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1 Motivation and Introduction

Recently there has been much attention on symmetric cone optimization, see [4, 13, 14,

20, 21] and references therein. The symmetric cone K is intimately related to Euclidean

Jordan algebra since it provides an essential toolbox for the analysis. In addition, the

symmetric cone has special structure in Euclidean Jordan algebra (V, ◦, 〈·, ·〉) [8, 12],

namely, K = {x2 = x ◦ x | x ∈ V}. It is natural to ask what will happen if we go further

beyond Euclidean Jordan algebra. In fact, it is known that the class of Euclidean Jordan

algebras belongs to the class of JB-algebras [29]. More specifically, a finite-dimensional

JB-algebra coincides with a Euclidean Jordan algebra. There is a subclass of JB-algebras

called JB-algebra of finite rank which attracts our attention because every JB-algebra

of finite rank is direct sums of spin factors and Euclidean Jordan algebras. What is

a spin factor? Indeed, a spin factor has form of IR ⊕ H where H is a Hilbert space.

In view of this, we realize that Hilbert space is the very basic structure when we go

beyond a Euclidean Jordan algebra. This is the main motivation why we consider the

complementarity problems in Hilbert space. We will focus on real Hilbert space for the

sake of convenience and reality.

Let H be a real Hilbert space endowed with an inner product 〈·, ·〉, and write the

norm induced by 〈·, ·〉 as ‖ · ‖. In general, the set of squared elements in H is no longer

self-dual. We will define a Lorentz cone denoted by Ω which is self-dual in next section.

Then, given a bounded continuous function F : H → H, we will focus on the Lorentz

cone complementarity problem (CP for short) which is to find an element z ∈ H such

that

z ∈ Ω, w = F (z) ∈ Ω, and 〈z, w〉 = 0. (1)

Such a problem is a natural extension of symmetric cone complementarity problems

(SCCPs) in Euclidean Jordan algebras. In the finite-dimensional space, a well-known

approach for solving the SCCPs is merit function method, which reformulates the SCCPs

as a global minimization over Euclidean Jordan algebras via a certain merit function

[1, 2, 5, 6, 9, 13, 19, 25, 26]. For this approach, it aims to find a smooth function

Φ : V× V→ IR+ such that

Φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K and 〈x, y〉 = 0,

where K is the symmetric cone in V. Then, the SCCPs can be expressed as an uncon-

strained smooth minimization problem:

min
x∈V

Ψ(x) := Φ(x, F (x)),

we call such a Ψ a merit function for the SCCPs. It is well-known that the complemen-

tarity function associated with the symmetric cone plays a key role in the development

2



of merit function methods. For the approach to be effective, the choice of the comple-

mentarity function is crucial. Recently, merit function method was extended to solve the

Lorentz cone complementarity problems in the setting of infinite-dimensional real Hilbert

space, see [7, 22, 27].

In finite-dimensional space, two popular symmetric cone complementarity functions

are the Fischer-Burmeister (FB) symmetric cone complementarity function φ
FB

and the

natural residual (NR) symmetric cone complementarity function φ
NR

. Moreover, some

properties of these two complementarity functions were studied. For example, the globally

Lipschitzian continuty [23], strongly semismooth property [2] and the global Lipschitz

continuous gradients [18], etc.

In real Hilbert space H, the Fischer−Burmeister (FB) function was introduced in

[7, 27] and defined as

φ
FB

(z, w) := (z2 + w2)1/2 − (z + w) ∀z, w ∈ H, (2)

where z2 and z1/2 will be explained in next section. Let z+ denote the metric projection

ΠΩ(z) of z ∈ H onto the Lorentz cone Ω. Then, the NR complementarity function in

infinite-dimensional real Hilbert space is given as follows

φ
NR

(z, w) := z − (z − w)+ ∀z, w ∈ H.

When H = IR, for these two complementarity functions, Tseng [25] proved the following

important inequality:

(2−
√

2)‖φ
NR

(a, b)‖ ≤ ‖φ
FB

(a, b)‖ ≤ (2 +
√

2)‖φ
NR

(a, b)‖. (3)

Recently, Bi, Pan and Chen [1] extended this important inequality to the setting of sym-

metric cones. Along this direction, we generalize inequality (3) to the setting of Hilbert

space. Next, we come to merit function approach for solving Lorentz cone complemen-

tarity problems in Hilbert space. To this end, we define Φ
FB

: H×H → IR as

Φ
FB

(z, y) :=
1

2
‖φ

FB
(z, y)‖2.

