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a b s t r a c t

In the paper [J.-S. Chen, S. Pan, A family of NCP-functions and a descent method for the
nonlinear complementarity problem, Computational Optimization and Applications, 40
(2008) 389–404], the authors proposed a derivative-free descent algorithm for nonlinear
complementarity problems (NCPs) by the generalized Fischer–Burmeister merit function:
ψp(a, b) = 1

2 [‖(a, b)‖p − (a+ b)]
2, and observed that the choice of the parameter p has a

great influence on the numerical performance of the algorithm. In this paper, we analyze
the phenomenon theoretically for a derivative-free descent algorithm which is based on
a penalized form of ψp and uses a different direction from that of Chen and Pan. More
specifically, we show that the algorithm proposed is globally convergent and has a locally
R-linear convergence rate, and furthermore, its convergence rate will become worse when
the parameter p decreases. Numerical results are also reported for the test problems from
MCPLIB, which further verify the theoretical results obtained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The nonlinear complementarity problem (NCP) is to find a point x ∈ Rn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, . . . , Fn)T is a map from Rn to Rn. We assume that F is continuously
differentiable throughout this paper. The NCP has attracted much attention because of its wide applications in the fields of
economics, engineering, and operations research [1,2], to name a few.
Many methods have been proposed to solve the NCP; see [3,2,4] and the references therein. One of the most powerful

and popular methods is to reformulate the NCP as a system of nonlinear equations [5–7], or an unconstrained minimization
problem [8–15]. The objective function that can constitute an equivalent unconstrained minimization problem is called a
merit function, whose global minima are coincident with the solutions of the original NCP. To construct a merit function, a
class of functions, called NCP-functions and defined below, plays a significant role.

Definition 1.1. A function φ : R2 → R is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

∗ Corresponding author. Tel.: +886 2 29325417; fax: +886 2 29332342
E-mail addresses: jschen@math.ntnu.edu.tw (J.-S. Chen), kleinmankao@gmail.com (H.-T. Gao), shhpan@scut.edu.cn (S. Pan).

0377-0427/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.06.022

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:jschen@math.ntnu.edu.tw
mailto:kleinmankao@gmail.com
mailto:shhpan@scut.edu.cn
http://dx.doi.org/10.1016/j.cam.2009.06.022


456 J.-S. Chen et al. / Journal of Computational and Applied Mathematics 232 (2009) 455–471

The Fischer–Burmeister (FB) function is a well-known NCP-function defined as

φFB(a, b) =
√
a2 + b2 − (a+ b), (3)

by which the NCP can be reformulated as a system of nonsmooth equations:

ΦFB(x) =


φFB(x1 , F1(x))

·

·

·

φFB(xn , Fn(x))

 = 0. (4)

Thus, the function ΨFB : R
n
→ R+ defined as below is a merit function for the NCP:

ΨFB(x) :=
1
2
‖ΦFB(x)‖

2
=

n∑
i=1

ψFB(xi, Fi(x)), (5)

where ψFB : R
2
→ R+ is the square of φFB , i.e.,

ψFB(a, b) =
1
2

∣∣∣√a2 + b2 − (a+ b)∣∣∣2 . (6)

Consequently, the NCP is equivalent to an unconstrained minimization problem:

min
x∈Rn

ΨFB(x). (7)

Recently, an extension of the FB-function was considered in [16–18] by the authors. More specifically, we define the
generalized FB-function φp : R2 → R by

φp(a, b) := ‖(a, b)‖p − (a+ b), (8)

where p > 1 is an arbitrary fixed real number and ‖(a, b)‖p denotes the p-norm of (a, b), i.e., ‖(a, b)‖p = p
√
|a|p + |b|p. In

other words, in the function φp, we replace the 2-norm of (a, b) in the FB-function by a more general p-norm. The function
φp is still an NCP-function, which naturally induces another NCP-function ψp : R2 → R+ given by

ψp(a, b) :=
1
2
|φp(a, b)|2. (9)

For any given p > 1, the function ψp is shown to possess all favorable properties of the FB-function ψFB ; see [16–18]. For
example, ψp is also continuously differentiable everywhere on R2. Like φFB , the operatorΦp : R

n
→ Rn defined as

Φp(x) =


φp(x1 , F1(x))

·

·

·

φp(xn , Fn(x))

 (10)

yields a family of merit functions Ψp : Rn → R+ for the NCP

Ψp(x) :=
1
2
‖Φp(x)‖2 =

n∑
i=1

ψp(xi, Fi(x)). (11)

In this paper, we study the following merit function Ψα,p : Rn → R for the NCP:

Ψα,p(x) :=
n∑
i=1

ψα,p(xi , Fi(x)), (12)

where ψα,p : R2 → R+ is an NCP-function defined by

ψα,p(a, b) :=
α

2
(max{0, ab})2 + ψp(a, b) =

α

2
(ab)2

+
+
1
2
(‖(a, b)‖p − (a+ b))2, (13)

with α ≥ 0 being a real parameter. When α = 0, the functionψα,p reduces toψp. Hence,ψα,p is an extension ofψp. Besides,
ψα,p also extends the function ψα studied in [19] by Yamada, Yamashita, and Fukushima which corresponds to p = 2.
Indeed,ψα,p has been studied in [17] by one of the authors (seeψ4 therein), but there was no investigation on the property
of the error bound. In this paper, we present more favorable properties ofψα,p, and particularly, the conditions under which
Ψα,p provides a global error bound for the NCP. With these results, we propose a derivative-free descent algorithm based on
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φα,p and establish its global convergence and local R-linear convergence rate. Moreover, we also analyze the influence of p
on the convergence rate of the proposed algorithm theoretically and obtain the conclusion that the convergence rate of the
algorithm will become worse when the value of p decreases. Thus, this paper can be viewed as a follow-up of [17,18].
This paper is organized as follows. In Section 2, we review some definitions and preliminary results to be used in the

subsequent analysis. In Section 3, we show some important properties of the proposed merit function. In Section 4, we
propose a derivative-free algorithm associated with Ψα,p, prove its global convergence and the R-linear convergence rate,
and analyze the influence of p on the convergence rate. Some numerical experiments are reported in Section 5, andwemake
concluding remarks in Section 6.
Throughout this paper, Rn denotes the space of n-dimensional real column vectors and T denotes transpose. For every

differentiable function f : Rn → R,∇f (x) denotes the gradient of f at x. For every differentiablemapping F = (F1, . . . , Fn)T :
Rn → Rn, ∇F(x) = (∇F1(x) . . . ∇Fn(x)) denotes the transpose Jacobian of F at x. We denote by ‖x‖p the p-norm of x and
by ‖x‖ the Euclidean norm of x. The level set of a function Ψ : Rn → R is denoted by L(Ψ , c) := {x ∈ Rn | Ψ (x) ≤ c}. In
addition, we also use the natural residual merit function ΨNR : R

n
→ R+ defined by

ΨNR(x) :=
1
2

n∑
i=1

φ2
NR
(xi , Fi(x)), (14)

where φNR : R2 → R denotes the minimum NCP-function min{a, b}. Unless otherwise stated, in what follows, we always
suppose that p is a fixed real number in (1,∞).

2. Preliminaries

This section mainly recalls some concepts about the mapping F that will be used later.

Definition 2.1. Let F = (F1, . . . , Fn)T with Fi : Rn → R for i = 1, . . . , n. We say that

(a) F is monotone if 〈x− y, F(x)− F(y)〉 ≥ 0 for all x, y ∈ Rn.
(b) F is strongly monotone with modulus µ > 0 if 〈x− y, F(x)− F(y)〉 ≥ µ‖x− y‖2 for all x, y ∈ Rn.
(c) F is a P0-function if max 1≤i≤n

xi 6=yi
(xi − yi)(Fi(x)− Fi(y)) ≥ 0 for all x, y ∈ Rn and x 6= y.

