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Abstract. As an important prototype in closed convex cones, ellip-
soidal cone covers several practical instances such as second-order cone,
circular cone and elliptic cone. In virtue of a recent study on its de-
composition expression, we present a symmetric type of ellipsoidal cone
function and show that this vector-valued function inherits some smooth
properties from its corresponding scalar function, particularly in conti-
nuity, directional differentiability, differentiability and continuous differ-
entiability. We believe that these results will play important roles on
further analysis and study about conic programming problems associ-
ated with ellipsoidal cone.

1. Introduction

Consider the ellipsoidal cone [2, 21, 22, 23] with the form

(1.1) KE :=
{
x ∈ Rn |xTQx ≤ 0, uTnx ≥ 0

}
,

whereQ ∈ Rn×n is a real-valued nonsingular symmetric matrix and (λi, ui) ∈
R×Rn denotes its i-th eigenpair. In addition, these pairs satisfy the under-
line relations:

λ1 ≥ · · · ≥ λn−1 > 0 > λn and

{
uTi uj = 1, if i = j,
uTi uj = 0, if i 6= j.

Under the standard Euclidean inner product 〈·, ·〉 and the norm ‖ · ‖ defined
on Rn, its dual cone (KE)∗〈·,·〉 has an explicit expression (due to [16, Theorem

2.1]) as follows:

(1.2) (KE)∗〈·,·〉 := {y ∈ Rn | yTQ−1y ≤ 0, uTny ≥ 0}.

It is not difficult to see that the ellipsoidal cone KE defined as in (1.1) can
be viewed as a type of nonsymmetric cones.

During the past two decades, conic programming have been extensively
studied [4, 6, 7, 8, 9, 12, 13, 14, 20], particularly in three types of closed
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convex cones, i.e., the nonnegative octant Rn+, second-order cone Kn and
positive semi-definite cone Sn+. All of these cones are fully addressed and
some fundamental topics such as projection, spectral decomposition, cone
function and cone-convexity have been studied. A fascinating feature among
them is to unify all these results under the framework of Euclidean Jordan
Algebra defined on symmetric cones, we refer to the monograph [10] for more
details. A natural question is how to extend these observations on symmetric
cones suitable for nonsymmetric counterparts? Recently, Miao, Lu and Chen
[18] look into the first three items in the setting of some nonsymmetric cases
such as circular cone, p-order cone, geometric cone, exponential cone and
power cone, in which the lack of explicit projection formulae onto these cones
(except for the circular cone case) become the main hurdle for non-symmetric
cone optimization problems and cause some unpleasant consequences. For
example, the classical Moreau decomposition in convex analysis cannot be
used directly; the associated decomposition expressions and cone functions
are correspondingly missing. These observations motivate us to focus on
algebraic properties of nonsymmetric cones and to provide a systematical
study on their analytic features.

As an important prototype, several famous instances can be generated
from ellipsoidal cones by different choices of parameters (Q, un). For in-
stances, let us take

Q =

[
In−1 0

0 −1

]
or

[
In−1 0

0 − tan2 θ

]
or

[
MTM 0

0 −1

]
and un = en,

where In−1 denotes the identity matrix of order n− 1, θ ∈ (0, π2 ), M is any
nonsingular matrix of order n − 1 and en is the n-th column vector of In.
In these cases, the ellipsoidal cone respectively reduces to the second-order
cone [5, 8]:

Kn :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖x̄n−1‖ ≤ xn
}
,

the circular cone [3, 24]:

Lθ :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖x̄n−1‖ ≤ xn tan θ
}

and the elliptic cone [1]:

KnM :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖Mx̄n−1‖ ≤ xn
}
.

Therefore, ellipsoidal cone is a natural generalization of second-order cone,
circular cone and elliptic cone.

For algebraic properties of ellipsoidal cones, there have been several liter-
atures in recent studies. More specifically, Lu and Chen [16] discuss its self-
duality and positive homogeneity, in which the authors observe that ellip-
soidal cone can become self-dual by introducing a new inner product and the
associated automorphism group can be characterized as the similarity trans-
formation of its special counterpart in the second-order cone setting with an
appropriate nonsingular matrix. Furthermore, they also provide an investi-
gation on its variational geometry, projection expression and decomposition,
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see [17] for more details. In particular, the decomposition of the given point
associated with the ellipsoidal cone is characterized in [17, Theorem 8]. For
completeness, we restate it as follows. Due to the eigenvalue decomposition,
we rewrite Q ∈ Rn×n as the form Q = UΛUT with an orthogonal matrix
U ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n, where U := [Ūn−1, un] ∈ Rn×n,

Ūn−1 := [u1, u2, · · · , un−1] ∈ Rn×(n−1) and Λ := diag(Λ̄n−1, λn) ∈ Rn×n,

Λ̄n−1 := diag (λ1, λ2, · · · , λn−1) ∈ R(n−1)×(n−1).

Theorem 1.1 (Decomposition). [17, Theorem 8] Let KE ∈ Rn be an
ellipsoidal cone defined as in (1.1) and (KE)∗〈·,·〉 be its dual cone defined as

in (1.2). For any given x ∈ Rn, it has the following decomposition:

x =

{
s

(1)
Ia

(x) · v(1)
Ia

(x) + s
(2)
Ia

(x) · v(2)
Ia

(x) if ŪTn−1x 6= 0,

s
(1)
Ib

(x) · v(1)
Ib

(x) + s
(2)
Ib

(x) · v(2)
Ib

(x) if ŪTn−1x = 0,

where s
(1)
Ia

(x), s
(2)
Ia

(x), s
(1)
Ib

(x), s
(2)
Ib

(x) and v
(1)
Ia

(x), v
(2)
Ia

(x), v
(1)
Ib

(x), v
(2)
Ib

(x) are
respectively given by

s
(1)
Ia

(x) := uTnx+ ‖M̄ŪTn−1x‖, v
(1)
Ia

(x) :=
1

2
·

(
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
∈ KE ,

s
(2)
Ia

(x) := uTnx− ‖M̄ŪTn−1x‖, v
(2)
Ia

(x) :=
1

2
·

(
−
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
∈ KE ,

s
(1)
Ib

(x) := uTnx, v
(1)
Ib

(x) :=
1

2
·
(
Ūn−1w

‖M̄w‖
+ un

)
∈ KE ,

s
(2)
Ib

(x) := uTnx, v
(2)
Ib

(x) :=
1

2
·
(
− Ūn−1w

‖M̄w‖
+ un

)
∈ KE

with any given nonzero vector w ∈ Rn−1 and a diagonal matrix M̄ looks like

(1.3)

M̄ :=

[
ŪTn−1(Q− λnunuTn )Ūn−1

(−λn)

]1/2

= diag

(√
λ1

(−λn)
,

√
λ2

(−λn)
, · · · ,

√
λn−1

(−λn)

)
.

