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� In this article, we consider the Lorentz cone complementarity problems in infinite-
dimensional real Hilbert space. We establish several results that are standard and important
when dealing with complementarity problems. These include proving the same growth of the
Fishcher–Burmeister merit function and the natural residual merit function, investigating
property of bounded level sets under mild conditions via different merit functions, and providing
global error bounds through the proposed merit functions. Such results are helpful for further
designing solution methods for the Lorentz cone complementarity problems in Hilbert space.
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1. MOTIVATION AND INTRODUCTION

Recently there has been much attention on symmetric cone
optimization, see [4, 13, 14, 20, 21], and references therein. The symmetric
cone � is intimately related to Euclidean Jordan algebra since it provides
an essential toolbox for the analysis. In addition, the symmetric cone has
special structure in Euclidean Jordan algebra (�, ◦, 〈·, ·〉) [8, 12], namely,
� = �x2 = x ◦ x | x ∈ ��. It is natural to ask what will happen if we go
further beyond Euclidean Jordan algebra. In fact, it is known that the class
of Euclidean Jordan algebras belongs to the class of JB-algebras [27]. More
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specifically, a finite-dimensional JB-algebra coincides with a Euclidean
Jordan algebra. There is a subclass of JB-algebras called JB-algebra of
finite rank which attracts our attention because every JB-algebra of finite
rank is direct sums of spin factors and Euclidean Jordan algebras. What
is a spin factor? Indeed, a spin factor has form of � ⊕ � where � is a
Hilbert space. In view of this, we realize that Hilbert space is the very basic
structure when we go beyond a Euclidean Jordan algebra. This is the main
motivation why we consider the complementarity problems in Hilbert
space. We will focus on real Hilbert space for the sake of convenience and
reality.

Let � be a real Hilbert space endowed with an inner product 〈·, ·〉,
and write the norm induced by 〈·, ·〉 as ‖ · ‖. In general, the set of
squared elements in � is no longer self-dual. We will define a Lorentz
cone denoted by � which is self-dual in next section. Then, given a
bounded continuous function F : � → � , we will focus on the Lorentz
cone complementarity problem (CP for short) which is to find an element
z ∈ � such that

z ∈ �, w = F (z) ∈ �, and 〈z,w〉 = 0� (1)

Such a problem is a natural extension of symmetric cone complementarity
problems (SCCPs) in Euclidean Jordan algebras. In the finite-dimensional
space, a well-known approach for solving the SCCPs is merit function
method, which reformulates the SCCPs as a global minimization over
Euclidean Jordan algebras via a certain merit function [1, 2, 5, 6, 9, 13, 19,
25, 26]. For this approach, it aims to find a smooth function � : � × � →
�+ such that

�(x , y) = 0 ⇐⇒ x ∈ �, y ∈ � and 〈x , y〉 = 0,

where � is the symmetric cone in �. Then, the SCCPs can be expressed
as an unconstrained smooth minimization problem:

min
x∈�

�(x) := �(x , F (x)),

we call such a � a merit function for the SCCPs. It is well known
that the complementarity function associated with the symmetric cone
plays a key role in the development of merit function methods. For the
approach to be effective, the choice of the complementarity function is
crucial. Recently, merit function method was extended to solve the Lorentz
cone complementarity problems in the setting of infinite-dimensional real
Hilbert space (see [7, 22, 29]).

In finite-dimensional space, two popular symmetric cone
complementarity functions are the Fischer-Burmeister (FB) symmetric
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cone complementarity function �FB and the natural residual (NR)
symmetric cone complementarity function �NR. Moreover, some properties
of these two complementarity functions were studied. For example, the
globally Lipschitzian continuty [23], strongly semismooth property [2],
the global Lipschitz continuous gradients [18], etc.

In real Hilbert space � , the Fischer–Burmeister (FB) function was
introduced in [7, 29] and defined as

�FB(z,w) := (z2 + w2)1/2 − (z + w) ∀z,w ∈ � , (2)

where z2 and z1/2 will be explained in next section. Let z+ denote the
metric projection ��(z) of z ∈ � onto the Lorentz cone �. Then, the
NR complementarity function in infinite-dimensional real Hilbert space is
given as follows

�NR(z,w) := z − (z − w)+ ∀z,w ∈ � �

When � = �, for these two complementarity functions, Tseng [25] proved
the following important inequality:

(2 − √
2)‖�NR(a, b)‖ ≤ ‖�FB(a, b)‖ ≤ (2 + √

2)‖�NR(a, b)‖� (3)

