tr(yq+1)+
q
q+ 1

tr(xq+1)− tr(xq ◦ y).

Note that the proximal distances in Examples 4.9 and 4.10 belong to the class F2(K
n). By Proposition 4.5, the ones in

Examples 4.9 and 4.10 also belong to the class F̂2(Kn).

Proposition 4.5. Let H be defined as in (31) with φ satisfying (D1)–(D4). Suppose that domφ = domφ′ = [0,+∞). Then, H
possesses the properties (P7′) and (P8′).

Proof. By the given assumption, C1 = C2 = Kn. From Proposition 4.4 (b), the function H(·, y∗) is continuous on Kn.
Consequently, limk→∞ H(yk, y∗) = H(y∗, y∗) = 0.
From Proposition 4.4(d),H(yk, y∗) ≥ d(λi(y∗), λi(yk)) ≥ 0 for i = 1, 2. This together with the assumptionH(yk, y∗)→ 0

implies d(λi(y∗), λi(yk)) → 0 for i = 1, 2. From this, we necessarily have λi(yk) → λi(y∗) for i = 1, 2. Suppose not; then
the bounded sequence {λi(yk)}must have another limit point ν∗i ≥ 0 such that ν

∗

i 6= λi(y
∗). Without loss of generality, we

assume that limk∈K ,k→∞ λi(yk) = ν∗i . Then, we have

d(ν∗i , λi(y
∗)) = lim

k→∞
d(ν∗i , λi(y

k)) = lim
k∈K ,k→∞

d(ν∗i , λi(y
k)) = d(ν∗i , ν

∗

i ) = 0

where the first equality is due to the continuity of d(s, ·) for any fixed s ∈ [0,+∞), and the second one is due to
the convergence of {d(ν∗i , λi(y

k))} implied by the first equality. This contradicts the fact that d(ν∗i , λi(y
∗)) > 0 since

ν∗i 6= λi(y
∗). �

As illustrated by the following example, the proximal distance generated by (31) with φ satisfying (D1)–(D4) generally
does not belong to the class F̄2(Kn).
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Example 4.11. Let H be the proximal distance in Example 4.8. Let

yk =


√
2

(−1)k
k
k+ 1

(−1)k
k
k+ 1

 for each k and y∗ =

√21
1

 .
It is not hard to check that the sequence {yk} ⊆ int(K3) satisfies H(yk, y∗)→ 0. Clearly, the sequence yk 9 y∗ as k→∞,
but λ1(yk)→ λ1(y∗) = 0 and λ2(yk)→ λ2(y∗) = 2

√
2.

Finally, let H1 be a proximal distance produced via one of the approaches above, and define

Hα(x, y) := H1(x, y)+
α

2
‖x− y‖2 (34)

where α > 0 is a fixed parameter. Then, by Propositions 4.1, 4.2 and 4.4 and the identity

‖z − x‖2 = ‖z − y‖2 + ‖y− x‖2 + 2〈z − y, y− x〉, ∀x, y, z ∈ Rn,

it is easily shown that Hα is also a proximal distance w.r.t. intKn. In particular, when H1 is given by (31) with φ satisfying
(D1)–(D4) and domφ = domφ′ = [0,+∞) (for example the distances in Examples 4.9 and 4.10), the regularized proximal
distance Hα satisfies (P7′) and (P9′), and hence Hα ∈ F̄2(Kn). With such a regularized proximal distance, the sequence
generated by the IPA converges to an optimal solution of (1) if X∗ 6= ∅.
To sum up, we may construct a proximal distance w.r.t. the cone int Kn in three ways with an appropriate univariate

function. The first approach in (23) can only produce a proximal distance belonging to F1(intKn), the second approach in
(28) produces a proximal distance of F1(Kn) if domφ = [0,+∞), whereas the third approach in (31) produces a proximal
distance of the class F̂2(Kn) if domφ = domφ′ = [0,+∞). In particular, the regularized proximal distancesHα in (34) with
H1 given by (31) with domφ = domφ′ = [0,+∞) belong to the smallest class F̄2(Kn). With such regularized proximal
distances, we have the convergence result of Theorem 3.2(c) for the general convex SOCP with X∗ 6= ∅.