Theorem 1.1 indicates that by denoting

(1.4)

(
λ

(1)
I (x), λ

(2)
I (x), u

(1)
I (x), u

(2)
I (x)

)
:=


(
s

(1)
Ia

(x), s
(2)
Ia

(x), v
(1)
Ia

(x), v
(2)
Ia

(x)
)

if ŪTn−1x 6= 0,(
s

(1)
Ib

(x), s
(2)
Ib

(x), v
(1)
Ib

(x), v
(2)
Ib

(x)
)

if ŪTn−1x = 0,

the decomposition formula now can be rewritten as follows:

(1.5) x = λ
(1)
I (x) · u(1)

I (x) + λ
(2)
I (x) · u(2)

I (x), ∀x ∈ Rn.
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For any function f : R→ R, the following vector-valued function associated
with KE is considered:

(1.6) fECI (x) = f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x), ∀x ∈ Rn.

If f is defined only on the subset of R, then fECI is defined on the cor-
responding subset of Rn. Notice that the expression (1.6) is well-defined
whether ŪTn−1x 6= 0 or ŪTn−1x = 0. In the sequel, we call this function a
symmetric type of ellipsoidal cone function, due to the fact that the vectors

u
(1)
I (x), u

(2)
I (x) in (1.4) are both contained in KE . For any given x ∈ Rn,

λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are the spectral values and the spectral vectors of

x, respectively.
In this paper, we aim to study smooth properties of the vector-valued

function fECI , particularly in continuity, directional differentiability, dif-
ferentiability, continuous differentiability inherited by fECI from f . As a
byproduct, we also establish these results for some special cases of ellip-
soidal cone such as second-order cone, circular cone and elliptic cone.

The rest of this paper is organized as follows. In Section 2, we present
some technical lemmas used in the sequel. The main conclusions will be
established in Section 3. We next discuss some special examples in Section
4. Finally, some concluding remarks are drawn.

1.1. Notation and terminology. In what follows, we review some basic
concepts about vector-valued functions. For the mapping F : Rn → Rm, we
say F to be continuous at x ∈ Rn if

F (y)→ F (x) as y → x,

and F is continuous if F is continuous at every x ∈ Rn. Similarly, we say F
is directionally differentiable at x ∈ Rn if

F ′(x;h) = lim
t↓0

F (x+ th)− F (x)

t

exists for all h ∈ Rn and F is directionally differentiable if F is directionally
differentiable at every x ∈ Rn. Moreover, F is differentiable (in the Fréchet
sense) at x ∈ Rn if there exists a linear mapping DF : Rn → Rm such that

F (x+ h)− F (x)−DF (x)h = o(‖h‖).

We call DF (x) the Jacobian of F at x ∈ Rn. Furthermore, if F is differen-
tiable at every x ∈ Rn and DF (x) is also continuous, then F is continuous
differentiable. For a differentiable mapping g : Rn → R, the gradient of g
with respect to the variable x ∈ Rn is denoted by ∇xg.

2. Preliminaries

Before establishing smooth analytic properties of fECI , we need the fol-
lowing technical lemmas.
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Lemma 2.1 (Perturbation of spectral values). Let λ
(i)
I (x) (i = 1, 2) be

the spectral values of x ∈ Rn and m
(i)
I (y) (i = 1, 2) be the spectral values of

y ∈ Rn. Then, we have

(2.1)
∣∣∣λ(i)
I (x)−m(i)

I (y)
∣∣∣ ≤ (1 + ‖M̄ŪTn−1‖

)
· ‖x− y‖, ∀i = 1, 2,

where ‖M̄ŪTn−1‖ is the induced matrix norm on the space R(n−1)×n of M̄ŪTn−1

as follows:

‖M̄ŪTn−1‖ := sup{‖M̄ŪTn−1x‖
∣∣ ‖x‖ = 1, x ∈ Rn}.

Proof. The proof can be obtained easily by simple calculation. Note that

|λ(i)
I (x)−m(i)

I (y)|
≤

∣∣uTn (x− y)
∣∣+
∣∣‖M̄ŪTn−1x‖ − ‖M̄ŪTn−1y‖

∣∣
≤ ‖un‖ · ‖x− y‖+ ‖M̄ŪTn−1(x− y)‖
≤

(
1 + ‖M̄ŪTn−1‖

)
· ‖x− y‖, ∀i = 1, 2,

where the second inequality follows from the facts |aT b| ≤ ‖a‖ · ‖b‖, |‖a‖ −
‖b‖| ≤ ‖a− b‖, ∀a, b ∈ Rn. �

Lemma 2.2 (Perturbation of spectral vectors). Let u
(i)
I (x) (i = 1, 2)

be the spectral vectors of x ∈ Rn and p
(i)
I (y) (i = 1, 2) be the spectral vectors

of y ∈ Rn.

(a) If ŪTn−1x 6= 0, ŪTn−1y 6= 0, then we have
(2.2)∥∥∥u(i)

I (x)− p(i)
I (y)

∥∥∥ ≤ 1

2

(
‖Ūn−1Ū

T
n−1‖

‖M̄ŪTn−1x‖
+
‖Ūn−1M̄

−1‖ · ‖M̄ŪTn−1‖
‖M̄ŪTn−1x‖

)
· ‖x− y‖

for any i = 1, 2. In this case, u
(i)
I (x) and p

(i)
I (y) are the unique

spectral vectors of x and y, respectively.

(b) If either ŪTn−1x = 0 or ŪTn−1y = 0, then we can choose u
(i)
I (x), p

(i)
I (y)

such that the left hand side of the above inequality (2.2) is zero.

Proof. (a) If ŪTn−1x 6= 0, ŪTn−1y 6= 0, according to the decomposition in
Theorem 1.1 and (1.4), we obtain

u
(1)
I (x) =

1

2
·

(
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
, u

(2)
I (x) =

1

2
·

(
−
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
,

p
(1)
I (y) =

1

2
·

(
Ūn−1Ū

T
n−1y

‖M̄ŪTn−1y‖
+ un

)
, p

(2)
I (y) =

1

2
·

(
−
Ūn−1Ū

T
n−1y

‖M̄ŪTn−1y‖
+ un

)
.



