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a b s t r a c t

Recently there have two different effectivemethods proposed by Kanzow et al. in (Kanzow,
2001 [8]) and (Kanzow and Petra, 2004 [9]), respectively, which commonly use the
Fischer–Burmeister (FB) function to recast themixed complementarity problem (MCP) as a
constrainedminimization problem and a nonlinear system of equations, respectively. They
all remark that their algorithms may be improved if the FB function is replaced by other
NCP functions. Accordingly, in this paper, we employ the generalized Fischer–Burmeister
(GFB) where the 2-norm in the FB function is relaxed to a general p-norm (p > 1) for the
two methods and investigate how much the improvement is by changing the parameter p
as well as which method is influenced more when we do so, by the performance profiles
of iterations and function evaluations for the two methods with different p on MCPLIB
collection.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The mixed complementarity problem (MCP) arises in many applications including the fields of economics, engineering,
and operations research [1–4] and has attracted much attention in the past decade [5–10]. A collection of nonlinear mixed
complementarity problems called MCPLIB can be found in [11] and an excellent book [12] is a good source for seeking
theoretical backgrounds and numerical methods for it.
Given a mapping F : [l, u] → Rn with F = (F1, . . . , Fn)T , where l = (l1, . . . , ln)T and u = (u1, . . . , un)T with

li ∈ R ∪ {−∞}, ui ∈ R ∪ {+∞} and li < ui for i = 1, 2, . . . , n. The MCP is to find a vector x∗ ∈ [l, u] such that each
component x∗i satisfies exactly one of the following implications:

x∗i = li H⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) H⇒ Fi(x
∗) = 0,

x∗i = ui H⇒ Fi(x
∗) ≤ 0.

(1)

It is easy to see that, when li = −∞ and ui = +∞ for all i = 1, 2, . . . , n, MCP (1) is equivalent to solving the nonlinear
system of equations

F(x) = 0; (2)
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when li = 0 and ui = +∞ for all i = 1, 2, . . . , n, it reduces to the nonlinear complementarity problems (NCP) which is to
find a point x ∈ Rn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0. (3)

In fact, from Theorem 2 of [13], MCP (1) itself is equivalent to the famous variational inequality problem (VIP) which is to
find a vector x∗ ∈ [l, u] such that

〈F(x∗), x− x∗〉 ≥ 0 ∀ x ∈ [l, u]. (4)

Unless otherwise stated, the mapping F is assumed to be continuously differentiable.
Many methods have been proposed for the solution of MCP (1), among which there are two effective methods that

attract much attention recently. They are the strictly feasible equation-based methods [6–8] and the semismooth Leven-
berg–Marquardt methods [9,10]. Some other variants of these methods can be found in [14–16]. The ideas for the afore-
mentioned twomethods are to reformulate (1) as a constrained minimization or a nonsmooth system of equations by using
the Fischer–Burmeister function

φFB(a, b) :=
√
a2 + b2 − (a+ b) ∀ a, b ∈ R. (5)

The strictly feasible Newton-type method was considered in [8] to overcome drawbacks of some typical solution methods
for the MCP (see e.g. [7]), for example, they can generate feasible iterates but have to solve relatively complicated subprob-
lems or they have simple subproblems but do not necessarily generate feasible iterates. On the other hand, the semismooth
Levenberg–Marquardt method was proposed in [9] to overcome some drawbacks of equation-based methods using the FB
function. This method has the advantages that gradient steps are not necessary to obtain global convergence and it is more
robust than those equation-based methods based on the FB function.
Recently, an extension of the FB function was considered in [17–19] by two of the authors. Specifically, they define the

generalized Fischer–Burmeister (GFB) function by

φp(a, b) := ‖(a, b)‖p − (a+ b) ∀ a, b ∈ R, (6)

where p is an arbitrary fixed real number from the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm of (a, b), i.e.,
‖(a, b)‖p = p

√
|a|p + |b|p. In other words, in the function φp, they replace the 2-norm of (a, b) involved in the FB function

by a more general p-norm. The function φp is still an NCP-function, that is, it satisfies the equivalence

φp(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (7)

For any given p > 1, the function φp was shown to possess all favorable properties of φFB; see [17–19]. For example, its
square is continuously differentiable everywhere on R2.
In this paper, we follow the ideas used in the aforementioned two effective methods to solve MCP (1) whose solution

may not be unique. For each method, we design a similar algorithm in which the GFB function is involved. We will present
their convergence results although these results are analogous to those cases where φFB was considered. In fact, these
convergence results are not hard to obtain since φFB and φp share almost the same favorable properties. However, the focus
of this paper is on the numerical side as titled. We apply the two methods for solving all MCPLIB test problems, observe
and analyze their numerical results. Furthermore, by the notion of performance profile introduced in [20], we plot the
performances profile figures of iterations and function evaluations, respectively, for the two algorithms corresponding to
four p. The performance profiles clearly and objectively reflect the influence of p on these twomethods. Comparing Figs. 1–2
with Figs. 3–4, we see that the value of p has much more influence on the strictly feasible semismooth algorithm than the
semismooth Levenberg–Marquardt algorithm. A larger p (for example over 103) or a smaller p (for example in (1, 1.001])
will lead to worse performance of the strictly feasible semismooth algorithm; whereas a small p (for example p = 1.001)
will bring good performance to the semismooth Levenberg–Marquardt algorithm.
Throughout this paper,Rn denotes the space of n-dimensional real column vectorswith the usual Euclidean product 〈·, ·〉.

For every differentiable function f : Rn → R, ∇f (x) denotes the gradient of f at x, and for every differentiable mapping F ,
∇F(x) denotes the transposed Jacobian of F at x. For a vector x ∈ Rn, the notation [x]+ means the projection of x on [l, u],
whereas for a scalar s, (s)+ means the projection of s on R+, i.e., (s)+ = max{0, x}. We denote ‖x‖p the p-norm of x and ‖x‖
the Euclidean norm of x.

2. Preliminaries

In this section, we review some basic concepts that will be used in the subsequent analysis. First, we introduce the
concept of generalized Jacobian of a mapping. Let G : Rn → Rm be a locally Lipschitz continuous mapping. Then, G is almost
everywhere differentiable by Rademacher’s Theorem (see [21]). In this case, the generalized Jacobian ∂G(x) of G at x (in the
Clarke sense) is defined as the convex hull of the B-subdifferential

∂BG(x) :=
{
V ∈ Rm×n | ∃{xk} ⊆ DG : {xk} → x and G′(xk)→ V

}
,
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where DG is the set of differentiable points of G. In other words, ∂G(x) = conv ∂BG(x). Ifm = 1, we call ∂G(x) the generalized
gradient of G at x. The calculation of ∂G(x) is usually difficult in practice, and Qi [22] proposed the so-called C-subdifferential
of G:

∂CG(x)T := ∂G1(x)× · · · × ∂Gm(x) (8)

which is easier to compute than the generalized Jacobian ∂G(x). Here, the right-hand side of (8) denotes the set of matrices
inRn×m whose ith column is given by the generalized gradient of the ith component function Gi. By Proposition 2.6.2 of [21],

∂G(x)T ⊆ ∂CG(x)T . (9)

We next introduce the definition of (strongly) semismooth function. The semismooth property is very important from
computational point of view. In particular, it plays a fundamental role in the superlinear convergence analysis of generalized
Newton methods [23–25]. Assume that G : Rn → Rm is locally Lipschitz continuous. G is called semismooth at x if G is
directionally differentiable at x and for any V ∈ ∂G(x+ h) and h→ 0,

G(x+ h)− G(x)− Vh = o(‖h‖); (10)

G is called strongly semismooth at x if G is semismooth at x and for any V ∈ ∂G(x+ h) and h→ 0,

G(x+ h)− G(x)− Vh = O(‖h‖2); (11)

G is called a (strongly) semismooth function if it is (strongly) semismooth everywhere.
The following lemma lists some properties of φp whose proofs can be found in [17–19]. Such results are ground stones

for getting the properties of8p and 8̄p in what follows.

