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Abstract In this paper, we summarize several systematic ways of constructing smoothing functions
and illustrate eight smoothing functions accordingly. Then, based on these systematically generated
smoothing functions, a unified neural network model is proposed for solving absolute value equation.
The issues regarding the equilibrium point, the trajectory, and the stability properties of the neural
network are addressed. Moreover, numerical experiments with comparison are presented, which suggests
what kind of smoothing functions work well along with the neural network approach.
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1 Introduction

The main target that we tackle with in this paper is the so-called absolute value equation (AVE for
short), whose mathematical format is as below. In fact, the original standard AVE is described by

Ax− |x| = b, (1)

where A ∈ IRn×n and b ∈ IRn. Here |x| means the componentwise absolute value of vector x ∈ IRn.
Another generalized absolute value equation is in the form of

Ax+B|x| = b, (2)
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where B ∈ IRn×n, B 6= O. When B = −I, I is the identity matrix, the AVE (2) reduces to the special
form (1).

The AVE (1) was first introduced by Rohn in [29] and recently has been investigated by many re-
searchers, for example, Hu and Huang [7], Saheya and Chen [32], Jiang and Zhang [9], Ketabchi and
Moosaei [10], Mangasarian [14, 15, 16, 17, 18], Mangasarian and Meyer [21], Prokopyev [25], and Rohn
[31]. In particular, Mangasarian and Meyer [21] show that the AVE (1) is equivalent to the bilinear
program, the generalized LCP (linear complementarity problem), and the standard LCP provided 1 is
not an eigenvalue of A. With these equivalent reformulations, they also prove that the AVE (1) is NP-
hard in its general form and provide existence results. Prokopyev [25] further obtain an improvement
indicating that the AVE (1) can be equivalently recast as (a larger) LCP without any assumption on A
and B, and also provides a relationship with mixed integer programming. It is known that, if solvable,
the AVE (1) can have either unique solution or multiple (e.g., exponentially many) solutions. Indeed,
various sufficiency conditions on solvability and non-solvability of the AVE (1) with unique and multiple
solutions are discussed in [21, 25, 30]. Some variants of the AVEs including the absolute value equation
associated with second-order cone (SOCAVE) and the absolute value programs, are investigated in [8]
and [38], respectively. Furthermore, some other type of absolute value equation, an extension of the AVE
(2), is considered [8, 19, 20].

Roughly, there have three approaches for dealing with the AVEs (1)-(2). The first one is reformu-
lating the AVEs (1)-(2) as complementarity problem and then solve it accordingly. The second one is to
recast the AVEs (1)-(2) as a system of nonsmooth equations and then tackle with the nonsmooth equa-
tions by applying nonsmooth Newton algorithm [26] or smoothing Newton algorithm [27]. The third one
is applying the neural network approach. In this paper, we follow the third idea for solving the AVEs
(1)-(2). Inspired by our another recent work [24], we will combine various smoothing functions with the
neural network approach. Different from [24, 32], the smoothing functions studied in this paper are not
only constructed from one way, they are generated by several systematic ways. Accordingly, this one can
be viewed as a follow-up of [24, 32].

Now, we quickly go over neural network approach which is different from traditional optimization
methods. To consider this approach, the main reason lies on the real-time solutions of optimization
problems, which are sometimes required in practice. It is well known that the neural networks approach
is a very promising approach to solving the real-time optimization problem. In general, the neural net-
works can be implemented using integrated circuits and were first introduced in the 1980s by Hopfield
and Tank [6, 34] for optimization problems. Since then, significant research results have been achieved
for various optimization problems, including linear programming [39], quadratic programming [1], linear
complementarity problems [12], nonlinear complementarity problem [13] and nonlinear programming [5].
In general, the essence of neural network approach is to construct a nonnegative energy function and
establish a dynamic system that represents an artificial neural network. A first order differential equation
represents the dynamic system. Furthermore, it is expected that the dynamic system will converge to its
static state (or an equilibrium point), which corresponds to the solution for the underlying optimization
problem, starting from an initial point.

