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1 Introduction

In this paper, we consider the following general cone-constrained convex programming

problem:
min f(x)

s.t. −g(x) ∈ K
x ∈ C,

(1)

where C is a closed convex set in Rn, K is a closed convex cone in Rr, f : Rn → R is

a convex function, and g : Rn → Rr is a continuous K-convex mapping, i.e., for every

x, y ∈ Rn and t ∈ [0, 1], there holds

tg(x) + (1− t)g(y)− g (tx+ (1− t)y) ∈ K.

It is known that constrained optimization problems including cone-constrained prob-

lems arise in a variety of scientific and engineering applications [11, 12, 18]. For con-

strained optimization problems, an important issue is the characterization of solution

sets. This is because the characterizations and properties of solution sets is fundamental

and crucial for understanding of the behavior of solution methods for solving optimization

problems, see [4, 10, 15, 17, 19, 20, 23]. In 1988, Mangasarian [19] considered characteri-

zations of the solution set of a differentiable convex programming problem. Later, Burke

and Ferris [4] extended the results given in [19] to the setting of nondifferentiable convex

programming. Moreover, for problem (1), when the function f is pseudolinear, g = 0,

and the set C = {x ∈ Rn |Ax = b}, Jeyakumar et al. [17] described the characterization

of the solution set of so-called pseudolinear programs. In addition, for cone-constrained

convex programming problems, Jeyakumar et al. [15] also provided the characterization

of the solution set in terms of subgradients and Lagrange multipliers. Following the topic

on the characterization of the solution set in [15], Miao and Chen [20] further considered a

type of cone-constrained convex programming problem and simplified the corresponding

results in [15]. In particular, when the cone reduces to three specific cones i.e., p-order

cone [2, 24], Lp cone [12], and circular cone [25], the obtained conclusions can be achieved

by exploiting the special structures of those three cones.

The main purpose of this paper is to describe the characterization of the solution set

of problem (1), which is a generalization of the problem in [20]. Moreover, when the cone

K reduces to two types of convex cones, i.e., the power cone Kαm,n and the exponential

cone Ke (see Section 2 for details), we may obtain characterizations of the solution sets

via exploiting the special structures of these two convex cones. Why do we focus on

these two cones? There are two main reasons. The first one is because that these two

non-symmetric cones appear in a lot of practical applications such as location problems
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and geometric programming [6, 13, 21, 22]. The second reason is indeed more important.

More specifically, through appropriate transformations (for example, α-representation

and extended α-representation defined in [6]), plenty of non-symmetric cones can be gen-

erated from the power cone Kα and the exponential cone Ke. In other words, these two

cones are the cores of many non-symmetric cones in real world applications.

Toward the end of this section, we say a few words about notations which will be

used in this paper. Throughout this paper, R denotes the space of real numbers, R+

denotes the set consisting of the nonnegative reals, and Rn means the n-dimensional real

vector space endowed with the inner product 〈·, ·〉. Moreover, we use ‖x‖ to denote the

Euclidean norm of x which induced by the inner product 〈·.·〉, i.e., ‖x‖ =
√
〈x, x〉. For

any a set Ω ⊆ Rn, int Ω denotes the interior of Ω and bd Ω denotes the boundary of Ω.

For any a function f : Rn → R, we denote ∂f(x) the subdifferential of the function f at

x ∈ Rn.

2 Preliminaries

In this section, we briefly recall some background materials and useful results, which will

be extensively used in subsequent analysis. More details can be found in [3, 7, 14, 11].

We start with the definition of the subdifferential of a function f : Rn → R. The

subdifferential of the function f at x is defined as

∂f(x) := {ξ ∈ Rn | f(y)− f(x) ≥ 〈ξ, y − x〉, ∀y ∈ Rn} .

If Ω is a convex set in Rn, the normal cone NΩ(x) of the set Ω at x ∈ Ω is defined by

NΩ(x) := {ξ ∈ Rn | 〈ξ, y − x〉 ≤ 0, ∀y ∈ Ω} .