(d) F is a uniform P-function with modulus µ > 0 if max1≤i≤n(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2 for all x, y ∈ Rn.
(e) ∇F(x) is uniformly positive definite with modulus µ > 0 if dT∇F(x)d ≥ µ‖d‖2 for all x ∈ Rn and d ∈ Rn.
(f) F is Lipschitz continuous if there exists a constant L > 0 such that ‖F(x)− F(y)‖ ≤ L‖x− y‖ for all x, y ∈ Rn.

From Definition 2.1, it is easy to see that F is a uniform P-function with modulus µ > 0 if F is strongly monotone with
modulus µ > 0, and F is a P0-function if F is monotone. In addition, when F is continuously differentiable, the following
results hold:

1. F is monotone if and only if ∇F(x) is positive semidefinite for all x ∈ Rn.
2. F is strongly monotone if and only if ∇F(x) is uniformly positive definite.

3. Properties of the merit function

In this section, we study some favorable properties of the merit function ψα,p which will be used in the subsequent
analysis, and then present some mild conditions under which the merit function Ψα,p has bounded level sets and provides
a global error bound, respectively.
The following lemma states that ψα,p enjoys many favorable properties as ψp holds. Furthermore, when α > 0, it has

an important property that ψp does not have (see Lemma 3.1(f)). Although most results of the lemma were investigated
in [17, Prop. 3.3] where only p being integer was considered, we here provide more detailed arguments for the general case
where p is any real number greater than one.

Lemma 3.1. The function ψα,p defined by (13) has the following favorable properties:

(a) ψα,p is an NCP-function and ψα,p ≥ 0 for all (a, b) ∈ R2.
(b) ψα,p is continuously differentiable everywhere, and moreover, if (a, b) 6= (0, 0),

∇aψα,p(a, b) = αb(ab)+ +

(
sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b),

∇bψα,p(a, b) = αa(ab)+ +

(
sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b);

(15)

and otherwise ∇aψα,p(0, 0) = ∇bψα,p(0, 0) = 0.
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(c) For p ≥ 2, the gradient of ψα,p is Lipschitz continuous on any nonempty bounded set S, i.e., there exists L > 0 such that, for any
(a, b),
(c, d) ∈ S,

‖∇ψα,p(a, b)−∇ψα,p(c, d)‖ ≤ L‖(a, b)− (c, d)‖.

(d) ∇aψα,p(a, b) · ∇bψα,p(a, b) ≥ 0 for any (a, b) ∈ R2, and furthermore, the equality holds if and only if ψα,p(a, b) = 0.
(e) ∇aψα,p(a, b) = 0⇐⇒ ∇bψα,p(a, b) = 0⇐⇒ ψα,p(a, b) = 0.
(f) Suppose that α > 0. If a→−∞ or b→−∞ or ab→∞, then ψα,p(a, b)→∞.

Proof. Parts (a), (b) and (f) directly follow from the definition of ψα,p and Proposition 3.2(a)–(c) and Lemma 3.1 of [18]. It
remains to show parts (c)–(e).
(c) Notice that the functions a(ab)+ and b(ab)+ for any a, b ∈ R are Lipschitz continuous on any nonempty bounded set

S, whereas φp(a, b) is Lipschitz continuous on R2 by [18, Proposition 3.1 (e)]. Therefore, by the expression of ∇ψα,p(a, b)
and the boundedness of(

sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)
and

(
sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1

)
,

it is not hard to verify that the gradient ∇ψα,p(a, b) is Lipschitz continuous on S for p ≥ 2.
(d) If (a, b) = (0, 0), part (d) clearly holds. Now suppose that (a, b) 6= (0, 0). Then,

∇aψα,p(a, b) · ∇bψα,p(a, b) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)(
sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1

)
φ2p (a, b)

+α2ab(ab)2
+
+ αa(ab)+

(
sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b)+ αb(ab)+

(
sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b). (16)

Since

ab(ab)2
+
≥ 0,

sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1 ≤ 0, and

sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1 ≤ 0, (17)

it suffices to show that the last two terms of (16) are nonnegative. We next claim that

αa(ab)+

(
sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b) ≥ 0, ∀ (a, b) 6= (0, 0). (18)

If a ≤ 0, then φp(a, b) ≥ 0, which together with the second inequality in (17) implies that (18) holds. If a > 0 and b > 0,
then φp(a, b) < 0, which implies (18) by a similar reason. If a > 0 and b ≤ 0, then (ab)+ = 0, and hence (18) holds.
Similarly, we have that

αb(ab)+

(
sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b) ≥ 0, ∀ (a, b) 6= (0, 0).

Consequently,∇aψα,p(a, b) ·∇bψα,p(a, b) ≥ 0. From (16),∇aψα,p(a, b) ·∇bψα,p(a, b) = 0 if and only if {a = 0 or (a ≥ 0 and
b = 0) or φp(a, b) = 0} and {b = 0 or (b ≥ 0 and a = 0) or φp(a, b) = 0} and {ab = 0}. Thus,∇aψα(a, b) · ∇bψα,p(a, b) = 0
if and only if ψα,p(a, b) = 0.
(e) If ψα,p(a, b) = 0, then ab = 0 and φp(a, b) = 0 by part (a), which in turn implies that ∇aψα,p(a, b) = 0 and

∇bψα,p(a, b) = 0. Next, we claim that ∇aψα,p(a, b) = 0 implies ψα,p(a, b) = 0. Suppose that ∇aψα,p(a, b) = 0. Then,

αb(ab)+ = −

(
sgn(a) · |a|p−1

‖(a, b)‖p−1p
− 1

)
φp(a, b). (19)

We can verify that the equality (19) implies b = 0, a ≥ 0 or b > 0, a = 0. Under the two cases, we both haveψα,p(a, b) = 0.
Similarly, ∇bψα,p(a, b) = 0 also implies ψα,p(a, b) = 0. �

Notice that ab → ∞ does not necessarily imply ψp(a, b) → ∞, which means ψp does not share Lemma 3.1(f). In fact,
for α = 0, the lemma needs to be modified as ‘‘if (a→∞) or (b→∞) or (a→∞ and b→∞), then ψα,p(a, b)→∞’’.
As we will see later, Lemma 3.1(f) is useful for proving that the level sets of Ψα,p are bounded. Besides, by Lemma 3.1(a), we
immediately have the following theorem.

Theorem 3.1. Let Ψα,p be defined as in (12). Then Ψα,p(x) ≥ 0 for all x ∈ Rn and Ψα,p(x) = 0 if and only if x solves the NCP.
Moreover, if the NCP has at least one solution, then x is a global minimizer of Ψα,p if and only if x solves the NCP.
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Theorem 3.1 indicates that the NCP can be recast as the unconstrained minimization:
min
x∈Rn

Ψα,p(x). (20)

In general, it is hard to find a global minimum ofΨα,p. Therefore, it is important to know under what conditions a stationary
point of Ψα,p is a global minimum. Using Lemma 3.1(d) and the same proof techniques as in [11, Theorem 3.5], we can
establish that each stationary point of Ψα,p is a global minimum only if F is a P0-function.

Theorem 3.2. Let F be a P0-function. Then x∗ ∈ Rn is a global minimum of the unconstrained optimization problem (20) if and
only if x∗ is a stationary point of Ψα,p.

From the following theorem, we see that the unconstrained minimization problem (20) has a stationary point under
rather weak conditions of the mapping F . Since similar results and analogous analysis can be found in [17, Proposition 4.1],
[11, Theorem 3.8] and [20, Theorem 4.1], we omit the proof here.

Theorem 3.3. The function Ψα,p has bounded level setsL(Ψα,p, c) for all c ∈ R, if F is monotone and the NCP is strictly feasible
(i.e., there exists x̂ > 0 such that F(x̂) > 0) when α > 0, or F is a uniform P-function when α ≥ 0.

In what follows, we will show that the merit functions Ψp, ΨNR and Ψα,p have the same order on every bounded set. For
this purpose, we need the following crucial technical lemma, which generalizes the important property of φFB proved by
Tseng in [21].

