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ABSTRACT

In this paper, we study the second-order optimality conditions for a class of circular
conic optimization problem. First, the explicit expressions of the tangent cone and
the second-order tangent set for a given circular cone are derived. Then, we establish
the closed-form formulation of critical cone and calculate the “sigma” term of the
aforementioned optimization problem. At last, in light of tools of variational analysis,
we present the associated no gap second-order optimality conditions. Compared to
analogous results in the literature, our approach is intuitive and straightforward,
which can be manipulated and verified. An example is illustrated to this end.
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1. Introduction

Consider the following general circular conic optimization problem

min f(z)
s.t. h(x)=0,
9((56)) <0, M

(x

Wheref:R”—>R,h:R”—>Rl,g:R”—>Rm,G§:R”%R,GQ:R”%RS’?_I
(t=1,2,---,J) are assumed to be twice continuously differentiable. Here Ly, denotes
a circular cone in R* given by

~—

(Gi(x),Gh(x)) € Loy, i=1,2,--,,

—_

Lo, = {(z1,22) € R x R* | ||22|| < z1tand; } (2)

with 6; being its half-aperture angle and 6; € (0, 7). From definition, it is clear that
L= is the set of second-order cone K.
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During the past decade, optimization problems associated with circular conic con-
straints have become an important type of conic programming problems, which is
used to modelize engineering problems. In particular, when dealing with the optimal
grasping manipulation problems for multi-fingered robots [14], the normal force of the
ith finger u;1 and the associated another forces u;o, u;3 satisfy the following condition

H(ui27 ul3)H < HU;1,

where || - || represents the Euclidean norm defined in R™ and p denotes the friction
that depends on the angle 0. If y = tan6f and 6 # 7, then the above problem is a
typical circular cone constrained problem. At the same time, many researchers have
paid attention to theoretical analysis and algorithm design for circular conic programs.
Recently, some fundamental results including the spectral factorization and the met-
ric projection onto a given circular cone Ly are established in [29,30,33]. On the other
hand, due to the non-self duality of circular cones, there exist very few algorithms
for dealing with circular conic programs. More specifically, some algorithms including
prime-dual interior-point algorithms and smoothing Newton algorithm have been pro-
posed for circular conic programming problems, see [1,2,7]. In addition, for circular
conic complementarity problems, some merit functions are constructed in [19].

From theoretical aspect of optimization, variational geometries including contingent
cone, inner tangent cone, outer second-order tangent set and inner second-order tan-
gent set are crucial to establishing optimality conditions [25-27]. Generally speaking,
there have been two technical ways to obtain the aforementioned variational geome-
tries regrading circular cone Ly. The first one follows from the methodology proposed
by Zhou and Chen in their article [29], which depends on the relationship between the
circular cone Ly and the second-order cone K¢, that is,

x::{gl}eﬁg — [tage ?H””l]e/c% 3)

The other approach is through differential properties of vector-valued functions associ-
ated with circular cones [18,31,32,35,36], in which the following circular cone function

£ (@) = fOu(@)ul) + fa(@)ul?,

is employed. Here f : R — R is a given real-valued function and =z = (z1,x3) €
R x R*~! has the spectral decomposition given by

z = M (2)ull) + g (z)ul?,

where
M(z) =z — ||za]| cot 6,  Aa(x) := 21 + ||z2| tan b
and
@ 1 10 1
U = —
z 1+cot29 | 0 cotf-I —X92
@ 1 10 1
U = — _
v 1+tan26 | 0 tanf -1 T



with @y 1= xo/||m2|| if 2 # 0 and T3 being any vector w € R*~! satisfying ||w|| = 1 if
29 = 0. The tangent cone and the second-order tangent set of Ly can be characterized
by the directional derivatives of circular cone functions, see [36, Section 4] for more
details. Compared to the above two methods, in this paper, we present an alternative
way to obtain the explicit forms of the tangent cone and the second-order tangent set
of Ly, which only relies on basic definitions of its variational geometries and an useful
lemma about how to calculate these results under the case for the level set of a class
of Lipschitz continuous convex functions (see Lemma 2.2 below). In other words, our
approach is intuitive and straightforward, which can be manipulated and verified. An
example is illustrated to this end.

With the development of modern optimization, second-order optimality theory plays
an important role in perturbation analysis [3,5,6,28], stability analysis [20-23] and
numerical algorithm design [4]. Among these topics, the characterization of no gap
second-order optimality condition is a very important issue, which is closely related to
the quadratic growth condition. It was shown by Drusvyatskiy and Lewis [8] recently
that the quadratic growth condition has a strongly impact on establishing the metric
subregularity and calmness of set-valued mappings, the existence of error bounds and
convergence rates of numerical algorithms. From different views, the metric subregu-
larity and the calmness of set-valued mappings are the core concepts in nonsmooth
calculus and perturbation analysis of variational problems. We refer the readers to
the monographs by Dontchev and Rockafellar [9], Bonnans and Shapiro [6] and ref-
erences therein for a comprehensive study on both theory and applications of related
subjects [10,11,13,15,24]. However, to our best knowledge, no results about the no gap
second-order optimality conditions for the general circular conic optimization problem
(1) have been reported!. Hence, the purpose of this paper aims to fill this gap and the
contributions of our research can be summarized as follows.