When the convex set Ω corresponds to Ω = {x ∈ Rn |Ax = b} with A being a m × n
matrix, it is easy to verify that for any x ∈ Ω, the normal cone NΩ(x) of the set Ω at x

is written as

NΩ(x) =
{
ATy | y ∈ Rm

}
.

For the problem (1), we know the function g : Rn → Rr is continuous K-convex,

which implies that the set {x ∈ Rn | − g(x) ∈ K} is convex. Thus, it follows from the

convexity of f that the problem (1) is a convex optimization problem. Let F and S be

the feasible region and the solution set of the problem (1), respectively, that is,

F := {x ∈ C | − g(x) ∈ K} and S := {x ∈ F | f(x) ≤ f(y), ∀y ∈ F} .

According to the optimality conditions of the convex optimization problems, if the prob-

lem (1) satisfies the Slater condition [16], i.e., there exists x̄ ∈ C with −g(x̄) ∈ intK, it
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is known that a ∈ S if and only if the element a satisfies the KKT conditions, i.e., a ∈ F
and there exists a Lagrange multiplier λa ∈ Rr such that

0 ∈ ∂f(a) + ∂(λTa g)(a) +NC(a), λa ∈ K∗ and λTa g(a) = 0, (2)

where K∗ denotes the dual cone of K given by

K∗ = {z ∈ Rr | 〈z, x〉 ≥ 0, ∀x ∈ K} .

In this paper, we always assume that the solution set S of the problem (1) is nonempty.

From the above analysis, for a ∈ S, there exists the corresponding Lagrange multiplier

λa such that (a, λa) satisfies the KKT conditions (2). For convenience, we employ the

Lagrange function La(·, λa) : Rn → R associated with a defined by

La(x, λa) := f(x) + λTa g(x) for all x ∈ Rn.

Then, the KKT conditions (2) can be reformulated into the form of

0 ∈ ∂La(a, λa) +NC(a), λa ∈ K∗ and λTa g(a) = 0.

To close this section, we review the concepts of two specific closed convex cones, the

explicit expressions of these two cones and their dual cones.

(1) power cone, see [6, 13]. It is a generalization of second-order cone (SOC) and

defined as bellow:

Kαm,n :=

{
(x, z) ∈ Rm

+ × Rn

∣∣∣∣ ‖z‖ ≤ m∏
i=1

xαi
i

}

where αi > 0 and
∑m

i=1 αi = 1, x = (x1, · · · , xm)T ∈ Rm
+ , z = (z1, · · · , zn)T ∈ Rn. Indeed,

Kαm,n is a solid (i.e., intKαm,n 6= ∅), closed and convex cone, and its dual cone is given by

(Kαm,n)∗ =

{
(λ, y) ∈ Rm

+ × Rn

∣∣∣∣ ‖y‖ ≤ m∏
i=1

(
λi
αi

)αi

}

where λ = (λ1, · · · , λm)T ∈ Rm
+ and y = (y1, · · · , yn)T ∈ Rn. From the expression of the

dual cone (Kαm,n)∗, we see that the dual cone (Kαm,n)∗ is also a solid, closed and convex

cone. When m = 1, we note that the power cone is just second-order cone Kn+1 [1, 5, 8, 9]

defined as follows:

Kn+1 =

{
(x1, z) ∈ R+ × Rn

∣∣∣∣ ‖z‖ ≤ x1

}
.

Hence, the power cone Kαm,n includes second-order cone Kn+1 as a special case with m = 1.

In addition, from the expression of the power cone Kαm,n and its dual cone (Kαm,n)∗, it is
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not hard to verify that the boundary of the power cone Kαm,n and its dual cone (Kαm,n)∗

can be respectively expressed as follows:

bdKαm,n =

{
(x, z) ∈ Rm

+ × Rn

∣∣∣∣ ‖z‖ =
m∏
i=1

xαi
i

}
,

bd (Kαm,n)∗ =

{
(λ, y) ∈ Rm

+ × Rn

∣∣∣∣ ‖y‖ =
m∏
i=1

(
λi
αi

)αi

}
.

In order to have further understanding of Kαm,n, the pictures of four different cones Kαm,n
in Rm

+ × Rn and their dual cones are depicted in Figure 1 and Figure 2, respectively.

