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This paper investigates the Lipschitz continuity of the solution mapping of symmetric cone
(linear or nonlinear) complementarity problems (SCLCP or SCCP, resp.) over Euclidean Jordan
algebras. We show that if the transformation has uniform Cartesian P-property, then the solution
mapping of the SCCP is Lipschitz continuous. Moreover, we establish that the monotonicity of
mapping and the Lipschitz continuity of solutions of the SCLCP imply ultra P-property, which
is a concept recently developed for linear transformations on Euclidean Jordan algebra. For a
Lyapunov transformation, we prove that the strong monotonicity property, the ultra P-property,
the Cartesian P-property, and the Lipschitz continuity of the solutions are all equivalent to each
other.

1. Introduction

Let (V,0,(-,-)) (we use V for short in subsequent content) be a Euclidean Jordan algebra and
K be the symmetric cone in V. Given a continuous transformation F : V. — Vand g € V, the
symmetric cone complementarity problem denoted by SCCP(F, X, q) is to find a vector x € V
such that

xeX, F(x)+qeX, (x,F(x)+q)=0. (1.1)

When F reduces to a linear transformation L, the above problem is called the symmetric cone
linear complementarity problem and is denoted by SCLCP(L, X, g), that is, the symmetric
cone linear complementarity problem is to find a vector x € V such that

xeK, L(x)+qeX, (x,L(x)+qg)=0. (1.2)



2 Abstract and Applied Analysis

These classes of symmetric cone complementarity problems provide a unified framework for
the linear or nonlinear complementarity problems (LCP or NCP, resp.) over the nonnegative
orthant cone in R”, that is, V = R"” and X = R” (see [1-4]), the second-order cone (linear
or nonlinear) complementarity problems (SOCLCP or SOCCP, resp.), that is, V = R" and
K = K" (see [5-8]), and the semidefinite (linear or nonlinear) complementarity problems
(SDLCP or SDCP, resp.), that is, V = §" and X = S? (see [9-12]). It is also known that the
complementarity problem is special case of variational inequality problem which has a wide
range of applications, see [3, 9].

One of the important issues in complementarity problems is to characterize the
Lipschitz continuity of its solutions (or called the Lipschitz continuity of solution mapping)
with respect to g. For g € V, let ¢r(g) be the set of all solutions to SCCP(F, X, q). Then, we
intend to know under what conditions the multivalued solution mapping ¢r : g — ¢r(q)
of SCCP(F, X, q) is Lipschitz continuous. In other words, under what conditions, there will
exist k > 0 such that

¢r(q1) € ¢r(q2) +x||q1 - q2|| B (1.3)

for all g1, g, € V satisfying ¢r(q1) # @ and ¢r(g2) #0, where B is the closed unit ball in V. That
is, if x1 € ¢r(q1) there exists x, € ¢r(q2) such that

21 = x|l < x|[g1 — g2]|- (1.4)

Note that the Lipschitz constant x depends only on the continuous transformation F. Below
is a brief history regarding this issue. For LCP(M, q), it is well known that the Lipschitz
continuity of the solution mapping with respect to g € V can be described in any one of the
following ways:

(i) the matrix M is P-matrix (see [13, 14]);
(ii) LCP(M, q) has a unique solution for all g € R" (i.e., GUS-property of M);

(iii) for any g € R", the solution set ¢a1(q) #0 and the set-valued mapping g — Pam(q)
are Lipschitzian.

