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Abstract. It is well known that complementarity functions play an important role in

dealing with complementarity problems. In this paper, we propose a few new classes

of complementarity functions for nonlinear complementarity problems and second-order

cone complementarity problems. The constructions of such new complementarity func-

tions are based on discrete generalization which is a novel idea in contrast to the con-

tinuous generalization of Fischer-Burmeister function. Surprisingly, these new families

of complementarity functions possess continuous differentiability even though they are

discrete-oriented extensions. This feature enables that some methods like derivative-free

algorithm can be employed directly for solving nonlinear complementarity problems and

second-order cone complementarity problems. This is a new discovery to the literature

and we believe that such new complementarity functions can also be used in many other

contexts.

Keywords. NCP, SOCCP, natural residual, complementarity function.

1 Introduction

In general, the complementarity problem comes from the KKT conditions of linear and

nonlinear programming problems. For different types of optimization problems, there

arise various complementarity problems, for example, linear complementarity problem,

nonlinear complementarity problem, semidefinite complementarity problem, second-order

cone complementarity problem, and symmetric cone complementarity problem. To deal

with complementarity problems, the so-called complementarity functions play an impor-

tant role therein. In this paper, we focus on two classes of complementarity functions,

which are used for the nonlinear complementarity problem (NCP) and the second-order

cone complementarity problem (SOCCP), respectively.

The first class is the nonlinear complementarity problem (NCP) that has attracted

much attention since 1970s because of its wide applications in the fields of economics,

engineering, and operations research, see [17, 21, 29] and references therein. In mathe-

matical format, the NCP is to find a point x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0,

where 〈·, ·〉 is the Euclidean inner product and F = (F1, . . . , Fn)T is a map from Rn to

Rn. For solving NCP, the so-called NCP-function φ : R2 → R defined as below

φ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0

plays a crucial role. Generally speaking, with such NCP-functions, the NCP can be re-

formulated as nonsmooth equations [36, 39, 44] or unconstrained minimization [22, 23,
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27, 31, 32, 40, 43]. Then, different kinds of approaches and algorithms are designed based

on the aforementioned reformulations and various NCP-functions. During the past four

decades, around thirty NCP-functions are proposed, see [26] for a survey.

The second class is the second-order cone complementarity problem (SOCCP), which

can be viewed as a natural extension of NCP and is to seek a ζ ∈ Rn such that

ζ ∈ K, F (ζ) ∈ K, 〈ζ, F (ζ)〉 = 0,

where F : Rn → Rn is a map and K is the Cartesian product of second-order cones

(SOC), also called Lorentz cones [19]. In other words, K is expressed as

K = Kn1 × · · · × Knm ,

where m,n1, . . . , nm ≥ 1, n1 + · · ·+ nm = n, and

Kni := {(x1, x2) ∈ R×Rni−1 | ‖x2‖ ≤ x1},

with ‖ · ‖ denoting the Euclidean norm. The SOCCP has important applications in

engineering problems [35] and robust Nash equilibria [28]. Another important special

case of SOCCP corresponds to the Karush-Kuhn-Tucker (KKT) optimality conditions

for the second-order cone program (SOCP) (see [4] for details):

minimize cTx

subject to Ax = b, x ∈ K,

whereA ∈ Rm×n has full row rank, b ∈ Rm and c ∈ Rn. Many solution methods have been

proposed for solving SOCCP, see [12] for a survey. For example, merit function approach

based on reformulating the SOCCP as an unconstrained smooth minimization problem is

studied in [4, 6, 38]. In such approach, it is to find a smooth function ψ : Rn×Rn → R+

such that

ψ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn. (1)

Then, the SOCCP can be expressed as an unconstrained smooth (global) minimization

problem:

min
ζ∈Rn

ψ(ζ, F (ζ)). (2)

In fact, a function ψ satisfying the condition in (1) (not necessarily smooth) is called a

complementarity function for SOCCP (or complementarity function associated with Kn).

Various gradient methods such as conjugate gradient methods and quasi-Newton meth-

ods [2, 20] can be applied for solving (2). In general, for this approach to be effective,

the choice of complementarity function ψ is also crucial.

3



Back to the complementarity functions for NCP, two popular choices of NCP-functions

are the well-known Fischer-Burmeister function (FB function, in short) φ
FB

: R2 → R

defined by (see [23, 24])

φ
FB

(a, b) =
√
a2 + b2 − (a+ b),

and the squared norm of Fischer-Burmeister function given by

ψ
FB

(a, b) =
1

2

∣∣φ
FB

(a, b)
∣∣2.

In addition, the generalized Fischer-Burmeister function φp : R2 → R, which includes the

Fischer-Burmeister as a special case, is considered in [5, 7, 8, 11, 30, 42]. In particular, the

function φp is a natural “continuous extension” of φ
FB

, in which the 2-norm in φ
FB

(a, b)

is replaced by general p-norm. In other words, φp : R2 → R is defined as

φp(a, b) = ‖(a, b)‖p − (a+ b), p > 1 (3)

and its geometric view is depicted in [42]. The effect of perturbing p for different kinds

of algorithms is investigated in [9–11, 14, 15]. We point it out that the generalized

Fischer-Burmeister φp given as in (3) is not differentiable, whereas the squared norm

of generalized Fischer-Burmeister function is smooth so that it is usually adapted as a

differentiable NCP-function [38]. Moreover, all the aforementioned functions including

Fischer-Burmeister function, generalized Fischer-Burmeister function and their squared

norm can be extended to the setting of SOCCP via Jordan algebra.

A different type of popular NCP-function is the natural residual function φ
NR

: R2 →
R given by

φ
NR

(a, b) = a− (a− b)+ = min{a, b}.

Recently, Chen et al. propose a family of generalized natural residual functions φp
NR

defined by

φp
NR

(a, b) = ap − (a− b)p+,

where p > 1 is a positive odd integer, (a−b)p+ = [(a−b)+]p, and (a−b)+ = max{a−b, 0}.
When p = 1, φp

NR
reduces to the natural residual function φ

NR
, i.e.,

φ1
NR

(a, b) = a− (a− b)+ = min{a, b} = φ
NR

(a, b).

