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Abstract Merit function approach is a popular method to deal with complementar-
ity problems, in which the complementarity problem is recast as an unconstrained
minimization via merit function or complementarity function. In this paper, for the
complementarity problem associated with p-order cone, which is a type of nonsym-
metric cone complementarity problem, we show the readers how to construct merit
functions for solving p-order cone complementarity problem. In addition, we study
the conditions under which the level sets of the corresponding merit functions are
bounded, and we also assert that these merit functions provide an error bound for the
p-order cone complementarity problem. These results build up a theoretical basis for
the merit method for solving p-order cone complementarity problem.
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1 Motivation and introduction

The general conic complementarity problem is to find an element x ∈ R
n such that

x ∈ K, F(x) ∈ K∗ and 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 denotes the Euclidean inner product, F : R
n → R

n is a continuously
differentiable mapping,K represents a closed convex cone, andK∗ is the dual cone of
K given by K∗ := {v ∈ R

n | 〈v, x〉 ≥ 0, ∀x ∈ K}. When K is a symmetric cone, the
problem (1) is called the symmetric cone complementarity problem [9–11,18,20]. In
particular, when K is the so-called second-order cone which is defined as

Kn := {(x1, x2) ∈ R × R
n−1 | ‖x2‖ ≤ x1},

the problem (1) reduces to the second-order cone complementarity problem [1–5,7,8].
In contrast to symmetric cone programming and symmetric cone complementarity
problem, we are not familiar with their nonsymmetric counterparts. Referring the
reader to [14,16,19,22] and the bibliographies therein, we observe that there is no
unified way to handle nonsymmetric cone constraints, and the study on each item for
such problems usually uses certain specific features of the nonsymmetric cones under
consideration.

In this paper, we focus on a special nonsymmetric cone K for problem (1), i.e.,
p-order cone. Then, the problem (1) reduces to the p-order cone complementarity
problem (POCCP for short). Indeed , the p-order cone [17,22] is a generalization of
the second-order cone in R

n , denoted by Kp, and can be expressed as

Kp :=
⎧
⎨

⎩
x ∈ R

n
∣
∣
∣
∣ x1 ≥

(
n∑

i=2

|xi |p
) 1

p

⎫
⎬

⎭
(p > 1).

If we write x := (x1, x̄) ∈ R × R
n−1, the p-order cone Kp can be equivalently

expressed as

Kp =
{
x = (x1, x̄) ∈ R × R

n−1 | x1 ≥ ‖x̄‖p

}
, (p > 1).

When p = 2, it is obvious that the p-order cone is exactly the second-order cone,
which means the p-order cone complementarity problem is actually the second-order
cone complementarity problem. Thus, the p-order cone complementarity problem
(POCCP) can be viewed as the generalization of the second-order cone complemen-
tarity problem. As shown in [15,17], Kp is a convex cone and its dual cone is given
by

K∗
p =

⎧
⎨

⎩
y ∈ R

n
∣
∣
∣
∣ y1 ≥

(
n∑

i=2

|yi |q
) 1

q

⎫
⎬

⎭
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or equivalently

K∗
p =

{
y = (y1, ȳ) ∈ R × R

n−1 | y1 ≥ ‖ȳ‖q
}

= Kq ,

where q > 1 and satisfies 1
p + 1

q = 1. In addition, the dual cone K∗
p is also a convex

cone. For more details regarding p-order cone and its involved optimization problems,
please refer to [15,17,22].

During the past decade, there had active research and various methods for comple-
mentarity problems, which include the interior-point methods, the smoothing Newton
methods, the semismooth Newton methods, and the merit function methods, see [1–
12,14,21] and references therein. As seen in the literature, almost all the attention
was paid to symmetric cone complementarity problems, that is, nonlinear comple-
mentarity problem (NCP), positive semi-definite complementarity problem (SDCP),
second-order cone complementarity problem (SOCCP). As mentioned earlier, there is
no unified framework to deal with general nonsymmetric cone complementarity prob-
lems. Consequently, the study about nonsymmetric cone complementarity problem
is very limited. Nonetheless, we believe that that merit function approach, in which
the complementarity problem is recast as an unconstrained minimization via merit
function or complementarity function, may be appropriately viewed as a unified way
to deal with nonsymmetric cone complementarity problem. Indeed, the main difficulty
lies on how to construct complementarity functions or merit functions for nonsym-
metric cone complementarity problem. For circular cone setting, several successful
ways were shown in [16]. Inspired by the work [16], we employ the similar ways
to construct merit functions for solving p-order cone complementarity problem. For
completeness, the idea is roughly described again as below.

Recall that for solving the problem (1), a popular approach is to reformulate it as
an unconstrained smooth minimization problem or a system of nonsmooth equations.
In this category of methods, it is important to adapt a merit function. A merit function
for the p-order cone complementarity problem is a function h : R

n → [0,+∞),
provided that

h(x) = 0 ⇐⇒ x solves the POCCP (1).