Lemma 3.2. Let φp : R2 → R be defined as in (8). Then for any p > 1 we have

(2− 2
1
p )|min{a, b}| ≤ |φp(a, b)| ≤ (2+ 2

1
p )|min{a, b}|. (21)

Proof. Without loss of generality, suppose a ≥ b. We will prove the desired results by considering the following two cases:
(1) a+ b ≤ 0 and (2) a+ b > 0.
Case (1): a+ b ≤ 0. In this case, we have

|φp(a, b)| ≥ ‖(a, b)‖p ≥ |b| = |min{a, b}| ≥ (2− 2
1
p )|min{a, b}|. (22)

On the other hand, since a ≥ b and a+ b ≤ 0, we have |b| ≥ |a|. Then

|φp(a, b)| ≤ ‖(a, b)‖p − 2b = (2+ 2
1
p )|b| = (2+ 2

1
p )|min{a, b}|. (23)

Case (2): a+ b > 0. If ab = 0, then (21) clearly holds. Thus, we discuss by two subcases:
(i) ab < 0. In this subcase, we have a > 0, b < 0, and |a| > |b|. Consequently,

φp(a, b) ≤ |a| + |b| − (a+ b) = −2b = 2|min{a, b}| ≤ (2+ 2
1
p )|min{a, b}|, (24)

and

φp(a, b) ≥ ‖(a, b)‖∞ − (a+ b) = −b = |min{a, b}| ≥ (2− 2
1
p )|min{a, b}|. (25)

(ii) ab > 0. Now we have a ≥ b > 0. Since for any p > 1 it holds that

0 ≥ φp(a, b) ≥ ‖(a, b)‖∞ − (a+ b) = a− (a+ b) = −b = −min{a, b},

we immediately obtain that

|φp(a, b)| ≤ |min{a, b}| ≤ (2+ 2
1
p )|min{a, b}|. (26)

On the other hand, since φp(a, b) ≤ 0, it follows that

|φp(a, b)| = a+ b− ‖(a, b)‖p = b
[(a
b
+ 1

)
−

((a
b

)p
+ 1

)1/p]
.

Let f (t) = t + 1− (tp + 1)1/p for t ≥ 1. Then

f ′(t) = 1−
(
tp

tp + 1

) p−1
p

.

Notice that f ′(t) > 0 for t ≥ 1, and f (1) = 2− 2
1
p , and hence we obtain that

|φp(a, b)| ≥ (2− 2
1
p )b = (2− 2

1
p )|min{a, b}| for any p > 1. (27)

All the aforementioned inequalities (22)–(27) imply that (21) holds. �



460 J.-S. Chen et al. / Journal of Computational and Applied Mathematics 232 (2009) 455–471

Proposition 3.1. Let Ψp,ΨNR and Ψα,p be defined as in (11), (12) and (14), respectively. Let S be an arbitrary bounded set. Then,
for any p > 1, we have(

2− 2
1
p
)2
ΨNR(x) ≤ Ψp(x) ≤

(
2+ 2

1
p
)2
ΨNR(x) for all x ∈ Rn (28)

and (
2− 2

1
p
)2
ΨNR(x) ≤ Ψα,p(x) ≤

(
αB2 + (2+ 2

1
p )2
)
ΨNR(x) for all x ∈ S, (29)

where B is a constant defined by B = max1≤i≤n
{
supx∈S {max {|xi|, |Fi(x)|}}

}
<∞.

Proof. The inequality in (28) is direct by Lemma 3.2 and the definitions of Ψp and ΨNR . In addition, from Lemma 3.2 and the
definition of Ψα,p, it follows that

Ψα,p(x) ≥
(
2− 2

1
p
)2
ΨNR(x) for all x ∈ Rn.

We next prove the inequality on the right-hand side of (29). We claim that, for each i,

(xiFi(x))+ ≤ B|min{xi, Fi(x)}| for all x ∈ S. (30)

Without loss of generality, suppose Fi(x) ≥ xi. If Fi(x) ≥ xi ≥ 0, it follows that

(xiFi(x))+ = xiFi(x) = Fi(x)|min{xi, Fi(x)}| ≤ B|min{xi, Fi(x)}|.

If Fi(x) ≥ 0 ≥ xi, then (xiFi(x))+ = 0. If 0 ≥ Fi(x) ≥ xi, it follows that

(xiFi(x))+ = |xiFi(x)| ≤ |xi|2 ≤ B|min{xi, Fi(x)}|.

Thus, (30) holds for all x ∈ S. By Lemma 3.2 and (30), for all i = 1, . . . , n and x ∈ S,

ψα,p(xi, Fi(x)) ≤
{
αB2 + (2+ 2

1
p )2
}
min{xi, Fi(x)}2

holds for any p > 1. The proof is then complete by the definition of Ψα,p and ΨNR . �

From Proposition 3.1, we immediately obtain the following result.

Corollary 3.1. Let Ψp and Ψα,p be defined by (12) and (11), respectively, and S be any bounded set. Then, for any p > 1 and all
x ∈ S, we have the following inequalities:

(2− 2
1
p )2(

αB2 + (2+ 21p)2
)Ψα,p(x) ≤ Ψp(x) ≤ (2+ 2

1
p )2

(2− 21p)2
Ψα,p(x)

where B is the constant defined as in Proposition 3.1.

Since Ψp,ΨNR and Ψα,p have the same order on a bounded set, one will provide a global error bound for the NCP as long
as the other one does. Below, we show that Ψα,p provides a global error bound without the Lipschitz continuity of F when
α > 0.

Theorem 3.4. Let Ψα,p be defined as in (12). Suppose that F is a uniform P-function with modulus µ > 0. If α > 0, then there
exists a constant κ1 > 0 such that

‖x− x∗‖ ≤ κ1Ψα,p(x)
1
4 for all x ∈ Rn;

if α = 0 and S is any bounded set, there exists a constant κ2 > 0 such that

‖x− x∗‖ ≤ κ2
(
max

{
Ψα,p(x),

√
Ψα,p(x)

}) 1
2
for all x ∈ S;

where x∗ = (x∗1, . . . , x
∗
n) is the unique solution for the NCP.

Proof. Since F is a uniform P-function, the NCP has a unique solution, and moreover,

µ‖x− x∗‖2 ≤ max
1≤i≤n

(x− x∗)(Fi(x)− Fi(x∗))

= max
1≤i≤n
{xiFi(x)− x∗i Fi(x)− xiFi(x

∗)+ x∗i Fi(x
∗)}

= max
1≤i≤n
{xiFi(x)− x∗i Fi(x)− xiFi(x

∗)}

≤ max
1≤i≤n

τi{(xiFi(x))+ + (−Fi(x))+ + (−xi)+}, (31)
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where τi := max{1, x∗i , Fi(x
∗)}. We next prove that, for all (a, b) ∈ R2,

(−a)2
+
+ (−b)2

+
≤
[
‖(a, b)‖p − (a+ b)

]2
. (32)

Without loss of generality, suppose a ≥ b. If a ≥ b ≥ 0, then (32) holds obviously. If a ≥ 0 ≥ b, then ‖(a, b)‖p − (a+ b) ≥
−b ≥ 0, which in turn implies that

(−a)2
+
+ (−b)2

+
= b2 ≤

[
‖(a, b)‖p − (a+ b)

]2
.

If 0 ≥ a ≥ b, then (−a)2
+
+ (−b)2

+
= a2 + b2 ≤

[
‖(a, b)‖p − (a+ b)

]2. Hence, (32) follows.
Suppose that α > 0. Using the inequality (32), we then obtain that

[(ab)+ + (−a)+ + (−b)+]2 = (ab)2+ + (−b)
2
+
+ (−a)2

+
+ 2(ab)+(−a)+ + 2(−a)+(−b)+ + 2(ab)+(−b)+

≤ (ab)2
+
+ (−b)2

+
+ (−a)2

+
+ (ab)2

+
+ (−a)2

+
+ (−a)2

+
+ (−b)2

+
+ (ab)2

+
+ (−b)2

+

≤ 3
[
(ab)2

+
+
(
‖(a, b)‖p − (a+ b)

)2]
≤ τ

[
α

2
(ab)2

+
+
1
2

(
‖(a, b)‖p − (a+ b)

)2]
= τψα,p(a, b) for all (a, b) ∈ R2, (33)

where τ := max
{ 6
α
, 6
}
> 0. Combining (33) with (31) and letting τ̂ = max1≤i≤n τi, we get

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi
{
τψα,p(xi, Fi(x))

}1/2
≤ τ̂ τ 1/2 max

1≤i≤n
ψα,p(xi, F(x))1/2

≤ τ̂ τ 1/2

{
n∑
i=1

{ψα,p(xi, Fi(x))}

}1/2
= τ̂ τ 1/2Ψα,p(x, F(x))1/2.