Then, solving problem (1) is equivalent to solving the following unconstrained smooth

minimization problem:

min
z∈H

Ψ
FB

(z) := Φ
FB

(z, F (z)) =
1

2
‖φ

FB
(z, F (z))‖2, (4)

where Ψ is called a merit function associated with Ω in H. In finite-dimensional space,

Bi, Pan and Chen [1] have established the global error bound property of the FB merit

function for the SCCPs. There is another kind of merit function which was also widely

studied ([3, 14, 28]) in the setting of finite-dimensional space. It is a slight modification
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of the merit function studied by Yamashita and Fukushima, i.e., Ψα : IRn × IRn → IR

defined by

Ψα(x) := Φα(x, F (x)) =
α

2
‖(x ◦ F (x))+‖2 + Φ

FB
(x, F (x)), (5)

where α ≥ 0. When α = 0, Ψα reduces to FB merit function. When α = 1, Chen [3]

established the global error bound property of the merit function Ψα for the SOCCPs;

Liu, Zhang and Wang [14] obtained the global error bound property of the merit function

Ψα for the SCCPs. In this paper, we also generalize Ψα to the setting of Hilbert space

and explore similar results. Property of bounded level sets will be discussed as well. In

particular, it only takes F being R02-function to guarantee property of bounded level set

for Ψα. However, it needs much more stronger conditions for Ψ
FB

to hold such property.

All the results established in this paper are standard and important when dealing with

complementarity problems, in particular, they are helpful for further designing solution

methods for problem (1).

2 Preliminaries

In this section, we briefly introduce some basic concepts in real (infinite-dimensional or

finite-dimensional) Hilbert space H, and review some basic materials. These concepts

and materials play important roles in subsequent analysis. More details and related

results can be found in [7, 16, 17, 27].

Let H be a infinite-dimensional real Hilbert space with the inner product 〈·, ·〉, and e

be an unit vector in H (i.e. ‖e‖ =
√
〈e, e〉 = 1). In [7], Chiang, Pan and Chen considered

the following closed convex cone

Ω(e, r) = {z ∈ H | 〈z, e〉 ≥ r‖z‖},

where r ∈ IR and e ∈ H with 0 < r < 1 and ‖e‖ = 1. Define

〈e〉⊥ := {x ∈ H | 〈x, e〉 = 0},

i.e., 〈e〉⊥ is the orthogonal complementarity space of e in H. Since H is a Hilbert space,

for any element z ∈ H, there are x ∈ 〈e〉⊥ and λ ∈ IR such that z = x + λe (in fact,

λ = 〈z, e〉). With this, it can be verified that

Ω(e, r) = {z ∈ H | 〈z, e〉 ≥ r‖z‖} =

{
z = x+ λe | λ ≥ r√

1− r2
‖x‖
}
.

Hence, for the closed convex cone Ω(e, r), when r = 1√
2
, we can see

Ω(e,
1√
2

) = Ω∗(e,
1√
2

),
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where Ω∗(e, 1√
2
) is the dual cone of Ω(e, 1√

2
), i.e., Ω∗(e, 1√

2
) := {z ∈ H |〈z, w〉 ≥ 0, ∀w ∈

Ω(e, 1√
2
)}. This illustrates that Ω(e, 1√

2
) is a self-dual closed convex cone. In particular,

if H = IRn and e = (1, 0) ∈ IR× IR(n−1), the set Ω(e, 1√
2
) coincides with the Lorentz cone

(also called second-order cone) Kn in IRn. In view of this, Ω(e, 1√
2
) is called the Lorentz

cone (or second-order cone) in H. Throughout this paper, for the sake of simplicity, we

denote Ω := Ω(e, 1√
2
). For any z ∈ H, we write z � 0(z � 0) when z ∈ Ω(z ∈ int(Ω)),

and z � 0(z ≺ 0) denote −z ∈ Ω(−z ∈ int(Ω)).

Now, we come to the Jordan product in H associated with the Lorentz cone Ω. For

any elements z, w ∈ H with z = x+λe and w = y+µe, where x, y ∈ 〈e〉⊥ and λ, µ ∈ IR,

the Jordan product of z and w is defined by

z ◦ w = µx+ λy + 〈z, w〉e.

Therefore, z2 means z ◦ z for any z ∈ H. From the definition of Jordan product and

direct computation, it is not hard to prove the following properties.

Lemma 2.1 (a) For any z = x + λe ∈ H with x ∈ 〈e〉⊥ and λ ∈ IR, there have

z2 = 2λx+ ‖z‖2e ∈ Ω, and 〈z, z〉 = 〈z2, e〉 = ‖z‖2.

(b) z ◦ w = w ◦ z and z ◦ e = z for any z, w ∈ H.