Hence, solving the problem (1) is equivalent to handling the unconstrained minimiza-
tion problem

min
x∈Rn

h(x)

with the optimal value zero. Until now, for solving symmetric cone complementarity
problem, a large number of merit functions have been proposed. Among them, one
of the most popular merit functions is the natural residual (NR) merit function �NR :
R
n → R, which is defined as

�NR (x) := 1

2

∥
∥φNR (x, F(x))

∥
∥2 = 1

2

∥
∥
∥x − (x − F(x))K+

∥
∥
∥
2
,
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where (·)K+ denotes the projection onto the symmetric cone K. Then, we know that
�NR (x) = 0 if and only if x is a solution to the symmetric cone complementarity
problem. As remarked in [16], this function �NR (or φNR ) can also serve as merit
function (or complementarity function) for general conic complementarity problem.
Hence, it is also applicable to p-order cone complementarity problem. Under this
setting, for any x ∈ R

n , we denote x+ be the projection of x onto the p-order cone
Kp, and x− be the projection of −x onto the dual cone K∗

p of Kp. By properties
of projection onto the closed convex cone, it can be verified that x = x+ − x−.
Moreover, the formula of projection of x ∈ R

n onto Kp is obtained in [17]. Besides
the NRmerit function�NR , are there any other types of merit functions for POCCP? In
this paper, we answer this question by presenting other types of merit functions for the
p-order cone complementarity problem. Moreover, we investigate the properties of
these proposedmerit functions, and study conditions underwhich thesemerit functions
provide bounded level sets. Note that such properties will guarantee that the sequence
generated by descent methods has at least one accumulation point, and build up a
theoretical basis for designing the merit function method for solving p-order cone
complementarity problem.

2 Preliminaries

In this section, we briefly review some basic concepts and background materials about
the p-order cone, and define one type of product associated with p-order cone, which
will be extensively used in subsequent analysis.

As mentioned, the p-order cone Kp is a pointed closed convex cone, and its dual
cone denoted by K∗

p is given as

K∗
p =

⎧
⎨

⎩
y ∈ R

n
∣
∣
∣
∣ y1 ≥

(
n∑

i=2

|yi |q
) 1

q

⎫
⎬

⎭

or equivalently

K∗
p =

{
y = (y1, ȳ) ∈ R × R

n−1 | y1 ≥ ‖ȳ‖q
}

= Kq ,

where q > 1 and satisfies 1
p + 1

q = 1. From the expression of the dual cone K∗
p, it is

easy to know that the dual cone K∗
p is also a closed convex cone. In addition, when

p �= q, we have Kp �= Kq = K∗
p, i.e., the p-order cone Kp is not a self-dual cone.

That is to say, the p-order cone Kp is not a symmetric cone for p �= 2.
It is well known that Jordan product plays a critical role in the study of symmetric

cone programming or symmetric cone complementarity problems. However, there is
no Jordan product for the setting of the p-order cone so far. Hence, we need to find
one type of special product for the setting of the p-order cone, which is similar to the
one for the setting of symmetric cone. To this end, for any x = (x1, · · · , xn)T ∈ R

n

and y = (y1, · · · , yn)T ∈ R
n , we define one type of product of x and y associated

with p-order cone Kp as follows:

123
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x • y=
[ 〈x, y〉

w

]

where w :=(w2, · · · , wn)
T with wi = |x1|

p
q |yi | − |y1||xi |

p
q .

(2)

From the above definition (2) of product, when p = q = 2, it is not hard to see that
the product x • y is exactly the Jordan product in the setting of second-order cone.
According to the product “•” defined as in (2), we have the following equivalence.

Proposition 2.1 For any x = (x1, x̄) ∈ R × R
n−1 with x̄ = (x2, · · · , xn)T ∈ R

n−1

and y = (y1, ȳ) ∈ R × R
n−1 with ȳ = (y2, · · · , yn)T ∈ R

n−1, the following
statements are equivalent:

(a) x ∈ Kp, y ∈ K∗
p = Kq and 〈x, y〉 = 0.

(b) x ∈ Kp, y ∈ K∗
p = Kq and x • y = 0.

In each case, x and y satisfy the condition that there is c ≥ 0 such that |xi |p = c|yi |q
or |yi |q = c|xi |p for any i = 2, · · · , n.

Proof (b) ⇒ (a) From the definition of product x • y of x and y associated with Kp,
the implication is obvious.

(a) ⇒ (b) When x̄ = 0 or ȳ = 0, from (a), we know x ∈ Kp, y ∈ Kq and 〈x, y〉 = 0.
Then, it is easy to see that x • y = 0. When x̄ �= 0 and ȳ �= 0, by x ∈ Kp and y ∈ Kq ,
we have x1 ≥ ‖x̄‖p and y1 ≥ ‖ȳ‖q . Hence, it follows from 〈x, y〉 = 0 that

0 = 〈x, y〉
= x1y1 + 〈x̄, ȳ〉
≥ ‖x̄‖p‖ȳ‖q − ‖x̄‖p‖‖ȳ‖q
= 0.

