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Abstract In this paper, we consider complementarity problem associated with circu-
lar cone, which is a type of nonsymmetric cone complementarity problem. The main
purpose of this paper is to show the readers how to construct complementarity func-
tions for such nonsymmetric cone complementarity problem, and propose a few merit
functions for solving such a complementarity problem. In addition, we study the con-
ditions under which the level sets of the corresponding merit functions are bounded,
and we also show that these merit functions provide an error bound for the circular
cone complementarity problem. These results ensure that the sequence generated by
descent methods has at least one accumulation point, and build up a theoretical basis
for designing the merit function method for solving circular cone complementarity
problem.
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1 Motivation and introduction

The general conic complementarity problem is to find an element x ∈ IRn such that

x ∈ K, F(x) ∈ K∗ and 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 denotes the Euclidean inner product, F : IRn → IRn is a continuously
differentiable mapping, K represents a closed convex cone, and K∗ is the dual cone
of K given by

K∗ := {v ∈ IRn | 〈v, x〉 ≥ 0, ∀x ∈ K}.

When K is a symmetric cone, the problem (1) is called the symmetric cone comple-
mentarity problem [12,14,18,20]. In particular, whenK is the so-called second-order
cone which is defined as

Kn := {(x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1},

the problem (1) reduces to the second-order cone complementarity problem [1,3–5,10,
11]. In contrast to symmetric cone programming and symmetric cone complementarity
problem, we are not familiar with their nonsymmetric counterparts. Referring the
reader to [16,19] and the bibliographies therein, we observe that there is no any
unified way to handle nonsymmetric cone constraints, and the study on each item for
such problems usually uses certain specific features of the nonsymmetric cones under
consideration.

In this paper, we pay attention to a special nonsymmetric cone K for problem (1).
In particular, we focus on the case of K being the circular cone defined as below,
which enables the problem (1) reduce to the circular cone complementarity problem
(CCCP for short). Indeed in IRn , the circular cone [7,23] is a pointed closed convex
cone having hyper-spherical sections orthogonal to its axis of revolution about which
the cone is invariant to rotation. Let its half-aperture angle be θ with θ ∈ (0, π

2 ). Then,
the circular cone denoted by Lθ can be expressed as

Lθ :=
{
x = (x1, x2) ∈ IR × IRn−1 | ‖x‖ cos θ ≤ x1

}

=
{
x = (x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1 tan θ

}
. (2)

When θ = π
4 , the circular cone is exactly the second-order cone, which means the

circular cone complementarity problem is actually the second-order cone comple-
mentarity problem. Thus, the circular cone complementarity problem (CCCP) can
be viewed as the generalization of the second-order cone complementarity problem.
Moreover, the CCCP includes the KKT system of the circular programming problem
[13] as a special case. For real world applications of optimization problems involving
circular cones, please refer to [6]. Note that in [23], Zhou and Chen characterize the
relation between circular cone Lθ and second-order cone as follows:
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Lθ = A−1Kn and Kn = ALθ with A =
[
tan θ 0
0 I

]
.

In other words, for any x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1,
there have

x ∈ Lθ ⇐⇒ Ax ∈ Kn, y ∈ L∗
θ ⇐⇒ A−1y ∈ Kn . (3)

Relation (3) indicates that after scaling the circular cone complementarity problem
and the second-order cone complementarity problem are equivalent. However, when
dealing with the circular cone complementarity problem, this approach may not be
acceptable from both theoretical and numerical viewpoints. Indeed, if the appropriate
scaling is not found or checked, some scaling step can cause undesirable numeri-
cal performance due to round-off errors in computers, which has been confirmed by
experiments. Moreover, it usually need to exploits its associated merit functions or
complementarity functions, which plays an important role in tackling complementar-
ity problem. To this end, we are devoted to seeking away to construct complementarity
functions and merit functions for the circular cone complementarity problem directly.
Thus, we pay our attention to the circular cone complementarity problem and the
structure of Lθ mainly. There is another relationship between the circular cone and
the (nonsymmetric) matrix cone introduced in [8,9], where the authors study the epi-
graph of six different matrix norms, such as the Frobeninus norm, the l∞ norm, l1
norm, the spectral or the operator norm, the nuclear norm, the Ky Fan k-norm. If we
regard a matrix as a high-dimensional vector, then the circular cone is equivalent to
the matrix cone with Frobeninus norm, see [24] for more details.

While there have been much attention to the symmetric cone complementarity
problem and the second-order cone complementarity problem, the study about non-
symmetric cone complementarity problem is very limited. The main difficulty is that
the idea for constructing complementarity functions (C-functions for short) and merit
functions is not clear. Hence, The main goal of this paper is showing the readers how
to construct C-functions and merit functions for such complementarity problem, and
studying the properties of these merit functions. To our best knowledge, the idea is
new and we believe that it will help in analyzing other types of nonsymmetric cone
complementarity problems.

Recall that for solving the problem (1), a popular approach is to reformulate it as
an unconstrained smooth minimization problem or a system of nonsmooth equations.
In this category of methods, it is important to adapt a merit function. Officially, a
merit function for the circular cone complementarity problem is a function h : IRn →
[0,+∞), provided that

h(x) = 0 ⇐⇒ x solves the CCCP (1).

Hence, solving the problem (1) is equivalent to handling the unconstrained minimiza-
tion problem

min
x∈IRn

h(x)
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with the optimal value zero. For constructing the merit functions in finite dimensional
vector space, please refer to [17]. Until now, for solving symmetric cone comple-
mentarity problem, a number of merit functions have been proposed. Among them,
one of the most popular merit functions is the natural residual (NR) merit function
�N R : IRn → IR, which is defined as

�N R(x) := 1

2
‖φNR (x, F(x))‖2 = 1

2
‖x − (x − F(x))+‖2,

where (·)+ denotes the projection onto the symmetric cone K. It is well known that
�N R(x) = 0 if and only if x is a solution to the symmetric cone complementarity
problem. In this paper, we present two classes of complementarity functions and four
types of merit functions for the circular cone complementarity problem. Moreover,
we investigate the properties of these proposed merit functions, and study conditions
under which these merit functions provide bounded level sets. Note that such prop-
erties will guarantee that the sequence generated by descent methods has at least one
accumulation point, and build up a theoretical basis for designing the merit function
method for solving circular cone complementarity problem.

2 Preliminaries

In this section, we briefly review some basic concepts and background materials about
the circular cone and second-order cone, which will be extensively used in subsequent
analysis.

As defined in (2), the circular coneLθ is a pointed closed convex cone and has a rev-
olution axis which is the ray generated by the canonical vector e1 := (1, 0, . . . , 0)T ∈
IRn . Its dual cone denoted by L∗

θ is given as

L∗
θ := {y = (y1, y2) ∈ IR × IRn−1 | ‖y‖ sin θ ≤ y1}.

Note that the circular cone Lθ is not a self-dual cone when θ �= π
4 , that is, L∗

θ �= Lθ ,
whenever θ �= 45◦. Hence, Lθ is not a symmetric cone for θ ∈ (

0, π
2

) \{π
4 }. It is also

known from [23] that the dual cone of Lθ can be expressed as

L∗
θ = {y = (y1, y2) ∈ IR × IRn−1 | ‖y2‖ ≤ y1 cot θ} = L π

2 −θ .

Now, we talk about the projection ontoLθ andL∗
θ . To this end, we let x+ denote the

projection of x onto the circular coneLθ , and x− be the projection of−x onto the dual
cone L∗

θ . With these notations, for any x ∈ IRn , it can be verified that x = x+ − x−.
Moreover, due to the special structure of the circular cone Lθ , the explicit formula of
projection of x ∈ IRn onto Lθ is obtained in [23] as below:

x+ =
⎧⎨
⎩
x if x ∈ Lθ ,

0 if x ∈ −L∗
θ ,

u otherwise,
(4)
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where

u =
⎡
⎢⎣

x1 + ‖x2‖ tan θ

1 + tan2 θ(
x1 + ‖x2‖ tan θ

1 + tan2 θ
tan θ

)
x2

‖x2‖

⎤
⎥⎦ .