(c) (z + w) ◦ v = z ◦ v + w ◦ v for all z, w, v ∈ H.

(d) 〈z, w ◦ v〉 = 〈w, z ◦ v〉 = 〈v, z ◦ w〉 for all z, w, v ∈ H.

(e) If z = x+λe ∈ Ω, there exists a unique element z1/2 ∈ Ω such that z = (z1/2)◦(z1/2) =

(z1/2)2. Here

z1/2 =


0 if z = 0,

x

2τ
+ τe otherwise, where τ =

√
λ+

√
λ2 − ‖x‖2

2
.

(f) For any z = x + λe ∈ H, if λ2 − ‖x‖2 6= 0, then z is invertible with respect to the

Jordan product, i.e., there is a unique element z−1 ∈ H such that z ◦z−1 = e, where

z−1 =
1

λ2 − ‖x‖2
(−x+ λe).

Moreover, z ∈ int(Ω) if and only if z−1 ∈ int(Ω).

For any z ∈ H, z can be expressed as z = x + λe where x ∈ 〈e〉⊥ and λ ∈ IR. It is

also easy to verify that z can be decomposed as

z = x+ λe = (λ+ ‖x‖)e1(z) + (λ− ‖x‖)e2(z)

:= λ1(z)e1(z) + λ2(z)e2(z),
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where ei(z) = 1
2
(e+ (−1)i+1 x

‖x‖) for i = 1, 2 when x 6= 0, and ei(z) = 1
2
(e+ (−1)i+1x̃) for

i = 1, 2 when x = 0 (x̃ is any element in 〈e〉⊥ satisfying ‖x̃‖ = 1 ). Here λ1(z), λ2(z)

and e1(z), e2(z) are called the spectral values and the associated spectral vectors of z,

respectively. In addition, if z ∈ Ω, we have

z1/2 =
√
λ1(z)e1(z) +

√
λ2(z)e2(z).

Clearly, when x 6= 0, the factorizations of z and z1/2 are unique. Note that {e1(z), e2(z)}
is called a Jordan frame in the real Hilbert space H.

Associated with every z ∈ H, we define a linear transformation Lz : H → H as follows

Lz(w) := z ◦ w for any w ∈ H.

Lz is called the Lyapunov transformation from H to H. It can be seen that Lz ∈ L(H),

where L(H) denotes the Banach space of all continuous linear transformation from H to

H.

For a convex cone Ω in H, let ΠΩ denote the metric projection onto Ω [10]. For an

z ∈ H, z+ := ΠΩ(z) if and only if z+ ∈ Ω and ‖z − z+‖ ≤ ‖z − w‖ for all w ∈ Ω. This is

also equivalent to 〈z − z+, w − z+〉 ≤ 0 for any w ∈ Ω. Since Ω is convex cone, we have

z+ is unique. Similarly, z− means ΠΩ(−z). Then, we have the following results.

Lemma 2.2 Let z = x+ λe ∈ H. Then the following results hold.

(a) If z � 0, z+ = z and z− = 0.

(b) If z � 0, z+ = 0 and z− = z.

(c) If z /∈ Ω and −z /∈ Ω, there have

z+ =
‖x‖+ λ

2‖x‖
x+
‖x‖+ λ

2
e = max{λ+ ‖x‖, 0}e1(z)

and

z− =
λ− ‖x‖

2‖x‖
x+
‖x‖ − λ

2
e = max{‖x‖ − λ, 0}e2(z).

(d) For any z ∈ H, we have z = z+ − z− and ‖z‖2 = ‖z+‖2 + ‖z−‖2.

(e) For any z ∈ H and w ∈ Ω, we have 〈z, w〉 ≤ 〈z+, w〉 and ‖(z + w)+‖ ≥ ‖z+‖.

(f) For any z ∈ Ω and w ∈ H with z2 − w2 ∈ Ω, we have z − w ∈ Ω.

Proof. These are well-known results for projection and convex cones. 2
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Lemma 2.3 [22, Lemma 3.3] Let H be a real Hilbert space and φ
FB

, Ψ
FB

be given as in

(2) and (4), respectively. Then, for any z, w ∈ H, we have

4Φ
FB

(z, w) ≥ 2‖φ
FB

(z, w)+‖2 ≥ ‖(−z)+‖2 + ‖(−w)+‖2.

To close this section, we talk about other concepts which play important roles in

analysis of boundedness of level sets.