6 Y. LU AND J.S. CHEN

From the above, we see that u
(i)
I (x), p

(i)
I (y) (i = 1, 2) are unique. In addition,

we have

‖u(i)
I (x)− p(i)

I (y)‖

≤ 1

2

∥∥∥∥∥ Ūn−1Ū
T
n−1x

‖M̄ŪTn−1x‖
−
Ūn−1Ū

T
n−1y

‖M̄ŪTn−1y‖

∥∥∥∥∥
≤ 1

2

∥∥∥∥∥ Ūn−1Ū
T
n−1x− Ūn−1Ū

T
n−1y

‖M̄ŪTn−1x‖
+
Ūn−1Ū

T
n−1y

‖M̄ŪTn−1x‖
−
Ūn−1Ū

T
n−1y

‖M̄ŪTn−1y‖

∥∥∥∥∥
≤ 1

2

(
‖Ūn−1Ū

T
n−1‖

‖M̄ŪTn−1x‖
· ‖x− y‖+

‖Ūn−1M̄
−1‖

‖M̄ŪTn−1x‖
·
∣∣‖M̄ŪTn−1y‖ − ‖M̄ŪTn−1x‖

∣∣)

≤ 1

2

(
‖Ūn−1Ū

T
n−1‖

‖M̄ŪTn−1x‖
· ‖x− y‖+

‖Ūn−1M̄
−1‖

‖M̄ŪTn−1x‖
· ‖M̄ŪTn−1(y − x)‖

)

≤ 1

2

(
‖Ūn−1Ū

T
n−1‖

‖M̄ŪTn−1x‖
+
‖Ūn−1M̄

−1‖ · ‖M̄ŪTn−1‖
‖M̄ŪTn−1x‖

)
· ‖x− y‖, ∀i = 1, 2.

(b) It is clear that we can choose the same spectral vectors for x and y from
the relation (1.4), since either ŪTn−1x = 0 or ŪTn−1y = 0. �

Lemma 2.3 (Gradients). Let A ∈ Rn×n, B ∈ Rs×n and x ∈ Rn. If
Bx 6= 0, then we have

∇x
(

Ax

‖Bx‖

)
=

1

‖Bx‖

[
In −

(BTB)(xxT )

‖Bx‖2

]
AT ,(2.3)

∇x(‖Bx‖) =
1

‖Bx‖
BTBx.(2.4)

Proof. Let us rewrite

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 =


aT1
aT2
...
aTn

 ∈ Rn×n,

B =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bs1 bs2 · · · bsn

 =
[
B·,1 B·,2 · · · B·,n

]
∈ Rs×n

with ai ∈ Rn (i = 1, 2, · · · , n) and B·,j ∈ Rs (j = 1, 2, · · · , n). Therefore, we
have

∇x
(

Ax

‖Bx‖

)
=

[
∇x
(
aT1 x

‖Bx‖

)
,∇x

(
aT2 x

‖Bx‖

)
, · · · ,∇x

(
aTnx

‖Bx‖

)]
,
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where ∇x
(
aTi x
‖Bx‖

)
(i = 1, 2, · · · , n) is defined as follows:

∇x
(
aTi x

‖Bx‖

)
=



∂

∂x1

(
aTi x

‖Bx‖

)
∂

∂x2

(
aTi x

‖Bx‖

)
...

∂

∂xn

(
aTi x

‖Bx‖

)


∈ Rn.

By direct calculation, we have

∂

∂xj

(
aTi x

‖Bx‖

)
= aij

1

‖Bx‖
− (aTi x)

(Bx)TB·,j
‖Bx‖3

, j = 1, 2, · · · , n.

Consequently, we obtain

∇x
(

Ax

‖Bx‖

)
=

1

‖Bx‖
AT − 1

‖Bx‖3
[(Ax)(Bx)TB]T

=
1

‖Bx‖

[
In −

(BTB)(xxT )

‖Bx‖2

]
AT ,

which shows that Eq. (2.3) holds. On the other hand, similar to the first
part, we obtain

∂

∂xj
(‖Bx‖) =

(Bx)TB·,j
‖Bx‖

, j = 1, 2, · · · , n,

and therefore the gradient of ‖Bx‖ with respect to x is given by

∇x(‖Bx‖) =



∂

∂x1
(‖Bx‖)

∂

∂x2
(‖Bx‖)
...

∂

∂xn
(‖Bx‖)


=



(Bx)TB·,1
‖Bx‖

(Bx)TB·,2
‖Bx‖

...
(Bx)TB·,n
‖Bx‖


=

1

‖Bx‖
BTBx,

which implies that Eq. (2.4) is true. �

3. Smooth analysis

In this section, we aim to show the properties of continuity and differen-
tiability between the scalar function f and its associated cone function fECI .
Now, after the above preparations, we are ready to present our first main
result about continuity between f and fECI .
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Theorem 3.1 (Continuous). For any given function f : R→ R, let fECI
be its corresponding cone function defined as in (1.6). Then, the following
statements are equivalent to each other.

(a) f is continuous at λ
(i)
I (x) (i = 1, 2).

(b) fECI is continuous at x ∈ Rn with spectral values λ
(i)
I (x) (i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is continuous at λ
(i)
I (x) (i = 1, 2). For any

fixed x ∈ Rn and y → x, let x and y be decomposed as

x = λ
(1)
I (x)·u(1)

I (x)+λ
(2)
I (x)·u(2)

I (x), y = m
(1)
I (y)·p(1)

I (y)+m
(2)
I (y)·p(2)

I (y).

Then, we consider the following two cases:

Case (a): If ŪTn−1x 6= 0, then we have

fECI (y)− fECI (x)

= f(m
(1)
I (y)) · p(1)

I (y) + f(m
(2)
I (y)) · p(2)

I (y)

−f(λ
(1)
I (x)) · u(1)

I (x)− f(λ
(2)
I (x)) · u(2)

I (x)

= f(m
(1)
I (y)) · (p(1)

I (y)− u(1)
I (x)) + (f(m

(1)
I (y))− f(λ

(1)
I (x))) · u(1)

I (x)

+f(m
(2)
I (y)) · (p(2)

I (y)− u(2)
I (x)) + (f(m

(2)
I (y))− f(λ

(2)
I (x))) · u(2)

I (x).(3.1)

Since f is continuous at λ
(i)
I (x) (i = 1, 2) and the inequality (2.1) in Lemma

2.1, we obtain

f(m
(i)
I (y))→ f(λ

(i)
I (x)) (i = 1, 2) as y → x.