Although similar idea was employed by Wang, Yu and Guo in [36], only one smoothing function was
studied therein. In this paper, we present systematical ways about how to construct smoothing func-
tions for AVE (1) and illustrate eight smoothing functions accordingly. After that, we design a gradient
descent neural network model by using these eight different smoothing functions. We not only discuss
the stability of the neural networks, but also give numerical comparison for these smoothing functions.
In fact, the new upshot of this paper lies on the numerical comparison, which suggest what kind of
smoothing functions work well along with the neural network approach.
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2 Preliminaries

By looking into the mathematical format of the aforementioned AVEs, it is observed that the absolute
value function |x| is the key component. Indeed, the absolute value function also plays an important
role in a lot of applications, like machine learning and image processing, etc.. In particular, the absolute
value function |x| is not differentiable at x = 0, which causes limits in analysis and application. To
conquer this hurdle, researchers consider smoothing methods and construct smoothing functions for it.
We summarize all possible ways to construct smoothing functions for |x| as below. For more details,
please refer to [2, 4, 11, 23, 28, 35].

1. Smoothing by the convex conjugate

Let X be a real topological vector space, and let X∗ be the dual space to X. For any function
f : domf → IR, its convex conjugate f∗ : (domf)∗ → IR is defined in terms of the supremum by

f∗(y) := sup
x∈domf

{
xT y − f(x)

}
.

In light of this, one can build up smooth approximation of f , denoted by fµ, by adding strongly convex
component to its dual g := f∗, namely,

fµ(x) = sup
z∈domg

{
zTx− g(x)− µd(z)

}
= (g + µd)∗(x),

for some 1-strongly convex and continuous function d(·) (called proximity function). Here, d(·) is 1-
strongly convex which satisfies

d((1− t)x+ ty) ≤ (1− t)d(x) + td(y)− 1

2
t(1− t)‖x− y‖2,

for all x, y and t ∈ (0, 1). Note that |x| = sup|z|≤1 zx. If we take d(z) := z2/2, then the constructed
smoothing function via conjugation leads to

φ1(µ, x) = sup
|z|≤1

{
zx− µ

2
z2
}

=

{
x2

2µ , if |x| ≤ µ,
|x| − µ

2
, otherwise.

(3)

which is the traditional Huber function.

It is also possible to consider another expression:

|x| = sup
z1+z2=1
z1,z2�0

(z1 − z2)x.

Under this case, if we take d(z) := z1 log z1 + z2 log z2 + log 2, the constructed smoothing function by
conjugation becomes

φ2(µ, x) = µ log

(
cosh

(
x

µ

))
, (4)

where cosh(x) :=
ex + e−x

2
. Alternatively, choosing d(y) := 1 −

√
1− y2 gives another smoothing

function:
φ3(µ, x) = sup

−1≤y≤1

(
xy + µ

√
1− y2 − µ

)
=
√
x2 + µ2 − µ. (5)

2. The Moreau proximal smoothing

Suppose that E is an Euclidean space and f : E → (−∞,∞] is a closed and proper convex func-
tion. One natural tool for generating an approximate smoothing function is through the use of the
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so-called proximal map introduced by Moreau [22]. The Moreau proximal approximation yields a family
of approximations {fpxµ }µ>0 as below:

fpxµ (x) = inf
u∈E

{
f(u) +

1

2µ
‖u− x‖2

}
. (6)

It is known that the Moreau proximal approximation fpxµ (x) is convex continuous, finite-valued, and dif-

ferentiable with gradient ∇fpxµ which is Lipschitz continuous with constant 1
µ , see [22]. When applying

the Moreau proximal smoothing way to construct the smoothing function for the absolute value function
|x|, it also yields the Huber smoothing function φ1(µ, x) by using the Moreau envelope [2].

3. Nesterov’s smoothing

There is a class of nonsmooth convex functions considered in [23], which is given by

q(x) = max{〈u,Ax〉 − φ(u) |u ∈ Q}, x ∈ E,

where E, V are finite dimensional vector spaces, Q ⊆ V ∗ is compact and convex, φ is a continuous convex
function on Q, and A : E → V is a linear map. The smooth approximation of q suggested in [23] is
described by the convex function

qµ(x) = max{〈u,Ax〉 − φ(u)− µd(u) |u ∈ Q}, x ∈ E, (7)

where d(·) is a prox-function for Q. It was proved in [23, Theorem 1] that the convex function qµ(x) is

C1,1(E). More specifically, its gradient mapping is Lipschitz continuous with constant Lµ =
‖A‖2

σµ
and

the gradient is described by ∇qµ(x) = Auµ(x), where uµ(x) is the unique minimizer of (7).

For the absolute value function q(x) = |x| with x ∈ IR1. Let A = 1, b = 0, E = IR1, Q = {u ∈
IR1 | |u| ≤ 1} and taking d(u) := 1

2u
2. Then, we have

qµ(x) = max
u
{〈Ax− b, u〉 − µd(u) |u ∈ Q}

= max
u

{
xu− µ

2
u2
}

=

{
x2

2µ , if |x| ≤ µ,
|x| − µ

2 , otherwise.