(a) We propose an alternative way to derive the variational geometries of a given
circular cone Ly.

(b) We present explicit forms of the critical cone and the “sigma” term for the given
circular conic program (1).

(c) We establish the equivalent relationship between the no gap second-order opti-
mality conditions and the quadratic growth condition of (1).

The rest of this paper is organized as follows. In Section 2, we recall some frequently
used concepts from variational analysis [25,27] and explore the variational geometries
(including the tangent cone and the second-order tangent set) of a given circular cone.
In Section 3, we first present the closed-form of the critical cone and then calculate the
“sigma” term of (1) directly. After these preparations, we state the no gap second-order
optimality conditions for the given circular conic optimization problem. Moreover, we
illustrate an example to verify these results in Section 4. Finally, some concluding
remarks are drawn in Section 5.

1While finalizing a first version of this work, the authors became aware of an important observation made in
Bonnans et al. [5], mainly focus on perturbation analysis on second-order cone programming. One possible way
to obtain the results discussed in this paper is to transform the circular conic constraints to the second-order
cone constraints via the relation (3) and then adapt the conclusions based on the framework of second-order
cone programming [5]. However, in this paper we adopt a constructive way to deal with our mentioned issues.
We have the following two reasons: (a) Through these qualitative analysis, we can learn more details on
the structure of circular cone, which plays a crucial role on developing optimization theory for nonsymmetric
cones. (b) The parameters in our discussion have an important effect on establishing the associated error bound
analysis as Drusvyatskiy and Lewis [8] and consequently analyzing convergence rate of numerical algorithms
such as proximal point method and its variants.



1.1. Notation and terminology

In what follows, we use dist(z, 2) to denote the distance between the vector « and the
given set 2 C R", that is, dist(x, Q) := inf.cq ||z — 2||. £} is the dual cone of a given
circular cone Ly, which is defined by £ := {v € R*|vlz > 0,Vz € Ly}. From [29,
Theorem 2.1], the structure of £} can be described as

E; = {(.T1,372) eER x R*! ’ H(EQ” < x1 cot 9} = ,Cg_g.

The interior and the boundary of Ly are denoted by int Ly and bd Ly, respective-
ly. In addition, we let ker (A) and range (A) denote the kernel and the range of A,
respectively, i.e.,

ker (A) := {z| Az =0}, range(A):= {y|Ix such that y = Az}.

For a lower semicontinuous function % : R"™ — R, the directional derivative of ¥ at x
along the direction h is denoted by v’(x; h), which is given by

ooy i L Th) — ()
U (x;h) = ltlf(l)l ” .

If ¢ is directionally differentiable at = at every direction h, we say that 1 is directionally
differentiable at x. Moreover, the parabolic second-order directional derivative of ) at

x is defined by

" . w(x +th+ lt2w) - ¢($) - ¢/($a h)
' (x; hyw) = lgf{)l 2 %t2

2. Basic tools for the circular cone

As mentioned, we recall some concepts from variational analysis that will be used
for subsequent analysis. First, we review the definitions of the tangent cone and the
second-order tangent set for a given closed set 2 C R", which come from Bonnans
and Shaprio’s monograph [6, Definition 2.54 and Definition 3.28].

Definition 2.1. Let 2 C R" be a given closed set and = € Q. The (Bouligand-Severi)
tangent/contingent cone to Q at x € Q is defined by

Ta(z) :=={h € R™|3t, | 0,dist(x + t,h,Q) = o(ty)}.

Similarly, the inner tangent cone to 2 at « € ) is given in the form of

To(z) == {h € R™|dist(x + th,Q) = o(t),t > 0} .

In addition, if h € To(x), the outer second-order tangent set to Q at x along the
direction A is defined as

1
T3 (x, h) = {w € R™|Jtn L 0, dist(z + tnh + it%w, Q) = o(t%)} .



Similarly, if h € 7}’2(3:), the inner second-order tangent set to {2 at x along the direction
h is given by

: 1
ToP (2, h) = {w € R"™ | dist(z + th + 5t2w,Q) = o(t?),t > 0} :

Let © C R™ be a closed convex set and z € Q. It follows from [6, Section 2.2.4]
that the contingent cone Tq(z) coincides with the inner tangent cone 74 (z), that is,
Ta(z) = T4(z). In addition, if the set § is second-order regular at x (see [6, Definition
3.85] for details), the following conditions hold at :

(i) T&(x, h) = TE2(x, h) for all h € To(x).
(ii) For any h € Tq(z) and for any sequence x + t,h + 3t2h € Q such that t,r, — 0
and

lim dist(r,, T (z, h)) = 0.

n—o0

Moreover, from [29, Theorem 2.8], we know that the circular cone Ly is closed and
second-order regular. Hence, in the sequel we only need to figure out the explicit forms
for the contingent cone Tz, (x) and the outer second-order tangent set 72 (x,h). To
this end, we need a technical lemma, which describes the tangent cone and the second-
order tangent set for a level set of a given convex function. We only state it without
presenting its proof because it can be found in [6, Proposition 2.61 and Proposition
3.30].