As remarked in [16], this extension is “discrete generalization”, not “continuous general-

ization”. Nonetheless, it possesses twice differentiability surprisingly so that the squared

norm of φp
NR

is not needed. Based on this discrete generalization, two families of NCP-

functions are further proposed in [3] which have the feature of symmetric surfaces. To

the contrast, it is very natural to ask whether there is a similar “discrete extension” for

Fischer-Burmeister function. We answer this question affirmatively.
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In this paper, we apply the idea of “discrete generalization” to the Fischer-Burmeister

function which gives the following function (denoted by φp
D−FB

):

φp
D−FB

(a, b) =
(√

a2 + b2
)p
− (a+ b)p, (4)

where p > 1 is a positive odd integer and (a, b) ∈ R2. Notice that when p = 1, φp
D−FB

reduces to the Fischer-Burmeister function. In Section 3, we will see that φp
D−FB

is an

NCP-function and is twice differentiable directly without taking its squared norm. Note

that if p is even, it is no longer an NCP-function. Even though we have the feature of

differentiability, we point out that the Newton method may not applied directly because

the Jacobian at a degenerate solution to NCP is singular (see [32, 33]). Nonetheless, this

feature may enable that many methods like derivative-free algorithm can be employed

directly for solving NCP. In addition, we investigate the differentiable properties of φp
D−FB

,

the computable formulas for their gradients and Jacobians. In order to have more in-

sight for this new family of NCP-function, we also depict the surfaces of φp
D−FB

(a, b) with

various values of p.

In Section 4, we show that the new function φp
D−FB

can be further employed to the

SOCCP setting as complementarity functions and merit functions. In other words, in

the terms of Jordan algebra, we define φp
D−FB

: Rn ×Rn → Rn by

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p, (5)

where p > 1 is a positive odd integer, x ∈ Rn, y ∈ Rn, x2 = x ◦ x is the Jordan product

of x with itself and
√
x with x ∈ Kn being the unique vector such that

√
x ◦
√
x = x.

We prove that each φp
D−FB

(x, y) is a complementarity function associated with Kn and

establish formulas for its gradient and Jacobian. These properties and formulas can be

used to design and analyze non-interior continuation methods for solving second-order

cone programs and complementarity problems. In addition, several variants of φp
D−FB

are

also shown to be complementarity functions for SOCCP.

Throughout the paper, we assume K = Kn for simplicity and all the analysis can be

carried over to the case where K is a product of second-order cones without difficulty.

The following notations will be used. The identity matrix is denoted by I and Rn denotes

the space of n-dimensional real column vectors. For any given x ∈ Rn with n > 1, we

write x = (x1, x2) where x1 is the first entry of x and x2 is the subvector that consists

of the remaining entries. For every differentiable function f : Rn → R, ∇f(x) denotes

the gradient of f at x. For every differentiable mapping F : Rn → Rm, ∇F (x) is an

n×m matrix which denotes the transposed Jacobian of F at x. For nonnegative scalar

functions α and β, we write α = o(β) to mean lim
β→0

α

β
= 0.
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2 Preliminaries

In this section, we review some background materials about the Jordan algebra in [19, 25].

Then, we present some technical lemmas which are needed in subsequent analysis.

For any x = (x1, x2), y = (y1, y2) ∈ R×Rn−1, we define the Jordan product associated

with Kn as

x ◦ y := (〈x, y〉, y1x2 + x1y2).

The identity element under this product is e := (1, 0, . . . , 0)T ∈ Rn. For any given

x = (x1, x2) ∈ R×Rn−1, we define symmetric matrix

Lx :=

[
x1 xT2
x2 x1I

]
which can be viewed as a linear mapping from Rn to Rn. It is easy to verify that

Lxy = x ◦ y, ∀x ∈ Rn.

Moreover, we have Lx is invertible for x �Kn 0 and

L−1x =
1

det(x)

 x1 −xT2
−x2

det(x)

x1
I +

1

x1
x2x

T
2

 ,
where det(x) = x21−‖x2‖2. We next recall from [12, 25] that each x = (x1, x2) ∈ R×Rn−1

admits a spectral factorization, associated with Kn, of the form

x = λ1u
(1) + λ2u

(2), (6)

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors of

x given by

λi = x1 + (−1)i‖x2‖,

u(i) =


1
2

(
1, (−1)i

x2
‖x2‖

)
if x2 6= 0;

1
2

(
1, (−1)iw2

)
if x2 = 0,

for i = 1, 2, with w2 being any vector in Rn−1 satisfying ‖w2‖ = 1. If x2 6= 0, the factor-

ization is unique.

Given a real-valued function g : R→ R, we can define a vector-valued SOC-function

gsoc : Rn → Rn by

gsoc(x) := g(λ1)u
(1) + g(λ2)u

(2).
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If g is defined on a subset of R, then gsoc is defined on the corresponding subset of Rn.

The definition of gsoc is unambiguous whether x2 6= 0 or x2 = 0. In this paper, we

will often use the vector-valued functions corresponding to tp (t ∈ R) and
√
t (t ≥ 0),

respectively, which are expressed as

xp := (λ1(x))pu(1) + (λ2(x))pu(2), ∀x ∈ Rn

√
x :=

√
λ1(x)u(1) +

√
λ2(x)u(2), ∀x ∈ Kn.

We will see that the above two vector-valued functions play a role in showing that φp
D−FB

given as in (5) is well-defined in the SOC setting for any x, y ∈ Rn. Note that the

other way to define xp and
√
x is through Jordan product. In other words, xp represents

x ◦ x ◦ · · · ◦ x for p-times and
√
x ∈ Kn satisfies

√
x ◦
√
x = x.

Lemma 2.1. Suppose that p = 2k + 1 where k = 1, 2, 3, · · · . Then, for any u, v ∈ R, we

have up = vp if and only if u = v.

Proof. The proof is straightforward and can be found in [1, Theorem 1.12]. Here, we

provide an alternative proof.

“⇐” It is trivial.

“⇒” For v = 0, since up = vp, we have u = v = 0. For v 6= 0, from f(t) = tp − 1 being a

strictly monotone increasing function for any t ∈ R, we have
(u
v

)p
− 1 = 0 if and only

if
u

v
= 1, which implies u = v. Thus, the proof is complete. 2

Lemma 2.2. For p = 2m + 1 with m = 1, 2, 3, · · · and x = (x1, x2), y = (y1, y2) ∈
R×Rn−1, suppose that xp and yp represent x ◦ x ◦ · · · ◦ x and y ◦ y ◦ · · · ◦ y for p-times,

respectively. Then, xp = yp if and only if x = y.