Similarly, we can obtain the expression of x− as below:

x− =
⎧⎨
⎩
0 if x ∈ Lθ ,

−x if x ∈ −L∗
θ ,

w otherwise,
(5)

where

w =
⎡
⎢⎣

− x1 − ‖x2‖ cot θ
1 + cot2 θ(

x1 − ‖x2‖ cot θ
1 + cot2 θ

cot θ

)
x2

‖x2‖

⎤
⎥⎦ .

From the expressions (4)–(5) for x+ and x−, it is easy to verity that 〈x+, x−〉 = 0 for
any x ∈ IRn .

Next, we introduce the Jordan product associated with second-order cone. As men-
tioned earlier, the SOC in IRn (also called Lorentz cone or ice-cream cone) is defined
by

Kn := {x = (x1, x2) ∈ IR × IRn−1 | ‖x2‖ ≤ x1}.

It is well known that the dual cone ofKn is itself, and the second-order coneKn belongs
to a class of symmetric cones. In addition, Kn is a special case of Lθ corresponding
to θ = π

4 . In fact, there is a relationship between Lθ and Kn , which is described in
(3). In the SOC setting, there is so-called Jordan algebra associated with SOC. More
specifically, for any x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1, in the
setting of the SOC, the Jordan product of x and y is defined as

x ◦ y :=
[ 〈x, y〉
y1x2 + x1y2

]
.

The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative. The
identity element under Jordan product is e = (1, 0, . . . , 0)T ∈ IRn . In this paper, we
write x2 to mean x ◦ x . It is known that x2 ∈ Kn for any x ∈ IRn , and if x ∈ Kn , there

exists a unique vector denoted by x
1
2 in Kn such that (x

1
2 )2 = x

1
2 ◦ x

1
2 = x . For any

x ∈ IRn , we denote |x | := √
x2 and xsoc+ means the orthogonal projection of x onto

the second-order cone Kn . Then, it follows that xsoc+ = x + |x |
2

. For further details

regarding the SOC and Jordan product, please refer to [1,3,5,10].
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Lemma 2.1 ([10, Proposition 2.1]) For any x, y ∈ IRn, the following holds:

x ∈ Kn, y ∈ Kn, and 〈x, y〉 = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, and x ◦ y = 0.

With the help of (3) andLemma2.1,weobtain the following theoremwhich explains
the relationship between SOCCP and CCCP.

Theorem 2.1 Let A =
[
tan θ 0
0 I

]
. For any x = (x1, x2) ∈ IR × IRn−1 and y =

(y1, y2) ∈ IR × IRn−1, the following are equivalent:

(a) x ∈ Lθ , y ∈ L∗
θ and 〈x, y〉 = 0.

(b) Ax ∈ Kn, A−1y ∈ Kn and 〈Ax, A−1y〉 = 0.
(c) Ax ∈ Kn, A−1y ∈ Kn and Ax ◦ A−1y = 0.
(d) x ∈ Lθ , y ∈ L∗

θ and Ax ◦ A−1y = 0.

In each case, elements x and y satisfy the condition that either y2 is a multiple of x2
or x2 is a multiple of y2.

Proof From the relation between Kn and Lθ given as in (3), we know that

x ∈ Lθ ⇐⇒ Ax ∈ Kn and y ∈ L∗
θ ⇐⇒ A−1y ∈ Kn .

Moreover, under condition (a), there holds

〈Ax, A−1y〉 = 〈A−1Ax, y〉 = 〈x, y〉 = 0.

Hence, it follows that (a) and (b) are equivalent. The equivalence of (b) and (c) has
been shown in Lemma 2.1. In addition, based on the relation between Kn and Lθ

again, the equivalence of (c) and (d) is obvious.
Now, under condition (a), we prove that either y2 is a multiple of x2 or x2 is a multiple
of y2. To see this, note that x ∈ Lθ and y ∈ L∗

θ which gives

‖x2‖ ≤ x1 tan θ and ‖y2‖ ≤ y1 cot θ.

This together with 〈x, y〉 = 0 yields

0 = 〈x, y〉
= x1y1 + 〈x2, y2〉
≥ x1y1 − ‖x2‖‖y2‖
≥ x1y1 − x1y1
= 0

which implies 〈x2, y2〉 = ‖x2‖‖y2‖. This says that either y2 is a multiple of x2 or x2
is a multiple of y2. Thus, the proof is complete. ��
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3 C-functions for CCCP

In this section, we define C-functions for CCCP and the product of elements in the
setting of the circular cone. Moreover, based on the product of elements, we con-
struct some C-functions which play an important role in solving the circular cone
complementarity problems by merit function methods.

Definition 3.1 Given a mapping φ : IRn × IRn → IRn , we call φ an C-function for
CCCP if, for any (x, y) ∈ IRn × IRn , it satisfies

φ(x, y) = 0 ⇐⇒ x ∈ Lθ , y ∈ L∗
θ , 〈x, y〉 = 0.

When θ = π
4 , an C-function for CCCP reduces to an C-function for SOCCP, i.e.,

φ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.

Two popular and well-known C-functions for SOCCP are Fischer-Burmeister (FB)
function and natural residual (NR) function:

φFB(x, y) =
(
x2 + y2

)1/2 − (x + y),

φNR (x, y) = x − (x − y)soc+ .

We may ask whether we can modify the above two C-functions for SOCCP to form
C-functions for CCCP. The answer is affirmative. In fact, we consider

φ̃FB(x, y) :=
[
(Ax)2 + (A−1y)2

] 1
2 − (Ax + A−1y),

φ̃NR (x, y) := Ax − [Ax − A−1y]soc+ .

Then, these two functions are C-functions for CCCP.

Proposition 3.1 Let φ̃FB and˜φNR be defined as above where (Ax)2 equals (Ax)◦(Ax)

under Jordan product. Then, φ̃FB and˜φNR are both C-functions for CCCP.

Proof In view of Theorem 2.1 and Definition 3.1, it is not hard to verify that

φ̃FB(x, y) = 0 ⇐⇒ x ∈ Lθ , y ∈ L∗
θ , 〈x, y〉 = 0,

φ̃NR (x, y) = 0 ⇐⇒ x ∈ Lθ , y ∈ L∗
θ , 〈x, y〉 = 0,

which says that these two functions are C-functions for CCCP. ��

Wepoint out that if we consider directly the FB function φFB(x, y) for CCCP, unfor-
tunately, it cannot be C-function for CCCP because x2 is not well-defined associated
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with the circular cone Lθ for any x ∈ IRn . More specifically, because x2 is defined
under the Jordan product in the setting of SOC, i.e.,

x2 := x ◦ x =
[ 〈x, y〉
x1y2 + y1x2

]
,

it follows that x2 ∈ Kn , which implies x2 may not belong to Lθ or L∗
θ . Furthermore,

when φFB(x, y) = 0, we have x+ y = (
x2 + y2

) 1
2 ∈ Kn , which yields that x, y ∈ Kn .

This says that either x /∈ Lθ or y /∈ L∗
θ . All the above explains that the FB function φFB

cannot be an C-function for CCCP. Nonetheless, the NR function φNR : IRn × IRn →
IRn given by

φNR (x, y) := x − (x − y)+ (6)

is always an C-function for CCCP. Moreover, it is also an C-function for general cone
complementarity problem, see [11, Proposition 1.5.8].