Recently, Bi et al. [1] extended this important inequality to the setting of
symmetric cones. Along this direction, we generalize inequality (3) to the
setting of Hilbert space. Next, we come to merit function approach for
solving Lorentz cone complementarity problems in Hilbert space. To this
end, we define �FB : � × � → � as

�FB(z, y) := 1
2
‖�FB(z, y)‖2�

Then, solving problem (1) is equivalent to solving the following
unconstrained smooth minimization problem:

min
z∈�

�FB(z) := �FB(z, F (z)) = 1
2
‖�FB(z, F (z))‖2, (4)

where � is called a merit function associated with � in � . In finite-
dimensional space, Bi et al. [1] have established the global error bound
property of the FB merit function for the SCCPs. There is another kind of
merit function which was also widely studied [3, 14, 28] in the setting of
finite-dimensional space. It is a slight modification of the merit function
studied by Yamashita and Fukushima, that is �	 : �n × �n → � defined by

�	(x) := �	(x , F (x)) = 	

2
‖(x ◦ F (x))+‖2 + �FB(x , F (x)), (5)
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where 	 ≥ 0. When 	 = 0, �	 reduces to FB merit function. When
	 = 1, Chen [3] established the global error bound property of the
merit function �	 for the SOCCPs; Liu et al. [14] obtained the global
error bound property of the merit function �	 for the SCCPs. In this
article, we also generalize �	 to the setting of Hilbert space and explore
similar results. Property of bounded level sets will be discussed as well.
In particular, it only takes F being R02-function to guarantee property
of bounded level set for �	. However, it needs much more stronger
conditions for �FB to hold such property. All the results established in
this article are standard and important when dealing with complementarity
problems, in particular, they are helpful for further designing solution
methods for problem (1).

2. PRELIMINARIES

In this section, we briefly introduce some basic concepts in real
(infinite-dimensional or finite-dimensional) Hilbert space � , and review
some basic materials. These concepts and materials play important roles
in subsequent analysis. More details and related results can be found in
[7, 16, 17, 29].

Let � be a infinite-dimensional real Hilbert space with the inner
product 〈·, ·〉, and e be an unit vector in � (i.e., ‖e‖ = √〈e , e〉 = 1). In [7],
Chiang, Pan, and Chen considered the following closed convex cone

�(e , r ) = �z ∈ � | 〈z, e〉 ≥ r‖z‖�,
where r ∈ � and e ∈ � with 0 < r < 1 and ‖e‖ = 1. Define

〈e〉⊥ := �x ∈ � | 〈x , e〉 = 0�,

that is, 〈e〉⊥ is the orthogonal complementarity space of e in � . Since � is
a Hilbert space, for any element z ∈ � , there are x ∈ 〈e〉⊥ and 
 ∈ � such
that z = x + 
e (in fact, 
 = 〈z, e〉). With this, it can be verified that

�(e , r ) = �z ∈ � | 〈z, e〉 ≥ r‖z‖� =
{
z = x + 
e | 
 ≥ r√

1 − r 2
‖x‖

}
�

Hence, for the closed convex cone �(e , r ), when r = 1√
2
, we can see

�

(
e ,

1√
2

)
= �∗

(
e ,

1√
2

)
,

where �∗(e , 1√
2

)
is the dual cone of �

(
e , 1√

2

)
, that is, �∗(e , 1√

2

) := �z ∈
� | 〈z,w〉 ≥ 0, ∀w ∈ �(e , 1√

2
)�. This illustrates that �

(
e , 1√

2

)
is a self-dual
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closed convex cone. In particular, if � = �n and e = (1, 0) ∈ � × �(n−1),
the set �(e , 1√

2
) coincides with the Lorentz cone (also called second-order

cone) �n in �n . In view of this, �(e , 1√
2
) is called the Lorentz cone (or

second-order cone) in � . Throughout this article, for the sake of simplicity,
we denote � := �(e , 1√

2
). For any z ∈ � , we write z � 0(z � 0) when z ∈

�(z ∈ int(�)), and z � 0(z ≺ 0) denote −z ∈ �(−z ∈ int(�)).
Now, we come to the Jordan product in � associated with the Lorentz

cone �. For any elements z,w ∈ � with z = x + 
e and w = y + �e , where
x , y ∈ 〈e〉⊥ and 
, � ∈ �, the Jordan product of z and w is defined by

z ◦ w = �x + 
y + 〈z,w〉e �
Therefore, z2 means z ◦ z for any z ∈ � . From the definition of Jordan
product and direct computation, it is not hard to prove the following
properties.

Lemma 2.1.