Lemma 2.2. Let ¢ : R" — R be a lower semicontinuous convez function. Consider
the associated level set Q := {x € R™|¢(z) < 0}. Suppose that 1) is Lipschitz contin-
wous at x and Y(x) = 0. In addition, there exists T € R"™ such that (Z) < 0 (Slater
condition). Then,

To(z) = {h € R™|¢'(; h) < 0}. (4)

Moreover, for a given h € R™ satisfying ¢'(x; h) = 0, the outer second-order tangent
set to 2 at x along the direction h can be described as

Ti (2, h) = {w € R™ | 4" (25 h, w) < 0}. ()

With Lemma 2.2, we are ready to express the explicit form of the tangent cone
Tr,(x) at any given z € R,

Theorem 2.3. Let x = (x1,22) € R x R*7L. Then, the tangent cone to Ly at x can
be written as

R®, if = € int Ly,
729('1‘) - ‘607 lf xr = 0,
{(hl, hg) ER x R ‘ hgxg — hix tan? 6 < 0} s if x €ebd /Ly \ {0}

Proof. The explicit form of 7z, (x) is deduced by discussing two cases.



(a) If z € int Ly or z = 0, from Definition 2.1, we immediately obtain

| R?, itz e€int Ly,
Tﬁe(:”)_{ Lo, ifz=0.

(b) If z € bd Ly \ {0}, then z; tan @ = ||z2| # 0. Using the definition of Ly as in (2),
Ly can be rewritten as

E@ = {(131,5[72) €R X RS?I | (b(ﬂf) < 0})
where ¢ : R® — R is given by ¢(z) := ||z2|| — x1tan6. It is easy to verify that ¢
is continuously differentiable, Lipschitz continuous at x and the corresponding Slater

condition holds under this case. Hence, it follows from Lemma 2.2 that 7, (x) can be
described as

Te,(x) = {h € R*| ¢'(x;h) < 0}. (6)

Note that

¢'(z;h) = Vo(z)Th = [— tanf 2 }T [ i ] = hj — hytan6
’ ol ] [ he | Jaof

Applying the relation x; tan 6 = ||z2|| and (6) yield that
Teo(x) = {(h1,h2) € R x RV h3zy — hyzy tan®0 < 0} .
Thus, the proof is complete.  [J

Next theorem describes the outer second-order tangent set 7229 (z,h) at any = € R*®
and h € Tz, (z).

Theorem 2.4. Let v = (x1,72) € R x R*"! and h = (h1,hs) € Tz,(z). The outer
second-order tangent set to Ly at x along the direction h can be described as

R?, if h €intTz,(x),
7-629(‘%7 h) = 720(]7“)7 if x = 07
=, if x € bdLy\ {0}, h€bdTz,(x),

where the set Z is defined by
2= {(w1,w2) € R x R wl zy — wizy tan® 6 < hF tan? 6 — ||h2||2} .

Proof. Again, we derive the explicit form of 7'39 (z, h) by discussing two cases.
(a) If h € int T, or x = 0, from Definition 2.1, we have

o [R ifheintTs,
T‘ie(x’h)_{ Tz,(h), if = 0.

(b) If x € bd Ly \ {0} and h € bd T, (x), we have

0 # ||x2|| = z1tan6, hizy — hixitan®6 = 0. (7)



Then, it follows from Lemma 2.2 that the second-order tangent set ’Tgﬂ (x,h) has the
form of

Tz, (@, h) = {w € R* | ¢ (2 h, w) < 0, (8)
where ¢(x) := ||x2|| — z1 tan . Note that

¢ (x;h,w)
= Voé(z)Tw+ hTV2p(z)h

o 1" [w 7|0 0 h
— | _tano T2 1 hy h !
[ o sz\l] [ wa ] Tk el [ 0 Hxlznfs—l - ||x‘1\\3‘”2”3§ ] [ ha ]

b el ()
|22l |2l |23
1 2 [h2]*  (hia1 tan® 6)?
= ——(w;x9 —wixitan©l) + —
Jaal] (4272 RO T T (o bam B
1 T 9 | ha|? h%tan29
= ——(w; x9 —wixitan©l) + —
Hx2||( 27 i ) [|2|] x1tanf
1
= m(w%wz — wyzq tan? 0 + ||ha|® — A3 tan?6),

where the last two equalities are due to (7). Hence, under this case, the above expres-
sion together with (8) imply that

7226(:%, h) = { (w1, ws2) € R X R wdzg — wizy tan? 0 < hitan? 0 — Hh2||2} .
Thus, the proof is complete. [

To end this section, we introduce an useful complementarity property of the circular
cone Ly, which plays a major role in the analysis of the Karush-Kuhn-Tucker (KKT)
condition for (1).

Theorem 2.5. For any x = (v1,22) and y = (y1,y2) in R x R*~L. The system
rEL) yeLy, xly=0

has at least one solution if and only if one of the following cases holds.

(a) x =05, y€ Ly.