According to the relation (2.2) in Lemma 2.2, we also know

‖p(i)
I (y)− u(i)

I (x)‖ → 0 (i = 1, 2) as y → x.

Moreover, the equation (3.1) and the boundedness of f(m
(i)
I (y)), u

(i)
I (x) yield

that
fECI (y)→ fECI (x) as y → x.

Therefore, fECI is continuous at x ∈ Rn.

Case (b): If ŪTn−1x = 0, we can arrange that x, y have the same vector

parts, regardless of ŪTn−1y is equal to zero or not. At the same time, we
obtain

fECI (y)− fECI (x) = (f(m
(1)
I )− f(λ

(1)
I )) · u(1)

I + (f(m
(2)
I )− f(λ

(2)
I )) · u(2)

I .

By similar arguments as Case (a), we know that fECI is continuous at x ∈ Rn.

(b) ⇒ (a) The proof for this direction is straightforward and has a similar
arguments for [5, Proposition 2]. �

Theorem 3.2 (Directionally Differentiable). For any given function
f : R → R, let fECI be its corresponding cone function defined as in (1.6).
Then, the following statements are equivalent to each other.

(a) f is directionally differentiable at λ
(i)
I (x) (i = 1, 2).
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(b) fECI is directionally differentiable at x ∈ Rn with spectral values

λ
(i)
I (x) (i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is directionally differentiable at λ
(i)
I (x) (i =

1, 2). We divide our proof into the following two cases:

Case (a): If ŪTn−1x 6= 0, then we have

f(x) = f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x),

where the scalars λ
(1)
I (x), λ

(2)
I (x) and the vectors u

(1)
I (x), u

(2)
I (x) are given

by

λ
(1)
I (x) = uTnx+ ‖M̄UTn−1x‖, λ

(2)
I (x) = uTnx− ‖M̄UTn−1x‖,

u
(1)
I (x) =

1

2
·

(
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
, u

(2)
I (x) =

1

2
·

(
−
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖
+ un

)
.

Due to the nonsingularity of M̄ defined as in (1.3), we obtain M̄ŪTn−1x 6=
0. From Lemma 2.3, we know that λiI(x), u

(i)
I (x) (i = 1, 2) are Fréchet-

differentiable with respect to the variable x, i.e.,

∇xλ(1)
I (x) = un +

1

‖M̄ŪTn−1x‖
(Ūn−1M̄

T M̄ŪTn−1)x,

∇xλ(2)
I (x) = un −

1

‖M̄ŪTn−1x‖
(Ūn−1M̄

T M̄ŪTn−1)x,

∇xu(1)
I (x) =

1

2‖M̄ŪTn−1x‖

[
In −

(Ūn−1M̄
T M̄ŪTn−1)(xxT )

‖M̄ŪTn−1x‖2

]
(Ūn−1Ū

T
n−1),

∇xu(2)
I (x) = − 1

2‖M̄ŪTn−1x‖

[
In −

(Ūn−1M̄
T M̄ŪTn−1)(xxT )

‖M̄ŪTn−1x‖2

]
(Ūn−1Ū

T
n−1).

To show that fECI is directionally differentiable at x ∈ Rn with spectral

values λ
(i)
I (x) (i = 1, 2), we only need to verify the directional differentiabil-

ity of the composition functions f(λ
(i)
I (x)) (i = 1, 2) with respect to x ∈ Rn

and then use the product rule and the chain rule on fECI .

Since f is directionally differentiable at λ
(1)
I (x), then it is easy to see that

lim
t→0+

f(λ
(1)
I (x) + t · 1)− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x); 1),

lim
t→0+

f(λ
(1)
I (x)− t · 1)− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x);−1),

lim
t→0+

f(λ
(1)
I (x) + o(t))− f(λ

(1)
I (x))

t
= 0.

Using the fact that λ
(1)
I (x) is Fréchet-differentiable at x, we obtain

λ
(1)
I (x+ th) = λ

(1)
I (x) + t · hT∇xλ(1)

I (x) + o(t).
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Let y = hT∇xλ(1)
I (x)+o(t)

t , then y → hT∇xλ(1)
I (x) as t→ 0+. If hT∇xλ(1)

I (x) <
0, then y < 0 as t is sufficiently close to 0 and we obtain

lim
t→0+

f(λ
(1)
I (x+ th))− f(λ

(1)
I (x))

t

= lim
t→0+

f(λ
(1)
I (x) + ty)− f(λ

(1)
I (x))

t

= lim
t→0+

f(λ
(1)
I (x)− (−ty) · 1)− f(λ

(1)
I (x))

(−ty)
· (−y)

= lim
t→0+

f(λ
(1)
I (x)− (−ty) · 1)− f(λ

(1)
I (x))

(−ty)
· lim
t→0+

(−y)

= f ′(λ
(1)
I (x);−1) · (−hT∇xλ(1)

I (x))

= f ′(λ
(1)
I (x);hT∇xλ(1)

I (x)),

where the last equation follows from the positive homogeneous property of
directionally differentiable functions. On the other hand, we can also deduce
a similar result

lim
t→0+

f(λ
(1)
I (x+ th))− f(λ

(1)
I (x))

t
= f ′(λ

(1)
I (x);hT∇xλ(1)

I (x))

under the case hT∇xλ(1)
I (x) ≥ 0. Therefore, the directional differentiability

of f(λ
(1)
I (x)) with respect to x ∈ Rn is fulfilled and so does f(λ

(2)
I (x)) by

repeating the above procedure. Consequently, we obtain

(fECI )′(x;h)

= f ′(λ
(1)
I (x);hT∇xλ(1)

I (x)) · u(1)
I (x) + f ′(λ

(2)
I (x);hT∇xλ(2)

I (x)) · u(2)
I (x)

+f(λ
(1)
I (x)) · (∇xu(1)

I (x))Th+ f(λ
(2)
I (x)) · (∇xu(2)

I (x))Th,(3.2)

where the terms hT∇xλ(i)
I (x), (∇xu(i)

I (x))Th, (i = 1, 2) are defined as fol-
lows:

hT∇xλ(1)
I (x) = uTnh+

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h,

hT∇xλ(2)
I (x) = uTnh−

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h,

(∇xu(1)
I (x))Th =

1

2‖M̄ŪTn−1x‖
(Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h,

(∇xu(2)
I (x))Th = − 1

2‖M̄ŪTn−1x‖
(Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h.
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Hence, we obtain

f ′(λ
(1)
I (x);hT∇xλ(1)

I (x)) · u(1)
I (x) + f ′(λ

(2)
I (x);hT∇xλ(2)