(a) For any z = x + 
e ∈ � with x ∈ 〈e〉⊥ and 
 ∈ �, there have z2 = 2
x +
‖z‖2e ∈ �, and 〈z, z〉 = 〈z2, e〉 = ‖z‖2.

(b) z ◦ w = w ◦ z and z ◦ e = z for any z,w ∈ � .
(c) (z + w) ◦ v = z ◦ v + w ◦ v for all z,w, v ∈ � .
(d) 〈z,w ◦ v〉 = 〈w, z ◦ v〉 = 〈v, z ◦ w〉 for all z,w, v ∈ � .
(e) If z = x + 
e ∈ �, there exists a unique element z1/2 ∈ � such that z =

(z1/2) ◦ (z1/2) = (z1/2)2. Here

z1/2 =



0 if z = 0,

x
2�

+ �e otherwise, where � =
√

 + √


2 − ‖x‖2

2
�

(f) For any z = x + 
e ∈ � , if 
2 − ‖x‖2 �= 0, then z is invertible with respect
to the Jordan product, that is, there is a unique element z−1 ∈ � such that
z ◦ z−1 = e , where

z−1 = 1

2 − ‖x‖2

(−x + 
e)�

Moreover, z ∈ int(�) if and only if z−1 ∈ int(�).

For any z ∈ � , z can be expressed as z = x + 
e where x ∈ 〈e〉⊥ and

∈�. It is also easy to verify that z can be decomposed as

z = x + 
e = (
 + ‖x‖)e1(z) + (
 − ‖x‖)e2(z)
:= 
1(z)e1(z) + 
2(z)e2(z),
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where ei(z) = 1
2(e + (−1)i+1 x

‖x‖) for i = 1, 2 when x �= 0, and ei(z) = 1
2(e +

(−1)i+1x̃) for i = 1, 2 when x = 0 (x̃ is any element in 〈e〉⊥ satisfying ‖x̃‖ =
1). Here, 
1(z), 
2(z) and e1(z), e2(z) are called the spectral values and the
associated spectral vectors of z, respectively. In addition, if z ∈ �, we have

z1/2 = √

1(z)e1(z) + √


2(z)e2(z)�

Clearly, when x �= 0, the factorizations of z and z1/2 are unique. Note that
�e1(z), e2(z)� is called a Jordan frame in the real Hilbert space � .

Associated with every z ∈ � , we define a linear transformation
Lz : � → � as follows

Lz(w) := z ◦ w for any w ∈ � �

Lz is called the Lyapunov transformation from � to � . It can be seen that
Lz ∈ �(�), where �(�) denotes the Banach space of all continuous linear
transformation from � to � .

For a convex cone � in � , let �� denote the metric projection onto
� [10]. For an z ∈ � , z+ := ��(z) if and only if z+ ∈ � and ‖z − z+‖ ≤
‖z − w‖ for all w ∈ �. This is also equivalent to 〈z − z+,w − z+〉 ≤ 0 for any
w ∈ �. Since � is convex cone, we have z+ is unique. Similarly, z− means
��(−z). Then, we have the following results.

Lemma 2.2. Let z = x + 
e ∈ � . Then the following results hold.

(a) If z � 0, z+ = z and z− = 0.
(b) If z � 0, z+ = 0 and z− = z.
(c) If z �� and −z ��, there have

z+ = ‖x‖ + 


2‖x‖ x + ‖x‖ + 


2
e = max�
 + ‖x‖, 0�e1(z)

and

z− = 
 − ‖x‖
2‖x‖ x + ‖x‖ − 


2
e = max�‖x‖ − 
, 0�e2(z)�

(d) For any z ∈ � , we have z = z+ − z− and ‖z‖2 = ‖z+‖2 + ‖z−‖2.
(e) For any z ∈ � and w ∈ �, we have 〈z,w〉 ≤ 〈z+,w〉 and ‖(z + w)+‖ ≥

‖z+‖.
(f) For any z ∈ � and w ∈ � with z2 − w2 ∈ �, we have z − w ∈ �.

Proof. These are well known results for projection and convex cones. �
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Lemma 2.3 [22, Lemma 3.3]. Let � be a real Hilbert space and �FB, �FB be
given as in (2) and (4), respectively. Then, for any z,w ∈ � , we have

4�FB(z,w) ≥ 2‖�FB(z,w)+‖2 ≥ ‖(−z)+‖2 + ‖(−w)+‖2�

To close this section, we talk about other concepts that play important
roles in analysis of boundedness of level sets.