Lemma 2.1. Let φp : R× R→ R be defined as in (6). Then, the following results hold.

(a) φp is a strongly semismooth NCP-function.
(b) φp is Lipschitz continuous with the Lipschitz constant L given by L =

√
2 + 2(1/p−1/2) when 1 < p < 2 and L = 1 +

√
2

when p ≥ 2.
(c) Given any point (a, b) ∈ R2, each element in the generalized gradient ∂φp(a, b) has the representation (ξ −1, ζ −1)where,
if (a, b) 6= (0, 0),

ξ =
sign(a) · |a|p−1

‖(a, b)‖p−1p
and ζ =

sign(b) · |b|p−1

‖(a, b)‖p−1p

with sign(·) denotes the sign function, and otherwise (ξ , ζ ) ∈ R2 denotes an arbitrary vector satisfying |ξ |
p
p−1 +|ζ |

p
p−1 ≤ 1.

(d) For any a, b ∈ R and p > 1, there holds that

(2− 2
1
p )|min{a, b}| ≤ |φp(a, b)| ≤ (2+ 2

1
p )|min{a, b}|. (12)

(e) The square of φp is a continuously differentiable NCP function.

The following lemma establishes another property of φp, which plays a key role in the nonsmooth system reformulation
of MCP (1) with the generalized FB function.

Lemma 2.2. Let φp : R× R→ R be defined by (6). Then, the following limits hold.

(a) limli→−∞ φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= −φp (ui − xi,−Fi(x)).

(b) limui→∞ φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= φp (xi − li, Fi(x)).

(c) limli→−∞ limui→∞ φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= −Fi(x).

Proof. Let {ak} ⊆ R be any sequence converging to +∞ as k → ∞ and b ∈ R be any fixed number. We will prove
limk→∞ φp(ak, b) = −b, and part (a) then follows by continuity arguments. Without loss of generality, assume that ak > 0
for each k. Then,

φp(ak, b) = ak
(
1+ (|b|/ak)p

)1/p
− ak − b

= ak
[
1+

1
p

(
|b|
ak

)p
+
1− p
2p2

(
|b|
ak

)2p
+ · · · +

(1− p) · · · (1− pn+ p)
n!pn

(
|b|
ak

)np
+ o

((
|b|
ak

)pn)]
− ak − b

=
1
p
|b|p

(ak)p−1
+
1− p
2p2

|b|2p

(ak)2p−1
+ · · · +

(1− p) · · · (1− pn+ p)
n!pn

|b|np

(ak)np−1
+
(ak)|b|np

(ak)np
o
(
|b|/ak

)pn(
|b|/ak

)pn − b
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where the third equality is using the Taylor expansion of the function (1+t)1/p and the notation o(t)means limt→0 o(t)/t =
0. Since ak → +∞ as k → ∞, we have |b|np

(ak)np−1
→ 0 for all n. This together with the last equation implies limk→∞

φp(ak, b) = −b. This proves part (a). Parts (b) and (c) are direct by part (a) and the continuity of φp. �

To conclude this section, we present a lemma which will be used in the subsequent analysis.

Lemma 2.3 ([7, Proposition 6]). For all negative definite diagonal matrices Da,Db ∈ Rn×n, a matrix of the form Da + DbM is
nonsingular if and only if M ∈ Rn×n is a P0-matrix.

3. Strictly feasible Newton-type method

For convenience, in the rest of this paper, we adopt the following notations of index sets:

Il := {i ∈ {1, 2, . . . , n} | −∞ < li < ui = +∞} ,
Iu := {i ∈ {1, 2, . . . , n} | −∞ = li < ui < +∞} ,
Ilu := {i ∈ {1, 2, . . . , n} | −∞ < li < ui < +∞} ,
If := {i ∈ {1, 2, . . . , n} | −∞ = li < ui = +∞} .

(13)

With the generalized FB function, we define an operator8p : Rn → Rn componentwise as

8p,i(x) :=


φp(xi − li, Fi(x)) if i ∈ Il,
−φp(ui − xi,−Fi(x)) if i ∈ Iu,
φp(xi − li, φp(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(14)

where the minus sign for i ∈ Iu and i ∈ If is motivated by Lemma 2.2. In fact, all results of this paper would be true without
the minus sign. Using the equivalence (7), it is easily verified that a vector x∗ ∈ Rn solves (1) if and only if x∗ is a solution of
the nonlinear system of equations 8p(x) = 0. This means that the squared norm of 8p induces a family of merit functions
for (1) in the sense that the solution of (1) is equivalent to finding a minimizer of the unconstrained minimization problem

min
x∈Rn

9p(x) :=
1
2
‖8p(x)‖2, (15)

with the corresponding objective value equal to 0. In this section, we study the strictly feasible Newton-type method based
on the constrained nonlinear system of equations

8p(x) = 0, x ∈ [l, u], (16)
and globalized by the projected gradient-type method for the constrained minimization

min
x∈[l,u]

9p(x). (17)

Before describing the specific iterative schemes, we present a few nice properties of the mapping8p and the merit function
9p that will be used in the subsequent analysis.

3.1. Properties of8p and9p

The following proposition states the smoothness of9p and the semismoothness of8p, which are direct by Lemma 2.1(a)
and (e), and Theorem 19 of [26].

Proposition 3.1. Let 8p and9p be defined as in (14) and (15), respectively. Then,
(a) the mapping 8p is semismooth, and moreover, it is strongly semismooth if F ′ is locally Lipschitz continuous.
(b) The function9p is continuously differentiable everywhere.

The following technical lemma gives an expression for each element in the generalized Jacobian of 8p at any point x
which plays an important role in the subsequent analysis.

Lemma 3.1. For any given x ∈ Rn, we have ∂8p(x)T ⊆ {Da(x)+∇F(x)Db(x)}, where Da(x),Db(x) ∈ Rn×n are diagonalmatrices
whose diagonal elements are defined below:
(a) For i ∈ Il, if (xi − li, Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sign(xi − li)|xi − li|p−1

‖(xi − li, Fi(x))‖
p−1
p

− 1, (Db)ii(x) =
sign(Fi(x))|Fi(x)|p−1

‖(xi − li, Fi(x))‖
p−1
p
− 1, (18)

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
. (19)
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(b) For i ∈ Iu, if (ui − xi,−Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sign(ui − xi)|ui − xi|p−1

‖(ui − xi,−Fi(x))‖
p−1
p
− 1, (Db)ii(x) =

−sign(Fi(x))|Fi(x)|p−1

‖(ui − xi,−Fi(x))‖
p−1
p
− 1,

and otherwise ((Da)ii(x), (Db)ii(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

(c) For i ∈ Ilu, (Da)ii(x) = ai(x)+ bi(x)ci(x) and (Db)ii(x) = bi(x)di(x), where, if (xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0), then

ai(x) =
sign(xi − li) · |xi − li|p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1,

bi(x) =
sign

(
φp(ui − xi,−Fi(x))

)
·
∣∣φp(ui − xi,−Fi(x))∣∣p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1,

and otherwise (ai(x), bi(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
; and if (ui − xi,−Fi(x)) 6= (0, 0), then

ci(x) =
−sign(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

di(x) =
−sign (Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

and otherwise (ci(x), di(x)) ∈
{
(ξ + 1, ζ + 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

(d) For i ∈ If , (Da)ii(x) = 0 and (Db)ii(x) = −1.