In particular, Mangasarian and Shiau [14] showed that if M is a P-matrix, then solutions of
linear inequalities, programs, and LCP are Lipschitz continuous. Murthy et al. [15] showed
that M is a P-matrix if and only if the LCP(M, g) has a solution for all g € R” and the
solution mapping is Lipschitzian. Gowda and Sznajder [16] generalized the above result
to affine variational inequality problems, while Yen [17] studied Lipschitz continuity of the
solution mapping of variational inequalities with a parametric polyhedral constraint. As for
NCP, Levy [18] obtained that the solution mapping is locally single-valued and Lipschitz
continuous under suitable conditions. How about when X is nonpolyhedral? Balaji et al.
[19] proved that L being monotone and the Lipschitz continuity of the solution mapping of
SDLCP imply the GUS-property, while Chen and Qi in [9] employed Cartesian P-property to
guarantee the GUS-property and the locally Lipschitzian property of the solution mapping
of SDLCP. These make a complete extension of (i)—(iii) to their counterparts in SDLCP. A
natural question arises here: can the above results be extended to a general symmetric cone
case which is a unified framework?
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In fact, there has been some papers dealing with the SCLCP over Euclidean Jordan
algebras. For example, Balaji [20] established the result that if L has the Lipschitzian Q-
property, then L has the positive principal minor property. Gowda et al. [21] showed that
if L has P-property, then SCLCP(L, X,q) has a nonempty compact set for all g € V.
In addition, Tao and Gowda [22] used degree-theoretic arguments to show that under a
certain Ro-type condition, every P; symmetric cone nonlinear complementarity problem
SCCP(F, X, q) has a solution. However, it still remains open under what conditions the
solution map ¢r : g — ¢r(g) of SCCP(F, X,q) is Lipschitz continuous. In this paper,
we explore new results regarding Lipschitz continuity of the solution mapping of the
SCLCP(L, X, gq) or SCCP(F, X, q) over Euclidean Jordan algebras. In Theorem 3.1, we show
that if the transformation F has the uniform Cartesian P-property with modulus p > 0, then
the solution mapping ¢r is Lipschitz continuous with respect to g € V. Meanwhile, we
give examples to show that the solution mapping of nonstrong monotone SCLCP(L, X, q)
is not Lipschitz continuous with respect to g, and GUS-property does not imply Lipschitz
continuity of the solution mapping.

On the other hand, various P-properties and GUS-property have been investigated in
the literature [4, 9, 10, 13, 16, 19, 21-24]. Relations among them are well studied as well. In [19,
Theorem 2.2], it is proved that if the linear transformation L in SDLCP has the monotonicity
property and ¢ is Lipschitzian, then L has the P,-property and the GUS-property. The
concept of P>-property in 5" was extended to a general Euclidean Jordan algebra, called ultra
P-property [23]. Hence, it is desirable to know whether [19, Theorem 2.2] can be true or not
in SCLCP(L, X, q) if P,-property is replaced by ultra P-property. In this paper, we answer
this question positively, see Theorem 3.8. Further, for the Lyapunov transformation L,, we
present several equivalent conditions for the ultra P-property of L,.

Next are a few words about notations and some basic concepts employed. For a
vector x € V, the norm is denoted by ||x|| := 1/(x,x), where (-,-) denotes the Euclidean
inner product. For the Euclidean Jordan algebra V, let £(V) denote the set of all continuous
linear transformation L : V — V, and Aut(X) denote the set of all (invertible) linear
transformations I' : V. — V such that I'(X) = K. For the convex set X, let int(X) denote the
interior of the X. LT means the adjoint operator of L. The identical transformation on V will be
denoted by I. For the SCCP(F, X, q), the solution set of SCCP(F, X, q) is denoted by ¢r(q). For
the SCLCP(L, X, q), the solution set of SCLCP(L, X, q) is denoted by SOL(L, X, q) or ¢r.(q).

2. Preliminaries

In this section, we briefly recall some basic concepts and background materials in Euclidean
Jordan algebras, which will be used in the subsequent analysis. More details can be found in
[21-23, 25].

An Euclidean Jordan algebra is a triple (V,o,(-,-)) (V for short), where V is a finite-
dimensional inner product over R and (x,y) — xoy : VxV — V is a bilinear mapping
satisfying the following three conditions:

(i) xoy=yoxforallx,yeV;
(ii) x o (x?0y) = x? o (xoy) forall x, y € V, where x* = x o x;
(iii) (x oy, z) =(x,yoz) forallx,y,z€ V.
We call x o y the Jordan product of x and y. In addition, if there is an element e € V such that
xoe = x forall x € V, the element e is called the identity element in V. In a given Euclidean
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Jordan algebra V, the set of squares X := {x? : x € V} is a symmetric cone [25, Theorem I11.2.1].
In other words, X is a self-dual closed convex cone, and, for any two elements x, y € int(X),
there exists an invertible linear transformation I' : V. — V such that I'(x) = y and I'(X) = X.
For any x € V, we write

xeK (xeint(K))e=x>0 (x>0). (2.1)

An element ¢ € V such that ¢? = c is called an idempotent in V; it is a primitive idempotent if it is
nonzero and cannot be written as a sum of two nonzero idempotents. We say that a finite set
{e1, ez, ..., e} of primitive idempotents in V is a Jordan frame if

,
ejoej=0 fori#j, Zei =e, (2.2)
i=1

where r is called the rank of V. Now, we recall the spectral and Peirce decompositions of an
element x in V.