From this, the first desired result follows immediately by setting κ1 :=
[
τ̂ τ 1/2/µ

]1/2.
Suppose that α = 0. From the proof of Proposition 3.1, the inequality (30) holds. Combining with Eqs. (31)–(32), it then

follows that, for all x ∈ S,

µ‖x− x∗‖2 ≤ max
1≤i≤n

τi
[
B|min{xi, Fi(x)}| + (ψp(xi, Fi(x)))1/2

]
≤ τ̂ max

1≤i≤n

[√
2B̂ψp(xi, Fi(x))+ (ψp(xi, Fi(x)))1/2

]
≤
√
2τ̂ B̂

(
Ψp(x)+

√
Ψp(x)

)
≤ 4τ̂ B̂max

{
Ψp(x),

√
Ψp(x)

}
= 4τ̂ B̂max

{
Ψα,p(x),

√
Ψα,p(x)

}
where B̂ = B/(2−2

1
p ) and the second inequality is from Lemma 3.2. Letting κ2 := 2

[
τ̂ B̂/µ

]1/2
, we obtain the desired result

from the above inequality. �

The following lemma is needed for the proof of Proposition 3.2, which plays a crucial role in showing the convergence
rate of the algorithm described in Section 4.

Lemma 3.3. For all (a, b) 6= (0, 0) and p > 1, we have the following inequality:(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)2
≥

(
2− 2

1
p
)2
.
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Proof. If a = 0 or b = 0, the inequality holds obviously. Then we complete the proof by considering three cases: (i) a > 0
and b > 0, (ii) a < 0 and b < 0, and (iii) ab < 0.

Case (i): Without loss of generality, we suppose a ≥ b > 0. Then

|a|p−1 + |b|p−1

‖(a, b)‖p−1p
=

(∣∣ a
b

∣∣)p−1 + 1(
(|ab|)p + 1

)1−1p . (34)

Let f (t) := tp−1+1
(tp+1)1−1p

for any t > 0. By computation, we have that

f ′(t) =
tp−2(p− 1)(1− t)

(tp + 1)2
∀t > 0.

Since f ′(t) < 0 for t ≥ 1 and f (1) = 2
1
p , it follows that f (t) ≤ 2

1
p for t ≥ 1. Therefore,

|a|p−1 + |b|p−1

‖(a, b)‖p−1p
≤ 2

1
p for p > 1,

which in turn implies that 2− |a|
p−1
+|b|p−1

‖(a,b)‖p−1p
≥ 2− 2

1
p for p > 1. Squaring both sides then leads to the desired inequality.

Case (ii): By similar arguments as in Case (i), we obtain

2− 2
1
p ≤ 2−

|a|p−1 + |b|p−1

‖(a, b)‖p−1p
≤ 2+

|a|p−1 + |b|p−1

‖(a, b)‖p−1p
for p > 1,

from which the result follows immediately.

Case (iii): Again, we suppose |a| ≥ |b|, and therefore have

2
1
p ≥
|a|p−1 + |b|p−1

‖(a, b)‖p−1p
≥
|a|p−1 − |b|p−1

‖(a, b)‖p−1p
for p > 1.

Thus 2− 2
1
p ≤ 2− |a|

p−1
−|b|p−1

‖(a,b)‖p−1p
for p > 1, and the desired result is also satisfied. �

Proposition 3.2. Let ψα,p be given as in (13). Then, for all x ∈ Rn and p > 1,

‖∇aψα,p(x, F(x))+∇bψα,p(x, F(x))‖2 ≥ 2
(
2− 2

1
p
)2
Ψp(x),

and particularly, for all x belonging to any bounded set S and p > 1,

‖∇aψα,p(x, F(x))+∇bψα,p(x, F(x))‖2 ≥
2(2− 2

1
p )4(

αB2 + (2+ 21p)2
)Ψα,p(x)

where B is defined as in Proposition 3.1 and

∇aψα,p(x, F(x)) :=
(
∇aψα,p(x1, F1(x)), . . . ,∇aψα,p(xn, Fn(x))

)T
,

∇bψα,p(x, F(x)) :=
(
∇bψα,p(x1, F1(x)), . . . ,∇bψα,p(xn, Fn(x))

)T
. (35)

Proof. The second part of the conclusions is direct by Corollary 3.1 and the first part. From the definition of∇aψα,p(x, F(x)),
∇bψα,p(x, F(x)) and Ψp(x), the first part of the conclusions is equivalent to proving that the following inequality,(

∇aψα,p(a, b)+∇bψα,p(a, b)
)2
≥ 2

(
2− 2

1
p
)2
ψp(a, b), (36)

holds for all (a, b) ∈ R2. When (a, b) = (0, 0), the inequality (36) clearly holds. Suppose (a, b) 6= (0, 0). Then, it follows
from Eq. (15) that
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(
∇aψα,p(a, b)+∇bψα,p(a, b)

)2
=

{
α(a+ b)(ab)+ + (φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)}2

= α2(a+ b)2(ab)2
+
+ (φp(a, b))2

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)2

+ 2α(a+ b)(ab)+(φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)
. (37)

Now, we claim that, for all (a, b) 6= (0, 0) ∈ R2,

2α(a+ b)(ab)+(φp(a, b))

(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)
≥ 0. (38)

If ab ≤ 0, then (ab)+ = 0 and the inequality (36) is clear. If a, b > 0, then by noting that(
sgn(a) · |a|p−1 + sgn(b) · |b|p−1

‖(a, b)‖p−1p
− 2

)
≤ 0, ∀(a, b) 6= (0, 0) ∈ R2 (39)

and φp(a, b) ≤ 0, the inequality (38) also holds. If a, b < 0, then φp(a, b) ≥ 0, which together with (39) then yields the
inequality (38). Thus, we prove that the inequality (38) holds for all (a, b) 6= (0, 0). Using Lemma 3.3 and Eqs. (38)–(39), we
readily obtain that the inequality (36) holds for all (a, b) 6= (0, 0). The proof is thus complete. �

4. A descent algorithm and convergence results

In this section, we propose a derivative-free descent algorithm based on the function Ψα,p. By Lemma 3.1(d), it is easy
to verify that d̄ := −∇bψα,p(x, F(x)) is a descent direction for monotone nonlinear complementarity problems, i.e., the
following result holds.

Lemma 4.1. Let Ψα,p be defined as in (12). If the mapping F is monotone, then d̄ := −∇bψα,p(x, F(x)) is a descent direction of
Ψα,p at any x ∈ Rn, i.e., ∇Ψα,p(x)Td̄ < 0.

However, we observe that d̄ does not involve any information of ∇aψα,p(x, F(x)) and is lacking a certain symmetry, for
which we cannot find a constant c > 0 such that

‖d̄‖ ≥ cψα,p(x, F(x)).

This sets a big obstacle to establishing the convergence rate of the derivative-free algorithm based on d̄. In view of this, we
follow a similar line as [19] to adopt a search direction of the following form:

dk(ρ) := −∇bψα,p(xk, F(xk))− ρ∇aψα,p(xk, F(xk)), (40)

where ρ is a parameter such that ρ ∈ (0, 1) and ∇aψα,p(x, F(x)), ∇bψα,p(x, F(x)) are defined as in (35). Although dk(ρ) for
any ρ ∈ (0, 1) is not necessarily a descent direction of Ψα,p at the iterate xk, Lemma 4.1 implies that it is a descent one if
ρ ∈ (0, ρ̄k), where

ρ̄k := 1 if ∇aψα,p(xk, F(xk))T∇Ψα,p(xk) ≥ 0,

and otherwise

ρ̄k := min
{
1,−
∇bψα,p(xk, F(xk))T∇Ψα,p(xk)
∇aψα,p(xk, F(xk))T∇Ψα,p(xk)

}
.