Definition 2.1. Let � be a real Hilbert space. For a bounded continuous
mapping F : � → � ,

(a) F has uniform P ∗-property if there exists  > 0 such that

max
i=1,2

〈(z − w) ◦ (F (z) − F (w)), ei(w)〉 ≥ ‖z − w‖2 ∀z,w ∈ �

where ei(w) for i = 1, 2 are the spectral vectors of w;
(b) F is called an R01-function if for any sequence �zk� such that

‖zk‖ → ∞,
(−zk)+
‖zk‖ → 0 and

(−F (zk))+
‖zk‖ → 0 as k → ∞,

we have

lim inf
k→∞

〈zk , F (zk)〉
‖zk‖2

> 0;

(c) F is called an R02-function if for any sequence �zk� such that

‖zk‖ → ∞,
(−zk)+
‖zk‖ → 0 and

(−F (zk))+
‖zk‖ → 0 as k → ∞,

we have

lim inf
k→∞


1(zk ◦ F (zk))
‖zk‖2

> 0�

The above concepts are taken from [3, 14] in the setting of finite-
dimensional space. Every R01-function is R02-function. In fact, R02-function
is equivalent to R0-property defined in [24, Definition 3.2]. Besides, we
recall the concept of the strong monotonicity for a bounded continuous
function F : � → � . That is, we say that F is strongly monotone with
modulus � > 0 if for any z,w ∈ � , there exist a constant � > 0 such that

〈z − w, F (z) − F (w)〉 ≥ �‖z − w‖2�
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3. THE SAME GROWTH OF FB AND NR MERIT FUNCTION

In this section, we will give our first main result of this article. To prove
it, the following lemmas will be needed.

Lemma 3.1. Let � be a real Hilbert space. For z ∈ � with z = x + 
e , define
|z| := z+ + z−, where z+ and z− are the same as in Lemma 2.2. Then, we have

(a) 〈z+, z−〉 = 0 and z+ ◦ z− = 0;
(b) |z|2 = |z2|, ‖|z|‖ = ‖z‖ and |z| = 2z+ − z = z + 2z−.

Proof. The proof is obtained by straightforward calculation. thus it is
omitted. �

Lemma 3.2. Let � be a real Hilbert space. For any z,w,u ∈ � ,

(a) If z � 0,w � 0 and z � w, we have z1/2 � w1/2;
(b) If z � 0 and 2z2 = w2 + u2, we have z � 1

2(w + u).

Proof. (a) Let p = z1/2, q = w1/2 and r = p − q = x + 
e . To prove z1/2 �
w1/2, we need to verity that 
 ≥ ‖x‖. Note that 0 � z − w = p2 − (p − r )2 =
2p ◦ r − r 2. Let e2 = 1

2

(
e − x

‖x‖
)
when x �= 0, and e2 = 1

2(e − x̃) (x̃ is any
element in 〈e〉⊥ satisfying ‖x̃‖ = 1) when x = 0. Then, it follows that

0 ≤ 〈2p ◦ r − r 2, e2〉
= 〈2p ◦ r , e2〉 − 〈r 2, e2〉
= 〈2p, r ◦ e2〉 − (
 − ‖x‖)2〈e2, e2〉
= (
 − ‖x‖)〈2p, e2〉 − (
 − ‖x‖)2

2
,

which implies (
−‖x‖)2
2 ≤ (
 − ‖x‖)〈2p, e2〉. This, together with p � 0 and

e2 � 0, yields 
 − ‖x‖ ≥ 0. The desired result follows.

(b) The arguments are similar to those for [1, Lemma 3.1]. For
completeness, we present them as follows. Since w2 + u2 − 2w ◦ u = (w −
u)2 � 0, together with 2z2 = w2 + u2, this implies that

z2 = 1
2
(w2 + u2) � 1

4
(w2 + u2) + 1

2
w ◦ u = 1

4
(w + u)2�

From part (a) and z � 0, we have z � 1
2 |w + u| � 1

2(w + u). �

Theorem 3.1. Let � be a real Hilbert space. For any z,w ∈ � , there holds

(2 − √
2)‖�NR(z,w)‖ ≤ ‖�FB(z,w)‖ ≤ (2 + √

2)‖�NR(z,w)‖� (6)
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Proof. Fix any z,w ∈ � . If z2 + w2 = 0, we have z = w = 0. Hence, the
desired result is obvious. If z2 + w2 �= 0, by Lemma 3.1, we obtain