Theorem 2.1 ((spectral decomposition) [25, Theorem II1.1.2]). Let V be an Euclidean Jordan
algebra. Then, there is a number r such that for every x € V, there exists a Jordan frame {e1, es, ..., e}
and real numbers Ay, Ay, ..., A, with

x=MAe;+ -+ Ae,. (2.3)

Here, the numbers A; fori = 1,...,r are the eigenvalues of x and the expression Ajej + -+ + Aye;, is
the spectral decomposition (or the spectral expansion) of x.

In an Euclidean Jordan algebra V, corresponding to the convex cone X, let ILx denote
the metric projection onto X, namely, for an x € V, x* = I1x(x) if and only if x* € X and
[lx—x*|| < ||lx—y]|| for all y € X.Itis well known that x* is unique. For any x € V, combining the
spectral decomposition of x with the metric projection of x onto X, we have the expression
of metric projection I« (x) as follows (see [21]):

IMg(x) = max{0,A;}e; +--- + max{0, A, }e,. (2.4)

The Peirce Decomposition

Fix a Jordan frame {ej, ey,...,e,} in an Euclidean Jordan algebra V. Fori,j € {1,2,...,r}, we
define the following eigenspaces:

Vi={xeV|xoe =x}=Re;,

1 o (2.5)
Vij = {x€V|xoei:§x:xoej} for i #j.
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Theorem 2.2 (see [25, Theorem IV.2.1]). The space V is the orthogonal direct sum of spaces V;; (i <
7). Furthermore,

VijOVij CVii+V]']',
VijoViyx CVy, ifi#k, (2.6)
VijoVi=1{0}, if {i,j} Nk} =0.

Hence, given any Jordan frame {e1, e, ..., e,}, we can write any element x € V as

r
x =Y xiei+ i, (2.7)
i=1

i<j

where x; € R and x;; € Vy;. The expression > xiei + >,
x.

i<j Xij is called the Peirce decomposition of

Next, we recall concept of Lyapunov transformation and its relevant conclusions
which will be used in our analysis later. In an Euclidean Jordan algebra V, for any x € V,
we define the corresponding Lyapunov transformation Ly : V. — V by Ly(z) = x o z for
any z € V. As remarked in [21, page 209], traditionally, the notation L(x) has been used
the Lyapunov transformation [25]. As employed in [21], we also reserve the notation L,
for the Lyapunov transformation and write L(x) to denote the image of an element x € V
under a linear transformation L : V — V. We say that elements x and y operator commute if
LyL, = LyL,. It is well known that x and y operator commute if and only if x and y have
their spectral decompositions with respect to a common Jordan frame [25, Lemma X.2.2].

Property 1 (see [21, Proposition 6]). For x, y € V, the following conditions are equivalent:

(a)x>0,y>0,and (x,y) =0;
(b) x>0,y >0,and xoy = 0.

Moreover, in this case, elements x and y operator commute. That is, x and y have their
spectral decompositions with respect to a common Jordan frame.

In fact, from Property 1 and definition of (1.1), it can be seen that SCCP(F, X, q) is
equivalent to find a x € V such that

xe€K, F(x)+qeX, xo(F(x)+q)=0. (2.8)
In addition, if x is a solution of SCCP(F, X, q), then x and F(x) + q operator commute. Now,
we review various monotonicity and P-property for a continuous transformation F : V — V.

Definition 2.3. Let V be an Euclidean Jordan algebra. A continuous transformation F : V. — V
is said to be

(a) monotone if (F(x) - F(y),x—y) >0,forallx, y € V;
(b) strictly monotone if (F(x) — F(y),x —y) >0, forallx#y € V;
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(c) strongly monotone if there is & > 0 such that

(F(x) - F(y),x-y) >a|x-y|>, Vx,yeV. (2.9)

It is said to have

(d) GUS-property if SCCP(F, X, q) has a unique solution for any g € V;
(e) P-property if

x —y and F(x) — F(y) operator commute

(x-y)o (F(x)-F(y)) <0 }:”“:% (210)

(f) Q-property if ¢r(q) #0 forany g € V.