Figure 1: The 3-dimensional power cones and its dual cones with m = 2, n = 1 and

different α1, α2

(2) exponential cone, see [6, 22]. The exponential cone is a cone in 3-dimensional

Euclidean space R3, which is defined as bellow:

Ke := cl
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
.

In fact, the exponential cone is also the union of two sets, i.e.,

Ke :=
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≤ 0, x3 ≥ 0

}
.
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Figure 2: The 3-dimensional power cone with m = 1, n = 2, i.e., second-order cone

As shown in [6], the exponential cone Ke is a closed convex cone, and its dual cone K∗e is

given by

K∗e = cl
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 ≤ ey3, y1 < 0

}
.

In a similar manner, the dual cone is also expressed as the union of the two corresponding

sets, i.e.,

K∗e :=
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 ≤ ey3, y1 < 0

}
∪
{

(0, y2, y3)T
∣∣ y2 ≥ 0, y3 ≥ 0

}
.

Note that the dual cone K∗e is also a closed convex cone. The pictures of the exponen-

tial cone Ke and its dual cone K∗e are depicted in Figure 3 and Figure 4, respectively.

Moreover, in view of the expressions of exponential cone Ke and its dual cone K∗e (or alter-

natively from Figure 3 and Figure 4, respectively), it is easy to verify that the boundary

of exponential cone and its dual cone can be respectively expressed as follows:

bdKe :=
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 = x3, x2 > 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≤ 0, x3 ≥ 0

}
,

bdK∗e :=
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 = ey3, y1 < 0

}
∪
{

(0, y2, y3)T
∣∣ y2 ≥ 0, y3 ≥ 0

}
.
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Figure 3: The exponential cone

3 Characterizations of solution set

In this section, we describe the characterization of the solution set S for the problem (1)

in terms of Lagrange multipliers and subgradients. Moreover, when the cone K reduces

to two specific cones, i.e., the power cone and the exponential cone, we can establish the

same conclusions by exploiting the structures of the two types of specific cones.

Theorem 3.1. For the problem (1), let a ∈ S. Suppose that the corresponding Lagrange

multiplier λa ∈ Rr satisfies the conditions:

0 ∈ ∂La(a, λa) +NC(a), λa ∈ K∗ and λTa g(a) = 0. (3)

Then, the following hold.

(a) If λa = 0, then for every x ∈ S, there exists ξ ∈ NC(a) such that

−ξ ∈ ∂f(x).

(b) If λa 6= 0, then for every x ∈ S and g(x) 6= 0, we have

−g(x) ∈ bdK, λa ∈ bdK∗ and λTa g(x) = 0.
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Figure 4: The dual cone of exponential cone

Proof. (a) For λa = 0, from the conditions (3), there exists ξ ∈ NC(a) such that

−ξ ∈ ∂La(a, λa). By the definitions of the subdifferential and the Lagrange function, it

follows that for any y ∈ Rn, there has

(−ξ)T (y − a) ≤ La(y, λa)− La(a, λa)
= f(y) + λTa g(y)− f(a)− λTa g(a)

= f(y)− f(a).

This means −ξ ∈ ∂f(a). Moreover, it follows from ξ ∈ NC(a) that (−ξ)T (x− a) ≥ 0 for

every x ∈ S. This together with the properties of convex function yields

f(y)− f(x) = f(y)− f(a)

≥ (−ξ)T (y − a)

= (−ξ)T (y − x) + (−ξ)T (x− a)

≥ (−ξ)T (y − x)

for every x ∈ S and any y ∈ Rn, which says that −ξ ∈ ∂f(x) for every x ∈ S.