Are there any other types of C-functions for CCCP and how to construct an C-
function for CCCP? As mentioned earlier, The FB function φFB cannot serve as C-
functions for CCCP because “x2” is not well-defined in the setting of circular cone.
This inspires us to define a special product associated with circular cone, and find
other C-functions for CCCP.

For any x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1, we define one
type of product of x and y as follows:

x • y =
[
x1
x2

]
•
[
y1
y2

]
=

[ 〈x, y〉
max{tan2 θ, 1} x1y2 + max{cot2 θ, 1} y1x2

]
. (7)

From the above product and direct calculation, it is easy to verify that

〈x • y, z〉 = 〈x, z • y〉, ∀z ∈ IRn with θ ∈
(
0,

π

4

]
(8)

and
〈x • y, z〉 = 〈y, x • z〉, ∀z ∈ IRn with θ ∈

[π

4
,
π

2

)
. (9)

Moreover, we also obtain the following inequalities which are crucial to establishing
our main results.

Lemma 3.1 For any x, y ∈ IRn,

(a) if θ ∈ (0, π
4 ], we have 〈x−, x+ • (−y)−〉 ≤ 0;

(b) if θ ∈ [π
4 , π

2 ), we have 〈(−y)+, x+ • (−y)−〉 ≤ 0.

Proof (a) When θ ∈ (0, π
4 ], let x+ := (s, u) ∈ IR× IRn−1, x− := (t, v) ∈ IR× IRn−1

and (−y)− := (k, w) ∈ IR× IRn−1. For the elements x+, x− and (−y)−, if there exist
at least one in them is zero, it is easy to obtain

〈x−, x+ • (−y)−〉 = 0.
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If all the three elements are not equal to zero, from the definition of x+, x−, and (−y)−,
we have k cot θ ≥ ‖w‖, s tan θ = ‖u‖, t cot θ = ‖v‖ and

u = αv or v = αu with α < 0.

Without loss of generality, we consider the case u = αv with α < 0 for the following
analysis. In fact, using this, we know that

〈x−, x+ • (−y)−〉
= stk + t〈u, w〉 + s〈v,w〉 + k〈u, v〉 cot2 θ

= ‖u‖‖v‖k − k‖u‖‖v‖ cot2 θ − ‖u‖〈v,w〉 tan θ + ‖u‖〈v,w〉 cot θ
= (1 − cot2 θ)k‖u‖‖v‖ − (1 − cot2 θ)(‖u‖〈v,w〉 tan θ)

= (1 − cot2 θ)[k‖u‖‖v‖ − ‖u‖〈v,w〉 tan θ ]
≤ (1 − cot2 θ)[k‖u‖‖v‖ − ‖u‖‖v‖‖w‖ tan θ ]
= (1 − cot2 θ)‖u‖‖v‖[k − ‖w‖ tan θ ]
≤ 0.

Here the second equality is true due to αt = α‖v‖ tan θ = −‖u‖ tan θ . The last
inequality holds due to k cot θ ≥ ‖w‖ and θ ∈ (0, π

4 ]. Hence, the desired result
follows.
(b) When θ ∈ [π

4 , π
2 ), with the same skills, we also conclude that

〈(−y)+, x+ • (−y)−〉 ≤ 0.

Then, the desired result follows. ��
Besides the inequalities in Lemma 3.1, “•” defined as in (7) plays the similar role

like what “◦” does in the setting of second-order cone. This is shown as below.

Theorem 3.1 For any x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1, the
following statements are equivalent:

(a) x ∈ Lθ , y ∈ L∗
θ and 〈x, y〉 = 0.

(b) x ∈ Lθ , y ∈ L∗
θ and x • y = 0.

In each case, x and y satisfy the condition that either y2 is a multiple of x2 or x2 is a
multiple of y2.

Proof In view of Theorem 2.1, we know that part (a) is equivalent to

x ∈ Lθ , y ∈ L∗
θ and Ax ◦ A−1y = 0.

To proceed the proof, we discuss the following two cases.
Case 1 For θ ∈ (0, π

4 ], from the definition of the product of x and y, we have

x • y =
[ 〈x, y〉
x1y2 + cot2 θ y1x2

]
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which implies

Ax ◦ A−1y =
[ 〈x, y〉
x1 tan θ y2 + cot θ y1x2

]
=

[
1 0
0 (tan θ)I

]
(x • y).

This together with Theorem 2.1 yields the conclusion.
Case 2 For θ ∈ [π

4 , π
2 ), from the definition of the product of x and y again, we have

x • y =
[ 〈x, y〉
tan2 θ x1y2 + y1x2

]

which says

Ax ◦ A−1y =
[
1 0
0 (cot θ)I

]
(x • y).

Then, applying Theorem 2.1 again, the desired result follows. ��
Based on the product x • y of x and y. we now introduce a class of functions

φp : IRn × IRn → IRn , which is called the penalized natural residual function and
defined as

φp(x, y) = x − (x − y)+ + p (x+ • (−y)−) , p > 0. (10)

Note that when p = 0, φp(x, y) reduces to φNR (x, y). In the following, we show that
the function φp is an C-function for CCCP. To achieve the conclusion, a technical
lemma is needed.

Lemma 3.2 Let φp : IRn × IRn → IRn be defined as in (10). Then, for any x, y ∈ IRn,
we have

‖φp(x, y)‖ ≥ max {‖x−‖, ‖(−y)+‖} .

Proof First, we prove that ‖φp(x, y)‖ ≥ ‖x−‖. To see this, we observe that

‖φp(x, y)‖2
= 〈x − (x − y)+ + p x+ • (−y)−, x − (x − y)+ + p x+ • (−y)−〉
= 〈x+ − x− − (x − y)+ + p x+ • (−y)−, x+ − x− − (x − y)+ + p x+ • (−y)−〉
= ‖x−‖2 + ‖x+ − (x − y)+ + p x+ • (−y)−‖2 − 2 〈x−, x+ − (x − y)+ + p x+ • (−y)−〉
≥ ‖x−‖2 − 2〈x−, x+〉 + 2 〈x−, (x − y)+〉 − 2 〈x−, p x+ • (−y)−〉
≥ ‖x−‖2 − 2p 〈x−, x+ • (−y)−〉 .

Here, the last inequality is true due to x+, (x − y)+ ∈ Lθ , x− ∈ L∗
θ , 〈x+, x−〉 = 0

and the relation between Lθ and L∗
θ . When θ ∈ (0, π

4 ], by Lemma 3.1(a), we have

〈x−, x+ • (−y)−〉 ≤ 0.
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When θ ∈ [π
4 , π

2 ), from Eq. (9), we have

〈x−, x+ • (−y)−〉 = 〈(−y)−, x+ • x−〉 = 0

where the second equality holds due to x+ • x− = 0. In summary, from all the above,
we prove that

‖φp(x, y)‖2 ≥ ‖x−‖2.

With similar arguments, we also obtain

‖φp(x, y)‖2
= 〈x − (x − y)+ + p x+ • (−y)−, x − (x − y)+ + p x+ • (−y)−〉
= 〈y − (x − y)− + p x+ • (−y)−, y − (x − y)− + p x+ • (−y)−〉
= 〈(−y)− − (−y)+ − (x − y)− + p x+ • (−y)−, (−y)− − (−y)+ − (x − y)−

+px+ • (−y)−〉
= ‖(−y)+‖2 + ‖(−y)− − (x − y)− + p x+ • (−y)−‖2 − 2〈(−y)+, (−y)−

−(x − y)− + px+ • (−y)−〉
≥ ‖(−y)+‖2−2〈(−y)+, (−y)−〉+2〈(−y)+, (x−y)−〉−2〈(−y)+, p x+ • (−y)−〉
≥ ‖(−y)+‖2 − 2p 〈(−y)+, x+ • (−y)−〉
≥ ‖(−y)+‖2,

where the second inequality holds due to due to (−y)+ ∈ Lθ , (−y)−, (x − y)− ∈
L∗

θ , 〈(−y)+, (−y)−〉 = 0 and the relation between Lθ and L∗
θ . The last inequality

holds due to equation (8) and Lemma 3.1(b). Therefore, we prove that ‖φp(x, y)‖ ≥
‖(−y)+‖. Then, the proof is complete. ��
Remark 3.1 From the proof of Lemma 3.2, it also can be seen that

‖φNR (x, y)‖ ≥ max{‖x−‖, ‖(−y)+‖}.