I (x)) · u(2)
I (x)

=
1

2
·

(
f ′(λ

(1)
I (x);uTnh+

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h)

− f ′(λ(2)
I (x);uTnh−

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h)

)
·
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖

+
1

2
·

(
f ′(λ

(1)
I (x);uTnh+

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h)

+ f ′(λ
(2)
I (x);uTnh−

1

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h)

)
· un(3.3)

and

f(λ
(1)
I (x)) · (∇xu(1)

I (x))Th+ f(λ
(2)
I (x)) · (∇xu(2)

I (x))Th

=
f(λ

(1)
I (x))− f(λ

(2)
I (x))

2‖M̄ŪTn−1x‖
· (Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h

=
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ(2)

I (x)
· (Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h,(3.4)

where the last equation uses the relation λ
(1)
I (x) − λ(2)

I (x) = 2‖M̄ŪTn−1x‖.
From (3.2), we can rewrite (fECI )′(x;h) in a more compact form as below:

(fECI )′(x;h)

= f ′(λ
(1)
I (x);hT∇xλ(1)

I (x)) · u(1)
I (x) + f ′(λ

(2)
I (x);hT∇xλ(2)

I (x)) · u(2)
I (x)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ(2)

I (x)
· (Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h.(3.5)

Case (b): If ŪTn−1x = 0, then we have

fECI (x) = f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x),

where the scalars λ
(1)
I (x), λ

(2)
I (x) and the vectors u

(1)
I (x), u

(2)
I (x) are given

by

λ
(1)
I (x) = uTnx, λ

(2)
I (x) = uTnx,

u
(1)
I (x) = 1

2 ·
(
Ūn−1w
‖M̄w‖ + un

)
, u

(2)
I (x) = 1

2 ·
(
− Ūn−1w
‖M̄w‖ + un

)
,

where w is any given nonzero vector in Rn−1. If ŪTn−1h 6= 0, then ŪTn−1(x+

th) 6= 0 and fECI (x+ th) has the following decomposition

fECI (x+ th) = f(λ
(1)
I (x+ th)) · u(1)

I (x+ th) + f(λ
(2)
I (x+ th)) · u(2)

I (x+ th),



12 Y. LU AND J.S. CHEN

where the scalars λ
(1)
I (x+th), λ

(2)
I (x+th) and the vectors u

(1)
I (x+th), u

(2)
I (x+

th) satisfy the following relations

λ
(1)
I (x+ th) = uTn (x+ th) + ‖M̄ŪTn−1(x+ th)‖ = λ

(1)
I (x) + tλ

(1)
I (h),

λ
(2)
I (x+ th) = uTn (x+ th)− ‖M̄ŪTn−1(x+ th)‖ = λ

(2)
I (x) + tλ

(2)
I (h),

u
(1)
I (x+ th) =

1

2
·

(
Ūn−1Ū

T
n−1(x+ th)

‖M̄ŪTn−1(x+ th)‖
+ un

)
:= u

(1)
I (h),

u
(1)
I (x+ th) =

1

2
·

(
−
Ūn−1Ū

T
n−1(x+ th)

‖M̄ŪTn−1(x+ th)‖
+ un

)
:= u

(2)
I (h).

In addition, if we choose w = ŪTn−1h, then u
(1)
I (x) = u

(1)
I (x + th) = u

(1)
I (h)

and u
(2)
I (x) = u

(2)
I (x+ th) = u

(2)
I (h), which show that

fECI (x+ th)− fECI (x)

t

=
f(λ

(1)
I (x) + tλ

(1)
I (h))− f(λ

(1)
I (x))

t
· u(1)

I (h)

+
f(λ

(2)
I (x) + tλ

(2)
I (h))− f(λ

(2)
I (x))

t
· u(2)

I (h).

Therefore, the following relation is fulfilled under the directionally differen-

tiability of f at λ
(i)
I (x) (i = 1, 2):

(3.6)

(fECI )′(x;h) = f ′(λ
(1)
I (x);λ

(1)
I (h)) · u(1)

I (h) + f ′(λ
(2)
I (x);λ

(2)
I (h)) · u(2)

I (h).

On the other hand, if ŪTn−1h = 0, then ŪTn−1(x + th) = 0. In this case, we
know

fECI (x+ th) = f(λ
(1)
I (x+ th)) · u(1)

I (x+ th) + f(λ
(2)
I (x+ th)) · u(2)

I (x+ th),

where the scalars λ
(1)
I (x+th), λ

(2)
I (x+th) and the vectors u

(1)
I (x+th), u

(2)
I (x+

th) now can be rewritten as follows:

λ
(1)
I (x+ th) = uTn (x+ th) = λ

(1)
I (x) + tλ

(1)
I (h),

λ
(2)
I (x+ th) = uTn (x+ th) = λ

(2)
I (x) + tλ

(2)
I (h),

u
(1)
I (x+ th) =

1

2
·
(
Ūn−1η

‖M̄η‖
+ un

)
:= u

(1)
I ,

u
(1)
I (x+ th) =

1

2
·
(
− Ūn−1η

‖M̄η‖
+ un

)
:= u

(2)
I ,

where η is any given nonzero vector in Rn−1. In addition, if we choose

w = η 6= 0, then u
(1)
I (x) = u

(1)
I (x+ th) = u

(1)
I , u

(2)
I (x) = u

(2)
I (x+ th) = u

(2)
I .

Similarly, we have

(3.7) (fECI )′(x;h) = f ′(λ
(1)
I (x);λ

(1)
I (h)) · u(1)

I + f ′(λ
(2)
I (x);λ

(2)
I (h)) · u(2)

I .
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In summary, we show that fECI is directionally differentiable at x ∈ Rn with

spectral values λ
(i)
I (x) (i = 1, 2).

(b) ⇒ (a) The proof for this direction is trivial by adapting the arguments
for [5, Proposition 3]. �

Theorem 3.3 (Differentiable). For any given function f : R → R, let
fECI be its corresponding cone function defined as in (1.6). Then, the fol-
lowing statements are equivalent to each other.

(a) f is differentiable at λ
(i)
I (x) (i = 1, 2).

(b) fECI is differentiable at x ∈ Rn with spectral values λ
(i)
I (x) (i = 1, 2).