(b) For λa 6= 0, from the conditions (3), i.e.,

0 ∈ ∂La(a, λa) +NC(a), λa ∈ K∗ and λTa g(a) = 0,
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there exists ξ ∈ NC(a) such that −ξ ∈ ∂La(a, λa). Then, for every x ∈ S, we have

f(x) + λTa g(x) = La(x, λa)

≥ La(a, λa) + (−ξ)T (x− a) ≥ La(a, λa)

= f(a) + λTa g(a),

where the second inequality holds since (−ξ)T (x − a) ≥ 0 for ξ ∈ NC(a). Now, using

x, a ∈ S and λTa g(a) = 0, we obtain that λTa g(x) ≥ 0 for every x ∈ S. On the other hand,

because λa ∈ K∗ and −g(x) ∈ K for every x ∈ S, this gives λTa (−g(x)) ≥ 0, which says

λTa g(x) ≤ 0. Hence, we conclude that λTa g(x) = 0 for every x ∈ S.

Next, we show that λa ∈ bdK∗ and −g(x) ∈ bdK for every x ∈ S and g(x) 6= 0.

Here, we only prove −g(x) ∈ bdK because with the same arguments, the conclusion of

λa ∈ bdK∗ can be drawn. Now, we prove −g(x) ∈ bdK by contradiction. Suppose that

−g(x) ∈ intK. Then, there is a ε > 0 such that B(−g(x), ε) ⊆ K where B is open ball

with radius ε. This implies that for any y ∈ Rr, there exists α > 0 such that

−g(x) + αy ∈ B(−g(x), ε) ⊆ K.

Moreover, since λa ∈ K∗, we know that

λTa (−g(x) + αy) = −λTa g(x) + αλTa y ≥ 0.

Hence, it follows from λTa g(x) = 0 for every x ∈ S that αλTa y ≥ 0. By the arbitrariness

of y ∈ Rr, we obtain that λa = 0, which contradicts the condition λa 6= 0. Thus,

−g(x) ∈ bdK. Then, the proof is complete. 2

Next, we demonstrate that Theorem 3.1 in the settings of power cone and exponential

cone can be achieved as well by using the structures of power cone and exponential cone,

respectively. To this end, for the problem (1),

min f(x)

s.t. −g(x) ∈ K
x ∈ C,

we consider the cases of K = Kαm,r−m and K = Ke respectively. Under each case, the

problem (1) becomes a specific power cone or exponential cone constrained convex pro-

gramming problem. To proceed, we need the following technical lemmas.

Lemma 3.1. [Weighted AM-GM inequality]. For any n ∈ N, suppose that ξi ≥ 0 and

wi > 0 for i = 1, · · · , n. Let w =
∑n

j=1wj. Then,(
n∏
j=1

ξ
wj

j

) 1
w

≤ 1

w

n∑
j=1

wjξj

with the equality holding if and only if ξ1 = ξ2 = · · · = ξn.
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Proof. This is a well-known inequality, please refer to [14] for a proof. 2

Lemma 3.2. Suppose that ai ≥ 0, bi ≥ 0 and pi > 0 for i = 1, 2, · · · , n, where
∑n

i=1 pi =

1. Then, we have
n∑
i=1

aibi ≥
n∏
i=1

(
aibi
pi

)pi
.

Proof. For any i = 1, 2, · · · , n, by ai ≥ 0, bi ≥ 0 and pi > 0 with
∑n

i=1 pi = 1, let

yi = aibi
pi

(i = 1, · · · , n). It is clear that yi ≥ 0 for any i = 1, · · · , n. Then, from Lemma

3.1, we have

a1b1 + a2b2 + · · ·+ anbn = p1y1 + p2y2 + · · ·+ pnyn

≥ yp11 · · · ypnn

=

(
a1b1

p1

)p1 (a2b2

p2

)p2
· · ·
(
anbn
pn

)pn
.

This means
∑n

i=1 aibi ≥ Πn
i=1(aibi

pi
)pi , which is the desired result. 2

Lemma 3.3. Let h(t) = et−1 − t on R. Then, we have h(t) ≥ 0 for all t ∈ R.

Proof. Since h(t) = et−1 − t, we have h′(t) = et−1 − 1. Thus, it follows that

h′(t) = et−1 − 1 > 0, ∀t > 1 and h′(t) = et−1 − 1 < 0, ∀t < 1.