Clearly, ρ̄k ∈ (0, 1) except that xk is a solution of the NCP. Thus, dk is a descent direction of Ψα,p at xk for monotone NCPs
only if ρ is chosen sufficiently small. Similarly to [19], we also determine an appropriate ρk by the backtracking search of
Armijo type instead of the value of ρ̄k, in our algorithm described below.

Algorithm 4.1. (Step 0) Given real numbers p > 1 and α ≥ 0 and a starting point x0 ∈ Rn. Choose the parameters σ ∈
(0, 1), β ∈ (0, 1), γ ∈ (0, 1) and ε ≥ 0. Set k := 0.

(Step 1) If Ψα,p(xk) ≤ ε, then stop.
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(Step 2) Letmk be the smallest nonnegative integerm satisfying

Ψα,p(xk + βmdk(γ m)) ≤ (1− σβ2m)Ψα,p(xk), (41)

where

dk(γ m) := −∇bψα,p(xk, F(xk))− γ m∇aψα,p(xk, F(xk)).

(Step 3) Set xk+1 := xk + βmkdk(γ mk), k := k+ 1 and go to Step 1.

We see that Algorithm 4.1 does not involve the computation of∇Ψα,p and∇F , and hence it is a derivative-free algorithm.
In what follows, we establish the convergence results for Algorithm 4.1, and particularly, analyze its convergence rate under
the strongly monotone assumption of F . To this end, we assume that the parameter ε in Algorithm 4.1 is equal to zero and
Algorithm 4.1 generates an infinite sequence {xk}.

Proposition 4.1. Suppose that F is monotone. Then Algorithm 4.1 is well-defined for any starting point x0. Furthermore, if x∗ is
an accumulation point of the sequence {xk} generated by Algorithm 4.1, then x∗ is a solution of the NCP.

Proof. We first prove that Algorithm 4.1 is well-defined. From the construction of the algorithm, it suffices to show that
Step 2 is well-defined. Assume to the contrary that there is no nonnegative integer m satisfying (41). Then, for any integer
m ≥ 0,

Ψα,p(xk + βmdk(γ m))− Ψα,p(xk) > −σβ2mΨα,p(xk).

Dividing the above inequality by βm and passing to the limitm→+∞, we obtain that

lim
m→+∞

Ψα,p(xk + βmdk(γ m))− Ψα,p(xk)
βm

≥ 0. (42)

Since Ψα,p is continuously differentiable, we have that Ψα,p is locally Lipschitz continuous at xk, which in turn implies that
there exists L > 0 such that

‖Ψα,p(xk + βmdk(γ m))− Ψα,p(xk + βmdk(0))‖ ≤ Lβm‖dk(γ m)− dk(0)‖

for all sufficiently largem. Consequently,

lim
m→+∞

Ψα,p(xk + βmdk(γ m))− Ψα,p(xk)
βm

= lim
m→+∞

Ψα,p(xk + βmdk(0))− Ψα,p(xk)
βm

+ lim
m→+∞

Ψα,p(xk + βmdk(γ m))− Ψα,p(xk + βmdk(0))
βm

≤ ∇Ψα,p(xk)Tdk(0).

This together with (42) yields that ∇Ψα,p(xk)Tdk(0) ≥ 0. However, by Lemma 4.1, ∇Ψα,p(xk)Tdk(0) < 0, which leads to a
contradiction. Hence, Algorithm 4.1 is well-defined.
Next we prove that any accumulation point x∗ of {xk} is a solution of the NCP. Let {xk}k∈K be a subsequence converging to

x∗. Notice thatΨα,p is continuously differentiable everywhere, and hence using the boundedness of {xk}k∈K yields that {dk}k∈K
is bounded. We assume that, subsequencing if necessary, dk → d∗ as k(∈ K)→+∞. Since {Ψα,p(xk)} is a nonnegative and
decreasing sequence, the sequence {Ψα,p(xk)} is convergent, which together with (41) implies that

lim
k→+∞

β2mkΨα,p(xk) = 0.

If {mk}k∈K is bounded, then {β2mk}k∈K does not approach to 0, and consequently,

lim
k→+∞, k∈K

Ψα,p(xk) = Ψα,p(x∗) = 0.

This shows that x∗ is a solution of the NCP. Next we suppose that {mk}k∈K is unbounded, which implies {β2mk}k∈K → 0. From
Step 2 of Algorithm 4.1, it follows that, for all k ∈ K

Ψα,p(xk + βmk−1dk(γ mk−1))− Ψα,p(xk) > −σβ2(mk−1)Ψα,p(xk).

Dividing the inequality by βmk−1 and passing to the limit k→+∞ then yields that

lim
k→+∞, k∈K

Ψα,p(xk + βmk−1dk(γ mk−1))− Ψα,p(xk)
βmk−1

≥ 0.

In addition, by the Mean-Value theorem, there exists some t ∈ (0, 1) such that

Ψα,p(xk + βmk−1dk(γ mk−1))− Ψα,p(xk) = βmk−1∇Ψα,p(xk + tβmk−1dk(γ mk−1))Tdk(γ mk−1).
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Combining the last two equations and using the continuity of∇Ψα,p and the fact that βmk−1, γ mk−1 → 0 as k(∈ K)→+∞,
we obtain

∇Ψα,p(x∗)Td∗ ≥ 0.

On the other hand, clearly, ∇Ψα,p(x∗)Td∗ ≤ 0 since d∗ = −∇bψα,p(x∗, F(x∗)). Thus, we prove that ∇Ψα,p(x∗)Td∗ = 0, i.e.,

∇aψα,p(x∗, F(x∗))T∇bψα,p(x∗, F(x∗))+∇bψα,p(x∗, F(x∗))T∇F(x∗)∇bψα,p(x∗, F(x∗)) = 0.

Using the monotonicity of F then yields that

∇aψα,p(x∗, F(x∗))T∇bψα,p(x∗, F(x∗)) = 0,

which, by Lemma 3.1(e), implies that Ψα,p(x∗) = 0. That is, x∗ is a solution of the NCP. �

Combining Proposition 4.1 with Theorem 3.3, we get the following convergence result.

Theorem 4.1. Suppose that either of the following conditions holds:

(a) F is monotone and the NCP is strictly feasible when α > 0;
(b) F is a uniform P-function when α ≥ 0.

Then the sequence {xk} generated by Algorithm 4.1 has at least one accumulation point and every accumulation point is a solution
of the NCP.

Next we investigate the rate of convergence of the sequence {xk} generated by Algorithm 4.1, for which the following
technical lemma will be used.

Lemma 4.2. Let {xk} be the sequence generated by Algorithm 4.1. Suppose that F is strongly monotone with modulus µ > 0.
Then there exists an integer m̂ := dlogγ

2µ
ν2+2ν+2

e such that for each k and all m ≥ m̂, the search direction dk(γ m) satisfies

∇Ψα,p(xk)Tdk(γ m) ≤ −
γ m

2

(
‖∇aψα,p(xk, F(xk))‖ + ‖∇bψα,p(xk, F(xk))‖

)2
.

Proof. By Theorem 3.3, the level setL(Ψα,p,Ψα,p(x0)) is bounded. Notice that {xk} ⊆ L(Ψα,p,Ψα,p(x0)), and consequently
using the continuity of∇F yields that there exists a constant ν > 0 such that ‖∇F(xk)‖ ≤ ν for all k. Thus, using Lemma 3.1
(d) and the same arguments as [19, Lemma 5.1], we can prove that the conclusion holds. �

Theorem 4.2. Let {xk} be the sequence generated by Algorithm 4.1 and L(x0) denote the level set L(Ψα,p,Ψα,p(x0)). Suppose
that F is strongly monotone and ∇F is Lipschitz continuous inL(x0). Then,

(a) the sequence {Ψα,p(xk)} converges Q -linearly to zero;
(b) and the sequence {xk} converges R-linearly to the solution of the NCP.