Moreover, the corresponding Jacobian of fECI at x is defined as follows:

DfECI (x)

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (x))− f ′(λ(2)

I (x))

λ
(1)
I (x)− λ(2)

I (x)
(xuTn )

+2 ·
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

(λ
(1)
I (x)− λ(2)

I (x))2
(xxT )(Ūn−1M̄

T M̄ŪTn−1)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ(2)

I (x)

(
In − 4 ·

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

(λ
(1)
I (x)− λ(2)

I (x))2

)]

+(unu
T
n )

[
f ′(λ

(1)
I (x))− f ′(λ(2)

I (x))

λ
(1)
I (x)− λ(2)

I (x)
(unx

T )(Ūn−1M̄
T M̄ŪTn−1)

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

2
In

]
(3.8)

if ŪTn−1x 6= 0; otherwise,

(3.9) DfECI (x) = f ′(uTnx)In.

Proof. (a) ⇒ (b) The proof for this direction can be adapted from Theo-
rem 3.2, in which we only need to use “differentiable” to replace “direction-

ally differentiable”. At the same time, we know that f ′(λ
(i)
I (x), ·) (i = 1, 2)

are linear, in other words,

(3.10) f ′(λ
(i)
I (x), a+ b) = f ′(λ

(i)
I (x))a+ f ′(λ

(i)
I (x))b, ∀a, b ∈ R,

since f is differentiable at λ
(i)
I (x) (i = 1, 2).

Next, the remaining part will be verified under the following two cases:
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Case (a): If ŪTn−1x 6= 0, according to the relations (3.3)-(3.5) and (3.10),
then we have

(fECI )′(x;h)

=
1

2

[
(f ′(λ

(1)
I (x))− f ′(λ(2)

I (x)))uTnh

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h

]
Ūn−1Ū

T
n−1x

‖M̄ŪTn−1x‖

+
1

2

[
(f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x)))uTnh

+
f ′(λ

(1)
I (x))− f ′(λ(2)

I (x))

‖M̄ŪTn−1x‖
xT (Ūn−1M̄

T M̄ŪTn−1)h

]
un

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ(2)

I (x)
· (Ūn−1Ū

T
n−1)

[
In −

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

‖M̄ŪTn−1x‖2

]
h

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (x))− f ′(λ(2)

I (x))

λ
(1)
I (x)− λ(2)

I (x)
(xuTn )

+2 ·
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

(λ
(1)
I (x)− λ(2)

I (x))2
(xxT )(Ūn−1M̄

T M̄ŪTn−1)

+
f(λ

(1)
I (x))− f(λ

(2)
I (x))

λ
(1)
I (x)− λ(2)

I (x)

(
In − 4 ·

(xxT )(Ūn−1M̄
T M̄ŪTn−1)

(λ
(1)
I (x)− λ(2)

I (x))2

)]
h

+(unu
T
n )

[
f ′(λ

(1)
I (x))− f ′(λ(2)

I (x))

λ
(1)
I (x)− λ(2)

I (x)
(unx

T )(Ūn−1M̄
T M̄ŪTn−1)

+
f ′(λ

(1)
I (x)) + f ′(λ

(2)
I (x))

2
In

]
h,

where the last equation follows from the fact λ
(1)
I (x)−λ(2)

I (x) = 2‖M̄ŪTn−1x‖.
The above relation shows that (fECI )′(x;h) = DfECI (x)h, where DfECI (x)
is defined as in (3.8).
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Case (b): If ŪTn−1x = 0, then λ
(1)
I (x) = λ

(2)
I (x) = uTnx. In addition, if

ŪTn−1h 6= 0, similar to the above discussion in Case (a), we obtain

(fECI )′(x;h)

= f ′(λ
(1)
I (x))λ

(1)
I (h) · u(1)

I (h) + f ′(λ
(2)
I (x))λ

(2)
I (h) · u(2)

I (h)

= f ′(uTnx)(uTnh+ ‖M̄ŪTn−1h‖) ·
1

2

(
Ūn−1Ū

T
n−1h

‖M̄ŪTn−1h‖
+ un

)

+f ′(uTnx)(uTnh− ‖M̄ŪTn−1h‖) ·
1

2

(
−
Ūn−1Ū

T
n−1h

‖M̄ŪTn−1h‖
+ un

)
;

otherwise, we have

(fECI )′(x;h)

= f ′(λ
(1)
I (x))λ

(1)
I (h) · u(1)

I + f ′(λ
(2)
I (x))λ

(2)
I (h) · u(2)

I

= f ′(uTnx)(uTnh) · 1

2

(
Ūn−1η

‖M̄η‖
+ un

)
+ f ′(uTnx)(uTnh) · 1

2

(
− Ūn−1η

‖M̄η‖
+ un

)
.

By direct calculation, in both cases the following relations hold:

(fECI )′(x;h) = f ′(uTnx)(unu
T
n + Ūn−1Ū

T
n−1)h = f ′(uTnx)Inh,

where the last equation uses the fact unu
T
n + Ūn−1Ū

T
n−1 = In. Therefore, the

relation (3.9) is fulfilled under this case.

(b) ⇒ (a) Let fECI be differentiable at x ∈ Rn with spectral values λ
(i)
I (x)

(i = 1, 2). By contradiction, without loss of generality, assume that f is not

differentiable at λ
(1)
I (x), the following limits

lim
t→0+

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
,

lim
t→0−

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t

either are unequal or one of them does not exist. Now, we choose

x = λ
(1)
I (x) · u(1)

I (x) + λ
(2)
I (x) · u(2)

I (x),

h = 1 · u(1)
I (x) + 0 · u(2)

I (x).

Then, we know x+ th = (λ
(1)
I (x)+ t) ·u(1)

I (x)+λ
(2)
I (x) ·u(2)

I (x) and fECI (x+

th) = f(λ
(1)
I (x) + t) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x), which implies

lim
t→0+

fECI (x+ th)− fECI (x)

t
= lim

t→0+

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
· u(1)

I (x),

lim
t→0−

fECI (x+ th)− fECI (x)

t
= lim

t→0−

f(λ
(1)
I (x) + t)− f(λ

(1)
I (x))

t
· u(1)

I (x).
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It follows that these two limits either are unequal or one of them does not
exist, which contradicts with the assumption that fECI is differentiable at
x ∈ Rn.

Theorem 3.4 (Continuously Differentiable). For any given function
f : R → R, let fECI be its corresponding cone function defined as in (1.6).
Then, the following statements are equivalent to each other.

(a) f is continuously differentiable at λ
(i)
I (x) (i = 1, 2).

(b) fECI is continuously differentiable at x ∈ Rn with spectral values

λ
(i)
I (x) (i = 1, 2).

Proof. (a) ⇒ (b) Suppose f is continuously differentiable at λ
(i)
I (x) (i =

1, 2). If ŪTn−1x 6= 0, it follows from (3.8) that DfECI is continuous at x ∈ Rn.