Proof. “⇐” This direction is trivial.

“⇒” Suppose that xp = yp. By the spectral decomposition (6), we write

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,

y = λ1(y)u
(1)
y + λ2(y)u

(2)
y .

Then, xp = (λ1(x))pu
(1)
x + (λ2(x))pu

(2)
x and yp = (λ1(y))pu

(1)
y + (λ2(y))pu

(2)
y . Since xp = yp

and eigenvalues are unique, we obtain (λ1(x))p = (λ1(y))p and (λ2(x))p = (λ2(y))p. By

Lemma 2.1, this implies λ1(x) = λ1(y) and λ2(x) = λ2(y). Moreover, {u(1)x , u
(2)
x } and

{u(1)y , u
(2)
y } are Jordan frames, we have u

(1)
x +u

(2)
x = u

(1)
y +u

(2)
y = e, where e is the identity

element. From xp = yp and u
(1)
x + u

(2)
x = u

(1)
y + u

(2)
y , we get

[(λ1(x))p − (λ2(x))p] (u(1)x − u(1)y ) = 0.

If (λ1(x))p = (λ2(x))p, we have λ1(x) = λ2(x) and λ1(y) = λ2(y), that is, x = λ1(x)e = y.

Otherwise, if (λ1(x))p 6= (λ2(x))p, we must have u
(1)
x = u

(1)
y , which implies u

(2)
x = u

(2)
y .

2
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3 New generalized Fischer-Burmeister function for

NCP

In this section, we show that the function φp
D−FB

defined as in (4) is an NCP-function and

present its twice differentiability. At the same time, we also depict the surfaces of φp
D−FB

with various values of p to have more insight for this new family of NCP-functions.

Proposition 3.1. Let φp
D−FB

be defined as in (4) where p is a positive odd integer. Then,

φp
D−FB

is an NCP-function.

Proof. Suppose φp
D−FB

(a, b) = 0 , which says
(√

a2 + b2
)p

= (a + b)p. Using p being a

positive odd integer and applying Lemma 2.1, we have(√
a2 + b2

)p
= (a+ b)p ⇐⇒

√
a2 + b2 = a+ b.

It is well known that
√
a2 + b2 = a+ b is equivalent to a, b ≥ 0, ab = 0 because φ

FB
is an

NCP-function. This shows that φp
D−FB

(a, b) = 0 implies a, b ≥ 0, ab = 0. The converse

direction is trivial. Thus, we prove that φp
D−FB

is an NCP-function. 2

Remark 3.1: We elaborate more about the new NCP-function φp
D−FB

.

(a) For p being an even integer, φp
D−FB

is not a NCP-function. A counterexample is given

as below.

φp
D−FB

(−5, 0) = (−5)2 − (−5)2 = 0.

(b) The surface of φp
D−FB

is symmetric, i.e., φp
D−FB

(a, b) = φp
D−FB

(b, a).

(c) The function φp
D−FB

(a, b) is positive homogenous of degree p, i.e., φp
D−FB

(α(a, b)) =

αpφp
D−FB

(a, b) for α ≥ 0.

(d) The function φp
D−FB

is neither convex nor concave function. To see this, taking p = 3

and using the following argument verify the assertion.

53 − 73 = φ3
D−FB

(3, 4) >
1

2
φ3

D−FB
(0, 0) +

1

2
φ3

D−FB
(6, 8)

=
1

2
× 0 +

1

2

(
103 − 143

)
= 4

(
53 − 73

)
and

0 = φ3
D−FB

(0, 0) <
1

2
φ3

D−FB
(−2, 0) +

1

2
φ3

D−FB
(2, 0) =

1

2
× 16 +

1

2
× 0 = 8.
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Proposition 3.2. Let φp
D−FB

be defined as in (4) where p is a positive odd integer. Then,

the following hold.

(a) For p > 1, φp
D−FB

is continuously differentiable with

∇φp
D−FB

(a, b) = p

[
a(
√
a2 + b2)p−2 − (a+ b)p−1

b(
√
a2 + b2)p−2 − (a+ b)p−1

]
.

(b) For p > 3, φp
D−FB

is twice continuously differentiable with

∇2φp
D−FB

(a, b) =

 ∂2φp
D−FB

∂a2
∂2φp

D−FB

∂a∂b
∂2φp

D−FB

∂b∂a

∂2φp
D−FB

∂b2

 ,
where

∂2φp
D−FB

∂a2
= p

{
[(p− 1)a2 + b2](

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2

}
,

∂2φp
D−FB

∂a∂b
= p[(p− 2)ab(

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2] =

∂2φp
D−FB

∂b∂a
,

∂2φp
D−FB

∂b2
= p

{
[a2 + (p− 1)b2](

√
a2 + b2)p−4 − (p− 1)(a+ b)p−2

}
.

Proof. The verifications of differentiability and computations of first and second deriva-

tives are straightforward, we omit them. 2

Next, we present some variants of φp
D−FB

. Indeed, analogous to those functions in [41],

the variants of φp
D−FB

as below can be verified being NCP-functions.

φ1(a, b) = φp
D−FB

(a, b)− α(a)+(b)+, α > 0.

φ2(a, b) = φp
D−FB

(a, b)− α ((a)+(b)+)2 , α > 0.

φ3(a, b) = [φp
D−FB

(a, b)]2 + α ((ab)+)4 , α > 0.

φ4(a, b) = [φp
D−FB

(a, b)]2 + α ((ab)+)2 , α > 0.

In the above expressions, for any t ∈ R, we define t+ as max{0, t}.

Lemma 3.1. Let φp
D−FB

be defined as in (4) where p is a positive odd integer. Then, the

value of φp
D−FB

(a, b) is negative only in the first quadrant, i.e., φp
D−FB

(a, b) < 0 if and only

if a > 0, b > 0.
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Proof. We know that f(t) = tp is a strictly increasing function when p is odd. Using

this fact yields

a > 0, b > 0

⇐⇒ a+ b > 0 and ab > 0

⇐⇒
√
a2 + b2 < a+ b

⇐⇒
(√

a2 + b2
)p

< (a+ b)p

⇐⇒ φp
D−FB

(a, b) < 0,

which proves the desired result. 2

Proposition 3.3. All the above functions φi for i ∈ {1, 2, 3, 4} are NCP-functions.