This indicates that the function h is strictly increasing on (1,∞), and h is strictly de-

creasing on (−∞, 1). Thus, for any t ∈ R, we have h(t) ≥ h(1) = 0, which is the desired

result. 2

Theorem 3.2. For the problem (1), let K = Kαm,r−m and a ∈ S. Suppose that the

corresponding Lagrange multiplier λa satisfies the conditions as Theorem 3.1, i.e.,

0 ∈ ∂La(a, λa) +NC(a), λa ∈ (Kαm,r−m)∗ and λTa g(a) = 0.

If λa 6= 0, then for each x ∈ S and g(x) 6= 0, there have

−g(x) ∈ bdKαm,r−m, λa ∈ bd (Kαm,r−m)∗ and λTa g(x) = 0.

Proof. From the proof of Theorem 3.1, we know that λTa g(x) = 0 for all x ∈ S. Then,

it remains to show that −g(x) ∈ bdKαm,r−m and λa ∈ bd (Kαm,r−m)∗. For convenience, we
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denote 0 6= −g(x) := (x, z) ∈ Kαm,r−m and 0 6= λa := (λ, y) ∈ (Kαm,r−m)∗ with m < r. By

the expressions of the power cone Kαm,r−m and its dual cone (Kαm,r−m)∗, it follows that

‖z‖ ≤
m∏
i=1

xαi
i and ‖y‖ ≤

m∏
i=1

(
λi
αi

)αi

with αi > 0 and
∑n

i=1 αi = 1. Then, from λTa g(x) = 0, we have

0 = λ>(−x) + y>(−z)

≤ −
m∑
i=1

λixi + ‖y‖‖z‖

≤ −
m∑
i=1

(
λixi
αi

)αi

+

[
m∏
i=1

(
λi
αi

)αi

][
m∏
i=1

xαi
i

]
≤ 0

where the first inequality holds due to the Cauchy-Schwarz inequality, and the last in-

equality holds due to Lemma 3.2. This implies that

‖z‖ =
m∏
i=1

xαi
i and ‖y‖ =

m∏
i=1

(
λi
αi

)αi

.

Hence, we conclude that

−g(x) ∈ bdKαm,r−m, λa ∈ bd (Kαm,r−m)∗ and λTa g(x) = 0

and the proof is complete. 2

Theorem 3.3. For the problem (1), let K = Ke and a ∈ S. Suppose that the correspond-

ing Lagrange multiplier λa satisfies the conditions as Theorem 3.1, i.e.,

0 ∈ ∂La(a, λa) +NC(a), λa ∈ K∗e and λTa g(a) = 0.

If λa 6= 0, then for each x ∈ S and g(x) 6= 0, there have

−g(x) ∈ bdKe, λa ∈ bdK∗e and λTa g(x) = 0.

Proof. Using the same arguments as the proof of Theorem 3.2 and applying Theorem 3.1,

it is clear that λTa g(x) = 0 for all x ∈ S. Then it remains to show that −g(x) ∈ bdKe and

λa ∈ bdK∗e . Suppose that 0 6= −g(x) := (x1, x2, x3)T ∈ Ke and 0 6= λa = (y1, y2, y3)T ∈
K∗e . For convenience, we denote

A :=
{

(x1, x2, x3)T
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
, B :=

{
(x1, 0, x3)T

∣∣x1 ≤ 0, x3 ≥ 0
}
,

M :=
{

(y1, y2, y3)T
∣∣ − y1e

y2
y1 ≤ ey3, y1 < 0

}
, N :=

{
(0, y2, y3)T

∣∣ y2 ≥ 0, y3 ≥ 0
}
.
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Then, using the expressions of exponential cone Ke and its dual cone K∗e , i.e.,

Ke =
{

(x1, x2, x3)T
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≤ 0, x3 ≥ 0

}
K∗e =

{
(y1, y2, y3)T

∣∣ − y1e
y2
y1 ≤ ey3, y1 < 0

}
∪
{

(0, y2, y3)T
∣∣ y2 ≥ 0, y3 ≥ 0

}
,

we have Ke = A ∪ B and K∗e = M ∪ N . To proceed the proof, we need to discuss four

cases.