Definition 2.1 Let H be a real Hilbert space. For a bounded continuous mapping F :

H → H,

(a) F has uniform P ∗-property if there exists ρ > 0 such that

max
i=1,2
〈(z − w) ◦ (F (z)− F (w)), ei(w)〉 ≥ ρ‖z − w‖2 ∀z, w ∈ H

where ei(w) for i = 1, 2 are the spectral vectors of w;

(b) F is called an R01-function if for any sequence {zk} such that

‖zk‖ → ∞, (−zk)+

‖zk‖
→ 0 and

(−F (zk))+

‖zk‖
→ 0 as k →∞,

we have

lim inf
k→∞

〈zk, F (zk)〉
‖zk‖2

> 0;

(c) F is called an R02-function if for any sequence {zk} such that

‖zk‖ → ∞, (−zk)+

‖zk‖
→ 0 and

(−F (zk))+

‖zk‖
→ 0 as k →∞,

we have

lim inf
k→∞

λ1(zk ◦ F (zk))

‖zk‖2
> 0.

The above concepts are taken from [3, 14] in the setting of finite-dimensional space.

Every R01-function is R02-function. In fact, R02-function is equivalent to R0-property

defined in [24, Definition 3.2]. Besides, we recall the concept of the strong monotonicity

for a bounded continuous function F : H → H. That is, we say that F is strongly

monotone with modulus µ > 0 if for any z, w ∈ H, there exist a constant µ > 0 such

that

〈z − w,F (z)− F (w)〉 ≥ µ‖z − w‖2.
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3 The same growth of FB and NR merit function

In this section, we will give our first main result of this paper. To prove it, the following

lemmas will be needed.

Lemma 3.1 Let H be a real Hilbert space. For z ∈ H with z = x + λe, define |z| :=

z+ + z−, where z+ and z− are the same as in Lemma 2.2. Then, we have

(a) 〈z+, z−〉 = 0 and z+ ◦ z− = 0;

(b) |z|2 = |z2|, ‖|z|‖ = ‖z‖ and |z| = 2z+ − z = z + 2z−.

Proof. The proof is obtained by straightforward calculation. thus it is omitted. 2

Lemma 3.2 Let H be a real Hilbert space. For any z, w, u ∈ H,

(a) if z � 0, w � 0 and z � w, we have z1/2 � w1/2;

(b) if z � 0 and 2z2 = w2 + u2, we have z � 1
2
(w + u).

Proof. (a) Let p = z1/2, q = w1/2 and r = p − q = x + λe. To prove z1/2 � w1/2,

we need to verity that λ ≥ ‖x‖. Note that 0 � z − w = p2 − (p − r)2 = 2p ◦ r − r2.

Let e2 = 1
2
(e − x

‖x‖) when x 6= 0, and e2 = 1
2
(e − x̃) (x̃ is any element in 〈e〉⊥ satisfying

‖x̃‖ = 1) when x = 0. Then, it follows that

0 ≤ 〈2p ◦ r − r2, e2〉
= 〈2p ◦ r, e2〉 − 〈r2, e2〉
= 〈2p, r ◦ e2〉 − (λ− ‖x‖)2〈e2, e2〉

= (λ− ‖x‖)〈2p, e2〉 −
(λ− ‖x‖)2

2
,

which implies (λ−‖x‖)2
2

≤ (λ − ‖x‖)〈2p, e2〉. This together with p � 0 and e2 � 0 yields

λ− ‖x‖ ≥ 0. The desired result follows.

(b) The arguments are similar to those for [1, Lemma 3.1]. For completeness, we present

them as follows. Since w2 + u2 − 2w ◦ u = (w − u)2 � 0, together with 2z2 = w2 + u2,

this implies that

z2 =
1

2
(w2 + u2) � 1

4
(w2 + u2) +

1

2
w ◦ u =

1

4
(w + u)2.

From part (a) and z � 0, we have z � 1
2
|w + u| � 1

2
(w + u). 2
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Theorem 3.1 Let H be a real Hilbert space. For any z, w ∈ H, there holds

(2−
√

2)‖φ
NR

(z, w)‖ ≤ ‖φ
FB

(z, w)‖ ≤ (2 +
√

2)‖φ
NR

(z, w)‖. (6)

Proof. Fix any z, w ∈ H. If z2 + w2 = 0, we have z = w = 0. Hence, the desired result

is obvious. If z2 + w2 6= 0, by Lemma 3.1, we obtain

φ
NR

(z, w) = z − (z − w)+ =
1

2
[(z + w)− |z − w|].

Furthermore, we know

φ
FB

(z, w) = z + w − (z2 + w2)1/2

= 2(z − (z − w)+) + 2(z − w)+ − (z − w)− (z2 + w2)1/2

= 2φ
NR

(z, w) + |z − w| − (z2 + w2)1/2.