Proof. Applying Lemma 3.1, the arguments are similar to those in [16, Proposition 2.4],

which are omitted here. 2

In fact, in light of Lemma 2.1, we can construct more variants of φp
D−FB

, which are

also new NCP-function. More specifically, consider that k and m are positive integers,

f : R × R → R, and g : R × R → R with g(a, b) 6= 0 for all a, b ∈ R, the following

functions are new variants of φp
D−FB

.

φ5(a, b) =
[
g(a, b)

(√
a2 + b2 + f(a, b)

)] 2k+1
2m+1 −

[
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1 .

φ6(a, b) =
[
g(a, b)(

√
a2 + b2 − a− b)

] k
m
.

φ7(a, b) =
[
g(a, b)(

√
a2 + b2 − a+ f(a, b))

] 2k+1
2m+1 − [g(a, b)(b+ f(a, b))]

2k+1
2m+1 .

φ8(a, b) =
[
g(a, b)(

√
a2 + b2 − a+ f(a, b))

] 2k+1
2m+1 − [g(a, b)(b+ f(a, b))]

2k+1
2m+1 .

φ9(a, b) = eφi(a,b) − 1 where i = 5, 6, 7, 8.

φ10(a, b) = ln(|φi(a, b)|+ 1) where i = 5, 6, 7, 8.

Proposition 3.4. All the above functions φi for i ∈ {5, 6, 7, 8, 9, 10} are NCP-functions.

Proof. This is an immediate consequence of Propositions 3.1-3.3. By Lemma 2.1 and
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g(a, b) 6= 0 for a, b ∈ R, we have

φ5(a, b) = 0

⇐⇒
[
g(a, b)

(√
a2 + b2 + f(a, b)

)] 2k+1
2m+1

=
[
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1

⇐⇒
{[

g(a, b)
(√

a2 + b2 + f(a, b)
)] 2k+1

2m+1
}2m+1

=
{ [
g(a, b)

(
a+ b+ f(a, b)

)] 2k+1
2m+1

}2m+1

⇐⇒
[
g(a, b)

(√
a2 + b2 + f(a, b)

)]2k+1

=
[
g(a, b)

(
a+ b+ f(a, b)

)]2k+1

⇐⇒ g(a, b)
(√

a2 + b2 + f(a, b)
)

= g(a, b)
(
a+ b+ f(a, b)

)
⇐⇒

(√
a2 + b2 + f(a, b)

)
=
(
a+ b+ f(a, b)

)
⇐⇒

√
a2 + b2 = a+ b.

The other functions φi for i ∈ {6, 7, 8, 9, 10} are similar to φ5. 2

According to the above results, we immediately obtain the following theorem.

Theorem 3.1. Suppose that φ(a, b) = ϕ1(a, b)− ϕ2(a, b) is an NCP-function on R×R
and k and m are positive integers. Then,

[
φ(a, b)

] k
m and

[
ϕ1(a, b)

] 2k+1
2m+1 − [ϕ2(a, b)]

2k+1
2m+1

are NCP-functions.

Proof. Using k and m being positive integers and applying Lemma 2.1, we have[
φ(a, b)

] k
m = 0

⇐⇒
{[
φ(a, b)

] k
m

}m
= 0

⇐⇒
[
φ(a, b)

]k
= 0

⇐⇒ φ(a, b) = 0.

Similarly, we have [
ϕ1(a, b)

] 2k+1
2m+1 − [ϕ2(a, b)]

2k+1
2m+1 = 0

⇐⇒
[
ϕ1(a, b)

] 2k+1
2m+1 = [ϕ2(a, b)]

2k+1
2m+1

⇐⇒
{[
ϕ1(a, b)

] 2k+1
2m+1

}2m+1

=
{

[ϕ2(a, b)]
2k+1
2m+1

}2m+1

⇐⇒
[
ϕ1(a, b)]

2k+1 =
[
ϕ2(a, b)]

2k+1

⇐⇒ ϕ1(a, b) = ϕ2(a, b)

⇐⇒ φ(a, b) = 0.

The above arguments together with the assumption of φ(a, b) being an NCP-function

yield the desired result. 2

Remark 3.2: We elaborate more about Theorem 3.1.

11



(a) Based on the existing well-known NCP-functions, we can construct new NCP-functions

in light of Theorem 3.1. This is a novel way to construct new NCP-functions.

(b) When k is a positive integer,
[
φ(a, b)

]k
is an NCP-function. This means that per-

turbing the parameter k gives new NCP-functions. In addition, if φ(a, b) is an NCP-

function, for any positive integer m,
[
φ(a, b)

] k
m is also an NCP-function. Thus, we

can determine suitable and nice NCP-functions among these functions according

to their numerical performance.

To close this section, we depict the surfaces of φp
D−FB

with different values of p so

that we may have deeper insight for this new family of NCP-functions. Figure 1 is the

surface if φ
D−FB

(a, b) from which we see that it is convex. Figure 2 presents the surface of

φ3
D−FB

(a, b) in which we see that it is neither convex nor concave as mentioned in Remark

3.1(c). In addition, the value of φp
D−FB

(a, b) is negative only when a > 0 and b > 0 as

mentioned in Lemma 3.1. The surfaces of φp
D−FB

with various values of p are shown in

Figure 3.
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Figure 1: The surface of z = φ
D−FB

(a, b) and (a, b) ∈ [−10, 10]× [−10, 10]

4 Extending φp
D−FB

and φp
NR

to SOCCP

In this section, we extend the new function φp
D−FB

and φp
NR

to SOC setting. More specifi-

cally, we show that the function φp
D−FB

and φp
NR

are complementarity functions associated

12
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Figure 2: The surface of z = φ3
D−FB

(a, b) and (a, b) ∈ [−10, 10]× [−10, 10]

with Kn. In addition, we present the computing formulas for its Jacobian.

Proposition 4.1. Let φp
D−FB

be defined by (5). Then, φp
D−FB

is a complementarity func-

tion associated with Kn, i.e., it satisfies

φp
D−FB

(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.

Proof. Since φp
D−FB

(x, y) = 0 , we have
(√

x2 + y2
)p

= (x + y)p. Using p being a

positive odd integer and applying Lemma 2.2 yield(√
x2 + y2

)p
= (x+ y)p ⇐⇒

√
x2 + y2 = x+ y.