Proof. Let8p(x) :=
[
(8p)1(x), (8p)2(x), . . . , (8p)n(x)

]T . Then, from (8) and (9),
∂8p(x)T ⊆ ∂(8p)1(x)× ∂(8p)2(x)× · · · × ∂(8p)n(x) (20)

where the latter denotes the set of all matrices whose ith row belongs to ∂(8p)i(x) for each i. With this in mind, we proceed
to prove the lemma.
(a) For i ∈ Il, we have (8p)i(x) = φp(xi − li, Fi(x)). If (xi − li, Fi(x)) 6= (0, 0), then φp is continuously differentiable at such
point, and moreover, by Lemma 2.1(c),

∇aφp(xi − li, Fi(x)) = (Da)ii(x), ∇bφp(xi − li, Fi(x)) = (Db)ii(x)

with (Da)ii(x) and (Db)ii(x) given by (18). Direct calculation with chain rule gives

∂(8p)i(x)T = {(Da)ii(x)ei +∇Fi(x)(Db)ii(x)}

where ei ∈ Rn denotes the column vector whose ith element is 1 but zero elsewhere. If (xi − li, Fi(x)) = (0, 0), then using
the generalized chain rule [21, Theorem 2.3.10] yields

∂(8p)i(x)T ⊆ {(Da)ii(x)ei +∇Fi(x)(Db)ii(x)},

where (Da)ii(x) and (Db)ii(x) are given by (19). Thus, we prove part (a).
(b) Since (8p)i(x) = −φp(ui − xi,−Fi(x)) for i ∈ Iu, following the same arguments as in part (a) gives the desired results.
(c) For i ∈ Ilu, (8p)i(x) = φp(xi − li, φp(ui − xi,−Fi(x))). We denote

gi(x) := φp(ui − xi,−Fi(x)) and hi(x) := (xi − li, gi(x)).

In other words, (8p)i(x) = φp(hi(x)). We first argue that ∂(8p)i(x) = ∂φp(hi(x))∂hi(x).
If (xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0), i.e., hi(x) 6= (0, 0), clearly, φp is continuously differentiable at hi(x). In addition,

the continuous differentiability of F along with the Lipschitz continuity of φp (by Lemma 2.1(b)) implies that hi is locally
Lipschitz. By [21, Theorem 2.6.6], we then have ∂(8p)i(x) = ∂φp(hi(x))∂hi(x).
If (xi − li, φp(ui − xi,−Fi(x))) = (0, 0), i.e., hi(x) = (xi − li, gi(x)) = (0, 0), then φp is continuously differentiable at

(ui − xi,−Fi(x)) since ui − xi = ui − li > 0. Hence, hi(x) is continuously differentiable at x, which by the corollary to [21,
Proposition 2.2.1] implies that hi is strictly differentiable at x. Furthermore, φp is Lipschitz and convex by [19, Proposition
3.1(b)]. This implies that φp is regular everywhere due to [21, Proposition 2.3.6(b)]. Then applying [21, Theorem 2.3.9(iii)]
gives ∂(8p)i(x) = ∂φp(hi(x))∂hi(x).
Next we look into ∂φp(hi(x)) and ∂hi(x), and try to write them out. Let (ai(x), bi(x)) ∈ ∂φp(hi(x)). Since hi(x) =

(xi − li, gi(x)), we have ∂hi(x)T =
{
(ei, σ i) | σ i ∈ ∂gi(x)

}
and

∂(8p)i(x) =
{
ai(x)(ei)T + bi(x)(σ i)T | σ i ∈ ∂gi(x)

}
. (21)
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The terms of ai(x) and bi(x) can be obtained by following the same calculation as done in part (a) where we only replace
Fi(x) by gi(x), which turns out

ai(x) =
sign(xi − li) · |xi − li|p−1

‖(xi − li, gi(x))‖p−1p
− 1

=
sign(xi − li) · |xi − li|p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1,

bi(x) =
sign(gi(x)) · |gi(x)|p−1

‖(xi − li, gi(x))‖p−1p
− 1

=
sign

(
φp(ui − xi,−Fi(x))

)
·
∣∣φp(ui − xi,−Fi(x))∣∣p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1

for (xi − li, gi(x)) = (xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0); and

(ai(x), bi(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
for (xi − li, gi(x)) = (0, 0). Besides, by applying part (b) (with an additional minus sign), ∂gi(x) =

{
ci(x)ei + di(x)∇Fi(x)

}
where, if (ui − xi,−Fi(x)) 6= (0, 0),

ci(x) =
−sign(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

di(x) =
−sign (Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

and otherwise (ci(x), di(x)) ∈
{
(ξ + 1, ζ + 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
. Plugging all the above into (21), it then follows

that

∂(8p)i(x) =
{
ai(x)(ei)T + bi(x)

[
ci(x)(ei)T + di(x)F ′i (x)

]}
=
{
[ai(x)+ bi(x)ci(x)] (ei)T + [bi(x)di(x)] F ′i (x)

}
.

In summary, ∂(8p)i(x)T ⊆
{
(Da)ii(x)ei +∇Fi(x)(Db)ii

}
with (Da)ii(x) and (Db)ii(x) given as in the proposition. Thus, we

complete the proof of part (c).
(d) For i ∈ If , then (8p)i(x) = −Fi(x). Obviously, (Da)ii(x) = 0, (Db)ii(x) = −1. �

Proposition 3.2. For any given x ∈ Rn, let H ∈ ∂8p(x) with H = Da(x) + Db(x)F ′(x) where Da(x),Db(x) are defined as in
Lemma 3.1. Then we have

(a)
[
Da(x)8p(x)

]
i

[
Db(x)8p(x)

]
i ≥ 0 for all i = 1, 2, . . . , n.

(b)
[
Da(x)8p(x)

]
i = 0⇐⇒

[
Db(x)8p(x)

]
i = 0⇐⇒ (8p)i(x) = 0 for each i 6∈ If .

Proof. (a) We discuss by the four cases as defined in Lemma 3.1 to complete the proof.
(i) For i ∈ Il, if (xi − li, Fi(x)) 6= (0, 0), then we have[

Da(x)8p(x)
]
i

[
Db(x)8p(x)

]
i

=

(
sign(xi − li) · |xi − li|p−1

‖(xi − li, Fi(x))‖
p−1
p

− 1

)(
sign(Fi(x)) · |Fi(x)|p−1

‖(xi − li, Fi(x))‖
p−1
p
− 1

) [
(8p)i(x)

]2
≥ 0

where the inequality is due to the fact that∣∣∣∣∣ sign(xi − li) · |xi − li|p−1‖(xi − li, Fi(x))‖
p−1
p

∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣ sign(Fi(x)) · |Fi(x)|p−1‖(xi − li, Fi(x))‖
p−1
p

∣∣∣∣∣ ≤ 1;
and if (xi − li, Fi(x)) = (0, 0), then we have[

Da(x)8p(x)
]
i

[
Db(x)8p(x)

]
i = (ξ − 1)(ζ − 1)

[
(8p)i(x)

]2
≥ 0

where the inequality is satisfied since |ξ | ≤ 1 and |ζ | ≤ 1 when |ξ |
p
p−1 + |ζ |

p
p−1 ≤ 1.

(ii) For i ∈ Iu, the verifications are the same as in case (i).
(iii) For i ∈ Ilu, from Lemma 3.1(c), we observe ai(x) ≤ 0, bi(x) ≤ 0, ci(x) ≥ 0, di(x) ≥ 0. This immediately implies that

(Da)ii(x) ≤ 0 and (Db)ii(x) ≤ 0. Therefore,
[
Da(x)8p(x)

]
i

[
Db(x)8p(x)

]
i = (Da)ii(x)(Db)ii(x)[8p(x)]

2
i ≥ 0.
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(iv) For i ∈ If , the result clearly holds since
[
Da(x)8p(x)

]
i

[
Db(x)8p(x)

]
i = 0.