Let p(z, w) = |z − w| − (z2 + w2)1/2. In view of triangle inequality, to prove inequality

(6), it suffices to verity that

‖p(z, w)‖ ≤
√

2‖φ
NR

(z, w)‖. (7)

To see this desired result, applying Lemma 3.2 gives

|z − w|+ (z + w) � 2(z2 + w2)1/2, (8)

Hence, we have

2‖p(z, w)‖2 − 4‖φ
NR

(z, w)‖2

= 2
(
‖z − w‖2 + ‖(z2 + w2)1/2‖2 − 2

〈
|z − w|, (z2 + w2)1/2

〉)
−‖z + w‖2 − ‖|z − w|‖2 + 2〈|z − w|, z + w〉

= 2‖z − w‖2 − 2〈|z − w|, 2(z2 + w2)1/2 − (z + w)〉
=

〈
|z − w|, |z − w|+ (z + w)− 2(z2 + w2)1/2

〉
≤ 0,

where the inequality holds is due to that |z−w| � 0 and (8). This implies that inequality

(7) is true. Then, the proof is complete. 2

4 Error bound of merit functions

Error bound is an important concept that indicates how close an arbitrary point is to the

solution set of Lorentz cone complementarity problem (1). Thus, an error bound may

be used to provide stopping criterion for an iterative method. As below, for FB merit
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function Ψ
FB

and merit function Ψα, we draw conclusions about the error bounds for the

solution of infinite-dimensional Lorentz cone complementarity problem (1), respectively.

For FB merit function Ψ
FB

, we obtain a result about the error bounds for the solution

of problem (1), which is an extension of [13, Theorem 6.3] in SCCP case.

Proposition 4.1 Suppose that F is strongly monotone with modulus µ > 0 and is Lip-

schitz continuous with constant l. Then,

1

(
√

2 + 1)(2 + l)

√
Ψ

FB
(z) ≤ ‖z − z∗‖ ≤ l + 1

µ(
√

2− 1)

√
Ψ

FB
(z),

Proof. Fix any z ∈ H, let N(z) = φ
NR

(z, F (z)). Applying Theorem 3.1, we have

(3− 2
√

2)‖N(z)‖2 ≤ Ψ
FB

(z) ≤ (3 + 2
√

2)‖N(z)‖2. (9)

Since N(z) = φ
NR

(z, F (z)) = z−(z−F (z))+, it follows that F (z)−N(z) = (z−F (z))− �
0, z − N(z) = (z − F (z))+ � 0 and 〈F (z) − N(z), z − N(z)〉 = 0. Because z∗ is the

unique solution of problem (1), we have

0 ≥ 〈F (z)−N(z), z −N(z)〉 − 〈F (z)−N(z), z∗ −N(z∗)〉 − 〈F (z∗)−N(z∗), z −N(z)〉
= 〈F (z)− F (z∗)− (N(z)−N(z∗)), z − z∗ − (N(z)−N(z∗))〉
≥ 〈F (z)− F (z∗), z − z∗〉 − 〈F (z)− F (z∗), N(z)−N(z∗)〉 − 〈z − z∗, N(z)−N(z∗)〉
≥ µ‖z − z∗‖2 − l‖z − z∗‖‖N(z)‖ − ‖z − z∗‖‖N(z)‖,

where the last inequality is due to the strong monotonicity and the Lipschitz continuity

of F . Thus, we obtain

‖z − z∗‖ ≤ l + 1

µ
‖N(z)‖. (10)

On the other hand,

‖N(z)‖ = ‖z − (z − F (z))+ − (z∗ − (z∗ − F (z∗))+)‖
≤ ‖z − z∗‖+ ‖z − z∗ − (F (z)− F (z∗))‖
≤ 2‖z − z∗‖+ ‖F (z)− F (z∗)‖ (11)

≤ (2 + l)‖z − z∗‖.

Combining (9), (10) and (11) leads to

1

(
√

2 + 1)(2 + l)

√
Ψ

FB
(z) ≤ ‖z − z∗‖ ≤ l + 1

µ(
√

2− 1)

√
Ψ

FB
(z)

which is the desired result. 2

From Proposition 4.1, we see that if we use FB merit function Ψ
FB

to provide er-

ror bound for the solution of problem (1), we need the conditions of F being strongly
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monotone and Lipschitz continuous. However, to provide error bound for the solution

of (1) via Ψα merit function, we may weaken the aforementioned conditions to uniform

P ∗-property. We will prove this in Proposition 4.2. For this purpose, we present two

technical lemmas first.