(b) x eint L, y=0,.

(c) zebdly\{0s}, y=0,.

(d) xebdLy\{0s}, yebdLy)\ {0}, and there exists o > 0 such that x = o(Hy),

where

tan? 6 0
wefe )

Proof. The “sufficiency” direction is obvious from the definitions of £y and Lj. To
prove the “necessity” direction, suppose that = € L}, y € Ly, 2Ty = 0. Then, from
definitions, the cases (a)-(c) are trivial and we only need to verify the case (d). Taking



x € bdLj\ {0}, y € bdLg \ {0s}, we have x5 # 0,1, y2 # 0s_1, ||22|| = x1cotd
and ||y2|| = y1tanf. In addition, the relation 27y = 0 yields that x1y1 + 22ys = 0,
which implies —zdys = |lz2| - |ly2|| and there exists ¢ > 0 such that zo = —oys,

z1y1 = olly2]|?, y1 # 0 and

lly=12 2 2
SR B T I B _ | yitan 0 _ | tan 0 0 Y1 — o(Hy),
Z2 —1Y9 —Y2 0 —ds—1 Y2
where the third equality is due to ||y2|| = y1 tan§. Thus, the proof is complete. [

3. Optimality conditions

This section aims to establish optimality conditions for the circular conic optimization
problem (1). First of all, the Lagrangian function of (1) is defined as

J

L (w3, T T2, 1Y) = f@) + ha) i+ g(a)Tn = 30 G (@), (9)
=1

where p € R, n € R™. For simplicity, we write the vectors G'(x) and I'! € R*
(¢=1,2---,J) into the following form, respectively,

CHEA S|

Let z € R"™ be a local minimizer of (1) and Robinson’s constraint qualification (RCQ)
holds at z, that is,

[ h(z) ] jh(i”) [0
9(z) J9(7) R™
0 € int G'(z) | 4 JGl(f) R — | Lo, 7
@ | | de (@) | o, |

where Jh(z),Jg(Z) and JG*(Z) denote the derivatives of h(z), g(z) and JG(x) at
z, respectively. Then, there exist i € R, 7 € R™, T € R*: (i=1,2,---,J) satisfying
the KKT condition

V. L(z; i, 7, T, T2, fJ) :0, h(i‘) =0, RT">7LgxeR™,
L; 5T L G'(z) ,

where “a L b” means that a’b = 0.

It is easy to see that the condition (10) is a special form of mathematical program-
ming with equilibrium constraints (MPEC in brief). During the past two decades,
MPECs have been drawn much attention not only in multiple applications such as
engineering design and economics but also in the theoretical analysis themselves, we
refer to the monographs [16,17] and the references therein for more details.



In the sequel, if (z;z,7, 'Y, T2, .- ,T) satisfies the above system (10), we call Z a
stationary point of (1). In addition, the set of the associated Lagrangian multipliers
A(Z) is defined by

N R TR s (z; 1,7, 0, T2, ... [ T7) satisfies
A@) = {(,u, 7,15, 15, 1) the KKT condition (10) '

0; h(Z) [ R
R™ 9(z R™
O=| Lo |, @) =] G@ |, y.=| R |. (11)
| o, | | ¢/ (@) | | R

Then, the above RCQ can be rewritten as

JG(T)R" + Ta(G(7)) = V. (12)

Analogous to [6, Definition 4.70], the constraint nondegeneracy condition of (1) at z
is defined by

JG(@)R" +1in{Ta(G(z))} =V, (13)

where lin {7q(G (%))} denotes the linearity space of Tq(G(Z)), which is the largest linear
space contained in To(G(Z)).

In order to understand the constraint nondegeneracy condition intuitively, we define
the following index sets:

I () {ilgi() =0, 7; >0, i =1,2,--- ,m},
In(z) = {ilgi(®)=0, 5 =0, i=1,2,--- ,m},
I_(z) = {i]gi(x) <0, 3, =0,i=1,2,--- ,m},
Ig(z) = {2|GZ(3—:) 1nt£9, i=1,2,---,J},
Zo(z) = {i|G'z)= =1,2,---,J},

Ba(z) = {i|Gi(z) Ebdﬁg \{0s,}, i =1,2,---, J}.

Theorem 3.1. Let T be a stationary point of (1). Then, the following conditions are
equivalent:

(a) The constraint nondegeneracy condition holds at .
(b) The vectors

jhl(fi’) , Thi(z)T,

Jg'(x)T, Z€f+( ) U In(Z),
le(i')T’Hg G'(z), i € Bg(%),
JG(z)Tel,, 1=1,2,--- 5, i € Zg(T)

are linearly independent, where egi denotes the jth column vector of the identity



matriz I, and Hp, is defined by

7—[91. — tan2 91 0
0 - Sif].
Proof. Without loss of generality, we assume that

Ig(z):={1,2,--- , i}, Za(z) := {1+1, 142, -+, Jo}, Bg(z) := {Jo+1, Jo+2,--- , J}.