Theorem 3.2 Let φp : IRn × IRn → IRn be defined as in (10). Then, φp is an C-
function for CCCP, i.e., for any x, y ∈ IRn,

φp(x, y) = 0 ⇐⇒ x ∈ Lθ , y ∈ L∗
θ and 〈x, y〉 = 0.

Proof “�⇒” Suppose that φp(x, y) = 0. If either x /∈ Lθ or y /∈ L∗
θ , applying Lemma

3.2 yields

‖φp(x, y)‖ ≥ max{‖x−‖, ‖(−y)+‖} > 0.

This contradicts with φp(x, y) = 0. Hence, there must have x ∈ Lθ and y ∈ L∗
θ . Next,

we argue that 〈x, y〉 = 0. To see this, we consider the first component of φp(x, y),
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which is denoted by
[
φp(x, y)

]
1. In other words,

[
φp(x, y)

]
1 = [

x − (x − y)+ + p x • y
]
1

=
⎧⎨
⎩

y1 + p 〈x, y〉 if x − y ∈ Lθ ,

x1 + p 〈x, y〉 if x − y ∈ −L∗
θ ,

w + p 〈x, y〉 otherwise,

where

w = x1 − x1 − y1 + ‖x2 − y2‖ tan θ

1 + tan2 θ
= x1 tan2 θ + y1 − ‖x2 − y2‖ tan θ

1 + tan2 θ
.

Since x ∈ Lθ and y ∈ L∗
θ , it follows that x1, y1 ≥ 0, 〈x, y〉 ≥ 0 and

x1 tan2 θ + y1 − ‖x2 − y2‖ tan θ

1 + tan2 θ
≥ tan θ(x1 tan θ − ‖x2‖ + y1 cot θ − ‖y2‖)

1 + tan2 θ
≥ 0.

This together with φp(x, y) = 0 gives p〈x, y〉 = 0. Thus, we conclude that 〈x, y〉 = 0
because p > 0.
“⇐�” Suppose that x ∈ Lθ , y ∈ L∗

θ and 〈x, y〉 = 0. Since φNR is always an C-
function for CCCP, we have x − (x − y)+ = 0. Using Theorem 3.1 again yields
x+ • (−y)− = x • y = 0, which says φp(x, y) = 0. ��
Remark 3.2 In fact, for any x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1,
we define another type of product of x and y as follows:

x • y =
[
x1
x2

]
•
[
y1
y2

]
=

[ 〈x, y〉
min{tan2 θ, 1} x1y2 + min{cot2 θ, 1} y1x2

]
.

With the same skills, we may obtain the same results.

Motivated by the construction of φp given as in (10), we consider another function
φr : IRn × IRn → IRn defined by

φr (x, y) = x − (x − y)+ + r (x • y)�+ r > 0, (11)

where� := Lθ ∩L∗
θ =

{Lθ if θ ∈ (0, π
4 ],

L∗
θ if θ ∈ [π

4 , π
2 ).

We point out that the function φr defined

as in (11) is not an C-function for CCCP. The reason come from that if φr (x, y) = 0,
we have φNR (x, y) = x − (x − y)+ = −r (x • y)�+. Combining with the expression
of φp, this implies that

−r (x • y)�+ + p (x+ • (−y)−) �= 0

due to (x • y)�+ ∈ � = Lθ ∩L∗
θ and x+ • (−y)− /∈ Kn ⊇ Lθ (orL∗

θ ) when θ ∈ (0, π
4 ]

(or θ ∈ [π
4 , π

2 )). This explains that φp(x, y) �= 0, which contradicts φp(x, y) being
an C-function for CCCP.
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However, there is amerit function related toφr which possesses property of bounded
level sets. We will explore it in next section.

4 Merit functions for circular cone complementarity problem

In this section, based on the product (7) of x and y in IRn , we propose four classes of
merit functions for the circular cone complementarity problem and investigate their
important properties, respectively.

First, we recall that a function F : IRn → IRn is said to be monotone if, for any
x, y ∈ IRn , there holds

〈x − y, F(x) − F(y)〉 ≥ 0;

and strictlymonotone if, for any x �= y, the above inequality holds strictly; and strongly
monotone with modulus ρ > 0 if, for any x, y ∈ IRn , the following inequality holds

〈x − y, F(x) − F(y)〉 ≥ ρ‖x − y‖2.

The following technical lemma is crucial for achieving the property of bounded
level sets.

Lemma 4.1 Suppose that CCCP has a strictly feasible point x̄ , i.e., x̄ ∈ int(Lθ ) and
F(x̄) ∈ int(L∗

θ ) and that F is a monotone function. Then, for any sequence {xk}
satisfying

∥∥∥xk
∥∥∥ → ∞, lim sup

k→∞

∥∥∥xk−
∥∥∥ < ∞ and lim sup

k→∞

∥∥∥∥
(
−F

(
xk

))
+

∥∥∥∥ < ∞,

we have

〈
xk, F

(
xk

)〉
→ ∞ and

〈
xk+,

(
−F

(
xk

))
−

〉
→ ∞.

Proof Since F is monotone, for all xk ∈ IRn , we know

〈
xk − x̄, F

(
xk

)
− F(x̄)

〉
≥ 0,

which says

〈
xk, F

(
xk

)〉
+ 〈x̄, F(x̄)〉 ≥

〈
xk, F(x̄)

〉
+

〈
x̄, F

(
xk

)〉
. (12)
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Using xk = xk+ − xk− and F
(
xk

) = (−F
(
xk

))
− − (−F

(
xk

))
+, it follows from (12)

that

〈
xk, F

(
xk

)〉
+ 〈x̄, F(x̄)〉

≥
〈
xk+, F(x̄)

〉
−

〈
xk−, F(x̄)

〉
+

〈
x̄,

(
−F

(
xk

))
−

〉
−

〈
x̄,

(
−F

(
xk

))
+

〉
. (13)

We look into the first term in the right-hand side of (13).

〈
xk+, F(x̄)

〉
=

[
xk+

]
1
[ f (x̄)]1 +

〈[
xk+

]
2
, [ f (x̄)]2

〉

≥
[
xk+

]
1
[ f (x̄)]1 −

∥∥∥
[
xk+

]
2

∥∥∥ · ∥∥[ f (x̄)]2
∥∥

≥
[
xk+

]
1
[ f (x̄)]1 −

[
xk+

]
1
tan θ

∥∥[ f (x̄)]2
∥∥

=
[
xk+

]
1

{
[ f (x̄)]1 − tan θ

∥∥[ f (x̄)]2
∥∥} . (14)

Note that xk = xk+ − xk−, it gives ‖xk+‖ ≥ ‖xk‖ − ‖xk−‖. From the assumptions
on {xk}, i.e., ‖xk‖ → ∞, and lim supk→∞ ‖xk−‖ < ∞, we see that ‖xk+‖ → ∞,
and hence [xk+]1 → ∞. Because CCCP has a strictly feasible point x̄ , we have
[ f (x̄)]1 − tan θ‖[ f (x̄)]2‖ > 0, which together with (14) implies that

〈
xk+, F(x̄)

〉
→ ∞ (k → ∞). (15)

On the other hand, we observe that

lim sup
k→∞

〈xk−, F(x̄)〉 ≤ lim sup
k→∞

‖xk−‖‖F(x̄)‖ < ∞

lim sup
k→∞

〈x̄,
(
−F

(
xk

))
+〉 ≤ lim sup

k→∞
‖x̄‖‖

(
−F

(
xk

))
+ ‖ < ∞

and 〈x̄, (−F
(
xk

))
−〉 ≥ 0. All of these together with (13) and (15) yield

〈
xk, F

(
xk

)〉
→ ∞,

which is the first part of the desired result.