This implies that x1 = ‖x̄‖p, y1 = ‖ȳ‖q and |xi |p = c|yi |q or |yi |q = c|xi |p with
some c ≥ 0 for any i = 2, · · · , n. Next, we only consider the case |xi |p = c|yi |q ,
and the same arguments apply for the case |yi |q = c|xi |p. Because |xi |p = c|yi |q , we
have |xi |

p
q = c

1
q |yi |. This yields that, for any i = 2, · · · , n,

|x1|
p
q |yi | − |y1||xi |

p
q = |x1|

p
q |yi | − |y1|c

1
q |yi |

=
(

n∑

k=2

|xk |p
) 1

q

|yi | −
(

n∑

k=2

|yk |q
) 1

q

c
1
q |yi |

= c
1
q

(
n∑

k=2

|yk |q
) 1

q

|yi | − c
1
q

(
n∑

k=2

|yk |q
) 1

q

|yi |

= 0,

where the second equality holds due to x1 = ‖x̄‖p, y1 = ‖ȳ‖q . Then, it follows that
x • y = 0, and the proof is complete. ��
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To close this section, we introduce some other concepts that will be needed in
subsequent analysis. A function F : R

n → R
n is said to be monotone if, for any

x, y ∈ R
n , there holds

〈x − y, F(x) − F(y)〉 ≥ 0;

and strictlymonotone if, for any x �= y, the above inequality holds strictly; and strongly
monotone with modulus ρ > 0 if, for any x, y ∈ R

n , the following inequality holds

〈x − y, F(x) − F(y)〉 ≥ ρ‖x − y‖2.

The following technical result is crucial for achieving the property of bounded level
sets. Although the analysis technique is similar to [16, Lemma 4.1], we present the
details for completeness.

Proposition 2.2 Suppose that the POCCP has a strictly feasible point z, i.e., z ∈
int(Kp)and F(z) ∈ int(K∗

p)and that F is amonotone function. Then, for any sequence

{xk} satisfying
∥
∥
∥xk

∥
∥
∥ → ∞, lim sup

k→∞

∥
∥
∥xk−

∥
∥
∥ < ∞ and lim sup

k→∞

∥
∥
∥(−F(xk))+

∥
∥
∥ < ∞,

we have
〈
xk, F(xk)

〉 → ∞.

Proof Since F is monotone, for any xk ∈ R
n , we have

〈
xk − z, F(xk) − F(z)

〉
≥ 0,

which leads to

〈
xk, F(xk)

〉
+ 〈z, F(z)〉 ≥

〈
xk, F(z)

〉
+
〈
z, F(xk)

〉
. (3)

From properties of projection, we write xk = xk+ − xk− and F(xk) = (−F(xk))− −
(−F(xk))+. Then, it follows from (3) that

〈
xk, F(xk)

〉
+ 〈z, F(z)〉

≥
〈
xk+, F(z)

〉
−
〈
xk−, F(z)

〉
+
〈
z, (−F(xk))−

〉
−
〈
z, (−F(xk))+

〉
. (4)

Now, we denote xk+ :=
(

[xk+]1, xk+
T
)T

and F(z) :=
(
[ f (z)]1, f (z)

T
)T

. With these

notations, we look into the first term on the right-hand side of (4):
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〈
xk+, F(z)

〉
=
[
xk+
]

1
[ f (z)]1 +

〈
xk+, f (z)

〉

≥
[
xk+
]

1
[ f (z)]1 −

∥
∥
∥xk+

∥
∥
∥
p

·
∥
∥
∥ f (z)

∥
∥
∥
q

≥
[
xk+
]

1
[ f (z)]1 −

[
xk+
]

1

∥
∥
∥ f (z)

∥
∥
∥
q

=
[
xk+
]

1

(

[ f (z)]1 −
∥
∥
∥ f (z)

∥
∥
∥
q

)

(5)

≥ 0.

Note that xk = xk+ − xk−, which gives ‖xk+‖ ≥ ‖xk‖ − ‖xk−‖. Using the assumptions
on {xk}, i.e., ‖xk‖ → ∞, and lim supk→∞ ‖xk−‖ < ∞, we see that ‖xk+‖ → ∞,
and hence [xk+]1 → ∞. Because the POCCP has a strictly feasible point z, we know
[ f (z)]1 − ‖ f (z)‖q > 0, which together with (5) implies that

〈xk+, F(z)〉 → ∞ as k → ∞. (6)

Moreover, we also observe that

lim sup
k→∞

〈xk−, F(z)〉 ≤ lim sup
k→∞

‖xk−‖‖F(z)‖ < ∞,

lim sup
k→∞

〈z, (−F(xk))+〉 ≤ lim sup
k→∞

‖z‖‖(−F(xk))+‖ < ∞

and 〈z, (−F(xk))−〉 ≥ 0. All of these together with (4) and (6) yield

〈
xk, F(xk)

〉
→ ∞.

Then, the proof is complete. ��

3 Merit functions for POCCP

In this section, based on the product (2) of x and y associated with p-order cone in R
n

and employing the same idea in [16], we propose several classes of merit functions for
the p-order cone complementarity problem and investigate their favorable properties,
respectively.