�NR(z,w) = z − (z − w)+ = 1
2
[(z + w) − |z − w|]�

Furthermore, we know

�FB(z,w) = z + w − (z2 + w2)1/2

= 2(z − (z − w)+) + 2(z − w)+ − (z − w) − (z2 + w2)1/2

= 2�NR(z,w) + |z − w| − (z2 + w2)1/2�

Let p(z,w) = |z − w| − (z2 + w2)1/2. In view of triangle inequality, to prove
inequality (6), it suffices to verity that

‖p(z,w)‖ ≤ √
2‖�NR(z,w)‖� (7)

To see this desired result, applying Lemma 3.2 gives

|z − w| + (z + w) � 2(z2 + w2)1/2, (8)

Hence, we have

2‖p(z,w)‖2 − 4‖�NR(z,w)‖2

= 2
(‖z − w‖2 + ‖(z2 + w2)1/2‖2 − 2

〈|z − w|, (z2 + w2)1/2
〉)

− ‖z + w‖2 − ‖|z − w|‖2 + 2〈|z − w|, z + w〉
= 2‖z − w‖2 − 2〈|z − w|, 2(z2 + w2)1/2 − (z + w)〉
= 〈|z − w|, |z − w| + (z + w) − 2(z2 + w2)1/2

〉 ≤ 0,

where the inequality holds is due to that |z − w| � 0 and (8). This implies
that inequality (7) is true. Then, the proof is complete. �

4. ERROR BOUND OF MERIT FUNCTIONS

Error bound is an important concept that indicates how close an
arbitrary point is to the solution set of Lorentz cone complementarity
problem (1). Thus, an error bound may be used to provide stopping
criterion for an iterative method. As below, for FB merit function �FB and
merit function �	, we draw conclusions about the error bounds for the
solution of infinite-dimensional Lorentz cone complementarity problem
(1), respectively.
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For FB merit function �FB, we obtain a result about the error bounds
for the solution of problem (1), which is an extension of [13, Theorem
6.3] in SCCP case.

Proposition 4.1. Suppose that F is strongly monotone with modulus � > 0 and
is Lipschitz continuous with constant l . Then,

1

(
√
2 + 1)(2 + l)

√
�FB(z) ≤ ‖z − z∗‖ ≤ l + 1

�(
√
2 − 1)

√
�FB(z),

Proof. Fix any z ∈ � , let N (z) = �NR(z, F (z)). Applying Theorem 3.1, we
have

(3 − 2
√
2)‖N (z)‖2 ≤ �FB(z) ≤ (3 + 2

√
2)‖N (z)‖2� (9)

Since N (z) = �NR(z, F (z)) = z − (z − F (z))+, it follows that F (z) −
N (z) = (z − F (z))− � 0, z − N (z) = (z − F (z))+ � 0 and 〈F (z) − N (z), z −
N (z)〉 = 0. Because z∗ is the unique solution of problem (1), we have

0 ≥ 〈F (z) − N (z), z − N (z)〉 − 〈F (z) − N (z), z∗ − N (z∗)〉
− 〈F (z∗) − N (z∗), z − N (z)〉

= 〈F (z) − F (z∗) − (N (z) − N (z∗)), z − z∗ − (N (z) − N (z∗))〉
≥ 〈F (z) − F (z∗), z − z∗〉 − 〈F (z) − F (z∗),N (z) − N (z∗)〉

− 〈z − z∗,N (z) − N (z∗)〉
≥ �‖z − z∗‖2 − l‖z − z∗‖‖N (z)‖ − ‖z − z∗‖‖N (z)‖,

where the last inequality is due to the strong monotonicity and the
Lipschitz continuity of F . Thus, we obtain

‖z − z∗‖ ≤ l + 1
�

‖N (z)‖� (10)

On the other hand,

‖N (z)‖ = ‖z − (z − F (z))+ − (z∗ − (z∗ − F (z∗))+)‖
≤ ‖z − z∗‖ + ‖z − z∗ − (F (z) − F (z∗))‖
≤ 2‖z − z∗‖ + ‖F (z) − F (z∗)‖
≤ (2 + l)‖z − z∗‖� (11)

Combining (9), (10), and (11) leads to

1

(
√
2 + 1)(2 + l)

√
�FB(z) ≤ ‖z − z∗‖ ≤ l + 1

�(
√
2 − 1)

√
�FB(z)

which is the desired result. �
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From Proposition 4.1, we see that if we use FB merit function �FB

to provide error bound for the solution of problem (1), we need the
conditions of F being strongly monotone and Lipschitz continuous.
However, to provide error bound for the solution of (1) via �	 merit
function, we may weaken the aforementioned conditions to uniform P ∗-
property. We will prove this in Proposition 4.2. For this purpose, we present
two technical lemmas first.