Proof. (a) By Theorem 3.3, the level set L(x0) is bounded. Since F is continuously differentiable and strongly monotone, F
is Lipschitz continuous. Then, using Lemma 3.1 and the Lipschitz continuity of∇F onL(x0), it is easy to verify that∇Ψα,p is
Lipschitz continuous onL(x0), i.e., there exists a constant L1 > 0 such that

‖∇Ψα,p(x)−∇Ψα,p(x′)‖ ≤ L1‖x− x′‖ ∀x, x′ ∈ L(x0). (43)

Notice that {xk} ⊆ L(x0) since the sequence {Ψα,p(xk)} is nonincreasing. Therefore, for any t ∈ [0, 1], we have that xk,
xk + tdk ∈ L(x0) and

Ψα,p(xk + tdk)− Ψα,p(xk) =
∫ t

0
∇Ψα,p(xk + sdk)Tdkds

=

∫ t

0
[∇Ψα,p(xk + sdk)−∇Ψα,p(xk)]Tdkds+ t∇Ψα,p(xk)Tdk

≤ t∇Ψα,p(xk)Tdk + L1

∫ t

0
s‖dk‖2ds

= t
(
∇Ψα,p(xk)Tdk +

L1t
2
‖dk‖2

)
,

where the inequality is by (43) and the Cauchy–Schwarz inequality. From Lemma 4.2,

∇Ψα,p(xk)Tdk ≤ −
γ m

2

(
‖∇aψα,p(xk, F(xk))‖ + ‖∇bψα,p(xk, F(xk))‖

)2
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for allm ≥ m̂with m̂ given by Lemma 4.2. In addition, from the definition of dk,

‖dk‖2 = ‖∇bΨα,p(xk, F(xk))+ γ m∇aΨα,p(xk, F(xk))‖2

≤ ‖∇bΨα,p(xk, F(xk))‖2 + γ 2m‖∇aΨα,p(xk, F(xk))‖2 + 2γ m〈∇aΨα,p(xk, F(xk)),∇bΨα,p(xk, F(xk))〉

≤ ‖∇bΨα,p(xk, F(xk))‖2 + ‖∇aΨα,p(xk, F(xk))‖2 + 2〈∇aΨα,p(xk, F(xk)),∇bΨα,p(xk, F(xk))〉

=
(
‖∇aψα,p(xk, F(xk))‖ + ‖∇bψα,p(xk, F(xk))‖

)2
for all nonnegative integer m, where the second inequality is due to Lemma 3.1(d) and the fact that γ m ≤ 1. Using the last
three inequalities, we thus obtain that

Ψα,p(xk + βmdk)− Ψα,p(xk) ≤ −
βm

2
(γ m − L1βm)

(
‖∇aψα,p(xk, F(xk))‖ + ‖∇bψα,p(xk, F(xk))‖

)2
(44)

for all nonnegative integer m ≥ m̂. Noting that {xk} ⊆ L(x0), and using the inequality (44) and Proposition 3.2, we have
that condition (41) is satisfied wheneverm ≥ m̂ and

βm(γ m − L1βm)C(B, α, p) ≥ σβ2m, (45)

where

C(B, α, p) =

(
2− 2

1
p
)4

αB2 +
(
2+ 21p

)2 (46)

with B = max1≤i≤n
{
supx∈L(x0) {max {|xi|, |Fi(x)|}}

}
. Notice that the inequality (45) is equivalent to requiring that

m ≥ log γ
β

(
L1 +

σ

C(B, α, p)

)
.

Consequently, condition (41) is satisfied for allm ≥ m̄, where

m̄ := max
{
m̂,
⌈
log γ

β

(
L1 +

σ

C(B, α, p)

)⌉}
.

Since mk is the smallest nonnegative integer m satisfying (41), we have mk ≤ m̄ for all k, which together with (41) implies
that

Ψα,p(xk+1)− Ψα,p(xk) ≤ −σβ2mkΨα,p(xk) ≤ −σβ2m̄Ψα,p(xk).

Therefore,

Ψα,p(xk+1) ≤ (1− σβ2m̄)Ψα,p(xk).

This means that {Ψα,p(xk)} converges Q -linearly to zero since 0 < 1− σβ2m̄ < 1.
(b) Since F is strongly monotone, the NCP has a unique solution, denoted by x∗. From Theorem 3.4, there exists a positive

constant κ1 such that

‖xk − x∗‖ ≤ κ1Ψα,p(xk)
1
4 when α > 0

and there exists a positive constant κ2 such that

‖xk − x∗‖ ≤ κ2

(
max

{
Ψα,p(xk),

√
Ψα,p(xk)

}) 1
2

when α = 0.

Since the sequence {Ψα,p(xk)} converges Q -linearly to zero, the sequence {xk} converges R-linearly to the solution of the
NCP. �

From the proof of Theorem 4.2, we see that the convergence rate of Algorithm 4.1 has a close relation with the constant⌈
log γ

β

(
L1 + σ

C(B,α,p)

)⌉
.

Remark 4.1. (a) If γ < β , the value of C(B, α, p) has an influence on the convergence rate only when L1 + σ
C(B,α,p) < 1. For

this case, when p decreases, C(B, α, p) also decreases, which in turn implies that
⌈
log γ

β

(
L1 + σ

C(B,α,p)

)⌉
and 1− σβ2m̄

increases. This shows that the convergence rate of Algorithm 4.1 becomes worse when p decreases. Similarly, if γ > β
and L1 + σ

C(B,α,p) > 1, the convergence rate of Algorithm 4.1 also becomes worse as p decreases. Therefore, when the
value of p decreases, the convergence rate of Algorithm 4.1 becomes worse and worse.
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Fig. 1. Convergent behavior of ‘‘gafni(1)’’ with p = 1.1.

(b) Assume that p is fixed. Then the value of
⌈
log γ

β

(
L1 + σ

C(B,α,p)

)⌉
is nondecreasing as α increases, which in turn implies

that the convergence rate of Algorithm4.1 becomesworse andworsewhenα increases. Thus,whenα = 0, Algorithm4.1
has the best convergence rate, but it has a worse global convergence by Theorem 3.3.

Of course, we should point out that the property of the mapping F itself has a great influence on the convergence rate of
Algorithm 4.1.

5. Numerical experiments

In this section, we test how the numerical performance of Algorithm 4.1 varies with the value of p. We implemented
Algorithm 4.1 with our code in MATLAB 6.5 for the test problems with all available starting points in MCPLIB [22]. All
numerical experiments were done on a PC with CPU of 2.8 GHz and RAM of 512 MB. During the tests, we replaced the
standard (monotone) Armijo rule by a nonmonotone line search as described in [23], i.e., we computed the smallest
nonnegative integerm such that

Ψα,p(xk + βmdk(γ m)) ≤ Wk − σβ
2mΨα,p(xk),

whereWk is given by

Wk = max
j=k−mk,...,k

Ψα,p(xj)

and where, for given nonnegative integers m̃ and s, we set

mk =
{
0 if k ≤ s
min

{
mk−1 + 1, m̃

}
otherwise.

Throughout the experiments, we adopted m̃ = 5 and s = 5. The algorithm was terminated whenever one of the following
conditions was satisfied:

(1) Ψα,p(xk) ≤ 1.0e−6 and |(xk)TF(xk)| ≤ 1.0e−3;
(2) the steplength βmk is less than 1.0 e−10;
(3) the number of iteration is more than 500000.

We first took ‘‘gafni(1)’’ for example to observe the convergence of Algorithm 4.1 with different p. The parameters in
Algorithm 4.1 were chosen as follows:

α = 1.0e−2, γ = 0.1, β = 0.2, σ = 1.0e−10.

Figs. 1 and 2 depict the detailed iteration process of Algorithm 4.1 with p = 1.1 and p = 1000, respectively. From the two
figures, we see that, when p = 1.1, the merit function Ψα,p has a faster decrease than the case where p = 1000 within the
first several thousands of iterations, but it has a much slower convergence speed once the value of Ψα,p is less than 1.0e−6.
This exactly coincides with the analysis in Remark 4.1(a).
Then, we took ‘‘bertsekas(2)’’ for example to observe the convergence of Algorithm 4.1 with different α. The parameters

in Algorithm 4.1 were chosen as follows:

p = 4, γ = 0.1, β = 0.2, σ = 1.0e−10.
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Fig. 4. Convergent behavior of ‘‘bertsekas(2)’’ with α = 0.