Cases 1. When −g(x) ∈ A, λa ∈M , we have x2e
x1
x2 ≤ x3 with x2 > 0 and −y1e

y2
y1 ≤ ey3

with y1 < 0. This together with λTa g(x) = 0 for all x ∈ S yields

0 = x1y1 + x2y2 + x3y3

= −y1x2

(
x1y1

−y1x2

+
x2y2

−y1x2

+
x3y3

−y1x2

)
= −y1x2

(
x1

−x2

+
y2

−y1

+ (
x3

x2

)(
y3

−y1

)

)
≥ −y1x2

(
−(
x1

x2

+
y2

y1

) + e
x1
x2 e

y2
y1
−1

)
= −y1x2

(
−(
x1

x2

+
y2

y1

) + e
x1
x2

+
y2
y1
−1

)
≥ 0,

where the last inequality is due to Lemma 3.3. Then, it follows that x3
x2

= e
x1
x2 and

y3
−y1 = e

y2
y1
−1

, i.e., x2e
x1
x2 = x3 and −y1e

y2
y1 = ey3, which says −g(x) ∈ bdA and λa ∈ bdM .

Thus, −g(x) ∈ bdKe and λa ∈ bdK∗e .

Cases 2. When −g(x) ∈ A, λa ∈ N , we have x2e
x1
x2 ≤ x3 with x2 > 0, and y1 = 0 with

y2 ≥ 0 and y3 ≥ 0. Hence, it follows from λTa g(x) = 0 for all x ∈ S that 0 = x2y2 + x3y3.

Because x2 > 0, y2 ≥ 0, y3 ≥ 0 and x3 > 0, we obtain that y2 = y3 = 0, i.e., λa =

(y1, y2, y3)T = (0, 0, 0)T , which contradicts λa 6= 0. This says that the subcase does not

occur.

Cases 3. When −g(x) ∈ B, λa ∈ M , we have x1 ≤ 0, x3 ≥ 0, x2 = 0 and −y1e
y2
y1 ≤ ey3

with y1 < 0. Because λTa g(x) = 0 for all x ∈ S, this implies 0 = x1y1 + x3y3. Then, it

follows from x1 ≤ 0, x3 ≥ 0, y1 < 0 and y3 > 0 that x1 = x3 = 0, i.e., −g(x) = 0. This

contradicts −g(x) 6= 0. Hence, this subcase does not also occur.

Cases 4. When −g(x) ∈ B, λa ∈ N , in light of the expression of exponential cone Ke
and its dual cone K∗e , it is clear that −g(x) ∈ bdKe and λa ∈ bdK∗e .
From the above discussions in all cases, we prove that

−g(x) ∈ bdKe, λa ∈ bdK∗e and λTa g(x) = 0.

Thus, the proof is complete. 2
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Example 3.1. For x = (x1, x2, x3)T ∈ R3, consider the nonlinear convex programming

problem:

min f(x) = x2
1 + x2

2 + x2
3

s.t. −g(x) =

 −x1

−x2

−x3

 ∈ Ke,
where Ke is the exponential cone.

Let F and S be the feasible set and the solution set of this problem, respectively. It

follows from −g(x) = (−x1,−x2,−x3)T ∈ Ke that −x2e
x1
x2 ≤ −x3 with −x2 > 0, or

−x1 ≤ 0,−x3 ≥ 0 and x2 = 0, which yields the feasible set

F =
{

(x1, x2, x3)T ∈ R3 |x2e
x1
x2 ≥ x3, x2 < 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≥ 0, x3 ≤ 0

}
.

Noting that for any x = (x1, x2, x3)T ∈ R3, we have

f(x) = x2
1 + x2

2 + x2
3 ≥ 0.

Thus, it is not hard to verify that x̄ = (0, 0, 0)T ∈ R3 is a solution to the considered

problem, i.e, x̄ ∈ S. Moreover, for any x̄ 6= x = (x1, x2, x3)T ∈ R3, there has

∂f(x) = 2(x1, x2, x3)T 6= 0.