Next, we prove that
〈
xk+,

(−F
(
xk

))
−
〉

→ ∞. Suppose not, that is, limk→∞
〈
xk+,

(−F
(
xk

))
−
〉
< ∞. Then, we obtain

〈
xk+,

(−F
(
xk

))
−
〉

‖xk+‖ =
〈

xk+
‖xk+‖ ,

(
−F

(
xk

))
−

〉
→ 0.
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This means that there exists x̄ ∈ IRn such that
xk+

‖xk+‖ → x̄+
‖x̄+‖ and

〈
x̄+

‖x̄+‖ , (−F(x̄))−
〉

= 0. (16)

Denote z := x̄+
‖x̄+‖ and apply Theorem 3.1, there exists α ∈ IR such that

[
(−F(x̄))−

]
2 = αz2 or αz2 = [

(−F(x̄))−
]
2 .

It is obvious that z ∈ Lθ and (−F(x̄))− ∈ L∗
θ . Hence, Eq. (16) implies that α < 0,

which says that z2 and
[
(−F(x̄))−

]
2 are in opposite direction to each other. From

the expression of (−F(x̄))+ and (−F(x̄))− again, it follows that
[
(−F(x̄))+

]
2 and[

(−F(x̄))−
]
2 are in the opposite direction, to each other. These conclude that z2 and[

(−F(x̄))+
]
2 are in the same direction, which means [x̄+]2 and

[
(−F(x̄))+

]
2 are

also in the same direction. Now, combining with the fact that x̄+, (−F(x̄))+ ∈ Lθ ,
we have

〈x̄+, (−F(x̄))+〉 ≥ 0.

Similarly, by the the relation between x̄+ and x̄−, we know [x̄−]2 and [(−F(x̄))−]2
are in the same direction. Then, combining with x̄−, (−F(x̄))− ∈ L∗

θ , it leads to

〈x̄−, (−F(x̄))−〉 ≥ 0.

Moreover, writing out the expression for 〈x̄, F(x̄)〉, we see that

〈x̄, F(x̄)〉=〈x̄+, (−F(x̄))−〉−〈x̄+, (−F(x̄))+〉−〈x̄−, (−F(x̄))−〉+〈x̄−, (−F(x̄))+〉.

Note that the second and third terms of the right-hand side are nonpositive and the

fourth is bounded fromabove.Hence, from the assumptions limk→∞
〈
xk+,

(−F
(
xk

))
−
〉

< ∞, we conclude that 〈x̄, F(x̄)〉 < ∞, which contradict

〈x̄, F(x̄)〉 = lim
k→∞

〈
xk, F

(
xk

)〉
= ∞.

Thus, we prove that
〈
xk+,

(−F
(
xk

))
−
〉
→ ∞. ��

4.1 The first class of merit functions

For any x ∈ IRn , from the analysis of the Sect. 3, we know that the function φp and φNR

are complementarity function for CCCP. In this subsection, we focus on the property
of bounded level sets of merit functions based on φNR and φp with the product of
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elements, which is a property to guarantee that the existence of accumulation points
of sequence generated by some descent algorithms.

Theorem 4.1 Let φp be defined as in (10). Suppose that CCCP has a strictly feasible
point and that F is monotone. Then, the level set

Lp(α) = {x ∈ IRn | ∥∥φp(x, F(x))
∥∥ ≤ α}

is bounded for all α ≥ 0.

Proof We prove this result by contradiction. Suppose there exists an unbounded
sequence {xk} ⊂ Lp(α) for some α ≥ 0. If ‖xk−‖ → ∞ or ‖ (−F

(
xk

))
+ ‖ → ∞, by

Lemma 3.2, we have ‖φp(xk, F
(
xk

)
)‖ → ∞, which contradicts ‖φp(xk, F

(
xk

)
)‖ ≤

α. On the other hand, if

lim sup
k→∞

‖xk−‖ < ∞ and lim sup
k→∞

∥∥∥∥
(
−F

(
xk

))
+

∥∥∥∥ < ∞,

it follows from Lemma 4.1 that
〈
xk+,

(−F
(
xk

))
−
〉
→ ∞. From the proof of Lemma

4.1, there exists a constant κ0 such that
[
φNR

(
xk , f

(
xk

))]
1

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[xk+]1 − κ0 if xk − F
(
xk

)
∈ −L∗

θ ,[(
−F

(
xk

))
−

]

1
− κ0 if xk − F

(
xk

)
∈ Lθ ,

[xk+]1 tan2 θ+
[(

−F
(
xk

))
−

]

1
−‖[xk+]2‖ tan θ−‖[

(
−F

(
xk

))
−]2‖ tan θ

1+tan2 θ

− 2κ0(1+tan θ)

1+tan2 θ
, if xk − F

(
xk

)
/∈ Lθ ∪ −L∗

θ ,

which means lim inf
[
φNR (xk, f

(
xk

)
)
]
1 > −∞. Hence, it follows that

[
φp

(
xk, f

(
xk

))]
1

=
[
φNR

(
xk, f

(
xk

))]
1
+

[(
xk+ •

(
−F

(
xk

))
−

]

1

=
[
φNR

(
xk, f

(
xk

))]
1
+

〈
xk+,

(
−F

(
xk

))
−

〉

→ ∞,

where the limit comes from

〈
xk+,

(
−F

(
xk

))
−

〉
→ ∞ and lim inf

[
φNR

(
xk, f

(
xk

))]
1

> −∞.

Thus, we obtain that ‖φp(xk, F
(
xk

)
)‖ → ∞ which contradicts ‖φp(xk, F

(
xk

)
)‖ ≤

α. Then, the proof is complete. ��
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Note that, under the conditions of Lemma 4.1 or Theorem 4.1, we cannot guarantee

the boundedness of the level set on theNR functionφNR . For example, let F(x) = 1− 1

x
and x > 0, it is easy to verify that the level set

LNR (2) = {
x ∈ IRn | ‖φNR (x, F(x))‖ ≤ 2

}

is unbounded. In fact, In order to establish the boundedness of the level set on the
natural residual function φNR , we need the following concept.

Definition 4.1 A mapping F : IRn → IRn is said to be strongly coercive if

lim‖x‖→∞
〈F(x), x − y〉

‖x − y‖ = ∞.

holds for all y ∈ IRn .

Theorem 4.2 Suppose that F is strongly coercive. Then, the level set

LNR (α) = {
x ∈ IRn | ∥∥φNR (x, F(x))

∥∥ ≤ α
}

is bounded for all α ≥ 0.

Proof Again, we prove this result by contradiction. Suppose there exists an unbounded
sequence {xk} ⊂ LNR (α) for some α ≥ 0, i.e.,

∥∥xk∥∥ → ∞. Note that the sequence{
φNR (xk, F

(
xk

)
) = xk − (

xk − F
(
xk

))
+
}
is bounded. It follows from the unbound-

edness of the sequence {xk} that the sequence {(xk − F
(
xk

))
+} is also unbounded.