(b) Using part (a), Lemma 3.1, and the same arguments as in [7, Lemma 3 (b)], the results can be verified.We omit the details
due to the high similarity. �

To know when all elements in the generalized Jacobian of 8p at a solution x∗ of (1) are nonsingular, we introduce the
concept of a strongly regular solution. Define

α :=
{
i ∈ {1, 2, . . . , n} | li < x∗i < ui, Fi(x

∗) = 0
}
,

β :=
{
i ∈ {1, 2, . . . , n} | x∗i ∈ {li, ui}, Fi(x

∗) = 0
}
,

γ :=
{
i ∈ {1, 2, . . . , n} | x∗i ∈ {li, ui}, Fi(x

∗) 6= 0
}
.

(22)

A solution x∗ of (1) is said to be strongly regular if the submatrix F ′(x∗)αα is nonsingular and the Schur complement
F ′(x∗)α∪β,α∪β/F ′(x∗)αα := F ′(x∗)ββ − F ′(x∗)βαF ′(x∗)−1ααF

′(x∗)αβ
is a P-matrix. In addition, we also need the following technical lemma.

Lemma 3.2. Let x∗ ∈ Rn be a solution of (1). Suppose that H ∈ ∂8p(x∗)with H = Da(x∗)+Db(x∗)F ′(x∗)where Da(x∗),Db(x∗)
are given as in Lemma 3.1. Then,
(a) (Da)ii (x∗) = 0 and (Db)ii (x∗) = −1 for all i ∈ α.
(b) (Da)ii (x∗) ≤ 0, (Db)ii (x∗) ≤ 0 and (Da)ii (x∗)+ (Db)ii (x∗) < 0 for all i ∈ β .
(c) (Da)ii (x∗) = −1 and (Db)ii (x∗) = 0 for all i ∈ γ .
Proof. The results are easily verified by Lemma 3.1 and the definition in (22). �

Proposition 3.3. Let x∗ ∈ Rn be a strongly regular solution of (1). Then,
(a) all elements H ∈ ∂8p(x∗) are nonsingular;
(b) there exists a constant κ > 0 such that ‖8p(x)‖ ≥ κ‖x− x∗‖ for all x ∈ Rn in a sufficiently small neighborhood of x∗.
Proof. (a) Let H ∈ ∂8p(x∗). We employ an idea used in [7, Theorem 1] to show that H is nonsingular, which is proving the
homogeneous system Hd = 0 has only zero solution. From Lemma 3.1, there exist diagonal matrices Da(x∗),Db(x∗) ∈ Rn×n
such that

H = Da(x∗)+ Db(x∗)F ′(x∗). (23)

We partition the vector d as (dα, dβ , dγ ) and rearrange Da(x∗), Db(x∗) and F ′(x∗) as

Da(x∗) =

(
(Da)αα(x∗) 0 0

0 (Da)ββ(x∗) 0
0 0 (Da)γ γ (x∗)

)
,

Db(x∗) =

(
(Db)αα(x∗) 0 0

0 (Db)ββ(x∗) 0
0 0 (Db)γ γ (x∗)

)
,

F ′(x∗) =

F ′(x∗)αα F ′(x∗)αβ F ′(x∗)αγ
F ′(x∗)βα F ′(x∗)ββ F ′(x∗)βγ
F ′(x∗)γα F ′(x∗)γ β F ′(x∗)γ γ

 .
Applying Lemma 3.2, the homogeneous system Hd = 0 can be recast as

F ′(x∗)αα dα + F ′(x∗)αβ dβ + F ′(x∗)αγ dγ = 0α, (24)

(Da)ββ(x∗) dβ + (Db)ββ(x∗)
[
F ′(x∗)βα dα + F ′(x∗)ββ dβ + F ′(x∗)βγ dγ

]
= 0β , (25)

−dγ = 0γ . (26)

Since dγ = 0γ and F ′(x∗)αα is nonsingular by the assumption of x∗, from (24) we get

dα = −F ′(x∗)−1ααF
′(x∗)αβ dβ . (27)

Plugging dγ = 0γ and dα in (27) into (25) gives[
(Da)ββ(x∗)+ (Db)ββ(x∗)

(
F ′(x∗)α∪β,α∪β/F ′(x∗)αα

)]
dβ = 0β . (28)

Since the Schur complement F ′(x∗)α∪β,α∪β/F ′(x∗)αα is a P-matrix by assumption and the diagonal matrices (Da)ββ(x∗),
(Db)ββ(x∗) are negative semidefinite with a negative definite sum by Lemma 3.2(b), it follows from Proposition 2.7 of [27]
that the coefficient matrix in (28) is nonsingular which implies dβ = 0β . This together with (27) says dα = 0α . Hence, we
can conclude that d = 0 which means H is nonsingular.
(b) Since all elements in ∂8p(x∗) are nonsingular by part (a) and8p is semismooth by Proposition 3.1(a), the desired result
follows by [23, Proposition 3]. �
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The following proposition states that under some mild conditions a stationary point of the constrained minimization
problem (17) is a solution of MCP (1).

Proposition 3.4. Let x∗ be a stationary point of the reformulation (17) such that

(a) the principal submatrix ∇F(x∗)If If is nonsingular, and
(b) the Schur complement F ′(x∗)/F ′(x∗)If If := F

′(x∗)Īf Īf − F
′(x∗)Īf If F

′(x∗)−1If If F
′(x∗)If Īf is a P0-matrix, where Īf := {1, 2, . . . ,

n} \ If .

Then x∗ is a solution of (1).

Proof. Wewill complete the proof by the following two steps: (a) showing that every stationary point x∗ of the constrained
reformulation (17) is indeed a stationary point of (15); (b) further verifying that every stationary point of (15) is a solution
of (1).
(a) Since x∗ is a stationary point of the reformulation (17) of MCP (1), it satisfies

x∗i = li ⇒
[
∇9p(x∗)

]
i ≥ 0,

x∗i = ui ⇒
[
∇9p(x∗)

]
i ≤ 0,

x∗i ∈ (li, ui)⇒
[
∇9p(x∗)

]
i = 0.

(29)

Suppose that x∗ is not a stationary point of (15), i.e., ∇9p(x∗) 6= 0. From Proposition 3.1(b) and Lemma 3.1, we know that
∇9p(x∗) can be expressed as

∇9p(x∗) = HT8p(x∗) = Da(x∗)8p(x∗)+∇F(x∗)Db(x∗)8p(x∗) (30)

for a matrix H ∈ ∂8p(x∗) and certain diagonal matrices Da(x∗) and Db(x∗). The third implication of (29) says
[
∇9p(x∗)

]
f =

0f , which is equivalent to[
Da(x∗)8p(x∗)+∇F(x∗)Db(x∗)8p(x∗)

]
If
= 0If . (31)

For convenience, we write

Da(x∗) =
(
(Da)If If (x

∗) 0
0 (Da)Īf Īf (x

∗)

)
,

Db(x∗) =
(
(Db)If If (x

∗) 0
0 (Db)Īf Īf (x

∗)

)
,

∇F(x∗) =
(
∇F(x∗)If If ∇F(x

∗)If Īf
∇F(x∗)Īf If ∇F(x

∗)Īf Īf

)
.