It follows from Theorem 2.3 and (11) that the constraint nondegeneracy condition (13)
can be described as

Jh(z) {07} R!
Jg(z) Tr(9(2)) R™
Hielc;(a’c)j G'(z) | R" +lin Wicro@R™ = | icro@R” |, (14)
zEZc;(a: )y J G (2) Wicz(2) Lo, ez, ) R™
ZEBG jG ('i') ZEBG 729 ( ( )) HiEBG(E)RSi
where
JG () RS
o JG*(z) . RS2
Wicro@z) G (2) = :  Liere@R™ = , ;
TG (z) RSN
jGJl'H(:Z‘) RSIi+1
; TG T2 (7) N RSIi+1
zeZG z) JG ( ) = . > HieZc(:E)R fi= . )
JG2(z) Rz
[ TG () RSzt
. jGJz-‘rQ(J—?) N RSI2+1
’LGBG jG( ) = : ) HiGBG(f)R fi= . ’
JGY(z) RS
Lo, ., | Tzo,,., (G74(2)
01,42 Tz,, ., (G712 (7))
Wiz Lo, := L] Tieno) Teo, (GH(2)) = L
Lo, | Tz, (G7(2))

Notice that

lin{7Tr~(9(2))} :={n e R™|n=0,i € I.(Z) Ulp(Z)}, lin{Ly,} := {0}, i € Za(T).

10



Taking i € Bg(Z), the explicit description of Tz, (G%(z)) implies that

{7, T%) |T1(2) G} (@) tan® 0; — (Iy)" Gy (x) = 0}

o[G0 ][] o)
)

= ker(GY(z)"Hy,).

lin{7z,, (G'(2))}

Hence, the equality (14) is equivalent to

Jh(z) {0} R!
760 e, | wTe@ || we
ZEZG jGZ(i’) H’LEZG( )0 o HieZG(x)RS‘
Wic B, ()T G'(7) Wi p (ke (G (z) " Hy,) Mic gz R

By taking the orthogonal complements for both sides of the above equality, we obtain

ker [Th(z)" Tg(z)" g (@) - g6 @)T ga @) - g6 (7)T)
(N R x{neR™[ni=0,i € I_(2)} x R+ x -+ x R*%
GJQH@)) X oo X range(’H(,TJGJ (7))

-x 05, X0 -0

xrange(’HT

07,41
- 0l X 0 X OSJ 41 Sy 5J2+1 Sy* (15)

Let o= (p1,- - )T, mi € Ryi € I (z)Ulo(Z), TP € R%,i € Zg(z), pi € R,i € Bg(T)
satisfying

Jh@ et Y TJe@Tmt+ Y JIG@T+ Y TG(R)HE G (z)pi = 0.

1€l (Z)UIo(Z) 1€Zc(T) 1€Ba(T)
This together with (15) yields

) :U’:Ol) 771:07 ZEI‘f‘(‘f)UIO(i‘)u
I'"=0s, i€ Zg(x), pi=0, i€ Bg(x),

which means that the constraint nondegeneracy condition holds at Z if and only if the
vectors

Jhl(_) Jh’(ﬂ?”)Tv Jg' @), i € I.(z) U Io(2),
);

JG(z)Tel,, j—l 2,8, 1 € Zg(T), TG (2)"He,G(2), i € Ba(z)

are linearly independent. Thus, the proof is complete. [
Similar to [6, Theorem 3.9], we establish the first-order optimality condition of (1)

in the following theorem.

Theorem 3.2. Let T be a local minimizer of (1) and RCQ (12) holds at z. Then the set
A(z) is nonempty, conver and compact. Furthermore, if the constraint nondegeneracy
condition (13) holds at Z, the set A(Z) is a singleton.

11



Let Z be a stationary point of (1), the corresponding critical cone at Z is defined by

Jg( )d € Trm (g(sﬁ))
1,2

C(z):=<deR" "
JG (2)d € Tz, (G'(2)), i =

,J

If A(Z) is nonempty, then there exist i € R!, 77 € R and It e Ly (1=1,2,---,J)
such that C(Z) can be rewritten as

Jh@d 1 [ oy 1 [-r]"
Tg(z)d Trr (9()) 7
C@) =dderr| | IGN@)d | ¢ | T, (GH@) || T . (16)
| g @d | | Te @) | | T

With Theorem 2.5, the following theorem shows the explicit expression of C(z).

Theorem 3.3. Let T be a stationary point of (1), w := (fi,7,T",--- ,T'/) € RExR™ x
R X -+ X R%7 and w € A(Z). Then, the critical cone C(T) can be described as

( (jh(j)d)kzoa k:1>2’ 7l’
(Tg(z)d); =0, i€ I (7),
(Jg(z)d); <0, i € Ip(2),
C(i’) =<deR? jGj(‘i.)d € 7291 (Gj(‘i.))v F] = 08;7 ,
JGI(z)d =0, [V € ntL
JGI(z)d € Ry (Ho,IT7), TV € bd Ly \{0s,}, GI(z) =0
(JGI(z)d)TT7 =0, [V e bd L5 \{0s,}, G’ (z) € bd Ly, \ {0s,}.
(17)
where the set Ry (Hg,I7) is defined by
R+(H9jfj) = {O'Hijj |o > 0}.
Proof. From the equality (16), we have
(jh())kzoa k:1727'”7l7
C(z)=(deR"| (Tg(@)d); <0,(Tg(z)d)in; =0, ie I (z)UI(z),
JGH(z)d € Tz, (G7(2)), (TG (2)d) TV =0, j=1,2,---,J.
(18)

By the definitions of I, (Z) and Iy(Z), we notice that the equalities in the second row
of (18) are equivalent to

(Tg(@)d); =0, i€l (z),
(Jg(x)d); <0, i€ lo(z).