Then, for any y ∈ Lθ , there exist N ∈ N and β > 0 such that

∥∥∥∥
(
xk − F

(
xk

))
+ − y

∥∥∥∥ > β, ∀k > N .

From the property of projection mapping, we have

〈
xk − F

(
xk

)
−

(
xk − F

(
xk

))
+ , y −

(
xk − F

(
xk

))
+

〉
≤ 0 (17)

for each k > N . On the other hand,
〈
xk − F

(
xk

)
−

(
xk − F

(
xk

))
+ , y −

(
xk − F

(
xk

))
+

〉

=
〈
xk −

(
xk − F

(
xk

))
+ , y −

(
xk − F

(
xk

))
+

〉
+

〈
F
(
xk

)
,
(
xk − F

(
xk

))
+ − y

〉

≥ −
∥∥∥∥xk −

(
xk − F

(
xk

))
+

∥∥∥∥ ·
∥∥∥∥y −

(
xk − F

(
xk

))
+

∥∥∥∥ +
〈
F
(
xk

)
,
(
xk − F

(
xk

))
+ − y

〉

≥
∥∥∥∥y −

(
xk − F

(
xk

))
+

∥∥∥∥

⎛
⎜⎝

〈F
(
xk

)
,
(
xk − F

(
xk

))
+ − y〉

‖y − (
xk − F

(
xk

))
+ ‖ − α

⎞
⎟⎠ .
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Plugging in yk := xk − (
xk − F

(
xk

))
+ − y, we obtain

lim
k→∞

〈
F
(
xk

)
,
(
xk − F

(
xk

))
+ − y

〉

‖y − (
xk − F

(
xk

))
+ ‖ = lim

k→∞

〈
F
(
xk

)
, xk − yk

〉

‖xk − yk‖ = ∞,

where the last equality holds due to the strong coercivity of F and [22, Theorem 2.1].
This implies that

lim
k→∞

〈
xk − F

(
xk

)
−

(
xk − F

(
xk

))
+ , y −

(
xk − F

(
xk

))
+

〉
= ∞,

which contradicts (17). Therefore, the level set

LNR (α) = {
x ∈ IRn | ∥∥φNR (x, F(x))

∥∥ ≤ α
}

is bounded for all α ≥ 0. ��

4.2 The second class of merit functions

For any x ∈ IRn , LT (standing for Luo-Tseng) merit function for the circular cone
complementarity problem is given as follows:

fLT (x) := ϕ(〈x, F(x)〉) + 1

2

[
‖(x)−‖2 + ‖(−F(x))+‖2

]
, (18)

where ϕ : IR → IR+ is an arbitrary smooth function satisfying

ϕ(t) = 0, ∀t ≤ 0 and ϕ′(t) > 0, ∀t > 0.

Notice that we have ϕ(t) ≥ 0 for all t ∈ IR from the above condition. Indeed, this
class of functions has been considered for the SDCP case (positive semidefinite com-
plementarity problem) by Tseng in [21], for the SOCCP case (second-order cone
complementarity problem) by Chen in [2] and for the general SCCP case by Pan and
Chen in [18], respectively. For the case of generally closed convex cone complemen-
tarity problems, the LT merit function has been studied by Lu and Huang in [15]. In
view of the results in [15], it is easy to obtain the following results directly for the
circular cone complementarity problem.

Proposition 4.1 Let fLT : IRn → IR be given as in (18). Then, the following results
hold.

(a) For all x ∈ IRn, we have fLT (x) ≥ 0; and fLT (x) = 0 if and only if x solves the
circular cone complementarity problem.

(b) If F(·) is differentiable, then so is fLT (·). Moreover,

∇ fLT (x) = ∇ϕ(〈x, F(x)〉)[F(x) + x∇F(x)] − x− − ∇F(x)(−F(x))+
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for all x ∈ IRn.

Proof See Lemma 3.1 and Theorem 3.4 in [15]. ��
Proposition 4.2 Let fLT be given as in (18). Suppose that F : IRn → IRn is a strongly
monotone mapping and that the circular cone complementarity problem has a solution
x∗. Then, there exists a constant τ > 0 such that

τ‖x − x∗‖2 ≤ max{0, 〈x, F(x)〉} + ‖x−‖ + ‖(−F(x))+‖, ∀x ∈ IRn .

Moreover,

τ‖x − x∗‖2 ≤ ϕ−1( fLT (x)) + 2[ fLT (x)] 12 , ∀x ∈ IRn .

Proof See Theorem 3.6 in [15]. ��
In the following theorem, we present the condition which ensures the boundedness

of the level sets for LT merit function fLT to solve the circular cone complementarity
problem.

Theorem 4.3 Suppose that the circular cone complementarity problem has a strictly
feasible point and that F is monotone. Then, the level set

L fLT (α) := {x ∈ IRn | fLT (x) ≤ α}

is bounded for all α ≥ 0.

Proof We prove this result by contradiction. Suppose there exists an unbounded
sequence {xk} ⊆ L fLT (α) for some α ≥ 0. We may assert that the sequences {xk−}
and {(−F

(
xk

))
+} are bounded. If not, from the expression (18) of LT merit function

fLT and the property ϕ(t) ≥ 0 for all t ∈ IR, it follows that

fLT
(
xk

)
≥ 1

2

[
‖xk−‖2 + ‖

(
−F

(
xk

))
+ ‖2

]
→ ∞,

which contradicts {xk} ⊆ L fLT (α), i.e., fLT
(
xk

) ≤ α. Therefore, we have

lim sup
k→∞

‖xk−‖ < ∞ and lim sup
k→∞

‖
(
−F

(
xk

))
+ ‖ < ∞.

Then, by Lemma 4.1, we get that

〈
xk, F

(
xk

)〉
→ ∞.

By the properties of the function ϕ again, we obtain that ϕ(〈xk, F (
xk

)〉) → ∞,
which implies fLT

(
xk

) → ∞. This contradicts {xk} ⊆ L fLT (α). Hence, the level set
L fLT (α) is bounded for all α ≥ 0. ��
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4.3 The third class of merit functions

To achieve the third class of merit functions, we make a slight modification of LT
merit function fLT for the circular cone complementarity problem. More specifically,
we consider the set � as follows:

� := Lθ ∩ L∗
θ =

{Lθ for 0 < θ ≤ π
4 ,

L∗
θ for π

4 < θ < π
2 .

Indeed,� is also a closed convex cone. In light of this�, another function is considered:

̂fLT (x) := 1

2

∥∥(x • F(x))�+
∥∥2 + 1

2

[
‖x−‖2 + ‖(−F(x))+‖2

]
, (19)

where (x • y)�+ denotes the projection of x • y onto �. Then, together with the expres-

sions (7) of x • y, we can verify that the function̂fLT is also a type of merit function
for the circular cone complementarity problem, which will be shown in following
theorem.

Theorem 4.4 Let the function̂fLT be given by (19). Then, for all x ∈ IRn, we have

̂fLT (x) = 0 ⇐⇒ x ∈ Lθ , F(x) ∈ L∗
θ and 〈x, F(x)〉 = 0,

where L∗
θ denotes the dual cone of Lθ , i.e., L∗

θ = L π
2 −θ .

Proof By the definition of the function̂fLT given by (19), we have

̂fLT (x) = 0 ⇔ ∥∥(x • F(x))�+
∥∥ = 0, ‖x−‖ = 0 and ‖(−F(x))+‖ = 0,

⇔ (x • F(x))�+ = 0, x− = 0 and (−F(x))+ = 0,

⇔ x • F(x) ∈ −Lθ or x • F(x) ∈ −L∗
θ , x ∈ Lθ , and F(x) ∈ L∗

θ ,

⇔ x ∈ Lθ , F(x) ∈ L∗
θ and 〈x, F(x)〉 = 0,

where the last equivalence holds due to the properties of the cone −Lθ or −L∗
θ . Thus,

the proof is complete. ��

FromTheorem4.4,we know that the function̂fLT is amerit function for the circular
cone complementarity problem. As below, according to the type of dot product (7),
we establish the differentiability of̂fLT .