We only need to verify that DfECI is continuous at every x ∈ Rn with
ŪTn−1x = 0. In this case, we know

(3.11) λ
(1)
I (x) = λ

(2)
I (x) = uTnx.

Let yν be any sequence converging to x. If ŪTn−1y
ν = 0, from (3.9) we obtain

(3.12) lim
yν→x,ŪTn−1y

ν=0
DfECI (yν) = lim

yν→x,ŪTn−1y
ν=0

f ′(uT yν)In = DfECI (x);

otherwise, i.e., ŪTn−1y
ν 6= 0. According to the relation (3.8), we have

DfECI (yν)

= (Ūn−1Ū
T
n−1)

[
f ′(λ

(1)
I (yν))− f ′(λ(2)

I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)
(yνuTn )

+2 ·
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

(λ
(1)
I (yν)− λ(2)

I (yν))2
(yν(yν)T )(Ūn−1M̄

T M̄ŪTn−1)

+
f(λ

(1)
I (yν))− f(λ

(2)
I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)

(
In − 4 ·

(yν(yν)T )(Ūn−1M̄
T M̄ŪTn−1)

(λ
(1)
I (yν)− λ(2)

I (yν))2

)]

+(unu
T
n )

[
f ′(λ

(1)
I (yν))− f ′(λ(2)

I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)
(un(yν)T )(Ūn−1M̄

T M̄ŪTn−1)

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]
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In addition, the following relation holds when yν → x and ŪTn−1y
ν 6= 0:

lim
yν→x,ŪTn−1y

ν 6=0

f ′(λ
(1)
I (yν))− f ′(λ(2)

I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)
(Ūn−1Ū

T
n−1)(yνuTn )

= lim
yν→x,ŪTn−1y

ν 6=0

f ′(λ
(1)
I (yν))− f ′(λ(2)

I (yν))

2
(Ūn−1M̄

−1)
M̄ŪTn−1y

ν

‖M̄ŪTn−1y
ν‖
uTn

= 0,

where the last equation follows from the differentiability of f at λ
(i)
I (x),

f ′(λ
(i)
I (yν)) → f ′(λ

(i)
I (x)) (i = 1, 2), λ

(1)
I (yν) − λ

(2)
I (yν) = 2‖M̄ŪTn−1y

ν‖,
M̄ŪTn−1y

ν

‖M̄ŪTn−1y
ν‖

is bounded and (3.11). For simplicity, we assume that

lim
yν→x,ŪTn−1y

ν 6=0

M̄ŪTn−1y
ν

‖M̄ŪTn−1y
ν‖
→ ξ ∈ Rn−1 with ‖ξ‖ = 1.

Similarly, we obtain

lim
yν→x,ŪTn−1y

ν 6=0

[
2 ·

f ′(λ
(1)
I (yν)) + f ′(λ

(2)
I (yν))

(λ
(1)
I (yν)− λ(2)

I (yν))2

· (Ūn−1Ū
T
n−1)(yν(yν)T )(Ūn−1M̄

T M̄ŪTn−1)
]

= f ′(uTnx)Ūn−1M̄
−1ξξT M̄ŪTn−1,

lim
yν→x,ŪTn−1y

ν 6=0

[
f(λ

(1)
I (yν))− f(λ

(2)
I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)

· (Ūn−1Ū
T
n−1)

(
In − 4 ·

(yν(yν)T )(Ūn−1M̄
T M̄ŪTn−1)

(λ
(1)
I (yν)− λ(2)

I (yν))2

)]
= f ′(uTnx)Ūn−1Ū

T
n−1 − f ′(uTnx)Ūn−1M̄

−1ξξT M̄ŪTn−1,

lim
yν→x,ŪTn−1y

ν 6=0
(unu

T
n )

[
f ′(λ

(1)
I (yν))− f ′(λ(2)

I (yν))

λ
(1)
I (yν)− λ(2)

I (yν)
(un(yν)T )(Ūn−1M̄

T M̄ŪTn−1)

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]

= lim
yν→x,ŪTn−1y

ν 6=0
(unu

T
n )

f ′(λ(1)
I (yν))− f ′(λ(2)

I (yν))

2
un

(
M̄ŪTn−1y

ν

‖M̄ŪTn−1y
ν‖

)T
M̄ŪTn−1

+
f ′(λ

(1)
I (yν)) + f ′(λ

(2)
I (yν))

2
In

]
= f ′(uTnx)unu

T
n .
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Summing up these equations, we obtain

lim
yν→x,ŪTn−1y

ν 6=0
DfECI (yν) = f ′(uTnx)(unu

T
n+Ūn−1Ū

T
n−1) = f ′(uTnx)In = DfECI (x).

This together with (3.12) imply that DfECI is continuous at every x ∈ Rn
with ŪTn−1x = 0.

(b) ⇒ (a) Suppose fECI is continuously differentiable at x ∈ Rn with spec-

tral values λ
(i)
I (x) (i = 1, 2). From Theorem 3.3, f is differentiable at the

neighborhoods around λ
(i)
I (x) (i = 1, 2). If ŪTn−1x = 0, then

(3.13) λ
(1)
I (x) = λ

(2)
I (x) = uTnx, DfECI (x) = f ′(uTnx)In.

For any h ∈ Rn−1 and ŪTn−1h = 0, then ŪTn−1(x + h) = 0 and hence

DfECI (x + h) = f ′(uTn (x + h))In. Since DfECI (x) is continuous at x, then
limh→0DfECI (x + h) = DfECI (x), which implies limh→0 f

′(uTn (x + h)) =

f ′(uTnx). This together with (3.13) show that f ′(x) is continuous at λ
(i)
I (x)

(i = 1, 2). On the other hand, similar to the one for [5, Proposition
5], through adapting its proof, the same result is also fulfilled under this
case. �

4. Examples

According to Theorem 1.1, in this section we investigate on some proper-
ties of three special cases for ellipsoidal cone in the following examples.

Example 4.1. Consider the second-order cone

Kn :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖x̄‖ ≤ xn
}
.