3.1 The first class of merit functions

In this subsection,we focus on the natural residual (NR) functionφNR : R
n×R

n → R
n ,

which is given by:
φNR (x, y) := x − (x − y)+,

where (·)+ denotes the projection function. We know that the NR function φNR is
always an complementarity function for general conic complementarity problem, see

123



162 X.-H. Miao et al.

[16] or [8, Proposition 1.5.8]. In light of this, it is clear that the function �NR (x) =
1
2‖φNR (x, F(x))‖2 serves a merit function for the POCCP.

Lemma 3.1 Let x, y ∈ R
n and φNR (x, y) = x − (x − y)+. For any closed convex

cone K, we have

‖φNR (x, y)‖ ≥ max
{
‖xK∗

− ‖, ‖(−y)K+‖
}

,

where zK+ denotes the projection of z onto the closed convex cone K, and zK∗
− means

the projection of −z onto its dual cone K∗.

Proof The proof is similar to [16, Lemma3.2] because the cone therein can be replaced
by any closed convex cone. Hence, we omit it here. ��

In fact, Lu and Huang [12] considered a more general NR merit function, whose
format is as bellow:

�α(x) = 1

2
‖x − (x − αF(x))+‖2 , (α > 0).

They also showed the property of error bound under the strong monotonicity and the
global Lipschitz continuity of F .

Theorem 3.1 [12, Theorem 3.3] Suppose that F is strongly monotone with modulus
ρ > 0 and is Lipschitz continuous with constant L > 0, Then for any fixed α > 0, the
following inequality holds

1

2 + αL

√
�α(x) ≤ ‖x − x∗‖ ≤ 1 + αL

αρ

√
�α(x),

where x∗ is the unique solution of the generally closed convex cone complementarity
problems.

From Theorem 3.1, we know that the NR merit function �NR (i.e., α = 1) provides
an error bound for thePOCCP.Unfortunately,when considering the boundedness of the
level set for the NR function φNR , if under the same conditions used in Proposition 2.2,
we cannot guarantee the boundedness of the level set for the functionφNR . For example,

as mentioned in [16], taking F(x) = 1 − 1

x
and x > 0, it is easy to verify that the

level set

LNR (2) = {
x ∈ R

n | ‖φNR (x, F(x))‖ ≤ 2
}

is unbounded. Thus, a different condition is needed. In fact, in order to establish the
boundedness of the level set for the natural residual function φNR or the merit function
�α , we need the following concept.

123



On merit functions for p-order cone complementarity problem 163

Definition 3.1 A mapping F : R
n → R

n is said to be strongly coercive if

lim‖x‖→∞
〈F(x), x − y〉

‖x − y‖ = ∞

holds for all y ∈ R
n .

Theorem 3.2 Suppose that F is strongly coercive. Then, the level set

LNR (γ ) = {
x ∈ R

n | ∥∥φNR (x, F(x))
∥
∥ ≤ γ

}

or

L�α(γ ) = {
x ∈ R

n | �α(x) ≤ γ
}

is bounded for all γ ≥ 0.

Proof The proof is similar to [16, Theorem 4.2]. Hence, we omit it. ��

3.2 The second class of merit functions

For any x ∈ R
n , we denote fLT the LT (standing for Luo-Tseng) merit function asso-

ciated with the p-order cone complementarity problem, whose mathematical formula
is given as follows:

fLT (x) := ϕ(〈x, F(x)〉) + 1

2

[‖(x)−‖2 + ‖(−F(x))+‖2], (7)

where ϕ : R → R+ is an arbitrary smooth function satisfying

ϕ(t) = 0, ∀t ≤ 0 and ϕ′(t) > 0, ∀t > 0.

It is easy to see that ϕ(t) ≥ 0 for all t ∈ R from the above condition. This class
of functions has been considered by Tseng [21]for the positive semidefinite comple-
mentarity problem, for the second-order cone complementarity problem by Chen [2],
and for the general SCCP case by Pan and Chen [18], respectively. For the setting of
general closed convex cone complementarity problems, the LTmerit function has also
been studied by Lu and Huang [12], with some favorable properties shown as below.

Property 3.1 ([12, Lemma 3.1 and Theorem 3.4]) Let fLT : R
n → R be given as in

(7). Then, the following results hold.

(a) For all x ∈ R
n, we have fLT (x) ≥ 0; and fLT (x) = 0 if and only if x solves the

p-order cone complementarity problem.
(b) If F(·) is differentiable, then so is fLT (·). Moreover,

∇ fLT (x) = ∇ϕ(〈x, F(x)〉)[F(x) + x∇F(x)] − x− − ∇F(x)(−F(x))+

for all x ∈ R
n.
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164 X.-H. Miao et al.

Property 3.2 ([12, Theorem 3.6]) Let fLT be given as in (7). Suppose that F : R
n →

R
n is a strongly monotone mapping and that the p-order cone complementarity prob-

lem has a solution x∗. Then, there exists a constant τ > 0 such that

τ‖x − x∗‖2 ≤ max{0, 〈x, F(x)〉} + ‖x−‖ + ‖(−F(x))+‖, ∀x ∈ R
n .

Moreover,

τ‖x − x∗‖2 ≤ ϕ−1( fLT (x)) + 2[ fLT (x)] 12 , ∀x ∈ R
n .