5. Central paths and interior proximal methods

In this section, for the linear SOCP, we will obtain some improved convergence results for the IPA by exploring the
relations between the sequence generated by the IPA and the central path associated with the corresponding proximal
distances.
Given a lsc proper strictly convex function Φ with domΦ ⊆ Kn and int(domΦ) = int Kn, the central path of (1)

associated withΦ is the set {x(τ ): τ > 0} defined by

x(τ ) := argmin{τ f (x)+ Φ(x) | x ∈ V ∩Kn
} for τ > 0. (35)

In what follows, we will focus on the central path of (1) w.r.t. a distance-like function H ∈ D(intKn). From Definition 3.1
and Proposition 3.1, we immediately have the following result.

Proposition 5.1. For any given H ∈ D(int Kn) and x̄ ∈ int Kn, the central path {x(τ ): τ > 0} associated with H(·, x̄) is
well-defined and is in V ∩ intKn. For each τ > 0, there exists gτ ∈ ∂ f (x(τ )) such that τgτ +∇1H(x(τ ), x̄) = ATy(τ ) for some
y(τ ) ∈ Rm.

We next study the favorable properties of the central path associated with H ∈ D(intKn).

Proposition 5.2. For any given H ∈ D(intKn) and x̄ ∈ intKn, let {x(τ ): τ > 0} be the central path associated with H(·, x̄).
Then, the following results hold:

(a) The function H(x(τ ), x̄) is nondecreasing in τ .
(b) The set {x(τ ): τ̂ ≤ τ ≤ τ̃ } is bounded for any given 0 < τ̂ < τ̃ .
(c) x(τ ) is continuous at any τ > 0.
(d) The set {x(τ ): τ ≥ τ̄ } is bounded for any τ̄ > 0 if X∗ 6= ∅ and domH(·, x̄) = Kn.
(e) All cluster points of {x(τ ): τ > 0} are solutions of (1) if X∗ 6= ∅.

Proof. The proofs are similar to those of Propositions 3–5 of [25].
(a) Take τ1, τ2 > 0 and let xi = x(τi) for i = 1, 2. Then, from Proposition 5.1, x1, x2 ∈ V ∩ intKn and there exist g1 ∈ ∂ f (x1)
and g2 ∈ ∂ f (x2) such that

∇1H(x1, x̄) = −τ1g1 + ATy1 and ∇1H(x2, x̄) = −τ2g2 + ATy2 (36)
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for some y1, y2 ∈ Rm. This together with the convexity of H(·, x̄) yields that

τ−11
(
H(x1, x̄)− H(x2, x̄)

)
≤ τ−11 〈∇1H(x

1, x̄), x1 − x2〉 = 〈g1, x2 − x1〉,

τ−12
(
H(x2, x̄)− H(x1, x̄)

)
≤ τ−12 〈∇1H(x

2, x̄), x2 − x1〉 = 〈g2, x1 − x2〉. (37)

Adding the two inequalities and using the convexity of f , we obtain(
τ−11 − τ

−1
2

) (
H(x1, x̄)− H(x2, x̄)

)
≤ 〈g1 − g2, x2 − x1〉 ≤ 0.

Thus, H(x1, x̄) ≤ H(x2, x̄)whenever τ1 ≤ τ2. In particular, from the last two equations,

0 ≤ τ−11
[
H(x1, x̄)− H(x2, x̄)

]
≤ τ−11 〈∇1H(x

1, x̄), x1 − x2〉 ≤ 〈g2, x2 − x1〉

≤ τ−12
[
H(x1, x̄)− H(x2, x̄)

]
, ∀τ1 ≥ τ2 > 0. (38)

(b) By part (a), H(x(τ ), x̄) ≤ H(x(τ̃ ), x̄) for any τ ≤ τ̃ , which implies that

{x(τ ): τ ≤ τ̃ } ⊆ L1 =
{
x ∈ intKn

| H(x, x̄) ≤ H(x(τ̃ ), x̄)
}
.