Lemma 4.1 [15, Lemma 2.2]. Let z = x + 
e ,w = y + �e ∈ � with x , y ∈
〈e〉⊥ and 
, � ∈ �. The following two conditions are equivalent:

(a) z � 0, w � 0, and 〈z,w〉 = 0;
(b) z � 0, w � 0, and z ◦ w = 0.

In each case, z and w operator commute.

Lemma 4.2 [15, Lemma 2.4]. For any z,w ∈ �, if z and w operator
commute, then z ◦ w ∈ �.

Proposition 4.2. Let �	 be defined as in (5) and 	 > 0. Suppose that F has
uniform P ∗-property and the CP (1) has a solution z∗. Then, there exists a scalar
� > 0 such that

�‖z − z∗‖2 ≤ ‖(F (z) ◦ z)+‖ + ‖(−F (z))+‖ + ‖(−z)+‖ ∀z ∈ � � (12)

Moreover,

‖z − z∗‖ ≤ ��	(z)
1
4 , ∀z ∈ � ,

where � is a positive constant.

Proof. Since F has the uniform P ∗-property, there exists  > 0 such that

‖z − z∗‖2 ≤ max
i=1,2

〈(z − z∗) ◦ (F (z) − F (z∗)), ei(z∗)〉, (13)

where �ei(z∗)|i = 1, 2� is the Jordan frame about z∗ in � . From z∗ being a
solution of (1), it follows that

(z − z∗) ◦ (F (z) − F (z∗)) = z ◦ F (z) − z ◦ F (z∗) − z∗ ◦ F (z)�

Note that F (z∗) ∈ �, z∗ ∈ � and ei(z∗) ∈ �. By Lemmas 4.1, 4.2, and 2.2(e),
we have

〈−z, F (z∗) ◦ ei(z∗)〉 ≤ 〈(−z)+, F (z∗) ◦ ei(z∗)〉
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and

〈−F (z), z∗ ◦ ei(z∗)〉 ≤ 〈(−F (z))+, z∗ ◦ ei(z∗)〉�
Moreover, from Lemma 4.1, we have that z∗ and F (z∗) share the same
Jordan frame. Let

z∗ = 
1(z∗)e1(z∗) + 
2(z∗)e2(z∗)

and

F (z∗) = 
1(F (z∗))e1(z∗) + 
2(F (z∗))e2(z∗)�

Then, it follows that

〈(z − z∗) ◦ (F (z) − F (z∗)), ei(z∗)〉
= 〈z ◦ F (z), ei(z∗)〉 + 〈−z ◦ F (z∗), ei(z∗)〉 + 〈−z∗ ◦ F (z), ei(z∗)〉
= 〈z ◦ F (z), ei(z∗)〉 + 〈−z, F (z∗) ◦ ei(z∗)〉 + 〈−F (z), z∗ ◦ ei(z∗)〉
≤ 〈(z ◦ F (z))+, ei(z∗)〉 + 〈(−z)+, F (z∗) ◦ ei(z∗)〉 + 〈(−F (z))+, z∗ ◦ ei(z∗)〉
≤ ‖(z ◦ F (z))+‖‖ei(z∗)‖ + ‖(−z)+‖‖F (z∗) ◦ ei(z∗)‖

+ ‖(−F (z))+‖‖z∗ ◦ ei(z∗)‖
≤ 1√

2
[‖(z ◦ F (z))+‖ + 
i(F (z∗))‖(−z)+‖ + 
i(z∗)‖(−F (z))+‖]

≤ max
{

1√
2
,

i(F (z∗))√

2
,

i(z∗)√

2

}
�‖(z ◦ F (z))+‖ + ‖(−z)+‖ + ‖(−F (z))+‖�

≤ max
{
1√
2
,

2(F (z∗))√

2
,

1(z∗)√

2

}
�‖(z ◦ F (z))+‖ + ‖(−z)+‖ + ‖(−F (z))+‖� ,

where the first inequality is from Lemma 2.2(e), and the last inequality
is from the facts that 
i(F (z∗)) ≥ 0, 
1(z∗) ≥ 
2(z∗) ≥ 0 and z∗ ◦ F (z∗) = 0,
i.e., 
i(F (z∗)) · 
i(z∗) = 0 for i = 1, 2. Define