Although the above properties were established in [12] for general closed convex
cone setting, there is no study about bounded level set for fLT therein. Hence, we
hereby present the condition which ensures the boundedness of level sets for the LT
merit function fLT to solve the p-order cone complementarity problem.

Theorem 3.3 Suppose that the p-order cone complementarity problem has a strictly
feasible point and that F is monotone. Then, the level set

L fLT (γ ) := {x ∈ R
n | fLT (x) ≤ γ }

is bounded for all γ ≥ 0.

Proof We prove this result by contradiction. Suppose there exists an unbounded
sequence {xk} ⊆ L fLT (γ ) for some γ ≥ 0. Then, the sequences {xk−} and
{(−F(xk))+}must be bounded. If not, from the expression (7) of fLT and the property
ϕ(t) ≥ 0 for all t ∈ R, it follows that

fLT (xk) ≥ 1

2

[
‖xk−‖2 + ‖(−F(xk))+‖2

]
→ ∞,

which contradicts {xk} ⊆ L fLT (γ ). Hence, we have

lim sup
k→∞

‖xk−‖ < ∞ and lim sup
k→∞

‖(−F(xk))+‖ < ∞.

Then, applying Proposition 2.2 yields

〈xk, F(xk)〉 → ∞.

Using the properties of the function ϕ again, we have ϕ(〈xk, F(xk)〉) → ∞, which
leads to fLT (xk) → ∞. It contradicts {xk} ⊆ L fLT (γ ). Thus, the level set L fLT (γ )

is bounded for all γ ≥ 0 and the proof is complete. ��

3.3 The third class of merit functions

Motivated by the construction way of the merit function fLT , we make a slight modifi-
cation on the LTmerit function fLT associatedwith the p-order cone complementarity

123



On merit functions for p-order cone complementarity problem 165

problem, which leads to the third class of merit functions. More specifically, we first
look into the set 	 := Kp ∩ K∗

p. Indeed, the set 	 is characterized as follows:

	 := Kp ∩ K∗
p =

{Kp for 1 ≤ p ≤ 2,
K∗

p = Kq for p ≥ 2,

where q satisfies the condition q ≥ 1 and 1
p + 1

q = 1. Moreover, it is easy to check
that 	 is also a closed convex cone. In light of this closed convex cone 	, another
function is considered:

f̂LT (x) := 1

2
‖(x • F(x))	+‖2 + 1

2

[
‖x−‖2 + ‖(−F(x))+‖2

]
, (8)

where (x • y)	+ denotes the projection of x • y onto 	. As shown in the following

theorem, we see that the function f̂LT is also a type of merit functions for the p-order
cone complementarity problem.

Theorem 3.4 Let the function f̂LT be given as in (8). Then, for all x ∈ R
n, we have

f̂LT (x) = 0 ⇐⇒ x ∈ Kp, F(x) ∈ K∗
p and 〈x, F(x)〉 = 0,

where K∗
p denotes the dual cone of Kp, i.e., K∗

p = Kq with p, q ≥ 1 and 1
p + 1

q = 1.

Proof From the definition of the function f̂LT given in (8), we have

f̂LT (x) = 0 ⇐⇒ ‖(x • F(x))	+‖ = 0, ‖x−‖ = 0 and ‖(−F(x))+‖ = 0,

⇐⇒ (x • F(x))	+ = 0, x− = 0 and (−F(x))+ = 0,

⇐⇒ x • F(x) ∈ −Kp

(
or x • F(x) ∈ −K∗

p

)
, x ∈ Kp

and F(x) ∈ K∗
p,

⇐⇒ −x • F(x) ∈ Kp

(
or − x • F(x) ∈ K∗

p

)
, x ∈ Kp

and F(x) ∈ K∗
p,

⇐⇒ x ∈ Kp, F(x) ∈ K∗
p

and 〈x, F(x)〉 = 0,

where the last equivalence holds due to the properties of Kp and K∗
p. Thus, the proof

is complete. ��

In the following, we investigate the error bound property and the boundedness
property of level sets of the merit function f̂LT for the p-order cone complementarity
problem. In order to achieve these results, we need a novel lemma as below.

123



166 X.-H. Miao et al.

Lemma 3.2 For any x, y ∈ R
n, we have

〈x, y〉 ≤ ∥
∥(x • y)	+

∥
∥ ,

where the product x • y is defined as in (2).

Proof Given any x, y ∈ R
n , let x = (x1, · · · , xn)T and y = (y1, · · · , yn)T . Recall

from the product (2), we know

x • y =
[ 〈x, y〉

w

]

where w :=
(
|x1|

p
q |yi | − |y1||xi |

p
q

)n

i=2
.

To proceed the arguments, we consider the following three cases.

Case 1 When x • y ∈ 	, we have (x • y)	+ = x • y. Then, it is easy to verify that

∥
∥(x • y)	+

∥
∥ ≥ 〈x, y〉.