Noting that (Da)ii(x∗) = 0 and (Db)ii(x∗) = −1 for all i ∈ If by Lemma 3.1(d), Eq. (31) is further equivalent to

−∇F(x∗)If If8p(x
∗)If +∇F(x

∗)If Īf (Db)Īf Īf (x
∗)8p(x∗)Īf = 0If . (32)

Since ∇F(x∗)If If is nonsingular by assumption, we can express (32) as

8p(x∗)If = ∇F(x
∗)−1If If∇F(x

∗)If Īf (Db)Īf Īf (x
∗)8p(x∗)Īf . (33)

Now plugging (33) into (30) for the expression
[
∇9p(x∗)

]
Īf
and using the fact that (Da)ii(x∗) = 0 and (Db)ii(x∗) = −1 for

all i ∈ If , we obtain[
∇9p(x∗)

]
Īf
= (Da)Īf Īf8p(x

∗)Īf −∇F(x
∗)Īf Īf8p(x

∗)If +∇F(x
∗)Īf Īf (Db)Īf Īf (x

∗)8p(x∗)Īf

= (Da)Īf Īf8p(x
∗)Īf +

(
∇F(x∗)/∇F(x∗)Īf Īf

)
(Db)Īf Īf (x

∗)8p(x∗)Īf . (34)

Since we assume ∇9p(x∗) 6= 0, there exists an index i ∈ Īf such that either

x∗i = li and
[
∇9p(x∗)

]
i > 0 (35)

or

x∗i = ui and
[
∇9p(x∗)

]
i < 0. (36)

However, from definition of8p and Lemma 3.2, we observe that
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(i) when x∗i = li, (Db)ii (x
∗) ≤ 0 and, (8p)i(x∗) = φp(x∗i − li, Fi(x

∗)) = |Fi(x∗)| − Fi(x∗) ≥ 0 if i ∈ Il; (8p)i(x∗) =
φp(x∗i − li, φp(ui − x

∗

i ,−Fi(x
∗))) ≥ 0 if i ∈ Ilu. Therefore,[

(Db)Īf Īf (x
∗)8p(x∗)Īf

]
i
≤ 0;

(ii) when x∗i = ui, (Db)ii (x∗) ≤ 0 and, (8p)i(x∗) = −φp(ui − x∗i ,−Fi(x
∗)) = −(|Fi(x∗)| + Fi(x∗)) ≤ 0 if i ∈ Iu;

(8p)i(x∗) = φp(x∗i − li, φp(ui − x
∗

i ,−Fi(x
∗))) ≤ 0 if i ∈ Ilu. Hence, we have[

(Db)Īf Īf (x
∗)8p(x∗)Īf

]
i
≥ 0.

Premultiplying [∇9p(x∗)]i in (35) and (36) with
[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i
and using (34) and the last two equations, we obtain

the following inequality[
(Da)Īf Īf (x

∗)8p(x∗)Īf
]
i

[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i

+

[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i

[(
∇F(x∗)/∇F(x∗)Īf Īf

)
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i
≤ 0 (37)

for all indices i ∈ Īf such that [∇9p(x∗)]i 6= 0. In addition, from (34), it is clear that[
(Da)Īf Īf (x

∗)8p(x∗)Īf
]
i

[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i
+

[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i

×

[(
∇F(x∗)/∇F(x∗)Īf Īf

)
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i
= 0

for all indices i ∈ Īf such that [∇9p(x∗)]i = 0.
Since ∇9p(x∗) 6= 0 by assumption and [∇9p(x∗)]If = 0 by (29), we necessarily have [∇9p(x

∗)]Īf 6= 0. This together
with (34) and Proposition 3.2(b) implies that (Db)Īf Īf (x

∗)8p(x∗)Īf 6= 0. Thus, by the given condition that ∇F(x
∗)/∇F(x∗)Īf Īf

is a P0-matrix, there exists an index i0 ∈ Īf such that[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i0
6= 0, (38)

and [
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i0

[(
∇F(x∗)/∇F(x∗)Īf Īf

)
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i0
≥ 0. (39)

Now using Proposition 3.2(a) and Eqs. (37)–(39) yields that[
(Da)Īf Īf (x

∗)8p(x∗)Īf
]
i0

[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i0
= 0,

which by Proposition 3.2(b) implies
[
(Db)Īf Īf (x

∗)8p(x∗)Īf
]
i0
= 0. This contradicts (38).

(b) Since we have proved ∇9p(x∗) = 0, from Eq. (34) it follows that[
(Da)Īf Īf (x

∗)+ (∇F(x∗)/∇F(x∗)ff )(Db)Īf Īf (x
∗)
]
8p(x∗)Īf = 0Īf . (40)

On the other hand, we observe that

(i) the diagonal matrices (Da)Īf Īf (x
∗) and (Db)Īf Īf (x

∗) have nonpositive entries;
(ii) a diagonal component of (Da)Īf Īf (x

∗) or (Db)Īf Īf (x
∗) can be zero only if the corresponding component of8p(x∗)Īf is zero;

(iii) the diagonal matrices (Da)Īf Īf (x
∗) and (Db)Īf Īf (x

∗) are always postmultiplied by8p(x∗)Īf in the system (32) and (40);

we can assume without loss of generality that all diagonal entries of Da(x∗) and Db(x∗) are negative. Then Lemma 2.3 and
our assumption for this proposition show that the coefficient matrix in (40) is nonsingular which says 8p(x∗)Īf = 0Īf . This
further implies8p(x∗)f = 0f by (33). Hence,8p(x∗) = 0, i.e., x∗ is a solution of MCP (1). �

3.2. Algorithm and convergence results

Now we describe the strictly feasible Newton-type method used in [8] to solve the constrained minimization problem
(17). The detailed iterative scheme is as follows.
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Algorithm 3.1 (Strictly Feasible Newton-type Method).

(S.0) Choose x0 ∈ (l, u), δ > 0, c > 0, τ ∈ (0, 1), ω ∈ (0, 1), ρ > 0, p1 > 1, p2 > 0, β ∈ (0, 1), σ ∈ (0, 1), γ > 0, and set
k := 0.

(S.1) If xk is a stationary point of (15), then stop.
(S.2) Define δk := min

{
δ, c

√
‖8p(xk)‖

}
and

Ak :=
{
i | xki − li ≤ δk or ui − x

k
i ≤ δk

}
, Ik := {1, 2, . . . , n} \Ak.

(S.3) Select an element Hk ∈ ∂C8p(xk) and compute a direction dk ∈ Rn in the following way. For i ∈ Ak, set

dki :=
{
li − xki if xki − li ≤ δk,
ui − xki if ui − xki ≤ δk,

then solve the linear system

HkIkIkdIk = −8p(x
k)Ik − H

k
IkAk
dkAk (41)

in order to obtain components dki for i ∈ Ik. If the system (41) is not solvable, then set τk := τ and go to (S.6), otherwise
go to (S.4).

(S.4) Set τk := max{τ , 1− ‖8p(xk)‖}. If xk + τkdk ∈ (l, u) and

‖8p(xk + τkdk)‖ ≤ ω‖8p(xk)‖, (42)

then set xk+1 := xk + τkdk and go to (S.7), else go to (S.5).
(S.5) Set x̄kN :=

[
xk + dk

]
+
and skN := x̄

k
N − x

k. If

∇9p(xk)T skN ≤ −ρ‖s
k
N‖
p1 and ∇9p(xk)T skN ≤ −ρ‖8p(x

k)‖p2 ,

then compute tk := max{τkβ l | l = 0, 1, 2, . . .} such that
9p(xk + tkskN) ≤ 9p(x

k)+ σ tk∇9p(xk)T skN ,

set xk+1 := xk + tkskN and go to (S.7), otherwise go to (S.6).
(S.6) Set x̄kG :=

[
xk − γ∇9p(xk)

]
+
and skG := x̄

k
G − x

k. Compute tk := max{τkβ l | l = 0, 1, 2, . . .} such that

9p(xk + tkskG) ≤ 9p(x
k)+ σ tk∇9p(xk)T skG,

set xk+1 := xk + tkskG and go to (S.7).
(S.7) Set k← k+ 1, and go to (S.1).

With the aid of the properties obtained in Section 3.1, all the convergence results in Section 4 of [8] can be verified for
Algorithm 3.1. We only summarize them and omit the detailed arguments since their proofs are similar.