Lemma 4.1 [15, Lemma 2.2] Let z = x + λe, w = y + µe ∈ H with x, y ∈ 〈e〉⊥ and

λ, µ ∈ IR. The following two conditions are equivalent:

(a) z � 0, w � 0, and 〈z, w〉 = 0;

(b) z � 0, w � 0, and z ◦ w = 0.

In each case, z and w operator commute.

Lemma 4.2 [15, Lemma 2.4] For any z, w ∈ Ω, if z and w operator commute, then

z ◦ w ∈ Ω.

Proposition 4.2 Let Ψα be defined as in (5) and α > 0. Suppose that F has uniform

P ∗-property and the CP (1) has a solution z∗. Then, there exists a scalar τ > 0 such

that

τ‖z − z∗‖2 ≤ ‖(F (z) ◦ z)+‖+ ‖(−F (z))+‖+ ‖(−z)+‖ ∀z ∈ H. (12)

Moreover,

‖z − z∗‖ ≤ θΨα(z)
1
4 , ∀z ∈ H,

where θ is a positive constant.

Proof. Since F has the uniform P ∗-property, there exists ρ > 0 such that

ρ‖z − z∗‖2 ≤ max
i=1,2
〈(z − z∗) ◦ (F (z)− F (z∗)), ei(z

∗)〉, (13)

where {ei(z∗)|i = 1, 2} is the Jordan frame about z∗ in H. From z∗ being a solution of

(1), it follows that

(z − z∗) ◦ (F (z)− F (z∗)) = z ◦ F (z)− z ◦ F (z∗)− z∗ ◦ F (z).

Note that F (z∗) ∈ Ω, z∗ ∈ Ω and ei(z
∗) ∈ Ω. By Lemma 4.1, Lemma 4.2 and Lemma

2.2(e), we have

〈−z, F (z∗) ◦ ei(z∗)〉 ≤ 〈(−z)+, F (z∗) ◦ ei(z∗)〉

and

〈−F (z), z∗ ◦ ei(z∗)〉 ≤ 〈(−F (z))+, z
∗ ◦ ei(z∗)〉.

11



Moreover, from Lemma 4.1, we have that z∗ and F (z∗) share the same Jordan frame.

Let

z∗ = λ1(z∗)e1(z∗) + λ2(z∗)e2(z∗)

and

F (z∗) = λ1(F (z∗))e1(z∗) + λ2(F (z∗))e2(z∗).

Then, it follows that

〈(z − z∗) ◦ (F (z)− F (z∗)), ei(z
∗)〉

= 〈z ◦ F (z), ei(z
∗)〉+ 〈−z ◦ F (z∗), ei(z

∗)〉+ 〈−z∗ ◦ F (z), ei(z
∗)〉

= 〈z ◦ F (z), ei(z
∗)〉+ 〈−z, F (z∗) ◦ ei(z∗)〉+ 〈−F (z), z∗ ◦ ei(z∗)〉

≤ 〈(z ◦ F (z))+, ei(z
∗)〉+ 〈(−z)+, F (z∗) ◦ ei(z∗)〉+ 〈(−F (z))+, z

∗ ◦ ei(z∗)〉
≤ ‖(z ◦ F (z))+‖‖ei(z∗)‖+ ‖(−z)+‖‖F (z∗) ◦ ei(z∗)‖+ ‖(−F (z))+‖‖z∗ ◦ ei(z∗)‖

≤ 1√
2

[‖(z ◦ F (z))+‖+ λi(F (z∗))‖(−z)+‖+ λi(z
∗)‖(−F (z))+‖]

≤ max

{
1√
2
,
λi(F (z∗))√

2
,
λi(z

∗)√
2

}
[‖(z ◦ F (z))+‖+ ‖(−z)+‖+ ‖(−F (z))+‖]

≤ max

{
1√
2
,
λ2(F (z∗))√

2
,
λ1(z∗)√

2

}
[‖(z ◦ F (z))+‖+ ‖(−z)+‖+ ‖(−F (z))+‖] ,

where the first inequality is from Lemma 2.2(e), and the last inequality is from the facts

that λi(F (z∗)) ≥ 0, λ1(z∗) ≥ λ2(z∗) ≥ 0 and z∗ ◦ F (z∗) = 0, i.e., λi(F (z∗)) · λi(z∗) = 0

for i = 1, 2. Define

τ :=
ρ

max
{

1√
2
, λ2(F (z∗))√

2
, λ1(z∗)√

2

} .
This together (12) and (13) yields

τ‖z − z∗‖2 ≤ ‖(F (z) ◦ z)+‖+ ‖(−F (z))+‖+ ‖(−z)+‖ ∀z ∈ H.