Remark 2.4. (i) When F is linear, strict monotonicity and strong monotonicity coincide. When
F is nonlinear, strong monotonicity implies strict monotonicity.
(ii) Whether F is linear or nonlinear, we have the following implications [22-24]:

strong monotonicity = strict monotonicity = P-property = Q-property,
(2.11)
strong monotonicity = GUS-property = P-property.

(iii) When V = R" and X = R?, GUS-property and P-property coincide. But, once V
and X are the other cases, for example, V = R” and X = X", where X" denotes the second-
order cone, or V = §” and X = S”, and so forth. GUS-property is not equivalent to P-property.

Given an Euclidean Jordan algebra V with dim(V) = n > 1, from [25, Proposition
III 4.4-4.5 and Theorem V.3.7], we know that any Euclidean Jordan algebra V and its
corresponding symmetric cone X are, in a unique way, a direct sum of simple Euclidean
Jordan algebras and the constituent symmetric cone therein, respectively, that is,

VaVixoxVy,  K=KixoxKn, (2.12)

where every V; is a simple Euclidean Jordan algebra (which cannot be direct sum of two
Euclidean Jordan algebras) with the corresponding symmetric cone X; fori = 1,...,m, and
n = > n; (n; is the dimension of V;). Therefore, for any x = (x1, ..., xm)T, y=Wi..., ym)T €
V with x;, y; € V;, there exist

xoy=(x1 oy1,...,xm0ym)T ev, (x,y) = (x1, 1) + -+ (X, Y )- (2.13)

Through the above description and Cartesian P-properties proposed by Chen and Qi
[9] in the setting of semidefinite matrices, Kong et al. [26] introduced the concept of uniform
Cartesian P-property for the general transformation F in the setting of Euclidean Jordan alge-
bra. This concept is used to study the Lipschitz continuity of the solution mapping in SCCP.
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Definition 2.5. Consider a linear or nonlinear transformation F : V. — V. We say that F has the
uniform Cartesian P-property if for any x, y € V and x #y, there exist an index v € {1,2,...,m}
and a scalar p > 0 such that

((x=v),, (F@) -F(y)),) 2 pllx -y (2.14)

Remark 2.6. 1t is easy to observe that when m = 1, the uniform Cartesian P-property becomes
the strong monotonicity of transformation F. If m = n and V = R", it becomes the P-property
in the context of NCP.

When the continuous transformation F : V — V is linear (i.e., F = L), we will
introduce another concept, the ultra P-property of L, which is a new concept recently
developed for linear transformations on Euclidean Jordan algebra. In fact, the ultra P-
property is an equivalently straightforward extension of P,-property in the setting of the
semidefinite matrices [23]. Since P>-property involves the ordinary (associative) product of
three square matrices and there may not have an associative (triple) product in an Euclidean
Jordan algebra, for this reason, P,-property cannot be extended in a natural way to an
Euclidean Jordan algebra [23]. However, the P,-property is introduced in Euclidean Jordan
algebra using the concepts of principal subtransformation and cone automorphisms of V [23].

Given a Jordan frame {ey, e, ..., e,} in Euclidean Jordan algebra V, we define

VO =V(ey+---+e,1)={xeV]|xo(e;+---+¢)=x} for1<I<r. (2.15)

It is known that V? is a subalgebra of V with rank [, see [25, Proposition IV.1.1]. By means of
Peirce decomposition, we have the following representation [21]:

V(Z) =Rel +'-‘+R€1+ ZV,]

i<j<l

(2.16)

Let P? denote the orthogonal projection from V onto V?. For a linear transformation L :
V -V, let

Li=Li, e =PYL: VD —v0O, (2.17)
We call L; a principal subtransformation of L. The determinant of L; is called a principal minor
of L.

Definition 2.7 (see [23]). Consider a linear transformation L : V — V. We say that L has the
ultra P-property if for any T' € Aut(X), every principal subtransformation of L = LT has
the P-property.