Figs. 3 and 4 depict the detailed iteration process of Algorithm 4.1 with α = 1 and α = 0, respectively. From the two figures,
we see that, when α = 0, the value of Ψα,p has a faster decrease than the case where α = 1 once Ψα,p is less than 1.0e−4,
but it has a much slower speed to decrease the value ofΨα,p within the first 10 000 iterations. This shows that Algorithm 4.1
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Table 1
Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x).

Problem Ψ1.5(x) Ψ2(x) Ψ3(x)
Gap NF Time Gap NF Time Gap NF Time

bertsekas(1) 3.50e−7 90679 9.25e−4 6.18e−11 92986 9.98e−4 6.17e−11 98657 9.99e−4
bertsekas(2) 3.50e−7 83681 9.25e−4 6.19e−11 96880 9.99e−4 6.16e−11 86855 9.99e−4
bertsekas(3) – – – – – – – – –
colvdual(1) 3.37e−9 60327 9.99e−4 3.33e−9 61502 9.99e−3 3.34e−9 61699 9.99e−4
colvdual(2) 3.20e−9a 60203 9.99e−4 3.33e−9 61098 9.99e−4 3.34e−9 61772 9.99e−4
colvnlp(1) 3.33e−9 14409 9.98e−4 8.03e−9 8238 9.98e−4 7.88e−9 7180 9.97e−4
colvnlp(2) 3.34e−9 15190 1.00e−3 3.34e−9 15455 9.99e−4 3.31e−9 15493 9.98e−4
cycle 1.19e−9 9 3.44e−4 7.30e−17 6 8.54e−8 1.18e−19 5 4.87e−9
explcp 2.50e−7 46 7.27e−4 7.24e−10 61 3.88e−5 2.87e−20 73 4.04e−10
gafni(1) 2.05e−8 92784 9.99e−4 2.69e−8 68063 1.00e−3 2.08e−8 68230 1.00e−3
gafni(2) 3.75e−8 91011 9.98e−4 3.58e−8 77193 1.00e−3 3.56e−8 78908 1.00e−3
gafni(3) 3.63e−8 108748 9.99e−4 3.52e−8 72459 1.00e−3 3.51e−8 71950 9.98e−4
hanskoop(1) 5.43e−7a 46 2.20e−4 7.22e−10 1849 1.19e−6 4.98e−14 432 9.99e−9
hanskoop(2) 6.42e−7 1022 2.41e−4 5.38e−10 1387 1.18e−6 1.73e−12 973 1.60e−7
hanskoop(3) 1.53e−7 23 1.09e−5 1.30e−7 12 4.20e−6 4.25e−7 5 5.71e−5
hanskoop(4) 1.86e−7 32 1.87e−4 1.30e−10 36 1.48e−6 2.08e−9a 25 1.85e−6
josephy(1) 3.98e−8 720 9.93e−4 3.34e−8 652 9.84e−4 1.86e−7 57 7.98e−4
josephy(2) 3.45e−8 841 9.85e−4 2.88e−8 745 9.97e−4 2.77e−8 731 9.97e−4
josephy(3) 2.22e−7 1071 8.68e−4 1.80e−8 580 9.82e−4 1.84e−7 70 8.05e−4
josephy(4) 2.22e−7 773 8.68e−4 2.51e−8 652 9.93e−4 2.48e−8 644 9.86e−4
josephy(5) 2.22e−7 748 8.68e−4 1.84e−7 51 7.80e−4 2.05e−7 50 8.47e−4
josephy(6) 3.48e−8 842 9.98e−4 2.85e−8 748 9.97e−4 2.08e−7 107 7.19e−4

The – in Table 1 means that Algorithm 4.1 fails for the problem.
a Means that the numerical results are obtained with a different α.

Table 2
Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x).

Problem Ψ1.5(x) Ψ2(x) Ψ3(x)
Gap NF Time Gap NF Time Gap NF Time

kojshin(1) 2.70e−7 702 9.95e−4 3.13e−7 600 9.93e−4 3.09e−7 586 9.85e−4
kojshin(2) 1.58e−8a 921 9.87e−4 3.15e−7 643 9.96e−4 3.14e−7 621 9.93e−4
kojshin(3) 2.64e−7 910 9.84e−4 3.11e−7 588 9.90e−4 3.09e−7 588 9.85e−4
kojshin(4) 5.24e−8 470 8.84e−4 6.11e−8 112 9.65e−4 4.17e−8 121 7.98e−4
kojshin(5) 2.66e−7 646 9.86e−4 3.11e−7 590 9.89e−4 3.06e−7 586 9.80e−4
kojshin(6) 2.21e−7 81 9.83e−5 2.35e−8 102 5.98e−4 3.19e−8 102 6.98e−4
mathinum(1) 9.55e−7 292 2.68e−4 2.66e−7 168 6.02e−4 2.77e−7 134 8.76e−4
mathinum(2) 8.13e−7 129 4.71e−4 2.54e−7 134 2.97e−4 3.80e−7 68 2.04e−4
mathinum(3) 8.72e−7a 610 7.02e−4 2.29e−7 277 6.96e−4 3.71e−7 150 8.26e−4
mathinum(4) 5.06e−7a 541 8.79e−4 1.04e−7 247 9.20e−4 5.89e−7 164 7.47e−4
mathisum(1) 1.00e−6 217019 88.18 1.00e−6 216101 80.34 1.00e−6 216007 87.25
mathisum(2) 1.00e−6 219150 90.90 1.00e−6 218369 83.31 1.00e−6 218293 88.04
mathisum(3) 1.00e−6 216990 89.11 1.00e−6 216096 80.89 1.00e−6 216000 87.59
mathisum(4) 1.00e−6 217038 90.57 1.00e−6 216123 80.06 1.00e−6 216038 92.26
nash(1) 1.39e−10a 26 5.03e−5 7.68e−10 28 2.67e−4 1.15e−12 29 7.31e−6
nash(2) 1.06e−9a 28 5.30e−4 9.68e−8 23 2.56e−4 2.38e−15 23 9.58e−8
sppe(1) 7.33e−9 26751 9.74e−4 5.10e−9 38859 9.93e−4 1.16e−8 41981 9.99e−4
sppe(2) 7.65e−9 28254 1.00e−3 1.74e−8 35500 1.00e−3 2.46e−8 56524 9.88e−4
tobin(1) 9.79e−7 670 8.42e−4 4.48e−8 900 9.95e−4 2.75e−10 318 5.73e−4
tobin(2) 9.95e−7 786 5.32e−4 3.98e−7 776 9.97e−4 1.47e−7 322 3.32e−4
a Means that the numerical results are obtained with a different α.

corresponding to a smaller α will have a faster convergence rate but a worse global convergence, which is coincident with
Remark 4.1(b).
We finally computed the test problems from MCPLIB [22] with all available starting points by Algorithm 4.1. From the

analysis in Remark 4.1, we know that the ratio between γ and β may have an influence on the numerical performance of
Algorithm 4.1. Hence, we considered two cases: γ /β < 1 and γ /β > 1, respectively, with p = 1.5, p = 2 and p = 3. For
the former case, we chose γ = 0.1 and β = 0.2, whereas γ = 0.2 and β = 0.1 for the latter case. The other parameters of
Algorithm 4.1 were chosen as follows:

α = 1.0e−2, σ = 1.0e−10, ε1 = 1.0e−6, ε2 = 1.0e−3.

Our computational results are summarized in Tables 1–4. Among others, Tables 1 and 2 list the numerical results of the
test problems for the case where γ /β < 1, whereas Tables 3 and 4 list the numerical results of the test problems for the
case where γ /β > 1. In these tables, the first column presents the name of the problems and the starting point number in
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Table 3
Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x).