Case 2 When x•y ∈ −	∗, where	∗ denotes the dual cone of	, we have (x•y)	+ = 0
and 〈x, y〉 ≤ 0. This clearly implies that

∥
∥(x • y)	+

∥
∥ ≥ 〈x, y〉.

Case 3 When x • y /∈ 	 ∪ (−	∗), let (x • y)	+ := (v1, v̄
T )T . If 〈x, y〉 ≤ 0, then the

result is obvious. Thus, we only need to look into the case of 〈x, y〉 > 0. If
	 = Kp, by the property of projection onto the p-order cone, we have

(x • y)	+ − x • y =
[

v1 − 〈x, y〉
v̄ − w

]

∈ 	∗ = K∗
p = Kq .

From the definition of dual order coneK∗
p again, it follows that v1−〈x, y〉 ≥ 0,

i.e., v1 ≥ 〈x, y〉. Hence, this yields that
∥
∥(x • y)	+

∥
∥ ≥ |v1| ≥ v1 ≥ 〈x, y〉.

With similar arguments, for the case of 	 = K∗
p = Kq , we also obtain that

〈x, y〉 ≤ ∥
∥(x • y)	+

∥
∥ .

From all the above cases, we have shown that 〈x, y〉 ≤ ∥
∥(x • y)	+

∥
∥. Thus, the proof is

complete. ��
Theorem 3.5 Let the function f̂LT be given as in (8). Suppose that F : R

n → R
n is

strongly monotone mapping and that x∗ is a solution to the p-order cone complemen-
tarity problem. Then, there exists a scalar τ > 0 such that

τ‖x − x∗‖2 ≤
(
2 + √

2
) [

f̂LT (x)
] 1
2
.
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Proof Since the function F is strongly monotone and x∗ is a solution to the p-order
cone complementarity problem, there exists a scalar ρ > 0 such that, for any x ∈ R

n ,

ρ ‖x − x∗‖2 ≤ 〈F(x) − F(x∗), x − x∗〉
= 〈F(x), x〉 + 〈F(x∗),−x〉 + 〈−F(x), x∗〉

= 〈F(x), x〉 + 〈F(x∗), x− − x+〉 + 〈
(−F(x))+ − (−F(x))−, x∗〉

≤ 〈F(x), x〉 + 〈
F(x∗), x−

〉+ 〈
(−F(x))+, x∗〉

≤ ∥
∥(x • F(x))	+

∥
∥+ ‖x−‖‖F(x∗)‖ + ∥

∥x∗∥∥ ‖(−F(x))+‖
≤ max

{
1, ‖F(x∗)‖, ‖x∗‖} (∥∥(x • F(x))	+

∥
∥+ ‖x−‖ + ‖(−F(x))+‖) ,

where the second inequality holds due to the properties of Kp and K∗
p, and the third

inequality follows from Lemma 3.2. Then, setting τ := ρ

max {1, ‖F(x∗)‖, ‖x∗‖}
yields

τ
∥
∥x − x∗∥∥2 ≤ ∥

∥(x • F(x))	+
∥
∥+ ‖x−‖ + ‖(−F(x))+‖.

Moreover, we observe that

∥
∥(x • F(x))	+

∥
∥ = √

2

(
1

2
‖(x • F(x))	+‖2

) 1
2 ≤ √

2
[
f̂LT (x)

] 1
2
,

and

‖x−‖ + ‖(−F(x))+‖ ≤ √
2
(
‖x−‖2 + ‖(−F(x))+‖2

) 1
2 ≤ 2

[
f̂LT (x)

] 1
2
.

Putting all the above together gives

τ‖x − x∗‖2 ≤ (2 + √
2)
[
f̂LT (x)

] 1
2
,

which is the desired result. ��
Next, we study the boundedness of level sets of merit function f̂LT .

Theorem 3.6 Let the merit function f̂LT be given as in (8). Suppose that the p-order
cone complementarity problem has a strictly feasible point and that F is monotone.
Then, the level set

L̂ fLT
(γ ) =

{

x ∈ R
n
∣
∣
∣
∣ f̂LT (x) ≤ γ

}

is bounded for all γ ≥ 0.
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Proof Like the proof of Theorem 3.3, we prove this result by contradiction. Suppose
there exists an unbounded sequence {xk} ⊆ L̂ fLT

(γ ) for some γ ≥ 0. We claim that

the sequences {xk−} and {(−F(xk))+} are bounded. If not, by the expression (8) of

f̂LT , we obtain

f̂LT (xk) ≥ 1

2

[

‖xk−‖2 + ‖(−F(xk))+‖2
]

→ ∞,

which contradicts {xk} ⊆ L̂ fLT
(γ ). Therefore, it follows that

lim sup
k→∞

‖xk−‖ < ∞ and lim sup
k→∞

‖(−F(xk))+‖ < ∞.

Then, applying Proposition 2.2 yields 〈xk, F(xk)〉 → ∞. This together with
Lemma 3.2 implies

∥
∥
∥(xk • F(xk))	+

∥
∥
∥ ≥

〈
xk, F(xk)

〉
→ ∞,

which leads to f̂LT (xk) → ∞. This clearly contradicts {xk} ⊆ L̂ fLT
(γ ). Hence, the

level set L̂ fLT
(γ ) is bounded and the proof is complete. ��

Remark 3.1 In fact, if the term
(
xk • F(xk)

)	
+ in the expression of f̂LT is replaced by

xk • F(xk), all Theorem 3.4, Lemma 3.2, Theorems 3.5 and 3.6 still hold.