In this case, we know

Q =

[
In−1 0

0 −1

]
, Ūn−1 = Ēn−1, un = en, M̄ = In−1, λn = −1,

where Ēn−1 := [e1, e2, · · · , en−1] ∈ Rn×(n−1). With respect to the second-
order cone Kn, we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)

I (x) + λ
(2)
I (x) · u(2)

I (x)

with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.1)

λ
(i)
I (x) = xn + (−1)i+1‖x̄n−1‖,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

‖x̄n−1‖
1

 if x̄n−1 6= 0,

1
2

[
(−1)i+1 w

‖w‖
1

]
if x̄n−1 = 0,

where w is any given nonzero vector in Rn−1. It is easy to see that the above
decomposition reduces to the classical decomposition expression associated
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with the second-order cone [5, 11]. Let f : R→ R be a scalar function, the
corresponding second-order cone function is given by

fsoc(x) := f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x),

where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.1). Similar to the above

theorems, we can obtain the following relations between f and fsoc, which
is also found in [5, Section 5].

Theorem 4.2 (Second-order Cone Case). For any given function f :

R→ R and x ∈ Rn, let λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.1). The

following statements hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is continuous

at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is

directionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fsoc is differen-

tiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f soc is

continuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

Example 4.3. Consider the circular cone

Lθ :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖x̄n−1‖ ≤ xn tan θ
}

In this case, we know

Q =

[
In−1 0

0 − tan2 θ

]
, Ūn−1 = Ēn−1, un = en, M̄ = In−1, λn = − tan2 θ.

With respect to the circular cone Lθ, we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)

I (x) + λ
(2)
I (x) · u(2)

I (x)

with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.2)

λ
(i)
I (x) = xn + (−1)i+1 cot θ‖x̄n−1‖,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

cot θ‖x̄n−1‖
1

 if x̄n−1 6= 0,

1
2

[
(−1)i+1 w

cot θ‖w‖
1

]
if x̄n−1 = 0,

where w is any given nonzero vector in Rn−1. Notice that the above decom-
position is different with the existing decomposition expression associated
with the circular cone, see [24, Theorem 3.1] for more details. Let f : R→ R
be a scalar function, the corresponding circular cone function is given by

f circ(x) := f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x),
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where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.2). Consequently, we

can also obtain the similar relations between f and f cir in the following
theorem.

Theorem 4.4 (Circular Cone Case). For any given function f : R→ R
and x ∈ Rn, let λ

(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.2). The following

statements hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is continuous

at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ

is directionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ is differen-

tiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if f circ

is continuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

Example 4.5. Consider the elliptic cone

KnM :=
{

(x̄n−1, xn) ∈ Rn−1 × R | ‖Mx̄n−1‖ ≤ xn
}
.

In this case, we know

Q =

[
MTM 0

0 −1

]
, Ūn−1 =

[
Ūn−1,n−1

0

]
, un = en,

M̄ = (ŪTn−1,n−1M
TMŪn−1,n−1)1/2, λn = −1,

whereM is any nonsingular matrix of order n−1 and Ūn−1,n−1 ∈ R(n−1)×(n−1)

is an orthogonal matrix satisfying the condition Ūn−1,n−1M̄
T M̄ŪTn−1,n−1 =

MTM . Therefore, we obtain

(M̄ŪTn−1x)T M̄ŪTn−1x = xT Ūn−1Ū
T
n−1,n−1M

TMŪn−1,n−1Ū
T
n−1x = x̄Tn−1M

TMx̄n−1,

(M̄−1ŪTn−1x)T M̄−1ŪTn−1x = xT Ūn−1Ū
T
n−1,n−1M

TMŪn−1,n−1Ū
T
n−1x = x̄Tn−1M

TMx̄n−1,

which show that ‖M̄ŪTn−1x‖ = ‖Mx̄n−1‖ and ‖M̄−1ŪTn−1x‖ = ‖(M−1)T x̄n−1‖.
If we set w := ŪTn−1,n−1η, then η 6= 0 and Ūn−1w = (η, 0) ∈ Rn−1 ×R, since

w 6= 0 and the orthogonal property of Ūn−1.n−1. Moreover, by simple calcu-
lation, we also obtain

(M̄w)T M̄w = wT ŪTn−1,n−1M
TMŪn−1,n−1w = ηTMTMη,

(M̄−1w)T M̄−1w = wT ŪTn−1,n−1M
−1(MT )−1Ūn−1,n−1w = ηT ((M−1)T )T (M−1)T η,

therefore we have ‖M̄w‖ = ‖Mη‖ and ‖M̄−1w‖ = ‖(M−1)T η‖. With re-
spect to the elliptic cone KnM , we can decompose x ∈ Rn as

x = λ
(1)
I (x) · u(1)

I (x) + λ
(2)
I (x) · u(2)

I (x)
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with λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) given by

(4.3)

λ
(i)
I (x) = xn + (−1)i+1‖Mx̄n−1‖,

u
(i)
I (x) =


1
2

 (−1)i+1 x̄n−1

‖Mx̄n−1‖
1

 if x̄n−1 6= 0,

1
2

[
(−1)i+1 η

‖Mη‖
1

]
if x̄n−1 = 0,

where η is any given nonzero vector in Rn−1. Again, let f : R → R be a
scalar function, the corresponding elliptic cone function is given by

fell(x) := f(λ
(1)
I (x)) · u(1)

I (x) + f(λ
(2)
I (x)) · u(2)

I (x),

where λ
(i)
I (x), u

(i)
I (x) (i = 1, 2) are defined as in (4.3). At the same time,

the relations between f and fell are fulfilled in the following theorem.

Theorem 4.6 (Elliptic Cone Case). For any given function f : R → R
and x ∈ Rn, let λ

(i)
I (x), u

(i)
I (x) (i = 1, 2) be defined as in (4.3). The following

statements hold:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is continuous at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is

directionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is differentiable

at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fell is

continuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

5. Concluding remarks

In this paper, we introduce a symmetric type of ellipsoidal cone func-
tion and have proved the underline results of this vector-valued function as
follows:

(a) f is continuous at λ
(1)
I (x), λ

(2)
I (x) if and only if fECI is continuous at

x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(b) f is directionally differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fECI is

directionally differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(c) f is differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fECI is differentiable

at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).

(d) f is continuously differentiable at λ
(1)
I (x), λ

(2)
I (x) if and only if fECI is

continuously differentiable at x ∈ Rn with spectral values λ
(1)
I (x), λ

(2)
I (x).
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We believe these results are useful for designing smooth numerical algorithms
for solving ellipsoidal cone programming problems. A potential application
is to analyze the following ellipsoidal cone complementarity problems

x ∈ KE , y ∈ (KE)∗〈·,·〉, 〈x, y〉 = 0, F (x, y, ζ) = 0,

where F : Rn × Rn × Rl is a continuously differentiable mapping, which is
similar to its special case under the second-order cone setting [11]. We leave
further discussion on this topic as our future work.
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