Theorem 3.1. (a) Algorithm 3.1 is well defined, and particularly we have {xk} ⊆ (l, u).
(b) Every accumulation point of {xk} generated by Algorithm 3.1 is a stationary point of (17).
(c) If the conditions of Proposition 3.4 are satisfied at x∗, then the accumulation point x∗ is a solution of MCP (1).

Theorem 3.2. Assume that the accumulation point x∗ of sequence {xk} generated by Algorithm 3.1 is a strongly regular solution
for MCP (1). Then,

(a) the entire sequence {xk} converges Q -superlinearly to x∗;
(b) if F ′ is locally Lipschitzian around x∗, the rate of convergence is Q -quadratic.

3.3. Numerical experiments

We implemented Algorithm 3.1 in MATLAB 7.0 for solving the MCPLIB test problems [11]. The actual implementation
differs slightly from the description of Algorithm 3.1. Similar to [8], for Step (S.5), we adopted the nonmonotone line search
in [28] instead of the monotone line search, i.e., we computed tk such that

9p(xk + tkskN) ≤ Wk + σ tk∇9p(xk)T skN
where

Wk := max
{
9p(xj) | j = k+ 1−mk, . . . , k

}
denotes the maximum function value of 9p over the lastmk iterations. During our tests, we set mk = 1 for k = 0, 1, . . . , 5
and mk+1 = min{mk + 1,m} with m = 5 for all remaining iterations. In addition, we also adopted the so-called watchdog
strategy to enhance Step (S.5) of Algorithm 3.1. If after 10 steps the best function value of 9p found so far has not been
reduced sufficiently, we return to that point using a monotone line search.
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Fig. 1. Performance profile of iterations for Algorithm 3.1 with four p on the MCPLIB collection.

All experiments were done with a PC of Intel Pentium Dual CPU E2200 and 2048MB memory. The parameters of
Algorithm 3.1 were chosen as follows:

β = 0.5, σ = 10−4, δ = σ = 10−4, τ = 0.95, ω = 0.995,

ρ = 10−12, p1 = 2.1, p2 = c = γ = 1. (43)

We started Algorithm 3.1 with a strictly feasible point x0 = max{l + e,min{x̂, u} − e}, where e ∈ Rn is a vector with all
components being 1 and x̂ is the standard starting point provided by the MCPLIB collection. We terminated the iteration
whenever

‖8p(x)‖ ≤ 10−11 and ‖∇9p(x)‖ ≤ 10−3, or ‖∇9p(x)‖ ≤ 5.0× 10−7, or k > 500.

The procedure for calculating an elementHk ∈ ∂C8p(xk) is similar to the one given in [29]. To present an objective evaluation
and comparison of the performance of Algorithm 3.1 with different p, we adopt the performance profile introduced in [20]
as a means.
Specifically, we regard Algorithm 3.1 corresponding to a p as a solver, and assume that there are ns solvers and nj test

problems from theMCPLIB collection J. We are interested in using the number of iterations and function evaluations as two
performance measures for Algorithm 3.1 with different p. For each problem j and solver s, let

kj,s := the iterations required to solve problemjby solvers,
fj,s := function evaluations required to solve problem j by solvers.

We compare the performance on problem j by solver s with the best performance by any one of the ns solvers on this
problem; that is, we adopt the performance ratio

rj,s =
kj,s

min{kj,s : s ∈ S}
or

fj,s
min{fj,s : s ∈ S}

,

where S is the set of four solvers. An overall assessment of each solver is obtained from

ρs(τ ) =
1
nj
size

{
j ∈ J : rj,s ≤ τ

}
, (44)

which is called the performance profile of the number of iterations (or function evaluations) for solver s. Note that ρs(τ )
approximates the probability for solver s ∈ S that a performance ratio rj,s is within a factor τ ∈ R of the best possible ratio.
Fig. 1 shows the performance profile of iterations in the range of [0, 10] for four solvers on 52 test problems. The four

solvers correspond to Algorithm 3.1 with p = 1.001, p = 1.1, p = 2, and p = 1000, respectively. From this figure, we
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Fig. 2. Performance profile of function evaluations for Algorithm 3.1 with four p on the MCPLIB collection.

see that Algorithm 3.1 with p = 1000 has the most wins (has the highest probability of being the optimal solver) and that
the probability that it is the winner on a given MCP is about 0.31. If we choose being within a factor of 2 or 7 of the best
solver as the scope of our interest, then either p = 1.1 or p = 2 would suffice, and the performance profile shows that the
probability that Algorithm 3.1 with the two p can solve a givenMCP within a factor 2 of the best solver is about 58%, and the
probability that they can solve a given MCP within a factor 7 of the best solver is enhanced to 70%. Although p = 1.001 has
a competitive number of wins with p = 1.1 and p = 2, it is not a good choice since the probability that it can solve a given
MCP within any factor of the best solver is the lowest.
Fig. 2 shows the performance profile of function evaluations in the range of [0, 20] for the above four solvers on the same

52 test problems. From this figure, we see that Algorithm 3.1 with p = 2 and p = 1000 has the competitive wins and that
the probability that it is the winner on a given MCP is about 0.28. If we choose being within a factor of greater than 2 of the
best solver as the scope of our interest, then either p = 1.1 or p = 2 would suffice, and the performance profile shows that
the probability that Algorithm 3.1 with the two p can solve a given MCP in such range of the best solver is over 50%, and it
may increase to 70% within a factor 17 of the best solver. Although p = 1000 has a competitive number of wins with p = 2,
the probability that it can solve a given MCP within any positive factor of the best solver is lower than p = 2. In addition, it
is clear that Algorithm 3.1 with p = 1.001 is the worst choice among the four solvers.
To sum up, Algorithm 3.1 with p = 1.1 and p = 2 have the best performance whether by iterations or function

evaluations within any positive factor of the best solver, whereas Algorithm 3.1 with p = 1.001 has the worst performance
whether by iterations or function evaluations. Although Algorithm 3.1 with p = 1000 tends to has the highest probability of
being the optimal solver for a given MCP problem, but it has a lower probability than p = 1.1 and p = 2 within any positive
factor of the best solver.

4. Semismooth Levenberg–Marquardt method

In this section,we study the semismooth Levenberg–Marquardtmethod based on the generalized FB function, and extend
the convergence results in [9] which used the FB function to this case. To this end, we define an operator 8̄p : Rn → R2n
componentwise by

(8̄p)i(x) =


λφp(xi − li, Fi(x)) if i ∈ Il,
−λφp(ui − xi,−Fi(x)) if i ∈ Iu,
λφp(xi − li, φp(ui − xi,−Fi(x))) if i ∈ Ilu,
−λFi(x) if i ∈ If ,

(45)
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(8̄p)n+i(x) =


(1− λ)φ+(xi − li, Fi(x)) if i ∈ Il,
(1− λ)φ+(ui − xi,−Fi(x)) if i ∈ Iu,

(1− λ)
(
φ+(xi − li, Fi(x))+ φ+(ui − xi,−Fi(x))

)
if i ∈ Ilu,

−(1− λ)Fi(x) if i ∈ If ,

(46)

where φ+(a, b) := a+b+. It is not hard to verify that MCP (1) is also equivalent to the overdetermined system of equations

8̄p(x) = 0, (47)

and the squared norm of the operator 8̄p then induces a family of merit functions in the sense that the solution of MCP (1)
is equivalent to finding a minimizer of the following unconstrained minimization problem whose objective value equals 0:

min
x∈Rn

9̄p(x) :=
1
2
‖8̄p(x)‖2. (48)

4.1. Properties of 8̄p and 9̄p

Inwhat follows, we present some favorable properties of 8̄p and 9̄pwhich are useful in the subsequent analysis although
their proofs are routine. Since the proof of Proposition 4.1 is direct by [17, Propositions 3.1 and 3.3] and [17, Lemma 2.3], we
omit it.