Now, we come to the second part of the proposition. We know that

Ψα(z) =
α

2
‖(z ◦ F (z))+‖2 + Ψ

FB
(z),

which says ‖(z ◦ F (z))+‖ ≤
√

2
α

Ψα(z)1/2. Moreover, from Lemma 2.3, it follows that

‖(−F (z))+‖+ ‖(−z)+‖ ≤
√

2(‖(−F (z))+‖2 + ‖(−z)+‖2)
1
2

≤ 2
√

2Ψ
FB

(z)1/2

≤ 2
√

2Ψα(z)1/2.

Therefore,

‖(F (z) ◦ z)+‖+ ‖(−F (z))+‖+ ‖(−z)+‖ ≤

(√
2

α
+ 2
√

2

)
Ψα(z)1/2.
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Letting θ =
√√

2(2
√
α+1)

τ
√
α

shows the second part result. 2

The condition α > 0 is necessary in Proposition 4.2. From the proof, we see that

θ → ∞ as α → 0. Thus, α 6= 0 is necessary. In fact, when α = 0, we have Ψα = Ψ
FB

.

This explains that for the FB merit function Ψ
FB

, we can not reach our desired result

under the same conditions in Proposition 4.2.

5 Boundedness of level sets

The boundedness of level sets of a merit function is also important since it is a necessary

condition to ensures that the sequence generated by a descent method has at least one

accumulation point. In this section, we will show the boundedness of level sets of Ψ
FB

and

Ψα under different conditions. The relation between such conditions will be discussed as

well.

Lemma 5.1 For any zk, wk ∈ H, let λ2(zk) ≤ λ1(zk) and µ2(wk) ≤ µ1(wk) denote the

spectral values of zk and wk, respectively. Then,

(a) if λ2(zk)→ −∞ or µ2(wk)→ −∞, we have Ψi →∞ for i = 1, 2,

where Ψ1(z) :=
1

2
(‖(−zk)+‖2 + ‖(−wk)+‖2) and Ψ2(z) :=

1

2
‖φ

FB
(zk, wk)+‖2.

(b) if {λ2(zk)} and {µ2(wk)} are bounded below, λ1(zk) → ∞, µ1(wk) → ∞ and zk

‖zk‖ ◦
wk

‖wk‖ 6→ 0 as k →∞, then Φ
FB

(zk, wk)→∞.

Proof. (a) See [22, Lemma 4.4].

(b) Suppose that {φ
FB

(zk, wk)} is bounded. Define uk := ((zk)2 + (wk)2)1/2 for each k.

From the definition of φ
FB

, we have zk +wk = uk − φ
FB

(zk, wk) for each k. Squaring two

sides of the above equality leads to

2zk ◦ wk = −2uk ◦ φ
FB

(zk, wk) + φ2
FB

(zk, wk).

Since ‖zk‖ ≥ 1√
2
λ1(zk) and ‖wk‖ ≥ 1√

2
µ1(wk), by the conditions of this lemma, we have

lim
k→∞

uk

‖zk‖‖wk‖
= lim

k→∞

[
(zk)2

‖zk‖2‖wk‖2
+

(wk)2

‖zk‖2‖wk‖2

]1/2

= 0.

This together with the boundedness of {φ
FB

(zk, wk)} implies

lim
k→∞

2zk ◦ wk

‖zk‖‖wk‖
= lim

k→∞

−2uk ◦ φ
FB

(zk, wk) + φ2
FB

(zk, wk)

‖zk‖‖wk‖
= 0.

13



Thus, limk→∞
zk

‖zk‖ ◦
wk

‖wk‖ = 0, which contradicts the given assumption. Hence, the

conclusion is proved. 2

Remark: The condition of Lemma 5.1(b) was discussed in Lemma 4.2 of paper [11] and

Lemma 4.1 of paper [3] in finite-dimensional space as well.

Condition A[18]. For any sequence {zk} ⊆ H satisfying ‖zk‖ → ∞, if {λ2(zk)} and

λ2(F (zk)) are bounded below, and λ1(zk)→∞, λ1(F (zk))→∞ as k →∞. Then

lim sup
k→∞

〈
zk

‖zk‖
,
F (zk)

‖F (zk)‖

〉
> 0.

Using Lemma 5.1 and similar arguments as in [3, Proposition 4.2], we may obtain

the following propositions, which are the boundedness of level sets for Ψ
FB

and Ψα,

respectively.

Proposition 5.1 Let Ψ
FB

be given as in (4). Assume that F is a strongly monotone

function with modulus µ > 0 and satisfies Condition A. Then, the level set

L (γ) := {z ∈ H| Ψ
FB

(z) ≤ γ}

is bounded for all γ ≥ 0.