It is known that φ
FB

(x, y) :=
√
x2 + y2−(x+y) is a complementarity function associated

with Kn. This indicates that φp
D−FB

is a complementarity function associate with Kn. 2

With similar technique, we can prove that φp
NR

can be extended as a complementarity

function for SOCCP.

Proposition 4.2. The function φp
NR

: Rn ×Rn → Rn defined by

φp
NR

(x, y) = xp − [(x− y)+]p (7)

is a complementarity function associated with Kn, where p > 1 is a positive odd integer

and (·)+ means the projection onto Kn.

13
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(b) z = φ5
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−5

0

5

−5
0

5

−1

−0.5

0

0.5

1

1.5

x 10
7

a−axis

b−axis

z−
ax

is

(c) z = φ7
D−FB

(a, b)
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(d) z = φ9
D−FB

(a, b)

Figure 3: The surface of z = φp
D−FB

(a, b) with different values of p

Proof. From Lemma 2.2, we see that φp
NR

(x, y) = 0 if and only if x = (x− y)+. On the

other hand, it is known that φ
NR

(x, y) = x− (x− y)+ is a complementarity function for

SOCCP, which implies x − (x − y)+ = 0 if and only if x ∈ Kn, y ∈ Kn, and 〈x, y〉 = 0.

Hence, φp
NR

is a complementarity function associated with Kn. 2

In order to compute the Jacobian of φp
D−FB

, we need to introduce some notations for

convenience. For any x = (x1, x2) ∈ R×Rn−1 and y = (y1, y2) ∈ R×Rn−1, we define

w(x, y) := x2 + y2 = (w1(x, y), w2(x, y)) ∈ R×Rn−1 and v(x, y) := x+ y.

Then, it is clear that w(x, y) ∈ Kn and λi(w) ≥ 0, i = 1, 2.

Proposition 4.3. Let φp
D−FB

be defined as in (5) and gsoc(x) = (
√
|x|)p, hsoc(x) =

xp are the vector-valued functions corresponding to g(t) = |t| p2 and h(t) = tp for t ∈

14



R, respectively. Then, φp
D−FB

is continuously differentiable at any (x, y) ∈ Rn × Rn.

Moreover, we have

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w)−∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w)−∇hsoc(v),

where w := w(x, y) = x2 + y2, v := v(x, y) = x+ y, t 7→ sign(t) is the sign function, and

∇gsoc(w) =


p

2
|w1|

p
2
−1 · sign(w1)I if w2 = 0;[

b1(w) c1(w)w̄T2
c1(w)w̄2 a1(w)I + (b1(w)− a1(w)) w̄2w̄

T
2

]
if w2 6= 0;

w̄2 =
w2

‖w2‖
,

a1(w) =
|λ2(w)| p2 − |λ1(w)| p2
λ2(w)− λ1(w)

,

b1(w) =
p

4

[
|λ2(w)|

p
2
−1 + |λ1(w)|

p
2
−1
]
,

c1(w) =
p

4

[
|λ2(w)|

p
2
−1 − |λ1(w)|

p
2
−1
]
,

and

∇hsoc(v) =


pvp−11 I if v2 = 0;[

b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v)− a2(v)) v̄2v̄

T
2

]
if v2 6= 0;

(8)

v̄2 =
v2
‖v2‖

, (9)

a2(v) =
(λ2(v))p − (λ1(v))p

λ2(v)− λ1(v)
, (10)

b2(v) =
p

2

[
(λ2(v))p−1 + (λ1(v))p−1

]
, (11)

c2(v) =
p

2

[
(λ2(v))p−1 − (λ1(v))p−1

]
, (12)

Proof. From the definition of φp
D−FB

, it is clear to see that for any (x, y) ∈ Rn ×Rn,

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p

=
(√
|x2 + y2|

)p
− (x+ y)p

=
[
|λ1(w)|

p
2u(1)(w) + |λ2(w)|

p
2u(2)(w)

]
−
[
(λ1(v))pu(1)(v) + (λ2(v))pu(2)(v)

]
= gsoc(w)− hsoc(v).

(13)

15



For p ≥ 3, since both |t| p2 and tp are continuously differentiable on R, by [13, Proposition

5] and [25, Proposition 5.2], we know that the function gsoc and hsoc are continuously

differentiable on Rn. Moreover, it is clear that w(x, y) = x2 + y2 is continuously differen-

tiable on Rn×Rn, then we conclude that φp
D−FB

is continuously differentiable. Moreover,

from the formula in [13, Proposition 4] and [25, Proposition 5.2], we have

∇gsoc(w) =


p

2
|w1|

p
2
−1 · sign(w1)I if w2 = 0;[

b1(w) c1(w)w̄T2
c1(w)w̄2 a1(w)I + (b1(w)− a1(w)) w̄2w̄

T
2

]
if w2 6= 0;

∇hsoc(v) =


pvp−11 I if v2 = 0;[

b2(v) c2(v)v̄T2
c2(v)v̄2 a2(v)I + (b2(v)− a2(v)) v̄2v̄

T
2

]
if v2 6= 0;

where

w̄2 = w2

‖w2‖ , v̄2 = v2
‖v2‖

a1(w) = |λ2(w)|
p
2−|λ1(w)|

p
2

λ2(w)−λ1(w) , a2(v) = (λ2(v))p−(λ1(v))p
λ2(v)−λ1(v) ,

b1(w) = p
4

[
|λ2(w)| p2−1 + |λ1(w)| p2−1

]
, b2(v) = p

2
[(λ2(v))p−1 + (λ1(v))p−1] ,

c1(w) = p
4

[
|λ2(w)| p2−1 − |λ1(w)| p2−1

]
, c2(v) = p

2
[(λ2(v))p−1 − (λ1(v))p−1] .

By taking differentiation on both sides about x and y for (13), respectively, and applying

the chain rule for differentiation, it follows that

∇xφ
p
D−FB

(x, y) = 2Lx∇gsoc(w)−∇hsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w)−∇hsoc(v).

Hence, we complete the proof. 2

With Lemma 2.2 and Proposition 4.1, we can construct more complementarity func-

tions for SOCCP which are variants of φp
D−FB

(x, y). More specifically, consider that k

and m are positive integers and f soc(x, y) : Rn ×Rn → Rn is the vector-valued function

corresponding to a given real-valued function f , the following functions are new variants

of φp
D−FB

(x, y).

φ̃1(x, y) =
[√

x2 + y2 + f soc(x, y)
] 2k+1

2m+1 − [x+ y + f soc(x, y)]
2k+1
2m+1 .