Theorem 4.5 Let ̂fLT : IRn → IR be given by (19). Suppose that the type of dot
product (7) is employed. If F(·) is differentiable, then so iŝfLT (·). Moreover, for all
x ∈ IRn, we have

∇̂fLT (x) = (Ly + ∇F(x)Lx ) · (x • F(x))�+ − x− − ∇F(x)(−F(x))+,
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where

Lx =
[
y1 yT2
max{tan2 θ, 1}y2 max{cot2 θ, 1}y1 I

]

and

Ly =
[
x1 xT2
max{tan2 θ, 1}x2 max{cot2 θ, 1}x1 I

]

with I being the identity matrix.

Proof From the proof of Lemma 3.1(b) in [15], we have

∇
(
1

2
‖(z)�+‖2

)
= (z)�+, ∀z ∈ IRn .

Then, by the chain rule again, it follows that

∇
(
1

2
‖(x • F(x))�+‖2

)
= ∇x (x • F(x)) · (x • F(x))�+

= [
Ly + ∇F(x)Lx

] · (x • F(x))�+,

where

Lx =
[
y1 yT2
max{tan2 θ, 1}y2 max{cot2 θ, 1}y1 I

]

and

Ly =
[
x1 xT2
max{tan2 θ, 1}x2 max{cot2 θ, 1}x1 I

]

with I being the identity matrix. Thus, we obtain that

∇̂fLT (x) = (Ly + ∇F(x)Lx ) · (x • F(x))�+ − (x)− − ∇F(x)(−F(x))+

for all x ∈ IRn . ��
In order to establish error bound property of the merit function̂fLT for the circular

cone complementarity problem, we need a technical lemma as below.

Lemma 4.2 Let x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR× IRn−1. Then, we
have

〈x, y〉 ≤ max

{
1 + tan2 θ√

2
,
1 + cot2 θ√

2

}∥∥(x • y)�+
∥∥

where • is defined as in (7).
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Proof Given any twovectors x = (x1, x2) ∈ IR×IRn−1 and y = (y1, y2) ∈ IR×IRn−1.
For the type of dot product (7), we know that

x • y =
[ 〈x, y〉
max{tan2 θ, 1}x1y2 + max{cot2 θ, 1}y1x2

]
:=

[ 〈x, y〉
w

]
.

To proceed the arguments, we consider the following three cases:

Case 1When x • y ∈ �, we have (x • y)�+ = x • y. Then, it is easy to verify that

‖(x • y)�+‖ ≥ 〈x, y〉.

Case 2 When x • y ∈ −�∗, where �∗ denotes the dual cone of �, we have
(x • y)�+ = 0 and 〈x, y〉 ≤ 0. This implies that

‖(x • y)�+‖ ≥ 〈x, y〉.

Case 3 When x • y /∈ � ∪ (−�∗), we consider the expression of (x • y)�+. If
〈x, y〉 ≤ 0, then the result is obvious. Thus, we only need to look into the case of
〈x, y〉 > 0. If � = Lθ , by the expression of projection on �, we have

(x • y)�+ =
⎡
⎢⎣

〈x, y〉 + ‖w‖ tan θ

1 + tan2 θ〈x, y〉 + ‖w‖ tan θ

1 + tan2 θ

w

‖w‖

⎤
⎥⎦ .

This implies that

‖(x • y)�+‖2 = 2

( 〈x, y〉 + ‖w‖ tan θ

1 + tan2 θ

)2

= 2

(1 + tan2 θ)2

[
(〈x, y〉)2 + 2〈x, y〉‖w‖ tan θ + ‖w‖2 tan2 θ

]

≥ 2

(1 + tan2 θ)2
(〈x, y〉)2.

Hence, we see that

〈x, y〉 ≤ 1 + tan2 θ√
2

‖(x • y)�+‖.

With similar arguments, for � = L∗
θ = L π

2 −θ , it follows that

〈x, y〉 ≤ 1 + cot2 θ√
2

‖(x • y)�+‖.
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From all the above analysis for three cases, we obtain that

〈x, y〉 ≤ max

{
1 + tan2 θ√

2
,
1 + cot2 θ√

2

}∥∥(x • y)�+
∥∥ .

Thus, the proof is complete. ��
Theorem 4.6 Let the function̂fLT be given by (19). Suppose that F : IRn → IRn is
strongly monotone mapping and that x∗ is a solution to the circular cone complemen-
tarity problem. Then, there exists a scalar τ > 0 such that

τ‖x − x∗‖2 ≤ (2 + √
2)

[̂
fLT (x)

] 1
2
.

Proof Since the function F is strongly monotone and x∗ is a solution to the circular
cone complementarity problem, there exists a scalar ρ > 0 such that, for any x ∈ IRn ,

ρ‖x − x∗‖2 ≤ 〈F(x) − F(x∗), x − x∗〉
= 〈F(x), x〉 + 〈F(x∗),−x〉 + 〈−F(x), x∗〉
= 〈F(x), x〉 + 〈F(x∗), x− − x+〉 + 〈(−F(x))+ − (−F(x))−, x∗〉
≤ 〈F(x), x〉 + 〈F(x∗), x−〉 + 〈(−F(x))+, x∗〉
≤ max

{
1 + tan2 θ√

2
,
1 + cot2 θ√

2

}
‖(x • F(x))�+‖ + ‖x−‖‖F(x∗)‖

+ ‖x∗‖‖(−F(x))+‖
≤ max

{
1+tan2 θ√

2
,
1+cot2 θ√

2
, ‖F(x∗)‖, ‖x∗‖

}
(‖(x • F(x))�+‖+‖x−‖

+ ‖(−F(x))+‖),

where the second inequality holds due to the properties of the cone Lθ and its dual
cone L∗

θ , and the third inequality follows from Lemma 4.2 and properties of inner

product. Then, setting τ := ρ

max
{
1+tan2 θ√

2
, 1+cot2 θ√

2
, ‖F(x∗)‖, ‖x∗‖

} yields

τ‖x − x∗‖2 ≤ ‖(x • F(x))�+‖ + ‖x−‖ + ‖(−F(x))+‖.

Moreover,

‖(x • F(x))�+‖ = √
2

(
1

2
‖(x • F(x))�+‖2

) 1
2 ≤ √

2
[̂
fLT (x)

] 1
2
,

and

‖x−‖ + ‖(−F(x))+‖ ≤ √
2
(
‖x−‖2 + ‖(−F(x))+‖2

) 1
2 ≤ 2

[̂
fLT (x)

] 1
2
.
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Hence, we have

τ‖x − x∗‖2 ≤ (2 + √
2)

[̂
fLT (x)

] 1
2
,

which is the desired result. ��

Next, we focus on the boundedness of level sets of merit function̂fLT .

Theorem 4.7 Let the merit function̂fLT be given by (19). Suppose that the circular
cone complementarity problem has a strictly feasible point and that F is monotone.
Then, the level set

L̂
fLT

(α) =
{
x ∈ IRn

∣∣∣∣̂fLT (x) ≤ α

}

is bounded for all α ≥ 0.