� := 

max
{

1√
2
, 
2(F (z∗))√

2
, 
1(z∗)√

2

} �
This together (12) and (13) yields

�‖z − z∗‖2 ≤ ‖(F (z) ◦ z)+‖ + ‖(−F (z))+‖ + ‖(−z)+‖ ∀z ∈ � �

Now, we come to the second part of the proposition. We know that

�	(z) = 	

2
‖(z ◦ F (z))+‖2 + �FB(z),
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which says ‖(z ◦ F (z))+‖ ≤
√

2
	
�	(z)1/2. Moreover, from Lemma 2.3, it

follows that

‖(−F (z))+‖ + ‖(−z)+‖ ≤ √
2(‖(−F (z))+‖2 + ‖(−z)+‖2)

1
2

≤ 2
√
2�FB(z)1/2

≤ 2
√
2�	(z)1/2�

Therefore,

‖(F (z) ◦ z)+‖ + ‖(−F (z))+‖ + ‖(−z)+‖ ≤
(√

2
	

+ 2
√
2

)
�	(z)1/2�

Letting � =
√√

2(2
√
	+1)

�
√
	

shows the second part result. �

The condition 	 > 0 is necessary in Proposition 4.2. From the proof,
we see that � → ∞ as 	 → 0. Thus, 	 �= 0 is necessary. In fact, when 	 = 0,
we have �	 = �FB. This explains that for the FB merit function �FB, we can
not reach our desired result under the same conditions in Proposition 4.2.

5. BOUNDEDNESS OF LEVEL SETS

The boundedness of level sets of a merit function is also important
since it is a necessary condition to ensures that the sequence generated
by a descent method has at least one accumulation point. In this section,
we will show the boundedness of level sets of �FB and �	 under different
conditions. The relation between such conditions will be discussed as well.

Lemma 5.1. For any zk ,wk ∈ � , let 
2(zk) ≤ 
1(zk) and �2(wk) ≤ �1(wk)
denote the spectral values of zk and wk, respectively. Then,

(a) if 
2(zk) → −∞ or �2(wk) → −∞, we have �i → ∞ for i = 1, 2,

where �1(z) := 1
2
(‖(−zk)+‖2 + ‖(−wk)+‖2) and

�2(z) := 1
2
‖�FB(zk ,wk)+‖2�

(b) if �
2(zk)� and ��2(wk)� are bounded below, 
1(zk) → ∞, �1(wk) → ∞ and
zk

‖zk‖ ◦ wk

‖wk‖ �→ 0 as k → ∞, then �FB(zk ,wk) → ∞.

Proof. (a) See [22, Lemma 4.4].
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(b) Suppose that ��FB(zk ,wk)� is bounded. Define uk := ((zk)2 +
(wk)2)1/2 for each k. From the definition of �FB, we have zk + wk = uk −
�FB(zk ,wk) for each k. Squaring two sides of the above equality leads to

2zk ◦ wk = −2uk ◦ �FB(zk ,wk) + �2
FB(z

k ,wk)�

Since ‖zk‖ ≥ 1√
2

1(zk) and ‖wk‖ ≥ 1√

2
�1(wk), by the conditions of this

lemma, we have

lim
k→∞

uk

‖zk‖‖wk‖ = lim
k→∞

[
(zk)2

‖zk‖2‖wk‖2
+ (wk)2

‖zk‖2‖wk‖2

]1/2

= 0�

This together with the boundedness of ��FB(zk ,wk)� implies

lim
k→∞

2zk ◦ wk

‖zk‖‖wk‖ = lim
k→∞

−2uk ◦ �FB(zk ,wk) + �2
FB(z

k ,wk)

‖zk‖‖wk‖ = 0�

Thus, limk→∞ zk

‖zk‖ ◦ wk

‖wk‖ = 0, which contradicts the given assumption.
Hence, the conclusion is proved. �

Remark. The condition of Lemma 5.1(b) was discussed in Lemma 4.2 of
[11] and Lemma 4.1 of [3] in finite-dimensional space as well.

Condition A ([18]). For any sequence �zk� ⊆ � satisfying ‖zk‖ → ∞, if
�
2(zk)� and 
2(F (zk)) are bounded below, and 
1(zk) → ∞, 
1(F (zk)) →
∞ as k → ∞. Then

lim sup
k→∞

〈
zk

‖zk‖ ,
F (zk)

‖F (zk)‖
〉
> 0�

Using Lemma 5.1 and similar arguments as in [3, Proposition 4.2], we
may obtain the following propositions, which are the boundedness of level
sets for �FB and �	, respectively.

Proposition 5.1. Let �FB be given as in (4). Assume that F is a strongly mono-
tone function with modulus � > 0 and satisfies condition A. Then, the level set

�(�) := �z ∈ H | �FB(z) ≤ ��

is bounded for all � ≥ 0.