φ̃2(x, y) =
[√

x2 + y2 − x− y
] k

m
.

φ̃3(x, y) =
[√

x2 + y2 − x+ f soc(x, y)
] 2k+1

2m+1 − [y + f soc(x, y)]
2k+1
2m+1 .

φ̃4(x, y) =
[√

x2 + y2 − y + f soc(x, y)
] 2k+1

2m+1 − [x+ f soc(x, y)]
2k+1
2m+1 .
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Proposition 4.4. All the above functions φ̃i for i ∈ {1, 2, 3, 4} are complementarity

functions associated with Kn.

Proof. The results follow from applying Lemma 2.2 and Proposition 4.1. 2

In general, for complementarity functions associated with Kn, we have the following

parallel result to Theorem 3.1.

Theorem 4.1. Suppose that φ(x, y) = ϕ1(x, y)− ϕ2(x, y) is a complementarity function

associated with Kn on Rn × Rn, and k,m are positive integers. Then
[
φ(x, y)

] k
m and[

ϕ1(x, y)
] 2k+1

2m+1 − [ϕ2(x, y)]
2k+1
2m+1 are complementarity functions associated with Kn.

Proof. According to k and m are positive integers and by using Lemma 2.2, we have[
φ(x, y)

] k
m = 0

⇐⇒
{[
φ(x, y)

] k
m

}m
= 0

⇐⇒
[
φ(x, y)

]k
= 0

⇐⇒ φ(x, y) = 0.

Similarly, we have [
ϕ1(x, y)

] 2k+1
2m+1 − [ϕ2(x, y)]

2k+1
2m+1 = 0

⇐⇒
[
ϕ1(x, y)

] 2k+1
2m+1 = [ϕ2(x, y)]

2k+1
2m+1

⇐⇒
{[
ϕ1(x, y)

] 2k+1
2m+1

}2m+1

=
{

[ϕ2(x, y)]
2k+1
2m+1

}2m+1

⇐⇒
[
ϕ1(x, y)]2k+1 =

[
ϕ2(x, y)]2k+1

⇐⇒ ϕ1(x, y) = ϕ2(x, y)

⇐⇒ φ(x, y) = 0.

From the above arguments and the assumption, the proof is complete. 2

Remark 4.1: We elaborate more about Theorem 4.1.

(a) Based existing complementarity functions, we can construct new complementarity

functions associated with Kn in light of Theorem 4.1.

(b) When k is a positive odd integer, φ(x, y)k is a complementarity function associated

with Kn. This means that perturbing the odd integer parameter k, we obtain

the new complementarity functions associated with Kn. In addition, if φ(x, y) is

a complementarity function, then for any positive integer m,
[
φ(x, y)

] k
m is also

a complementarity function. We can determine nice complementarity functions

associated with Kn among these functions by their numerical performance.
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Finally, we establish formula for Jacobian of φp
NR

and the smoothness of φp
NR

. To this

aim, we need the following technical lemma.

Lemma 4.1. Let p > 1. Then, the real-valued function f(t) = (t+)p is continuously

differentiable with f ′(t) = p(t+)p−1 where t+ = max{0, t}.

Proof. By the definition of t+, we have

f(t) = (t+)p =

{
tp if t ≥ 0,

0 if t < 0,

which implies

f ′(t) =

{
ptp−1 if t ≥ 0,

0 if t < 0.

Then, it is easy to see that f ′(t) = p(t+)p−1 is continuous for p > 1. 2

Proposition 4.5. Let φp
NR

be defined as in (7) and hsoc(x) = xp, lsoc(x) = (x+)p be the

vector-valued functions corresponding to the real-valued functions h(t) = tp and l(t) =

(t+)p, respectively. Then, φp
NR

is continuously differentiable at any (x, y) ∈ Rn×Rn, and

its Jacobian is given by

∇xφ
p
NR

(x, y) = ∇hsoc(x)−∇lsoc(x− y),

∇yφ
p
NR

(x, y) = ∇lsoc(x− y),

where ∇hsoc satisfies (8)-(12) and

∇lsoc(u) =


p((u1)+)p−1I if u2 = 0;[

b3(u) c3(u)ūT2
c3(u)ū2 a3(u)I + (b3(u)− a3(u)) ū2ū

T
2

]
if u2 6= 0;

ū2 =
u2
‖u2‖

,

a3(u) =
(λ2(u)+)p − (λ1(u)+)p

λ2(u)− λ1(u)
,

b3(u) =
p

2

[
(λ2(u)+)p−1 + (λ1(u)+)p−1

]
,

c3(u) =
p

2

[
(λ2(u)+)p−1 − (λ1(u)+)p−1

]
,

Proof. In light of [13, Proposition 5] and [25, Proposition 5.2], the results follow from

applying Lemma 4.1 and using the chain rule for differentiation. 2
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5 Numerical experiments

As mentioned, the Newton method may not be appropriate for numerical implementation,

due to possible singularity of Jacobian at a degenerate solution. In view of this, in

this section, we employ the derivative-free descent method studied in [37] to test the

numerical performance based on various value of p. The target of the derivative-free

descent method studied in [37] is mainly on SOCCP (second-order cone complementarity

problem). Hence, we consider the following SOCCP:

z ∈ K, Mz + b ∈ K, zT (Mz + b) = 0,

K = K1 × · · · × Kr.

According to our results, the above SOCCP can be recast as an unconstrained minimiza-

tion problem:

min
ζ∈Rn

Ψp(ζ) =
1

2
‖φp

D−FB
(ζ, F (ζ))‖2,

where F (ζ) = Mζ + b.

All tests are done on a PC using Inter core i7-5600U with 2.6GHz and 8GB RAM,

and the codes are written in Matlab 2010b. The test instances are generated randomly.

In particular, we first generate random sparse square matrices Ni(i = 1, 2 . . . r) with

density 0.01, in which non-zero elements are chosen randomly from a normal distribution

with mean −1 and variance 4. Then, we create the positive semidefinite matrix Mi for

(i = 1, 2 . . . r) by setting Mi := NiN
T
i and let M := diag(M1, . . . ,Mr). In addition, we

take vector b := −Mw with w = (w1, . . . , wr) and wi ∈ Ki. With these M and b, it is

not hard to verify that the corresponding SOCCP has at least a feasible solution. To

construct SOCs of various types, we set n1 = n2 = · · · = nr.