3.4 The fourth class of merit function

In this subsection, in light of the product x • y and the NR merit function �NR , we
consider another merit function as below:

fr (x) := 1

2

∥
∥φNR (x, F(x))

∥
∥2 + 1

2

∥
∥(x • F(x))	+

∥
∥2 , (9)

where (x • y)	+ denotes the projection of x • y onto 	. As seen below, we verify that
fr (x) is also a merit function for the p-order cone complementarity problem.

Theorem 3.7 Let the function fr be given as in (9). Then, for all x ∈ R
n, we have

fr (x) = 0 ⇐⇒ x ∈ Kp, F(x) ∈ K∗
p and 〈x, F(x)〉 = 0,

where K∗
p denotes the dual cone of Kp, i.e., K∗

p = Kq .

Proof In view of the definition of fr given as in (9), we have

fr (x) = 0 ⇐⇒ ∥
∥(x • F(x))	+

∥
∥2 = 0 and �NR (x) = 1

2

∥
∥φNR (x, F(x))

∥
∥2 = 0,

⇐⇒ x ∈ Kp, F(x) ∈ K∗
p and 〈x, F(x)〉 = 0,
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where the second equivalence holds because �NR is a merit function for p-order cone
complementarity problem. Thus, the proof is complete. ��

From Theorem 3.7, we see that if the squared exponent in the expression of fr is
deleted, i.e.,

f̃r (x) := ∥
∥φNR (x, F(x))

∥
∥+ ∥

∥(x • F(x))	+
∥
∥ , (10)

then f̃r is also a merit function for the POCCP. In fact, for these two merit functions
fr and f̃r , there has no big differences between them in addition to the nature that fr
is better than f̃r . Next, we will establish the error bound properties for fr and f̃r .

Theorem 3.8 Let fr and f̃r be given as in (9) and (10), respectively. Suppose that
F : R

n → R
n is strongly monotone mapping and that x∗ is a solution to the p-order

cone complementarity problem. Then, there exists a scalar τ > 0 such that

τ‖x − x∗‖2 ≤ 3
√
2
[
fr (x)

] 1
2 and τ‖x − x∗‖2 ≤ 2 f̃r (x).

Proof From Lemma 3.1, we know

‖φNR (x, F(x))‖ ≥ max{‖x−‖, ‖(−F(x))+‖}.

Then, following similar arguments as in Theorem 3.5, we have

τ‖x − x∗‖2 ≤ ∥
∥(x • F(x))	+

∥
∥+ ‖x−‖ + ‖(−F(x))+‖

≤ √
2( fr (x))

1
2 + 2‖φNR (x, F(x))‖

= √
2( fr (x))

1
2 + 2

√
2

(
1

2
‖φNR (x, F(x))‖2

) 1
2

≤ √
2( fr (x))

1
2 + 2

√
2( fr (x))

1
2

= 3
√
2

[

fr (x)

] 1
2

and

τ‖x − x∗‖2 ≤ ∥
∥(x • F(x))	+

∥
∥+ ‖x−‖ + ‖(−F(x))+‖

≤ ∥
∥(x • F(x))	+

∥
∥+ 2

∥
∥φNR (x, F(x))

∥
∥

≤ 2 f̃r (x),

where τ := ρ

max {1, ‖F(x∗)‖, ‖x∗‖} . Thus, the proof is complete. ��

The following theorem presents the boundedness of the level sets of the functions
f̃r and fr .
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Theorem 3.9 Let fr and f̃r be given as in (9) and (10), respectively. Suppose that
that the p-order cone complementarity problem has a strictly feasible point and that
F is monotone. Then, the level sets

L fr (γ ) = {
x ∈ R

n | fr (x) ≤ γ
}

and

L f̃r (γ ) = {
x ∈ R

n
∣
∣ f̃r (x) ≤ γ

}

are both bounded for all γ ≥ 0.

Proof Here we only show the boundedness of the level sets of the function f̃r for all
γ ≥ 0 because the same arguments can be easily applied to the case of fr .
As the proof in Theorems 3.3 and 3.6, we prove this result by contradiction. Suppose
there exists an unbounded sequence {xk} ⊂ L f̃r (γ ) for some γ ≥ 0. If ‖xk−‖ → ∞
or
∥
∥(−F(xk))+

∥
∥ → ∞, by Lemma 3.1, we know

f̃r (x
k) ≥

∥
∥
∥φNR (xk, F(xk))

∥
∥
∥ → ∞,

which contradicts xk ∈ L f̃r (γ ). Hence, we have

lim sup
k→∞

∥
∥
∥xk−

∥
∥
∥ < ∞ and lim sup

k→∞

∥
∥
∥(−F(xk))+

∥
∥
∥ < ∞.