Proof. We prove this result by contradiction. Suppose there exists an unbounded

sequence {zk} ⊆ L (γ) for some γ ≥ 0. We claim that the sequence of the smallest

spectral values of zk and F (zk) are bounded below. If not, by Lemma 5.1, we have

Ψi(z
k) → ∞ for i = 1, 2, which implies Ψ

FB
(zk) → ∞. This contradicts {zk} ⊆ L (γ).

On the other hand, by the strongly monotone property of F , there exists a constant

µ > 0 such that

µ‖zk‖2 ≤ 〈zk, F (zk)− F (0)〉
≤ ‖zk‖‖F (zk)− F (0)‖
≤ ‖zk‖(‖F (zk)‖+ ‖F (0)‖).

This implies that µ‖zk‖ ≤ ‖F (zk)‖ + ‖F (0)‖. It follows from unboundedness of {zk}
and boundedness of F that {F (zk)} is unbounded, which says that λ1(zk) → ∞ and

λ1(F (zk))→∞ as k →∞. By Condition A, it gives

lim sup
k→∞

〈
zk

‖zk‖
,
F (zk)

‖F (zk)‖

〉
> 0,

which implies

lim sup
k→∞

λ1

[
zk

‖zk‖
◦ F (zk)

‖F (zk)‖

]
> 0.
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From this, we have zk

‖zk‖ ◦
F (zk)
‖F (zk)‖ 6→ 0. Together with Lemma 5.1(b), we obtain Ψ

FB
(zk) =

Φ
FB

(zk, F (zk))→∞. Hence, this is a contradiction to zk ⊆ L (γ). The proof is complete.

2

In fact, the condition A and the strong monotonicity of F in Proposition 5.1 can

be replaced by the Lipschitz continuity of F and R01-function. This can be verified as

below. Since the sequence of the smaller spectral values of zk and F (zk) are bounded

below, we have (−zk)+ and (−F (zk))+ are bounded above. For any sequence zk satisfying

‖zk‖ → ∞, by the definition of R01-function, we have

lim inf
k→∞

〈zk, F (zk)〉
‖zk‖2

> 0. (14)

This implies that

lim sup
k→∞

〈
zk

‖zk‖
,
F (zk)

‖F (zk)‖

〉
≥ lim inf

k→∞

〈
zk

‖zk‖
,
F (zk)

‖F (zk)‖

〉
= lim inf

k→∞

〈zk, F (zk)〉
‖zk‖2

‖zk‖
‖F (zk)‖

> 0,

where the last inequality is due to (14) and the Lipschitz continuity of F .

Next, we show the bounded level sets for Ψα. As will be seen, it requires F being

R02-function to guarantee this property. In view of the above remark and the fact that

every R01-function is an R02-function, we see this condition is weaker that in Proposition

5.1 though their proofs are similar.

Proposition 5.2 Let Ψα be given as in (5). Suppose that F is an R02-function. Then,

the level sets

L (γ) := {z ∈ H| Ψα(z) ≤ γ}.

is bounded for all γ ≥ 0.

Proof. We prove this result by contradiction again. Suppose there exists an unbounded

sequence {zk} ⊆ L (γ) for some γ ≥ 0. We claim that the sequence of the smaller

spectral values of zk and F (zk) are bounded below. In fact, if not, by Lemma 5.1, we

have Ψi(z
k)→∞ for i = 1, 2, which says Ψα(zk)→∞. This contradicts {zk} ⊆ L (γ).

Therefore {(−zk)+} and {(−F (zk))+} are bounded above. Thus, for any sequence {zk}
satisfying ‖zk‖ → ∞, we have

(−zk)+

‖zk‖
→ 0 and

(−F (zk))+

‖zk‖
→ 0.
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By the definition of R02-function, we have

lim inf
k→∞

λ1(zk ◦ F (zk))

‖zk‖2
> 0.

This implies that λ1(zk ◦F (zk))→∞. Hence, ‖(zk ◦F (zk))+‖ → ∞. This together with

definition of Ψα, which leads to Ψα(zk)→∞. This contradicts {zk} ⊆ L (γ). Therefore,

the desired result is proved. 2

6 Concluding Remarks

In this paper, we have studied the Lorentz cone complementarity problems in real Hilbert

space for which we prove the same growth of FB and NR merit functions, provide a global

error bound for the solutions via two kinds of merit functions, and discuss the property

of the bounded level sets of these two kinds of merit functions under different conditions.

Such results will be helpful and useful for further designing solution methods for solving

problem (1).
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