In light of this, for the solution x̄ ∈ S, it is easy to see that the corresponding Lagrange

multiplier λx̄ = (0, 0, 0)T ∈ K∗e and 0 ∈ ∂Lx̄(x̄, λx̄) = ∂f(x̄). All the above leads to

(0, 0, 0)T ∈ ∂f(x) ⇐⇒ x1 = 0, x2 = 0, x3 = 0.

Therefore, we conclude that the solution set S can be expressed as

S =
{

(x1, x2, x3)T ∈ R3 |x1 = 0, x2 = 0, x3 = 0
}
.

Example 3.2. For x = (x1, x2)T ∈ R2, consider the nonlinear convex programming

problem:

min f(x) =
√
u2(x1) + v2(x2) + v(x2)

s.t. −g(x) =

(
−v(x2)

u(x1)

)
∈ Kα1,1,

where u : R→ R and v : R→ R are both differentiable and α = 1.
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Let F and S be the feasible set and the solution set of this problem, respectively. Because

−g(x) = (−v(x2), u(x1))T ∈ Kα1,1, we have 0 ≤ |u(x1)| ≤ −v(x2), which implies that the

feasible set

F =
{

(x1, x2)T ∈ R2 | v(x2) ≤ −|u(x1)| ≤ 0
}
.

Noting that for any x = (x1, x2)T ∈ R2, we have

f(x) =
√
u2(x1) + v2(x2) + v(x2) ≥ |v(x2)|+ v(x2) ≥ 0.

Thus, it is easy to check that x̄ = (x̄1, x̄2)T ∈ R2 satisfying u(x̄1) = 0 and v(x̄2) = 0 is

a solution of the considered problem, i.e, x̄ ∈ S. Since for any x̄ 6= x = (x1, x2)T ∈ R2

with u(x1) 6= 0 or v(x2) 6= 0, it can be computed that

∂f(x) =


(

u(x1)√
u2(x1) + v2(x2)

u′(x1),
v(x2)√

u2(x1) + v2(x2)
v′(x2) + v′(x2)

)T


=


[
u′(x1) 0

0 v′(x2)

] u(x1)√
u2(x1)+v2(x2)
v(x2)√

u2(x1)+v2(x2)
+ 1

 .

Moreover, it can be verified that

∂f(x̄) =

{[
u′(x̄1) 0

0 v′(x̄2)

]{(
0

1

)
+ B

}}
,

where B denotes the closed unit ball in R2. Besides, for the solution x̄ ∈ S, it is

easy to see that if u′(x̄1) 6= 0 and v′(x̄2) 6= 0, the corresponding Lagrange multiplier

λx̄ = (0, 0)T ∈ (Kα1,1)∗, and (0, 0)T ∈ ∂Lx̄(x̄, λx̄) = ∂f(x̄). With this, it follows that if

u′(x1) 6= 0 and v′(x2) 6= 0,

(0, 0)T ∈ ∂f(x) ⇐⇒ u(x1) = 0, v(x2) ≤ 0.

Therefore, we conclude that the solution set S may be expressed as

S =
{

(x1, x2)T ∈ R2 |u(x1) = 0, v(x2) ≤ 0
}
.

In fact, when the convex set C reduces the special convex set C := {x ∈ Rn |Ax = b},
where the matrix A is a m×n matrix, we see that Theorem 3.1 reduces to [20, Theorem

3.1]. This says that the considered problem in this paper includes the problem in [20] as

a special case, which is presented the following corollary.

Corollary 3.1. [20, Theorem 3.1] For the problem (1), let C := {x ∈ Rn |Ax = b}
and a ∈ S. Suppose that the corresponding Lagrange multiplier λa ∈ Rr satisfies the

conditions:

0 ∈ ∂La(a, λa) + {ATy | y ∈ Rm}, λa ∈ K∗ and λTa g(a) = 0.

Then, the following hold.
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(a) If λa = 0, then for each x ∈ S, there exists y ∈ Rm such that

−ATy ∈ ∂f(x).

(b) If λa 6= 0, then for each x ∈ S and g(x) 6= 0, there have

−g(x) ∈ ∂K, λa ∈ ∂K∗ and λTa g(x) = 0.
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