Then, applying Proposition 2.2 yields 〈xk, F(xk)〉 → ∞. This together with Lemma
3.2 gives

〈
xk, F(xk)

〉
≤
∥
∥
∥(xk • F(xk))	+

∥
∥
∥ → ∞,

which leads to f̃r (xk) → ∞. This is a contradiction because f̃r (xk) ≤ γ . Thus, the
proof is complete. ��
Remark 3.2 As Remark 3.1, if the term

(
xk • F(xk)

)	
+ in the expressions of fr and

f̃r is replaced by xk • F(xk), all Theorems 3.7, 3.8, and 3.9 still hold.

3.5 The fifth class of merit functions

In this subsection, we introduce the implicit Lagrangian merit associated with the
POCCOP. For any x ∈ R

n and α > 0, the implicit Lagrangian merit function is given
by

Mα(x) := 〈x, F(x)〉 + 1

2α

{
‖(x − αF(x))+‖2 − ‖x‖2

+‖(αx − F(x))−‖2 − ‖F(x)‖2
}

. (11)
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This class of functions was first introduced by Mangasarian and Solodov [13] for
solving nonlinear complementarity problems, and was extended by Kong et al. [11]
to the setting of symmetric cone complementarity problems. Moreover, for the setting
of general closed convex cone complementarity problems in Hilbert space, Lu and
Huang [12] further investigated this merit function. Accordingly, the corresponding
results in [12] can be applied to the the setting of POCCP. For completeness, as below,
the error bound property of the merit function Mα for the POCCP is also presented.

Property 3.3 ([12, Theorem 3.9]) Let Mα be given as in (11). Suppose that F : R
n →

R
n is a strongly monotone mapping with modulus ρ > 0 and is Lipschitz continuous

with L > 0. Assume that the p-order cone complementarity problem has a solution
x∗. Then, for any fixed α > 0, the following inequality holds

1

(α − 1)(2 + L)2
Mα(x) ≤ ‖x − x∗‖ ≤ α(1 + L)2

(α − 1)ρ2 Mα(x).

In the following theorem, we present the boundedness property of the level sets on
the merit function Mα for solving the p-order cone complementarity problem.

Theorem 3.10 Suppose that the p-order cone complementarity problem has a strictly
feasible point and that F is monotone. Then, the level set

LMα (γ ) := {
x ∈ R

n | Mα(x) ≤ γ
}

is bounded for all γ ≥ 0.

Proof First, we note that

Mα(x) = 〈x, F(x)〉 + 1

2α

{
‖(x − αF(x))+‖2 − ‖x‖2

+‖(αx − F(x))−‖2 − ‖F(x)‖2
}

= 〈x, F(x)〉 + 1

α
〈x − αF(x), (x − αF(x))+〉

− 1

2α

{
‖(x − αF(x))+‖2 + ‖x‖2

}

+
〈

F(x),
1

α
[αx − F(x) + (αx − F(x))−] − x

〉

+ 1

2α

{
‖αx − F(x) + (αx − F(x))− − αx‖2

}

= −〈F(x), (x − αF(x))+ − x〉 − 1

2α
‖(x − αF(x))+ − x‖2

+
〈

F(x),
1

α
(αx − F(x))+ − x

〉

+ α

2

∥
∥
∥
∥
1

α
(αx − F(x))+ − x

∥
∥
∥
∥

2

≥ 1

α

[

−
〈

αF(x),
1

α
(αx − F(x))+ − x

〉

− 1

2
‖ 1
α

(αx − F(x))+ − x‖2
]
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+α

[〈
1

α
F(x),

1

α
(αx − F(x))+ − x

〉

+ α

2
‖ 1
α

(αx − F(x))+ − x‖2
]

= α2 − 1

2α

∥
∥
∥
∥
1

α
(αx − F(x))+ − x

∥
∥
∥
∥

2

= α2 − 1

2α

∥
∥
∥
∥(x − 1

α
F(x))+ − x

∥
∥
∥
∥

2

.

FromTheorem3.2,we know that the level setL�α (γ ) of the generalNRmerit function
�α is bounded for all γ ≥ 0. With this, it is easy to see that the level set LMα (γ ) is
bounded for all γ ≥ 0. Then, the proof is complete. ��

4 Conclusion and future direction

Although the p-order cone complementarity problem belongs to nonsymmetric cone
complementarity problem, for which there is no unified framework, we believe that
the merit function approach may be an appropriate method that can be extended from
symmetric cone complementarity problem to nonsymmetric cone complementarity
problem. The key point to do such extension is constructing merit functions. Hence,
in this paper, we present how to construct merit functions (by defining a new product)
for the p-order cone complementarity problem. In addition, we have also shown under
what conditions these merit functions have properties of error bounds and bounded
level sets. These results provide a theoretical basis for designing the merit function
method for solving the special nonsymmetric cone complementarity problem, i.e., p-
order cone complementarity problem. We leave this topic as our future direction. At
last, we point out that the main idea is employed from [16] (which is for circular cone
setting) and most analysis techniques look similar to those used in [16]. Nonetheless,
the product is novel which contributes to the literature by providing a new way to deal
with such complementarity problem.
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