Proof Similar to the proof of Theorem 4.3, we prove this result by contradiction.
Suppose there exists an unbounded sequence {xk} ⊆ L̂

fLT
(α) for some α ≥ 0. We

assert that the sequences {xk−} and {(−F
(
xk

))
+} are bounded. In fact, if not, it follows

from the expression (19) of̂fLT that

̂fLT
(
xk

)
≥ 1

2

[
‖xk−‖2 + ‖

(
−F

(
xk

))
+ ‖2

]
→ ∞,

which contradicts {xk} ⊆ L̂
fLT

(α), i.e.,̂fLT
(
xk

) ≤ α. Therefore, we have

lim sup
k→∞

‖xk−‖ < ∞ and lim sup
k→∞

‖
(
−F

(
xk

))
+ ‖ < ∞.

Then, by Lemma 4.1 again, we get

〈
xk, F

(
xk

)〉
→ ∞.

Then, together with Lemma 4.2, it is easy to verify that

max

{
1 + tan2 θ√

2
,
1 + cot2 θ√

2

}∥∥∥∥
(
xk • F

(
xk

))�

+

∥∥∥∥ ≥ 〈xk, F
(
xk

)
〉 → ∞.

This leads to ̂fLT
(
xk

) → ∞, which contradicts {xk} ⊆ L̂
fLT

(α). Therefore, the
level set L̂

fLT
(α) is bounded. ��
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4.4 The fourth class of merit function

For any x ∈ IRn , combiningNRmerit function and themerit function̂fLT , we consider
another merit function as below:

fr (x) := 1

2
‖φNR (x, F(x))‖2 + 1

2

∥∥(x • F(x))�+
∥∥2 . (20)

Based on the dot product (7) for x • y, we show that fr (x) is also a merit function for
the circular cone complementarity problem.

Theorem 4.8 Let the function fr be given by (20). Then, for all x ∈ IRn, we have

fr (x) = 0 ⇐⇒ x ∈ Lθ , F(x) ∈ L∗
θ and 〈x, F(x)〉 = 0,

where L∗
θ denotes the dual cone of Lθ , i.e., L∗

θ = L π
2 −θ .

Proof In light of the definition of fr given by (20), we have

fr (x) = 0 ⇐⇒ ∥∥(x • F(x))�+
∥∥ = 0 and ‖φNR (x, F(x))‖ = 0,

⇐⇒ x ∈ Lθ , F(x) ∈ L∗
θ and 〈x, F(x)〉 = 0,

where the second equivalence holds because the function φNR (x, y) is a complemen-
tarity function for the circular cone complementarity problem. Thus, the proof is
complete. ��

From Theorem 4.8, we see that the function fr is a merit function for the circular
cone complementarity problem. In fact, if the squared exponent in the expression of
fr is deleted. In other words, we consider

f̃r (x) := ‖φNR (x, F(x))‖ + ∥∥(x • F(x))�+
∥∥ , (21)

then f̃r is also a merit function for the CCCP. For these two merit functions fr and
f̃r , there has no big differences between them in addition to the nature of fr is better
than f̃r . As below, we establish the error bound properties for fr and f̃r .

Theorem 4.9 Let fr and f̃r be given by (20) and (21), respectively. Suppose that
F : IRn → IRn is strongly monotone mapping and that x∗ is a solution to the circular
cone complementarity problem. Then, there exists a scalar τ > 0 such that

τ‖x − x∗‖2 ≤ 3
√
2 [ fr (x)]

1
2 and τ‖x − x∗‖2 ≤ 2 f̃r (x).

Proof From Remark 3.1, we have

‖φNR (x, F(x))‖ ≥ max{‖x−‖, ‖(−F(x))+‖}.
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This together with the proof of Theorem 4.6 imply that

τ‖x − x∗‖2 ≤ ‖(x • F(x))�+‖ + ‖x−‖ + ‖(−F(x))+‖
≤ √

2( fr (x))
1
2 + 2‖φNR (x, F(x))‖

= √
2( fr (x))

1
2 + 2

√
2

(
1

2
‖φNR (x, F(x))‖2

) 1
2

≤ √
2( fr (x))

1
2 + 2

√
2( fr (x))

1
2

= 3
√
2 [ fr (x)]

1
2

and

τ‖x − x∗‖2 ≤ ‖(x • F(x))�+‖ + ‖x−‖ + ‖(−F(x))+‖
≤ ‖(x • F(x))�+‖ + 2‖φNR (x, F(x))‖
≤ 2 f̃r (x),

where τ := ρ

max
{
1+tan2 θ√

2
, 1+cot2 θ√

2
, ‖F(x∗)‖, ‖x∗‖

} . Thus, the proof is complete. ��

The following theorem will show that the boundedness of the level sets of the
function f̃r and fr .

Theorem 4.10 Let fr and f̃r be given by (20) and (21), respectively. Suppose that
that the circular cone complementarity problem has a strictly feasible point and that
F is monotone. Then, the level sets

L fr (α) = {
x ∈ IRn | fr (x) ≤ α

}

and

L f̃r (α) = {
x ∈ IRn | f̃r (x) ≤ α

}

are both bounded for all α ≥ 0.

Proof Here we only prove that the level sets of the function f̃r are bounded for all
α ≥ 0. With the same arguments, we also easily obtain the boundedness of the level
sets of the function fr .
We prove this result by contradiction. Suppose there exists an unbounded sequence

{xk} ⊂ L f̃r (α) for some α ≥ 0. If ‖xk−‖ → ∞ or
∥∥∥(−F

(
xk

))
+
∥∥∥ → ∞, by Remark

3.1, we have

f̃r
(
xk

)
≥

∥∥∥φNR

(
xk, F

(
xk

))∥∥∥ → ∞,
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which contradicts xk ∈ L f̃r (α), i.e., f̃r
(
xk

) ≤ α. On the other hand, if

lim sup
k→∞

∥∥∥xk−
∥∥∥ < ∞ and lim sup

k→∞

∥∥∥∥
(
−F

(
xk

))
+

∥∥∥∥ < ∞,

it follows from Lemma 4.1 that 〈xk, F (
xk

)〉 → ∞. Then, applying Lemma 4.2 gives

〈xk, F
(
xk

)
〉 ≤ max

{
1 + tan2 θ√

2
,
1 + cot2 θ√

2

}∥∥∥∥
(
xk • F

(
xk

))K
+

∥∥∥∥ → ∞.

This implies that

∥∥∥∥
(
xk • F

(
xk

))K
+

∥∥∥∥ → ∞,

which says f̃r
(
xk

) → ∞. This is a contradiction because f̃r
(
xk

) ≤ α. Thus, the
proof is complete. ��

5 Conclusion and future direction

In this paper, we have shown that how to construct complementarity functions for the
circular cone complementarity problem, and have proposed four classes of merit func-
tions for the circular cone complementarity problem, which belongs to nonsymmetric
cone complementarity problems. In addition, we have also shown conditions under
which these merit functions have properties of error bounds and bounded level sets.
These results not only build up a theoretical basis for designing the merit function
method for solving circular cone complementarity problem, but also open a way to
tackle nonsymmetric cone complementarity. In particular, with these properties, it is
possible to construct a descent algorithm for the circular cone complementarity prob-
lem, even for general nonsymmetric cone complementarity problem. Hence, the future
study will be about the descent methods including numerical examples for solving the
unconstrained minimization via these merit functions.

We also want to point out that our approach to constructing complementarity func-
tions for the circular cone complementarity problem is based on careful observation of
the structure of circular cone. Alternatively, as mentioned by one reviewer, we think
that it may be possible to achieve some results of this paper directly by exploiting the
relation between the circular cone and the second-order cone. For example, Proposi-
tion 3.1, Proposition 4.2, Theorem 4.2, and Theorem 4.3 may be reached by this way.
More precisely, if we replace the product x • y for the elements x and y as Ax ◦ A−1y,
and change the formula (x • F(x))�+ as in (19), the analysis may be do-able. However,
we are not sure about how far this approach can go by now. We will keep an eye on
this approach in the future.
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