Noting that {x(τ ): τ̂ ≤ τ ≤ τ̃ } ⊆ {x(τ ): τ ≤ τ̃ } ⊆ L1, the desired result follows by (P4).
(c) Fix τ̄ > 0. To prove that x(τ ) is continuous at τ̄ , it suffices to prove that limk→∞ x(τk) = x(τ̄ ) for any sequence {τk} such
that limk→∞ τk = τ̄ . Given such a sequence {τk}, take τ̂ , τ̃ such that τ̂ > τ̄ > τ̃ . Then, {x(τ ): τ̂ ≤ τ ≤ τ̃ } is bounded by part
(b), and τk ∈ (τ̂ , τ̃ ) for sufficiently large k. Consequently, the sequence {x(τk)} is bounded. Let ȳ be a cluster point of {x(τk)},
and without loss of generality assume that limk→∞ x(τk) = ȳ. Let K1 := {k : τk ≤ τ̄ } and take k ∈ K1. Then, from (38) with
τ1 = τ̄ and τ2 = τk,

0 ≤ τ̄−1 [H(x(τ̄ ), x̄)− H(x(τk), x̄)] ≤ τ̄−1〈∇1H(x(τ̄ ), x̄), x(τ̄ )− x(τk)〉
≤ τ−1k [H(x(τ̄ ), x̄)− H(x(τk), x̄)] .

If K1 is infinite, taking the limit k→∞with k ∈ K1 in the last inequality and using the continuity of H(·, x̄) on intKn yields
that

H(x(τ̄ ), x̄)− H(ȳ, x̄) = 〈∇1H(x(τ̄ ), x̄), x(τ̄ )− ȳ〉.

This together with the strict convexity of H(·, x̄) implies x(τ̄ ) = ȳ. If K1 is finite, then K2 := {k : τk ≥ τ̄ } must be infinite.
Using the same arguments, we also have x(τ̄ ) = ȳ.
(d) By (P3) and Proposition 5.1, there exists gτ ∈ ∂ f (x(τ )) such that for any z ∈ V ∩Kn,

H(x(τ ), x̄)− H(z, x̄) ≤ τ−1〈∇1H(x(τ ), x̄), x(τ )− z〉 = 〈gτ , z − x(τ )〉. (39)

In particular, taking z = x∗ ∈ X∗ in the last equality and using the fact that

0 ≥ f (x∗)− f (x(τ )) ≥ 〈gτ , x∗ − x(τ )〉,

we have H(x(τ ), x̄)−H(x∗, x̄) ≤ 0. Hence, {x(τ ): τ > τ̄ } ⊂ {x ∈ intKn
| H(x, x̄) ≤ H(x∗, x̄)}. By (P4), the latter is bounded,

and the desired result then follows.
(e) Let x̂ be a cluster point of {x(τ )} and {τk} be a sequence such that limk→∞ τk = +∞ and limk→∞ x(τk) = x̂. Write
xk := x(τk) and take x∗ ∈ X∗ and z ∈ V ∩ intKn. Then, for any ε > 0, we have x(ε) := (1− ε)x∗ + εz ∈ V ∩ intKn. From
the property (P3),

〈∇1H(x(ε), x̄)−∇1H(xk, x̄), xk − x(ε)〉 ≤ 0.

On the other hand, taking z = x(ε) in (39), we readily have

τ−1k 〈∇1H(x
k, x̄), xk − x(ε)〉 = 〈gk, x(ε)− xk〉

with gk ∈ ∂ f (xk). Combining the last two equations, we obtain

τ−1k 〈∇1H(x(ε), x̄), x
k
− x(ε)〉 ≤ 〈gk, x(ε)− xk〉.