To proceed, we analyze the remain part of the theorem by discussing four cases:

Case (1): If IV = 0,,, then the third row of (18) becomes JG"(Z)d € Tz, (G?(Z)).
Case (2): If IV € int £ , from the KKT condition (10), then G/(z) = 0. The
explicit form of T¢, (G7(z)) defined in Theorem 2.3 implies that Te., (GI(z)) =
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From the last row of (18), we obtain JG’(Z)d € Ly,. It follows from Theorem 2.5 and
(JGH(z)d)TT7 = 0 that JGI(z)d = 0, .

Case (3): If IY € bdLj \ {0} and G’(z) = O, then g, (G'(z)) = Ly, and
JGI(z)d € Ly, N ([7)*. It follows from Theorem 2.5 that JG]( )d = 0, or there
exists o > 0 such that JGY(z)d = ocHg,I'/. Hence, we have JG’(z)d € R+(7-[9 7).
Case (4): If IV € bd £5 \ {05, }, G’(z) € bdLy, \ {0, }, we have

Tz, (G7(@)) = {(h1, ho) | g G5 (Z) — G4 (Z) tan® 6; < 0}.

Combining the above equality with the fact 7G’(z)d € T, (G (2))N(IV)* asin (18),
we obtain

(19)

From the KKT condition (10), we know (IV)"G/(z) = 0. Since IV € bd £; \ {0s,},
GI(z) € bd Ly, \ {0s,}, by the case (d) in Theorem 2.5, there exists o > 0 such that
[V = 0Hp,G¥(Z) and (JG5(7)d)' GL(T) — (TG (2)d)GY(Z) tan?@; = 0. Under this
case, the equality (19) reduces to (JG’(z)d)TT7 = 0.

From the above discussions, the conclusion holds at the given stationary point Z.
Thus, the proof is complete. ]

Next, we calculate the “sigma” term of the optimization problem (1) in the be-
low lemma, which plays an important role in describing the second-order optimality
conditions for (1).

Lemma 3.4. Let T be a stationary point of (1), w := (g, n,I't,--- ,T7) € A(z) C
REX R™ x RS x - x R®, d € C(%), and RCQ (12) holds at T. Denote the sigma
term of (1) by

T ((ﬂ’ﬁv _Fl’ Ty _fJ)a ﬁ(g(i‘)v jg(j)d)) ’

where Y (-, T3 (-, -)) means the support function of the second-order tangent set T (-, -).
Then, we have

T((/jvﬁv_fla"'7_fj)77g(g( ) jgi’ _dT ZA] 7, TV d:
where the matriz A7 (Z; fi,n,17) is defined by

A9 (. T9) ::{ o cot? 0,( TG (1) Hy, TGP (w), i GI(x) € Ly, \ {0, },

0, otherwise.

13



Proof. From the definitions of Q and G(x), we have

T (7, T, -, — T13(6(2), IG(% d)
— r(ﬂ,rgol}(h(f) h(z) )) (ﬁ?}% 9(z Jg(f)d)) (20)
+ 30 Y (-T2, (GU(@), TG (3)d))

Since d € C(z), we know that h(z) = 0; and Jh(Z)d = 0;. In addition, the def-
inition of %l}(h(j),jh(ij)d) implies that T (,u, 7”{201}( (z), Th(z)d )) = 0. For the
second part of the right-hand side of (20), it follows from [6, Remark 3.47] that
T (ﬁ,TQT(g(i),jg(i)d)) = 0. To proceed, we focus on discussing the last part of

the above explicit formulas for the “sigma” term. From Theorem 2.4, the second-order
tangent set 77, (G’(z), JG7(Z)d) has the following form:

(a) If jGj(i)dEintTgej(Gj(i')),thenTg (GY(z), TG (z)d) =

(b) If G7(z) = 0s,, then T2, (G¥(x), TG (2)d) = Tz, (T & (z)d )

(¢) If G(z) € bd Ly, \{0}, jGJ( )dedeggj(Gj( )),them722 (GY(z), TG (z)d) =
=7, where the set Z7 is defined by

(11

= {(w{,w%) ER x RS~ (“%)TG%(@) w]G{(z) tan? 0 }

< (JG(2)d)? tan? 0; — || T GL(z)d|)?