3. Main Results

In this section, we first give several sufficient conditions for the Lipschitz continuity of the
solution mapping ¢ in the SCLCP(L, X, g). For the classical LCP and SDLCP, the Lipschitz
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continuity results have been studied in [9, 13, 14, 19]. Along this direction, we generalize
them to general SCCP(F, X, q) case where a weaker condition, uniform Cartesian P-property,
is used. Furthermore, we also establish relationship between the Lipschitz continuity of the
solution mapping and the ultra P-property.

Theorem 3.1. Let F : V. — 'V be a continuous linear or nonlinear transformation. If F has the
uniform Cartesian P-property, then ¢ is Lipschitz continuous.

Proof. Suppose that F has uniform Cartesian P-property. From [26, Theorem 6.2], we know
that for any g € V, the problem (1.1) has a unique solution, that is, ¢r(g) is a single point
set. Thus, we let {x} = ¢r(q1) and {y} = ¢r(q2) for any qi, g» € V. If x = y, the inequality
llx =yl < «x|lg1 — g2|| is obvious, where x > 0. If x #y, from definition of uniform Cartesian
P-property, there exists an index v € {1,...,m} such that

pllx-yl* <{(x-y), (Fx) - F(y)),)
= (xy —y» F(x), = F(y),)
= (% = Yo, (F(x) + 1), = (F(¥) +42),) = (2o =1, (q1), — (42),,)
= (0 = Yo, (02), = (@1),) = (%o, (F(y) + @2),.) = (v, (F) + 1)) (B1)
< (% =y (22), — (1))
< lxs = wollll(q1), = (42),
<[lx=vllla -2l

where the third equality follows from (x,, (F(x) + q1),) = 0 = (y», (F(y) + q2),,) because x
and y are the solution of the problem (1.1) for g1, g2 € V, respectively. The second inequality
is due to x,, yy, (F(x) + q1),, and (F(y) + q2), € K,. This implies that p||x - y|| < [|q1 — g2]|-
Letting x = 1/p gives ||x — y|| < x|lg1 — g2||. Hence, ¢ is Lipschitzian. O

Remark 3.2. In Theorem 3.1, if the transformation F is linear, the condition of uniform
Cartesian P-property reduces to the Cartesian P-property [26]. However, if we weaken the
condition of uniform Cartesian P-property to the monotonicity for the linear transformation
L, the conclusion of Theorem 3.1 is not true. The following example shows that the
monotonicity property is not sufficient to conclude that the ¢, is Lipschitz continuous with
respecttog € V.

Example 3.3. Let L : R* — R be defined as

00 x 0
1 O], where L<[y]> = [y] (3.2)
02 z 2z
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It is obvious that L has the monotonicity property. It can be seen that SOL(L, X3,e) = {0},
where X° C R? is a second-order cone, and e is identity element in Euclidean Jordan algebra
R3. Moreover, it is easy to verify that

{(a,O,O)T:O<a€R} gSOL(L,JC”,O). (3.3)

It is an unbounded solution set. However, if the solution mapping ¢ of SCLCP(L, X3,0)
is Lipschitz continuous, then SOL(L, X3,0) must be a bounded set, which is clearly a
contradiction.

Kong et al. [26] proved that the strong monotonicity implies the uniform Cartesian P-
property whether the transformation F is linear or nonlinear. Moreover, when F = L is linear
transformation, by [21, Theorem 21], if L is self-adjoint and has P-property, then L is strongly
monotone. Hence, we have the following corollary.

Corollary 3.4. Consider Euclidean Jordan algebra V.
(@) Let F : V. — 'V be a nonlinear transformation. If F is strongly monotone, then ¢r is
Lipschitz continuous.

(b) Let L : V. — V be a linear transformation. If L is either

(i) strictly monotone, or
(ii) self-adjoint and has P-property, or
(iii) P-property and K is polyhedral,

then ¢y, is Lipschitz continuous.

Remark 3.5. Even the transformation F is linear, the condition of uniform Cartesian P-
property in Theorem 3.1 or strong monotonicity in Corollary 3.4 cannot be weakened to the
GUS-property, otherwise the conclusion is not true. Example 4.2 will illustrate this point.

In the following theorem, we prove that if ¢ is Lipschitz continuous, then L has the
ultra P-property provided the linear transformation L is monotone. To establish another main
result of this paper, the following lemmas play important roles.

Lemma 3.6. (a) Suppose that ¢y, is Lipschitz continuous, and SOL(L, X,q) = {0} for some g > 0.
Then, SOL(L, X, q) = {0} for all g > 0.