Proof. We prove this result by contradiction. Suppose there exists an
unbounded sequence �zk� ⊆ �(�) for some � ≥ 0. We claim that the
sequence of the smallest spectral values of zk and F (zk) are bounded below.
If not, by Lemma 5.1, we have �i(zk) → ∞ for i = 1, 2, which implies
�FB(zk) → ∞. This contradicts �zk� ⊆ �(�). On the other hand, by the
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strongly monotone property of F , there exists a constant � > 0 such that

�‖zk‖2 ≤ 〈zk , F (zk) − F (0)〉
≤ ‖zk‖‖F (zk) − F (0)‖ ≤ ‖zk‖(‖F (zk)‖ + ‖F (0)‖)�

This implies that �‖zk‖ ≤ ‖F (zk)‖ + ‖F (0)‖. It follows from
unboundedness of �zk� and boundedness of F that �F (zk)� is unbounded,
which says that 
1(zk) → ∞ and 
1(F (zk)) → ∞ as k → ∞. By condition A,
it gives

lim sup
k→∞

〈
zk

‖zk‖ ,
F (zk)

‖F (zk)‖
〉
> 0,

which implies

lim sup
k→∞


1

[
zk

‖zk‖ ◦ F (zk)
‖F (zk)‖

]
> 0�

From this, we have zk

‖zk‖ ◦ F (zk )
‖F (zk )‖ �→ 0. Together with Lemma 5.1(b), we

obtain �FB(zk) = �FB(zk , F (zk)) → ∞. Hence, this is a contradiction to zk ⊆
�(�). The proof is complete. �

In fact, the condition A and the strong monotonicity of F in
Proposition 5.1 can be replaced by the Lipschitz continuity of F and R01-
function. This can be verified as below. Since the sequence of the smaller
spectral values of zk and F (zk) are bounded below, we have (−zk)+ and
(−F (zk))+ are bounded above. For any sequence zk satisfying ‖zk‖ → ∞,
by the definition of R01-function, we have

lim inf
k→∞

〈zk , F (zk)〉
‖zk‖2

> 0� (14)

This implies that

lim sup
k→∞

〈
zk

‖zk‖ ,
F (zk)

‖F (zk)‖
〉

≥ lim inf
k→∞

〈
zk

‖zk‖ ,
F (zk)

‖F (zk)‖
〉

= lim inf
k→∞

〈zk , F (zk)〉
‖zk‖2

‖zk‖
‖F (zk)‖ > 0,

where the last inequality is due to (14) and the Lipschitz continuity of F .
Next, we show the bounded level sets for �	. As will be seen, it requires

F being R02-function to guarantee this property. In view of the above remark
and the fact that every R01-function is an R02-function, we see this condition
is weaker that in Proposition 5.1, although their proofs are similar.
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Proposition 5.2. Let �	 be given as in (5). Suppose that F is an R02-function.
Then, the level sets

�(�) := �z ∈ � |�	(z) ≤ ���

is bounded for all � ≥ 0.

Proof. We prove this result by contradiction again. Suppose there exists
an unbounded sequence �zk� ⊆ �(�) for some � ≥ 0. We claim that the
sequence of the smaller spectral values of zk and F (zk) are bounded below.
In fact, if not, by Lemma 5.1, we have �i(zk) → ∞ for i = 1, 2, which
says �	(zk) → ∞. This contradicts �zk� ⊆ �(�). Therefore, �(−zk)+� and
�(−F (zk))+� are bounded above. Thus, for any sequence �zk� satisfying
‖zk‖ → ∞, we have

(−zk)+
‖zk‖ → 0 and

(−F (zk))+
‖zk‖ → 0�

By the definition of R02-function, we have

lim inf
k→∞


1(zk ◦ F (zk))
‖zk‖2

> 0�

This implies that 
1(zk ◦ F (zk)) → ∞. Hence, ‖(zk ◦ F (zk))+‖ → ∞. This
together with definition of �	, which leads to �	(zk) → ∞. This
contradicts �zk� ⊆ �(�). Therefore, the desired result is proved. �

6. CONCLUDING REMARKS

In this article, we have studied the Lorentz cone complementarity
problems in real Hilbert space for which we prove the same growth of FB
and NR merit functions, provide a global error bound for the solutions via
two kinds of merit functions, and discuss the property of the bounded level
sets of these two kinds of merit functions under different conditions. Such
results will be helpful and useful for further designing solution methods
for solving problem (1).
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