Because d € C(z), we have JG’(Z)d € T, (GI(z)) N (IY)*. Tt follows from the KKT
condition (10) that —TV € Nz, (GI(z)), where G’(z) € Ly, and Nz, (G7(z)) denotes
the normal cone of Ly, at G7(Z) in the sense of convex analysis [26], that is,

(-G - GY(z)) <0, VGI € Ly,. (21)

For any given w/ = (w],w}) € ’Tg (G9(z), JGI(z)d), there exist {t,} | 0 and
(w)® — w’ such that G’ (z) + tanJ( )d + 3t2(wi)™ € Ly,. From (21), we have
(-INT(t, TG (z)d + $t2(w/)") < 0. Furthermore, due to the fact JG/(z)d €
([7)+, one can obtain that (—IY)T(w/)" < 0. Taking n — +4oo, we deduce

[7)Twi < 0. Hence, T(—f‘j,Tg% (Gi(z), JGI(z)d)) < 0. From the definition of

(=
T2, (GU(2), JGI(2)d), if TG (2)d € int Tz, (G7(Z)), GI(Z) = 05, or TG (T)d = 0,
then 05, € T2, (G?(%), JG’(Z)d). In these cases,

T(-TY, 7’39j (GY(z), TG (%)d)) = 0.

Next, we consider the case G7(z) € bdLy, \ {0s,}, TG’ (z)d € bd Te., (G9(z)). For
simplicity, we denote T := T2 ( i(z), JG7 (z)d). Then, we have

T (-1, 77)
_ g Ty | (@) GR(E) — wiGY(Z) tan? 0, }
T T (i@ e, - |76y (@al?
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Using the KKT condition (10), we know Ly > IV 1 GI(z) € Ly,. Hence, applying
Theorem 2.5 yields that IV = 0, or IV € bd L5 \{0s,}. If the first case occurs, then

Y(-I7, T2, (G/(x), TG (2)d)) = 0.

In other case, we use the fact (d) in Theorem 2.5, there exists o > 0 such that
IV = 0Hy,G?(Z). The following facts

T € bdgj \ {0}, G(3) € bdLy, \ {0}, ()76 (2) =0

4
1

L
Gi(z)

imply that o = cot? 6;. In addition, we have
—(Djw] + () "w))
I . A
= ——L cot?0; (Ho, G’ (z))Tw?

Gi(z)
—_ . T .
- T [G@] [ 0 ][]
G (z) T Gy(=) 0 —1Is,1 wy
_ f‘{ 2 INT I (= J (= 2
- 0; ((wQ) GI(7) — w]GY(7) tan ej).
Hence, we conclude that
T (-1, 77)
¥
S EWEYY (76 @)y tan®0; — | TG @)
G (z
_ COtQGQ[JG{(:E)d] [tanQOj 0 Hj(;{(f)d]
G (z) T JGy(x)d 0 —I, 1 JGh(z)d

J
_ Gf(lf) cot? 0;dT (TG (z))T Mg, TG (7)d,
1

which implies that

T (([% UL _fl’ ) _fJ)v ﬁ(g(i‘)v jg(j)d))
J J
= > (-, 77) =d" (Z Aj(w,u,n,l“])) d,
j=1 =1

(5 o T9) { s cot? 0,(TGY (1)) Hy, TG (@), i GI(x) € bd Lo, \ {0},

0, otherwise.

Thus, the proof is complete. Il
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Since both sets R™ and Ly, (i = 1,2,---,J)) are second-order regular, similar to
[6, Theorem 3.86], we state in the following theorem that there is no gap between the
second-order necessary and second-order sufficient conditions for the general circular
conic optimization problem (1), in which we also establish the equivalent relation-
ship between the no gap second-order optimality condition and the quadratic growth
condition.

Theorem 3.5. Suppose that T is a local minimizer of (1) and RCQ (12) holds at T.
Then, the following inequality holds at any given d € C(Z),

J
sup dt | V2, L(Z; i, 7 Z (z; i, 7,T9) | d > 0.
(ﬂ7ﬁ7f17"' ,FJ)EA(E) :

Conversely, let T be a feasible solution of (1) satisfying the first-order optimality con-
ditions (10). Suppose that RCQ (12) holds at . Then, for any given d € C(Z) \ {0,},

the condition

sup da' [ v2,L(z;p,n, T, T =Y Al(z;p,7,17) | d>0

'M*

1

J

1s necessary and sufficient for the quadratic growth condition at the point T:
f(@) > f(@) +cllz— 7| Yo e NN F

for some constant ¢ > 0 and a neighborhood N of T, where F denotes the feasible set
of (1), that is,

Fi={zeR"|h(z)=0,g(z) <0, (GY(2), Gy(x)) € Lo, (i=1,2,---,J)}.

4. Example

In this section, we present an example to illustrate these results established in this
paper.

Example 4.1. Consider the following circular conic optimization problem

min 3
st. 1—a3=0,
2x9 — x% <0,

(vV3x3,2%) € Lz C R?

at the reference point z* = (0, —1,0)7 € R3.
It is not hard to see that

f(z) == a3, h(z):=1-23, g(z) = 2z9 — 23,
G(z) := (Gi(z), Ga(x)), Gi(x) := V33, Ga(z) :=
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and the Lagrangian function is given by

L(z;p,n,T) == f(z)+h(z)u+ g(z)n
w3+ (1 — a3)p + (222 — 2f)n

— (G1(z)T'1 + Ga(z)T'2)
(fx3rl +$1F2)

where 4 € R, n € Ry, I = (I'1,T'2) € R? are the associated multipliers. In addition

the KKT condition can be characterized as
—2x1n — 221’9 =0, —2xou + 2n =0,
1-+3I1 =0, 1-2%=0,
0<nLl (2xg—2?) <0,
E’ia[ll:l]L[\/gf3]e£¢.
6 2 Ty 6

By direct calculation, the corresponding multipliers are obtained

1
,U/:O, 77:0, Pl:ﬁ’ ’FQ‘S].