(b) If SOL(L, X, e) = {0} and if L has Ry-property (i.e., SOL(L, X,0) = {0}), then L has
Q-property.

(c) If ¢1 is Lipschitz continuous and L has Q-property, then for the every principal sub-
transformation L; of L, ¢y, is the Lipschitz continuous with respect to any Jordan frame of V.

Proof. Please see [20, Lemma 5] for part (a), [20, Proposition 3] for part (b), and [20, Lemma
4] for part (c). O

Lemma 3.7. If ¢; is Lipschitz continuous and L has Q-property, then
(a) the linear transformation L is invertible;
(b) SOL(L, X, q) = {0} for some g > 0.

Proof. Part (a) is from [20, Lemma 6], while part (b) is from [20, Lemma 1]. O
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Theorem 3.8. Let L : V — V be a linear transformation. Suppose L is monotone and the solution
mapping ¢r of SCLCP(L, X, q) is Lipschitz continuous. Then,

(a) L has the ultra P-property;
(b) L has the GUS-property.

Proof. (a) Consider any Jordan frame {e, ..., e,} of Euclidean Jordan algebra V and the prin-
cipal subtransformation L; := Lie,, ) : V& — VO, where L = TTLT for any I' € Aut(X).
Note that

<z,i(z)> = <z, FTLF(Z)> =(I'(z),LI'(z)) foranyzeV,
(3.4)
<Zl/il(zl)> = <Zl, <P<1)i> (zl)> = <zl,i(zl)>, where z; e VO C V.

Since L is monotone, it follows that the linear transformation L and il are both monotone.
Thus, we have SOL(L, X, ¢e) = {0} and SOL(L;, X?,e®) = {0}, where X and e? denote
the symmetric cone and the identity element in V(, respectively. Furthermore, by direct
calculation, it is not hard to prove that the solution mapping ¢r of SCLCP(L, X, q) is Lipschitz
continuous if and only if the solution mapping ¢; of the corresponding SCLCP is Lipschitz
continuous for the linear transformation L. Applying Lemma 3.6(a) and (b) yields that L
has Q-property. Then using Lemma 3.6(c), we obtain that the solution mapping ¢;, of the
corresponding SCLCP is Lipschitz continuous for the linear transformation L. Tt follows from
SOL(L;, X©,e®) = {0} and Lemma 3.6(a) again that L; has Q-property. This together with
Lemma 3.7 says that the transformation L, is invertible.

Next, we want to prove that the transformation L; has P-property. Suppose that an
element 0# x € VO operator commute with L;(x) and x o L;(x) < 0. Since L; is monotone by
the above analysis, we have

0< <x, i,(x)> - <x o i,(x),e<l>> <0, (3.5)

which means that (L;(x) o x,e®’) = 0. Together with Property 1, it is easy to verify that
Li(x) o x =0, and L;(x) and x have the same Jordan frame. Since L;(x) o x = 0, we write

k 1
x=>Nfi, L= wf (3.6)
i=1

i=k+1

where {fi1, f2,..., fi} is a Jordan frame in VO, ;#0(@G =1,...,k)and 1 < k < . Let Q®
denote the projection operator from V) onto the eigenspace W® of f; + - + fx. Then,

0=QWL(x) = QW L. (x) = QW POL(x). 3.7)

Let Ty := QWL : WH — WK be the principal subtransformation of L; corresponding
to {1,...,k}. From the definition of Ty, it follows that Tix(x) = Q®L;(x) = 0. By the same
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arguments as above, we know that Ty has Q-property, and the solution mapping ¢r, of
the corresponding SCLCP is Lipschitz continuous for the transformation Tx. Hence, from
Lemma 3.7, we get that T is invertible. This together with Ty (x) = 0 yields x = 0, which gives
a contradiction to x # 0. Therefore, we have proved that L has the ultra P-property.

(b) This is immediate by [23, Theorem 6.2]. O

It was shown in [19, Theorem 2.2] thatif L : S* — S" is monotone and ¢y is Lipschitz
continuous, then L has the P,-property. Note that P,-property in S” is equivalent to the ultra
P-property in S" (see [23]). Therefore, the result of Theorem 3.8 is a natural extension of [19,
Theorem 2.2] to the setting of Euclidean Jordan algebra.