Proposition 4.1. Let 8̄p be defined by (45)–(46) and 9̄p be given by (48). Then,

(a) The mapping 8̄p is semismooth, and moreover, it is strongly semismooth if F ′ is Lipschitz continuous.
(b) The function 9̄p is continuously differentiable everywhere.

In Section 3.1, an overestimation of the generalized Jacobian ∂8p(x∗), which is actually the C-subdifferential ∂C8p(x∗), is
given and a so-called strongly regular condition is used to describe when all the elements of ∂8p(x∗) are nonsingular. Here,
we will present the expression of the C-subdifferential ∂C8̄p(x∗), and under the same condition show that all the elements
of ∂C8̄p(x∗) have full rank which will be employed as an assumption to guarantee the local convergence of the algorithm
studied in Section 4.2 later.

Proposition 4.2. Let 8̄p : Rn → R2n be defined by (45)–(46). The following results hold.

(a) Any matrix H ∈ ∂C8̄p(x) has the representation H =
(

λH1
(1− λ)H2

)
, with H1 ⊆ Da(x) + Db(x)F ′(x) and H2 ⊆ D̃a(x) +

D̃b(x)F ′(x) where Da(x),Db(x) ∈ Rn×n are diagonal matrices whose diagonal elements are given by Lemma 3.1, and
D̃a(x), D̃b(x) are n× n diagonal matrices whose diagonal entries are given below.
(i) If i ∈ Il, then (D̃a)ii(x) = Fi(x)+∂(xi − li)+ and (D̃b)ii(x) = (xi − li)+∂Fi(x)+.
(ii) If i ∈ Iu, then

(D̃a)ii(x) =
(
−Fi(x)

)
+
∂(ui − xi)+, (D̃b)ii(x) = (ui − xi)+∂(−Fi(x))+.

(iii) If i ∈ Ilu, then
(D̃a)ii(x) = Fi(x)+∂(xi − li)+ +

(
−Fi(x)

)
+
∂(ui − xi)+,

(D̃b)ii(x) = (xi − li)+∂Fi(x)+ + (ui − xi)+∂(−Fi(x))+.
(iv) If i ∈ If , then (D̃a)ii(x) = 0, (D̃b)ii(x) = −1.

(b) Suppose that x∗ ∈ Rn is a strongly regular solution of (1). Then, all elements from ∂C8̄p(x∗) have full rank.

Proof. (a) From Eq. (8),
(
∂C8̄p(x)

)T
= ∂(8̄p)1(x) × · · · × ∂(8̄p)2n(x), where ∂(8̄p)i(x) denotes the generalized gradient

of the ith component function of 8̄p. From Lemma 3.1, it follows that ∂(8̄p)i(x) ⊆ λ
(
(Da)ii(x)(ei)T + (Db)ii(x)F ′i (x)

)
for

i = 1, . . . , n, where Da(x),Db(x) ∈ Rn×n are diagonal matrices whose diagonal elements are given as in Lemma 3.1. Since
the generalized gradient of the function φ+ : R2 → R at a point (a, b) ∈ R2 is equal to ∂φ+(a, b) = {(b+∂a+, a+∂b+)}
where

∂z+ =

{1 if z > 0,
[0,1] if z = 0,
0 if z < 0,

we have ∂(8̄p)n+i(x) ⊆ (1− λ)
(
(D̃a)ii(x)(ei)T + (D̃b)ii(x)F ′i (x)

)
for each i. Specifically, we observe

(i) if i ∈ Il, (8̄p)n+i(x) = (1− λ)φ+(xi − li, Fi(x));
(ii) if i ∈ Iu, (8̄p)n+i(x) = (1− λ)φ+(ui − xi,−Fi(x));



680 J.-S. Chen et al. / Journal of Computational and Applied Mathematics 234 (2010) 667–683

(iii) if i ∈ Ilu, (8̄p)n+i(x) = (1− λ) (φ+(xi − li, Fi(x))+ φ+(ui − xi,−Fi(x)));
(iv) if i ∈ If , (8̄p)n+i(x) = −(1− λ)Fi(x) and clearly (D̃a)ii(x) = 0, (D̃b)ii(x) = −1.

From all the above observations and the generalized gradient of φ+, the desired result follows.
(b) Let H ∈ ∂C (8̄p)(x∗). By part (a), H =

(
λH1

(1− λ)H2

)
,where H1 is an element from ∂C (8p)(x∗). Since x∗ is strongly

regular, using the similar arguments as in Proposition 3.3(a) yields that H1 ∈ ∂C (8p)(x∗) is nonsingular, which implies
rank(H) = n. �

4.2. Algorithm and convergence results

Algorithm 4.1 (Semismooth Levenberg–Marquardt Method).
(S.0) Choose x0 ∈ Rn, λ ∈ (0, 1), β ∈ (0, 1), σ ∈ (0, 1/2) and ε ≥ 0. Set k := 0.
(S.1) If ‖∇9̄p(xk)‖ ≤ ε, then stop.
(S.2) Choose Hk ∈ ∂C8̄p(xk) and νk > 0. Find a solution dk ∈ Rn of linear system

(HTk Hk + νkI)d = −∇9̄p(x
k), (49)

where νk > 0 is the Levenberg–Marquardt parameter.
(S.3) Compute tk = max{β l | l = 0, 1, 2, . . .} such that

9̄p(xk + tkdk) ≤ 9̄p(xk)+ σ tk∇9̄p(xk)Tdk, (50)

and let xk+1 := xk + tkdk.
(S.4) Set k := k+ 1, and go to (S.1).

Notice that the above method is different from the classical Levenberg–Marquardt method for nonlinear least-square
problems in which 8̄p is not continuously differentiable. If νk ≡ 0, the solution of (49) is exactly the solution of the linear
least-square problem

min
d∈Rn

1
2
‖Hkd+ 8̄p(xk)‖2, (51)

since 9̄p(x) is continuously differentiable and ∇9̄p(xk) = HTk 8̄p(x
k). In this paper, we choose the Levenberg–Marquardt

parameter νk by

νk := min{ρ1, ρ2‖8̄p(xk)‖%} (52)

for some constants ρ1, ρ2 > 0, where % ∈ [1, 2]. Such choice is not only consistent with the requirements for local
superlinear (quadratic) convergence stated in Theorem 4.2, but also is adopted in our numerical experiments later.
In what follows, we will study the convergence properties of the algorithm. For this purpose, we assume that ε = 0. The

first one is a global convergence result.

Theorem 4.1. Let {xk} be the sequence generated by Algorithm 4.1. Then,
(a) {xk} is well defined, and every accumulation point is a stationary point of (48).
(b) If x∗ is a stationary point of (48) such that conditions (a) and (b) of Proposition 3.4 hold, then x∗ is a solution of MCP (1).