Next, we will verify the corresponding constraint qualifications at x*. Notice that

h(z*) =0, Jh(z*) = (0,2,0),
glz*) = —-2<0, Jg(z* ):(0 2,0),
(Gi(z*), Ga(z*)) = (0,0), TG1(z*) = (0,0,v/3), TGa(z*) = (0,0,0).

It follows from [6, Corollary 2.101] that RCQ holds at z* if there exists at least one
vector w = (w1, ws, w3)T € R3 satisfying the following system

h(z*) + Th(z*)w
g(z*) + Tg(a")w
[glg g] [ glg g]weintﬁg

It is obvious that the right-hand side of system holds at w = (0,0,1)", which says

O w2:oa
<= —1+wy <0,
ws > 0.

/\
=3

)

that RCQ holds at z*. Note that
0

0 0
T 0 , jG(J}*)Teg _ 0

Thiz)T' =12 |, JG@=")Te =
0 V3 0

are linearly dependent. From Theorem 3.1, the constraint nondegeneracy condition is
* ., which uses the

false at z*. In addition, we can verify that Theorem 3.2 holds at =

fact that the multiplier set

1
A(z™) = {(M,mf) ‘MZO, n=0,T= 75 ITo| < 1}.

is a nonempty, convex compact set.
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Finally, we analyze the corresponding critical cone and no gap second-order opti-
mality condition at the reference point x*. In this case, we have

(&%) <0, G(z*) = (0,0), T* = (\}31“2> ,

where I'5 € R satisfies the relation |I'5| < 1. It follows from Theorem 3.3 that

el = {d e R3| Th(a*)d =0, TGa")d € Ry (HT")} i Tg = 1,
{d e R?| Th(z*)d =0,TG(z*)d = 0} otherwise.

From the above definition, we obtain
C(z*) = {d = (d1,da,d3)" € R*|dy € R, da =0, d3 = 0}.

Furthermore, the Hessian matrix V2, L(x;pu,n,T') and the matrix A(z;u,n,T) in the
“sigma” term are given by

—T% 0 0 000
V2 L(z* DY =| 0 0 0| and A(SpS T =]0 0 0
0 00 000

Then, for any given d € C(z*) := {d = (d1,ds,d3)" € R?|d; € R, do =0, d3 = 0},

we have

sup d’ (V;CL(SL'*; w5 — A(z*; 05, 0%, T%)) d = sup —2d2T% = 2d2 > 0,
(=, I )eN(zr) ITs|<1

which implies that the second-order necessary condition holds at z*. Moreover, the no
gap second-order optimality condition at z* is equivalent to the conclusion that there
exist a positive constant ¢ and a feasible neighborhood N* around z* such that

x3 > c(@? + (zo 4+ 1)% + 23), Vo = (21, 22, 23)T € N™.
From this, it is not hard to find that the above inequality is true if we set ¢ = 1 and

N* = {x = ($1,$2,LE3)T € R3|SU1 =0, 9 =—1, 23 € [0, 1]}

5. Concluding remarks

In this paper, we characterize the no gap second-order optimality conditions for a
class of circular conic optimization problems. As byproducts, we present the explicit
descriptions for the critical cone and the “sigma” term of the given programs as well.
Meanwhile, we establish the equivalent form of the quadratic growth condition, which
fills the gap in the optimality theory of circular cone programming.

It should be emphasized that in this paper we develop a primal approach to deriv-
ing optimality conditions for circular cone programming problems by using tangential
approximations. In contrast, there is a dual approach to these and related issues based
on employing normal cones. For example, Zhou, Chen and Mordukhovich [34] recently
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present some calculations of normal cones and related coderivatives to the circular
cone mapping (i.e., the dual second-order constructions), in which these results were
employed to deriving second-order characterizations of crucial stability issues of vari-
ational analysis in circular cone programming. How these results can be extended to
the general case such as the circular cone programming problem (1)? We believe that
it is possible to follow the scheme of [25] and the results in [34] to answer this question.
On the other hand, our theoretical results are obtained under some assumptions such
as the Robinson constraint qualification or the constraint nondegeneracy condition.
However, in the recent development of nonlinear programming, some weaker CQs are
proposed to achieve the task of stability issues such as complete characterizations of
tilt stability [12,20]. How to construct the weaker CQs for (1) maybe another inter-
esting topic for our study. As mentioned above, the no gap second-order optimality
conditions also play a crucial impact on some issues in numerical design such as error
bound and complexity analysis. Would it be possible to establish these results for the
given problem (1)? We leave these further discussions as our future work.
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