4. A Special Linear Transformation

In this section, we specialize to a special linear transformation which is studied in the SCLCP
setting, see [19, 23]. For a € V, we consider the corresponding Lyapunov transformation
L,. We will give several equivalent conditions regarding the ultra P-property of Lyapunov
transformation L,.

Theorem 4.1. For the Lyapunov transformation L, (a € V), the following statements are equivalent:

(a) a>0;

(b) L, is strongly monotone;

(¢c) L, has (uniform) Cartesian P-property;

(d) L, has GUS-property;

(e) L, has P-property;

(f) L, has the ultra P-property;
)

(g) Lo has Q-property and the solution mapping ¢r, of the SCLCP(L,, K, q) is Lipschitz
continuous with respect to g € V.

Proof. (a)=>(b) For any 0#x € V, we have (x,L,(x)) = (x,aox) = (a,x?). Since a > 0
and x> € X, (a,x*) > 0 (see [25, Proposition .1.4]). Thus, L, has the strong monotonicity
property.

(b)=(c) It is straightforward by the definitions.

The implication (c)=(d) follows from [26, Theorem 6.2].

(d)=(e) This follows from [21, Theorem 14].

(e)=(a) Suppose that the Lyapunov transformation L, has P-property. Let a =
> iAi(a)e; and I = {i : Ai(a) < 0}, where {ey,...,e,} is a Jordan frame of V. Note that
a > 01if and only if I = 0. Suppose that I #0. Let x = >;.; €; #0. Then, x and L,(x) operator
commute, and x o L,(x) = >;c; Ai(a)e; < 0. Therefore, by the P-property of L,, we have x =0
which leads to a > 0.

(b)=(f) It follows from [23, Theorem 6.1].

(f)=(e) It is obvious.

(b)=(h) For any linear transformation, the strong monotonicity is equivalent to the
strict monotonicity. Then, it follows from Corollary 3.4 that the solution mapping ¢;, of the
SCLCP(Lg4, K, q) is Lipschitz continuous with respect to g € V. Moreover, it is true that the
strong monotonicity implies Q-property for any linear transformation, see [21]. Hence, the
conclusion of (h) is obtained.
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(h)=(b) Suppose that the solution mapping ¢, of the SCLCP(L,, X, q) is Lipschitz
continuous with respect to g € V, and L, has Q-property. Let {ey, ..., e,} be a Jordan frame of
Vand x = 37, Li(x)e;. Note that

(x,La(x)) = D Ni(x)4j(x)(ei, Lalej)) = DA (x)(ei, Lale))- (4.1)
i=1

ij=1

Since L, has the Q-property and the solution map ¢;, is Lipschitz continuous, (L, (e;),e;) > 0
(see [27, Theorem 3.1]). It follows from (4.1) that (L,(x),x) > 0 for all 0# x € V. Therefore,
the linear transformation L, has the strong monotonicity. The proof is complete. O

In general, the above result may fail to hold. The following example shows that ¢; is
not Lipschitz continuous, but L has the GUS-property. Meanwhile, this example also shows
that for Theorem 3.1 and Corollary 3.4, if weaken the condition of strong monotonicity to
GUS-property, the conclusions of Theorem 3.1 and Corollary 3.4 are not true.

Example 4.2. Let V = S?> and X = S2. For

A= [g ‘33] (4.2)

consider the corresponding Lyapunov transformation defined by
La(X):= AX + XAT. (4.3)

It is easy to prove that A is positive stable and positive semidefinite, and L, is a linear
transformation. From [10, Theorem 9], we have that L4 has GUS-property. On the other
hand, since A is not a positive definite matrix, it follows from [19, Theorem 3.3] that ¢,
is not Lipschitz continuous.

5. Concluding Remarks

In this paper, we have studied the Lipschitz continuity of the solution mapping for symmetric
cone linear or nonlinear complementarity problems over Euclidean Jordan algebras and
provided several sufficient conditions for the Lipschitz continuity of the solution mapping.
We have established the relationship between the Lipschitz continuity of the solution
mapping and ultra P-property. Furthermore, for Lyapunov transformation, we have shown
that the strong monotonicity property, the ultra P-property, GUS-property, the Lipschitz
continuity of the solution mapping, and so forth are all equivalent to each other.
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