We implement a test problem generated as above with n = 1000 and r = 100. The

parameters in the algorithm are set as

β = 0.9, γ = 0.8, σ = 10−4, and ε = 10−8.

We start with the initial point

ζ0 = (ζn1 , · · · , ζnr) where ζni
=

(
10,

wi
‖wi‖

)
with wi ∈ Rni−1 being generated randomly. The stopping criteria, i.e., Ψp(ζ

k) ≤ ε, is

either the number of iteration is over 105 or a step-length is less than 10−12. The Figure

4 depicts detailed iteration process of the algorithm corresponding to different value of

p.
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The algorithm fails for the problem when p ≥ 5. The main reason is that the step-

length is too small eventually. We also suspect that larger p leads to tedious computation

of the complementarity function in Jordan algebra. Anyway, this phenomenon indicates

that the discrete-type of complementarity functions only work well for small value of p.

The convergence in Figure 4 shows the method with a bigger p has a faster reduction of

Ψp at the beginning, and the method with a smaller p has a faster reduction of Ψp eventu-

ally. Moreover, the bigger p applies, the total number of iterations of the algorithm is less.

In order to check numerical performance of the algorithm corresponding to different

value of p, we solve the test problems with different dimension. The numerical results are

summarized in Tables 1. “Ψp(ζ
∗)” and “Gap” denote the merit function value and the

value of
∣∣ζTF (ζ)

∣∣ at the final iteration, respectively. “NF”, “Iter”, and “Time” indicate

the number of function evaluations of Ψp, the number of iteration required in order to

satisfy the termination condition, and the CPU time in second for solving each problem,

respectively.

Table 1: Numerical results with different value of p

Problem p = 1 p = 1.4
(n, r) Φp(ζ

∗) NF Iter Gap time Φp(ζ
∗) NF Iter Gap time

(100,10) 9.8e-9 5350 4952 2.75e-4 9.3 1.0e-8 4401 1474 5.92e-5 3.5
(200,20) 9.4e-9 5064 4914 3.74e-5 16.5 1.0e-8 16179 5649 3.84e-5 25.9
(300,30) 1.0e-8 7445 5273 2.26e-4 30.3 9.9e-9 7000 1266 2.40e-5 11.5
(400,40) 9.8e-9 5342 5016 1.62e-4 50.0 9.9e-9 3747 857 4.31e-5 9.5
(500,50) 1.0e-8 23533 13749 6.81e-4 126.4 9.6e-9 29454 6257 3.39e-4 93.9
(600,60) 1.0e-8 18260 11119 16.1e-4 65.1 1.0e-8 24685 8320 8.69e-5 119.7
(700,70) 1.0e-8 8320 5690 6.16e-4 38.3 1.0e-8 13458 4493 1.79e-4 77.7
(800,80) 1.0e-8 29415 10149 4.43e-5 199.2 9.3e-9 2507 1838 1.54e-4 27.4
(900,90) 1.0e-8 14648 10888 1.46e-3 159.8 9.9e-9 5970 1621 8.77e-5 44.9

(1000,100) 1.0e-8 14590 9672 2.78e-4 238.3 1.0e-8 12337 2570 7.58e-5 92.0
(1100,110) 9.9e-9 5994 5406 4.64e-6 109.6 1.0e-8 13767 2948 3.51e-4 126.5
(1200,120) 9.8e-9 6100 5528 6.12e-5 121.7 9.9e-9 20990 5650 1.51e-5 211.4
(1300,130) 9.8e-9 4253 3612 2.42e-4 115.5 9.7e-9 777 316 5.78e-5 10.1
(1400,140) 1.0e-8 9827 7136 1.46e-4 307.5 1.0e-8 6357 2736 2.20e-4 70.6
(1500,150) 9.9e-9 4701 4211 3.04e-4 156.9 9.9e-9 7060 1823 6.56e-6 67.8
(1600,160) 9.9e-9 5744 3843 4.61e-4 172.8 1.0e-8 9434 2583 1.39e-4 82.9
(1700,170) 1.0e-8 11163 5581 2.74e-4 195.1 1.0e-8 12307 2740 9.87e-5 185.7
(1800,180) 1.0e-8 7449 5985 3.77e-4 204.5 1.0e-8 38524 9469 2.43e-4 439.8
(1900,190) 1.0e-8 4205 2102 7.19e-5 83.2 1.0e-8 7413 1636 3.40e-4 125.4
(2000,200) 9.9e-9 5189 4953 2.12e-4 212.9 9.15e-9 10230 480 2.32e-5 294.9

We also use the performance profiles introduced by Dolan and Morè [18] to compare

the performance of algorithm with different p. The performance profiles are generated

by executing solvers S on the test set P . Let np,s be the number of iteration (or the
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Table 2: Numerical results with different value of p

Problem p = 2.6 p = 3
(n, r) Φp(ζ

∗) NF Iter Gap time Φp(ζ
∗) NF Iter Gap time

(100,10) 9.9e-9 28878 1866 2.40e-6 11.9 9.2e-9 11281 201 3.80e-7 14.7
(200,20) 1.0e-8 57844 3743 1.64e-6 47.9 9.5e-9 21221 422 1.15e-6 52.9
(300,30) 9.9e-9 14452 963 3.14e-6 17.3 9.2e-9 4383 89 5.97e-7 17.5
(400,40) 9.8e-9 20747 1417 2.31e-6 32.7 9.9e-9 7419 133 8.34e-7 34.0
(500,50) 9.8e-9 13929 1084 1.53e-6 30.7 8.4e-9 27229 474 1.04e-6 87.8
(600,60) 9.9e-9 28224 2032 2.48e-7 77.1 9.9e-9 48809 878 4.19e-7 193.8
(700,70) 9.9e-9 16739 1230 1.93e-5 52.8 7.9e-9 7069 140 6.16e-4 58.4
(800,80) 9.9e-9 72745 5342 7.69e-7 270.5 9.8e-9 27620 534 5.95e-7 260.1
(900,90) 9.5e-9 7574 522 6.09e-7 37.5 8.0e-9 10276 187 1.35e-7 129.6