Proof. (a) From the steps of Algorithm 4.1, {xk} is well defined since νk > 0, and dk determined by (49) is always a descent
direction of 9̄p at xk. Let x∗ be any accumulation point of {xk} and {xk}K be a subsequence converging to x∗. Suppose that
∇9̄p(x∗) 6= 0. Since {9̄p(xk)} ismonotonically decreasing and bounded below, and {9̄p(xk)}K converges to 9̄p(x∗), the entire
sequence {9̄p(xk)} converges to 9̄p(x∗) > 0. Since

9̄p(xk+1)− 9̄p(xk) ≤ σ tk∇9̄p(xk)Tdk ≤ 0

for all sufficiently large k, using 9̄p(xk+1)− 9̄p(xk)→ 0 yields that{
tk∇9̄p(xk)Tdk

}
K → 0. (53)

We next prove {∇9̄p(xk)Tdk}K has a nonzero limit as k→+∞. By the definition of dk,

∇9̄p(xk)Tdk = −∇9̄p(xk)T (HTk Hk + νkI)
−1
∇9̄p(xk) ∀ k. (54)

Since the C-subdifferential ∂C8̄p(x) is a nonempty compact set for any x ∈ Rn, {Hk}K is bounded. Without loss of generality,
we assume that {Hk}K → H∗. Considering that the set-valued mapping x 7→ ∂C8̄p(x) is closed and {xk}K → x∗, we have
H∗ ∈ ∂C8̄p(x∗). In addition, by the continuity of 8̄p and 8̄p(x∗) 6= 0,we have νk → ν∗with ν∗ = min{ρ1, ρ2‖8̄p(x∗)‖%} > 0.
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Thus, {HTk Hk + νkI}k∈K → HT
∗
H∗ + ν∗I � O. This, together with (54) and the continuity of∇9̄p, implies that {∇9̄p(xk)Tdk}K

has a nonzero limit as k→+∞. From (53), we then obtain {tk}K → 0.
Now, for all sufficiently large k, let lk ∈ {0, 1, . . .} be the unique exponent such that tk = β lk . Since {tk}K → 0, we have

{lk}k∈K →∞. From the Armijo line search in (S.3),

9̄p(xk + β lk−1dk)− 9̄p(xk)
β lk−1

> σ∇9̄p(xk)Tdk (55)

for all k ∈ K sufficiently large. Taking the limit k → ∞ with k ∈ K and using {lk}K → ∞ and {xk}K → x∗, we have
∇9̄p(x∗)Td∗ ≥ σ∇9̄p(x∗)Td∗. This means∇9̄p(x∗)Td∗ ≥ 0. On the other hand, we learn from (49) that {dk}K → d∗ with d∗
being the solution of

(HT
∗
H∗ + ν∗I)d = −∇9̄p(x∗). (56)

This means ∇9̄p(x∗)Td∗ < 0 since (HT∗H∗ + ν∗I) � O. Thus, we have a contradiction.
Using the same arguments as Proposition 3.4 yields the desired result. �

By previous propositions and mimicking the arguments as in [9], we can obtain the following results.

Theorem 4.2. Let {xk} be the sequence generated by Algorithm 4.1. Assume that the accumulation point x∗ of {xk} is a strongly
regular solution of MCP (1). Then,

(a) the entire sequence {xk} converges to x∗;
(b) the full stepsize tk = 1 is always acceptable for k sufficiently large and the rate of convergence is Q -superlinear;
(c) if, in addition, F ′ is locally Lipschitzian around x∗ and νk = O(‖∇9̄p(xk)‖), the rate of convergence is Q -quadratic.

4.3. Numerical experiments

In this subsection, we report numerical results with Algorithm 4.1 solving the MCPLIB collection [11]. All experiments
were done with a PC of Intel Pentium Dual CPU E2200 and 2048MB memory, and the computer codes were written
in Matlab 7.0. The implementation of the algorithm is along the lines of Algorithm 4.1 except that the monotone line
search in (S.3) was replaced by the nonmonotone line search proposed in [28]. In other words, we computed tk such that
9̄p(ζ

k
+ tkdk) ≤ Wk + σ tk∇9̄p(ζ k)Tdk,where

Wk := max
{
9̄p(ζ

j) | j = k+ 1−mk, . . . , k
}

denotes the maximum function value of 9̄p over the lastmk iterations. During our tests, we employed the same strategy as
in [9] to adjustmk. That is,mk = 1 for k = 0, 1, . . . , 5 andmk+1 = min{mk+1,m}withm = 10 for all remaining iterations.
In addition, we also adopted the so-called watchdog strategy to enhance Algorithm 4.1. If after 20 steps the best function
value of 9̄p found so far has not been reduced sufficiently, we return to that point using a monotone line search.
We startedAlgorithm4.1with the standard starting point providedby theMCPLIB collection, and terminated the iteration

if one of the following conditions are satisfied

‖8̄p(x)‖ ≤ 10−11 and ‖∇9̄p(x)‖ ≤ 10−4, or k > 300.

The Levenberg–Marquardt parameter νk is chosen as follows: For smaller problems with n < 100, we first estimate the
condition number of the matrix HTk Hk. If this estimated condition number is larger than 10

25, we set νk := 0.1/(k+ 1), and
otherwise we set νk as in (52) with ρ1 = 1, ρ2 = 5.0× 10−7/n, and % = 1. For those problems with n > 100, we let νk = 0.
The other parameters in Algorithm 4.1 were chosen as follows:

λ = 0.9, β = 0.55, σ = 10−4.

The procedure for calculating an element Hk ∈ ∂C 9̄p(xk) is similar to the one given in [29].
Fig. 3 shows the performance profile of iteration times (defined as in (44)) in the range of [0, 10] for four solvers on 55

test problems. The four solvers correspond to Algorithm 4.1 with p = 1.001, p = 1.1, p = 2, and p = 1000, respectively.
From Fig. 3, it is clear that Algorithm 4.1 with p = 1.001 has the most wins (has the highest probability of being the optimal
solver) and that the probability that it is the winner on a given MCP is about 0.58, and furthermore, it has the highest
probability within any positive factor of the best solver. The performance profile shows that Algorithm 4.1 with p = 1.1 has
a competitive performancewith p = 1.001 if we choose beingwithin a factor of greater than 4 of the best solver as the scope
of our interest, though it has the lowest number of wins. Algorithm 4.1 with p = 1000 has the lowest probability within a
factor of greater than 2 of the best solver, although it has higher number of wins than either p = 1.1 or p = 2. Comparing
with Fig. 1, it is easy to see that for these p, the lowest probability of Algorithm 4.1 is higher than the highest probability of
Algorithm 3.1 if we choose being within a factor of greater than 2 of the best solver as the scope of our interest.
Fig. 4 shows the performance profile of function evaluations in the range of [0, 20] for the above four solvers on 55

test problems. From this figure, it is clear that Algorithm 4.1 with p = 1.001 also has the most wins in terms of function
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Fig. 3. Performance profile of iterations for Algorithm 4.1 with four p on the MCPLIB collection.
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Fig. 4. Performance profile of function evaluations for Algorithm 4.1 with four p on the MCPLIB collection.

evaluations and that the probability that it is the winner on a given MCP is about 0.53, and furthermore, it has the highest
probability within any positive factor of the best solver. The performance profile shows that Algorithm 4.1 with p = 1.1 has
a comparable performance with p = 1.001 if we choose being within a factor of 16 of the best solver as the scope of our
interest, though it has the lowest number of wins. Algorithm 4.1 with p = 1000 has the lowest probability within a factor
of greater than 2 of the best solver, although it has higher number of wins than either p = 1.1 or p = 2. Algorithm 4.1 with
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p = 1.1 and p = 2 has comparable performance within a factor of from 2 to 14 of the best solver. Comparing with Fig. 2, we
see that for the four p, the lowest probability of Algorithm 4.1 is higher than the highest probability of Algorithm 3.1.

5. Concluding remarks

In this paper, we have extended two effective methods for the MCP (1) studied in [8,9] to a more general case which is
based on the generalized Fischer–Burmeister function. We generalize the theoretical results therein, and test the influence
of numerical performance by changing the parameter p. The performance profiles of iteration times and function evaluations
indicate that the strictly feasible Newton method with p ∈ [1.1, 2] has better performance, whereas the semismooth
Levenberg–Marquardt method with a smaller p, for example, p = 1.001, has better performance. Furthermore, comparing
Figs. 1 and 2with Figs. 3–4, we see that the influence of p on the strictly feasible equation-basedmethod is more remarkable
than the the semismooth Levenberg–Marquardt method. However, different from the merit function method based on φp
(see [19]), there is no evident tendency about the influence of p on the two Newton-type methods.
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