Problem p = 1.5 p = 2 p = 3
Ψα,p(xk) NF Gap Ψα,p(xk) NF Gap Ψα,p(xk) NF Gap

bertsekas(1) 6.15e−11 82830 9.99e−4 6.15e−11 83937 1.0e−3 – – –
bertsekas(2) 6.15e−11 82470 1.00e−3 6.15e−11 83438 1.00e−3 – – –
bertsekas(3) – – – – – – – – –
colvdual(1) 3.38e−9 115012 9.97e−4 3.34e−9 141067 1.00e−3 3.36e−9 128222 9.99e−4
colvdual(2) 3.20e−9 88135 1.00e−3 3.21e−9 88083 1.00e−3 3.20e−9 88411 1.00e−3
colvnlp(1) 9.50e−7 90830 3.37e−4 5.84e−9 23763 1.00e−3 4.98e−9 23974 1.00e−3
colvnlp(2) 9.50e−7 92022 3.37e−4 5.17e−9 24697 9.99e−4 5.45e−9 24763 9.99e−4
cycle 1.19e−9 9 3.44e−4 7.30e−17 6 8.55e−8 1.18e−19 5 4.87e−9
explcp 3.46e−7 13 8.45e−4 1.99e−7 43 8.42e−4 1.37e−11 55 5.23e−6
gafni(1) 2.03e−8 31661 1.00e−3 2.05e−8 30961 1.00e−3 2.05e−8 30345 1.00e−3
gafni(2) 3.84e−8 32952 1.00e−3 3.66e−8 31181 9.99e−4 3.64e−8 32504 1.00e−3
gafni(3) 3.68e−8 35341 1.00e−3 3.55e−8 31780 1.00e−3 3.52e−8 34411 1.00e−3
hanskoop(1) – – – 8.20e−7 65606 3.98e−5 4.31e−14 2335 2.86e−8
hanskoop(2) – – – 5.13e−10 56359 1.22e−6 3.79e−8 28226 1.15e−5
hanskoop(3) 1.50e−7 25 1.06e−5 1.30e−7 12 4.20e−6 4.25e−7 5 5.71e−5
hanskoop(4) 5.10e−8 26 9.54e−5 7.15e−7 157 4.69e−5 1.51e−10 45 3.80e−7
josephy(1) 4.94e−8 819 9.99e−4 2.89e−7 1071 9.99e−4 5.70e−8 745 9.97e−4
josephy(2) 3.87e−8 877 9.90e−4 2.99e−8 763 9.85e−4 2.82e−8 743 9.92e−4
josephy(3) 2.13e−7 1254 8.70e−4 2.89e−7 1081 9.99e−4 5.69e−8 747 9.97e−4
josephy(4) 2.60e−8 727 9.92e−4 2.61e−8 661 9.89e−4 2.60e−8 651 9.88e−4
josephy(5) 1.01e−8 114 1.87e−4 2.89e−7 1029 9.99e−4 2.87e−7 3079 9.95e−4
josephy(6) 3.74e−8 879 9.85e−4 2.90e−8 765 9.81e−4 2.74e−8 745 9.84e−4

The – in the table means that Algorithm 4.1 fails for the problem.

Table 4
Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x)and Ψ3(x).

Problem p = 1.5 p = 2 p = 3
Ψα,p(xk) NF Gap Ψα,p(xk) NF Gap Ψα,p(xk) NF Gap

kojshin(1) 4.97e−8a 58810 1.00e−3 5.03e−8a 52291 1.00e−3 6.30e−8 45272 1.00e−3
kojshin(2) 9.78e−7 949 1.37e−4 9.66e−7 749 2.81e−4 9.89e−8 705 2.21e−4
kojshin(3) 6.88e−8 49731 1.00e−3 6.30e−8 45386 1.00e−3 6.30e−8 45274 1.00e−3
kojshin(4) 5.26e−8 238 9.02e−4 4.68e−8 255 8.48e−4 4.18e−8 237 8.02e−4
kojshin(5) 6.15e−8 108267 1.00e−3 6.30e−8 45279 1.00e−3 6.30e−8 44989 1.00e−3
kojshin(6) 4.15e−7 107 1.08e−4 5.82e−8 244 9.46e−4 4.13e−8 236 7.97e−4
mathinum(1) 6.97e−7 308 4.68e−4 1.67e−7 200 9.21e−4 6.85e−8 169 6.39e−4
mathinum(2) 4.56e−7 211 6.57e−5 2.70e−7 194 8.46e−4 3.34e−7 181 5.83e−4
mathinum(3) 8.31e−7 257 4.45e−4 2.08e−7 158 3.06e−4 6.96e−7 126 3.63e−4
mathinum(4) 6.66e−7a 386 6.46e−4 6.79e−7 306 9.05e−4 4.14e−7 188 4.31e−4
mathisum(1) – – – – – – – – –
mathisum(2) – – – – – – – – –
mathisum(3) – – – – – – – – –
mathisum(4) – – – – – – – – –
nash(1) 8.29e−8 451 8.81e−4 1.53e−7 352 9.97e−4 2.35e−7 301 3.68e−4
nash(2) 2.04e−9a 184 9.74e−4 1.26e−9 106 3.52e−5 2.11e−17 56 9.29e−9
sppe(1) 3.24e−9 12364 9.96e−4 1.20e−9 13947 9.94e−4 5.58e−9 8952 9.88e−4
sppe(2) 2.29e−9 13821 9.72e−4 1.34e−9 10939 9.97e−4 3.22e−9 11647 9.99e−4
tobin(1) 4.78e−10 441 8.10e−4 3.83e−10 288 7.83e−4 5.34e−7 219 2.32e−4
tobin(2) 3.74e−10 414 9.96e−4 7.73e−10 946 9.48e−4 3.77e−10 318 8.39e−4
a Means that the numerical results are obtained with a different α.

MCPLIB, Ψα,p(xk) denotes the value of Ψα,p(x) at the final iteration, NF indicates the number of function evaluations of Ψα,p
for solving each problem, and Gap denotes the value of |xTF(x)| at the final iteration.
The results in Tables 1–4 show that the derivative-free descent algorithm based on Ψα,p with p = 1.5, p = 2 and

p = 3 can solvemost complementarity problems inMCPLIB with favorable accuracy. More precisely, there are eight failures
(billups, pgvon105, pgvon106, powell, scarfanum, scarfasum, scarfbnum, scarfbsum) for Algorithm4.1 due to a too small
steplength. These problems are also regarded as difficult ones for Newton-type algorithms [24]. From these tables, we see
that, for most of the test problems, Algorithm 4.1 with p = 3 requires fewer function evaluations than the cases where
p = 1.5 and p = 2, whether γ /β > 1 or γ /β < 1 not. Moreover, when p = 1.5, Algorithm 4.1 has worse stability. This
indicates that Algorithm4.1with p = 3 or p = 2 has better numerical performance than the casewhere p = 1.5. In addition,
comparing the numerical results of Tables 1 and 2 with those in Tables 3 and 4, we may find that the value of γ /β has a
great influence on the number of function evaluations and it seems that Algorithm 4.1 with γ /β < 1 has better numerical
performance for most of the test problems.
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6. Concluding remarks

In this paper, we proposed a newmerit functionΨα,p for the NCPs based on the generalized Fischer–Burmeister function
φp, and extended all of the results in [19] to a more general situation. With these results, we presented a derivative-free
descent algorithm and established the global convergence and locally R-linear convergence rate of the algorithm. Also, we
analyzed the influence of the parameter p on the convergence rate of the algorithm, and verified these theoretical results via
numerical experiments by solving the test problems from MCPLIB. Compared with [18], it seems that this paper yields an
‘‘opposite’’ numerical conclusion. However, they are actually coincident. In [18], the termination conditions of the algorithm
only required the dual gap (xk)TF(xk) <= 5.0e − 3, which means that the numerical performance of the algorithm is
dominated by the global convergence,while the termination conditions used in this paper tend to reflecting the convergence
rate of the algorithm. In particular, combining the numerical results of the two papers, we may obtain the conclusion that
the merit function method based on φp has a better a global convergence and a worse convergence rate when p decreases.
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