(1000,100) 1.0e-8 145414 8664 4.92e-7 821.6 9.6e-9 17790 325 2.26e-7 258.2
(1100,110) 9.7e-9 16834 1465 3.76e-7 111.0 9.5e-9 31750 528 6.41e-7 507.2
(1200,120) 9.9e-9 45621 3346 1.82e-6 271.5 9.8e-9 20326 370 4.82e-7 437.4
(1300,130) 1.0e-8 25661 1739 3.21e-6 171.8 8.9e-9 10399 185 7.16e-7 115.5
(1400,140) 9.8e-9 57526 4116 2.09e-5 277.6 8.9e-9 12529 205 1.09e-6 348.4
(1500,150) 1.0e-8 355478 321117 1.50e-5 2343.0 4.7e-3 11824 217 1.54e-5 393.5
(1600,160) 9.3e-9 12995 5961 1.70e-6 98.5 9.9e-9 33843 550 5.43e-7 862.2
(1700,170) 1.0e-8 47367 3380 8.64e-7 441.0 1.0e-8 80519 5084 1.73e-7 742.8
(1800,180) 9.8e-9 7697 536 1.67e-6 53.0 7.4e-9 8472 154 4.15e-8 289.6
(1900,190) 1.0e-8 149019 10644 2.59e-6 1577.9 1.0e-8 16128 909 5.84e-7 161.5
(2000,200) 1.0e-8 27876 1991 2.64e-6 238.5 1.0e-8 34310 630 1.37e-7 862.2

computing time) required to solve problem p ∈ P by solver s ∈ S, and define the

performance ratio as

rp,s =
np,s

min{np,s : 1 ≤ s ≤ ns}
,

where ns is the number of solvers. Whenever the solver s does not solve problem p

successfully, set rp,s = rM . Here rM is a very large preset positive constant. Then,

performance profile for each solver s is defined by

ρs(χ) =
1

np
size{p ∈ P : log2(rp,s) ≤ χ}.

where size{p ∈ P : log2(rp,s) ≤ χ} is the number of elements in the set {p ∈ P :

log2(rp,s) ≤ χ}. ρs(χ) represents the probability that the performance ratio rp,s is within

the factor 2χ. It is easy to see that ρs(0) is the probability that the solver s wins over

the rest of solvers. See [18] for more details about the performance profile.

From Figure 5(a), it shows that the algorithm with p = 1 and p = 1.4 performs better

than p = 2.6 and p = 3 on function evaluations. Similarly, from Figure 5(b) and Figure

5(c), we observe that the algorithm with p = 3 performs best on the number of iterations,

while the algorithm with p = 1.4 is the best one on CPU time. This provides evidence
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that the discrete type of complementarity function may be better than the well-known

function φ
FB

in some cases.

6 Conclusion

In this paper, we propose a few families of new NCP-functions and investigate their

differentiability. Then, these new families of NCP-functions have also shown that they

can serve as complementarity functions associated with second-order cone in light of

Jordan algebra. We also construct several variants of such complementarity functions

for NCP and SOCCP. The behind idea for constructing all such new complementarity

functions is based on “discrete generalization” which is a novel thinking. In contrast to

the traditional “continuous generalization”, this opens a new direction for future research.

As below, we explain why we adopt ”discrete-type” for our new NCP-functions. First,

for the generalized Natural-Residual function φp
NR

(a, b) = ap − (a − b)p+, as remarked

in [16], the parameter p must be odd integer to ensure that the generalization is also

an NCP-function. This means that the main idea to create the new functions relies

on “discrete generalization”, it is totally different from the concept of generalization of

Fischer-Burmeister function φp
FB

(a, b) = p
√
|a|p + |b|p − (a + b), as remarked in [7], the

parameter p may be any real number which is great or equal to 1. That is why we call

our generalization “discrete-type”.

In fact, there is another way to achieve φp
D−FB

and φp
NR

which was proposed in [26].

More specifically, it is a construction based on monotone transformations to create new

NCP-functions from the existing ones. The construction is stated as below.

Remark 6.1. ([26, Lemma 15]) Assume that φ is continuous and φ(a, b) = f1(a, b) −
f2(a, b). Let θ : R→ R be a strictly monotone increasing and continuous function. Then

φ is an NCP function if and only if ψθ(a, b) = θ(f1(a, b))−θ(f2(a, b)) is an NCP-function.

In light of this, we let the function θ = θp be θp(t) = sign(t)|t|p, where “sign(t)” is the

sign function and p ≥ 1. For Fischer-Burmeister function, we choose f1(a, b) =
√
a2 + b2,

f2(a, b) = a + b, and for Natural-Residual function, we choose f1(a, b) = a, f2(a, b) =

(a− b)+, then it can be verified that both φp
D−FB

and φp
NR

(only with odd integer p) can

be obtained from the function ψθp . In other words, the function ψθp includes both them

as special cases, from which we may view it as a ”continuous generalization”. Yes, the

Galantai’s method [26] is more general than our way. Nonetheless, we emphasize that the

NCP-functions generated by our approach are shown to be complementarity functions in

the SOCCP setting. This can be used to generate new SOCCP-functions, which is one

of the main contributions of this paper. It will be a future direction to check whether

Galantai’s NCP-functions can be extended to SOCCP setting as well and describe the
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relation therein.

In general, the Newton method may not be applicable even though we have the

differentiability for some new complementarity functions because the Jacobian at a de-

generate solution is singular (see [32, 33]). Nonetheless, some derivative-free algorithm

may be employed due to the differentiability. On the other hand, we can reformulate

NCP and SOCCP as nonsmooth equations or unconstrained minimization, for which

merit function approach, nonsmooth function approach, smoothing function approach,

and regularization approach can be studied. All the new complementarity functions can

be employed in these approaches. How these new families of complementarity functions

perform in contrast to the existing ones? This is the first question that we are eager to

know. Some other questions, like are there any benefits for “discrete generalization” com-

pared to “continuous generalization”, can these proposed complementarity functions be

employed for other types of problems including semi-definite complementarity problems

and symmetric cone complementarity problems, etc? We leave them as future research

topics.
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(a) p = 1
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(b) p = 1.4
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(c) p = 2.6
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(d) p = 3
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(e) p = 3.4
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(f) p = 5

Figure 4: Convergence behaviour of Φp(ζ
k) with different value of p
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(a) Performance profile of NF
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(b) Performance profile of Iter

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ

pe
rc

en
ta

ge
 o

f p
ro

bl
em

s

 

 

p=1
p=1.4
p=2.6
p=3

(c) Performance profile of CPU time

Figure 5: Performance profiles with different value of p
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