Since the subdifferential set ∂ f (xk) for each k is compact and gk ∈ ∂ f (xk), the sequence {gk} is bounded. Taking the limit in
the last inequality yields 0 ≤ 〈ĝ, x(ε)− x̂〉, where ĝ is a limit point of {gk}, and by Theorem 24.4 of [30], ĝ ∈ ∂ f (x̂). Taking
the limit ε → 0 in the inequality, we get 0 ≤ 〈ĝ, x∗ − x̂〉. This implies that f (x̂) ≤ f (x∗) since x∗ ∈ X∗ and ĝ ∈ ∂ f (x̂).
Consequently, x̂ is a solution of the CSOCP (1). �

In particular, from the following theorem, we also have that the central path is convergent if H ∈ D(intKn) satisfies
domH(·, x̄) = Kn, where x̄ ∈ intKn is a given point. Notice that H(·, x̄) is continuous on domH(·, x̄) by (P2), and hence the
assumption for H is equivalent to saying that H(·, x̄) is continuous at the boundary of the coneKn.
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Theorem 5.1. For any given x̄ ∈ intKn and H ∈ D(intKn) with domH(·, x̄) = Kn, let {x(τ ): τ > 0} be the central path
associated with H(·, x̄). If X∗ is nonempty, then limτ→+∞ x(τ ) exists and is the unique solution of min{H(x, x̄) | x ∈ X∗}.

Proof. Let x̂ be a cluster point of {x(τ )} and {τk} be such that limk→∞ τk = +∞ and limk→∞ x(τk) = x̂. Then, for any x ∈ X∗,
using (38) with x1 = x(τk) and x2 = x, we get

[H(x(τk), x̄)− H(x, x̄)] ≤ τk〈gk, x− x(τk)〉 ≤ τk [f (x)− f (x(τk))] ≤ 0

where the second inequality holds since gk ∈ ∂ f (x(τk)), and the last one is due to x ∈ X∗. Taking the limit k→∞ in the last
inequality and using the continuity of H(·, x̄), we have H(x̂, x̄) ≤ H(x, x̄) for all x ∈ X∗. Since x̂ ∈ X∗ by Proposition 5.2(e),
this shows that any cluster point of {x(τ ): τ > 0} is a solution of min{H(x, x̄) | x ∈ X∗}. By the uniqueness of the solution of
min{H(x, x̄) | x ∈ X∗}, we have limτ→+∞ x(τ ) = x∗. �

For the linear SOCP, we may establish the relations between the sequence generated by the IPA and the central path
associated with the corresponding distance-like functions.

Proposition 5.3. For the linear SOCP, let {xk} be the sequence generated by the IPA with H ∈ D(intKn), x0 ∈ V ∩ intKn and
εk ≡ 0, and {x(τ ): τ > 0} be the central path associated with H(·, x0). Then, xk = x(τk) for k = 1, 2, . . . under either of the
following conditions:

(a) H is constructed via (23) or (28), and {τk} is given by τk =
∑k
j=0 λj for k = 1, 2, . . .;

(b) H is constructed via (31), the mapping ∇(φ′)soc(·) defined on intKn maps any vector Rn into ImAT , and the sequence {τk}
is given by τk = λk for k = 1, 2, . . . .

Moreover, for any positive increasing sequence {τk}, there exists a positive sequence {λk} with
∑
∞

k=1 λk = +∞ such that the
proximal sequence {xk} satisfies xk = x(τk).

Proof. (a) Suppose that H is constructed via (23). From (13) and Proposition 4.1(b),

λjc +∇φ(det(xj))−∇φ(det(xj−1)) = ATuj for j = 0, 1, 2, . . . . (40)

Summing the equality from j = 0 to k and taking τk =
∑k
j=0 λj, y

k
=
∑k
j=0 u

j, we get

τkc +∇φ(det(xk))−∇φ(det(x0)) = ATyk.

This means that xk satisfies the optimal conditions of the problem

min
{
τkf (x)+ H(x, x0) | x ∈ V ∩ intKn} , (41)

and so xk = x(τk). Now let {x(τ ): τ > 0} be the central path. Take a positive increasing sequence {τk} and let xk ≡ x(τk).
Then from Propositions 4.1 and 5.1(b), it follows that

τkc +∇φ(det(xk))−∇φ(det(x0)) = ATyk for some yk ∈ Rm.

Setting λk = τk − τk−1 and uk = yk − yk−1, from the last equality it follows that

λkc +∇φ(det(xk))−∇φ(det(xk−1)) = ATuk.

This shows that {xk} is the sequence generated by the IPA with εk ≡ 0. If H is given by (28), using Proposition 4.2(b) and the
same arguments, we also have that the result holds.
(b) For this case, by Proposition 4.4(c), the above (40) becomes

λjc +∇(φ′)soc(xj) · (xj − xj−1) = ATuj for j = 0, 1, 2, . . . .

Since φ′′(t) > 0 for all t ∈ (0,+∞) by (D1) and (D2), from Proposition 5.2 of [8] it follows that ∇(φ′)soc(x) is positive
definite on intKn. Thus, the last equality is equivalent to[

∇(φ′)soc(xj)
]−1

λjc + (xj − xj−1) =
[
∇(φ′)soc(xj)

]−1
ATuj for j = 0, 1, 2, . . . . (42)

Summing the equality (42) from j = 0 to k and making a suitable arrangement, we get

λkc +∇(φ′)soc(xk)(xk − x0) = ATuk +∇(φ′)soc(xk)
k−1∑
j=0

[
∇(φ′)soc(xj)

]−1
(ATuj − λjc),

which, using the given assumptions and setting τk = λk, reduces to

τkc +∇(φ′)soc(xk)(xk − x0) = AT ȳk for some ȳk ∈ Rm.
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This means that xk is the unique solution of (41), and hence xk = x(τk) for any k. Let {x(τ ): τ > 0} be the central path. Take
a positive increasing sequence {τk} and define the sequence xk = x(τk). Then, from Propositions 4.4 and 5.1(c),

τkc +∇(φ′)soc(xk)(xk − x0) = ATyk for some yk ∈ Rm,

which, by the positive definiteness of ∇(φ′)soc(·) on intKn, implies that

[∇(φ′)soc(xk)]−1(τkc − ATyk)+ [∇(φ′)soc(xk−1)]−1(τk−1c − ATyk−1)+ (xk − xk−1) = 0.

Consequently,

τkc +∇(φ′)soc(xk)(xk − xk−1) = ∇(φ′)soc(xk)[∇(φ′)soc(xk−1)]−1(ATyk−1 − τk−1c).

Using the given assumptions and setting λk = τk, we have

λkc +∇(φ′)soc(xk)(xk − xk−1) = ATuk for some uk ∈ Rm

for some uk ∈ Rm. This implies that {xk} is the sequence generated by the IPA and the sequence {λk} satisfies
∑
∞

k=1 λk = +∞
since {τk} is a positive increasing sequence. �

From Theorem 5.1 and Proposition 5.3, we readily have the following improved convergence results for the sequence
generated by the IPA for the linear SOCP.

Theorem 5.2. For the linear SOCP, let {xk} be the sequence generated by the IPA with H ∈ D(intKn), x0 ∈ V ∩ intKn and
εk ≡ 0. If one of the following conditions is satisfied:

(a) H is constructed via (28) with domH(·, x0) = Kn and
∑
∞

k=0 λk = +∞;
(b) H is constructed via (31) with domH(·, x0) = Kn, the mapping ∇(φ′)soc(·) defined on intKn maps any vector in Rn into
ImAT , and limk→∞ λk = +∞;

and X∗ 6= ∅, then {xk} converges to the unique solution of min{H(x, x0) | x ∈ X∗}.

6. Conclusions

Wehave extended the unified analysis technique given in [15] for interior proximalmethods for solving the convex SOCP
and presented three simple and effective ways to construct a proximal distance w.r.t. the cone intKn. The advantages and
disadvantages of the corresponding proximal distances were analyzed and illustrated with some examples. In particular,
a class of regularized proximal distances was constructed, for which the global convergence result of Theorem 3.2(c) can
apply. However, for the class of proximal distancesF+(Kn) in [15], as illustrated in Section 4, it seems hard to find examples
such that global
convergence results similar to those for [15, Theorem 2.2] can apply for them.
In addition, we have also made investigations for the central paths of (1) associated with these proximal-like functions,

and for the linear SOCP, established the relations between the central paths and the sequence generated by the interior
proximalmethods, fromwhichwe, in particular, obtain the global convergence of the sequence under the usual assumptions
and the continuity of H(·, x0) at the boundary of second-order cones.
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