As we see, it also yields the Huber smoothing function φ1(µ, x) defined by (3) through this approximation
way.

4. The infimal-convolution smoothing technique

Suppose that E is a finite vector space and f, g : E→ (−∞,∞]. The infimal convolution of f and g,
f 2 g : E→ [−∞,+∞] is defined by

(f 2 g)(x) = inf
y∈E
{f(y) + g(x− y)} .

In light of the concept of infimal convolution, one can also construct smoothing approximation functions.
More specifically, we consider f : E → (−∞,∞] which is a closed proper convex function and let
ω : E → R be a C1,1 convex function with Lipschitz gradient constant 1/σ (σ > 0). Suppose that for
any µ > 0 and any x ∈ E, the following infimal convolution is finite:

f icµ (x) = inf
u∈E

{
f(u) + µω(

x− u
µ

)

}
= (f 2ωµ)(x), (8)
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Figure 1: |x| and Huber function of order p (µ = 0.3).

where ωµ(·) = µω( ·µ ). Then, f icµ is called the infimal-convolution µ-smooth approximation of f . In

particular, when µ ∈ IR++ and p ∈ (1,+∞), the infimal convolution of a convex function and a power of
the norm function is obtained as below:

f 2

(
1

µp
‖ · ‖p

)
= inf
u∈E

{
f(u) + (

1

µp
‖x− u‖p)

}
. (9)

For the absolute value function, it can be verified that fµ(x) = (| · |)2
(

1
µ∗p | · |

p
)

is the Huber function

of order p, i.e.,

fµ(x) =

{
|x| − p−1

p µ
1
p−1 , if |x| > µ

1
p−1 ,

|x|p
µp , if |x| ≤ µ

1
p−1 .

(10)

Note that when p = 2 in the above expression (10), the Huber function of order p reduces to the
Huber function φ1(µ, x) as shown in (3). Figure 2 depicts the Huber function of order p with various
value of p. To the contrast, plugging p = 2 into infimal convolution formula (9) yields the Moreau
approximation (6). For more details about infimal convolution and its induces approximation functions,
please refer to [2, 3].

5. The convolution smoothing technique

The smoothing approximation via convolution for the absolute value function is a popular way,
which can be found in [4, 11, 28, 35]. Its construction idea is described as follows. First, one constructs a
smoothing approximation for the plus function (x)+ = max{0, x}. To this end, we consider the piecewise
continuous function d(x) with finite number of pieces which is a density (kernel) function, that is, it
satisfies

d(x) ≥ 0 and

∫ +∞

−∞
d(x)dx = 1.

Next, define ŝ(µ, x) := 1
µd
(
x
µ

)
, where µ is a positive parameter. Suppose that

∫ +∞
−∞ |x| d(x)dx < +∞,

then a smoothing approximation (denoted by p̂(µ, x)) for (x)+ is obtained as below:

p̂(µ, x) =

∫ +∞

−∞
(x− s)+ŝ(µ, s)ds =

∫ x

−∞
(x− s)ŝ(µ, s)ds.
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The following are four well-known smoothing functions for the plus function [4, 28]:

φ̂1(µ, x) = x+ µ log
(
1 + e−

x
µ

)
. (11)

φ̂2(µ, x) =


x if x ≥ µ

2 ,
1
2µ

(
x+ µ

2

)2
if −µ2 < x < µ

2 ,

0 if x ≤ −µ2 .
(12)

φ̂3(µ, x) =

√
4µ2 + x2 + x

2
. (13)

φ̂4(µ, x) =


x− µ

2 if x > µ,
x2

2µ if 0 ≤ x ≤ µ,
0 if x < 0.

(14)

where their corresponding kernel functions are

d1(x) =
e−x

(1 + e−x)2
,

d2(x) =

{
1 if − 1

2 ≤ x ≤ 1
2 ,

0 otherwise,

d3(x) =
2

(x2 + 4)
3
2

,

d4(x) =

{
1 if 0 ≤ x ≤ 1,
0 otherwise.

Using the fact that |x| = (x)+ + (−x)−. Then, the smoothing function of |x| via convolution can be
written as

p̂(µ, |x|) = p̂(µ, x) + p̂(µ,−x) =

∫ +∞

−∞
|x− s| ŝ(µ, s)ds.

Analogous to (11)-(14), we reach the following smoothing functions for |x|:

φ4(µ, x) = µ
[
log
(

1 + e−
x
µ

)
+ log

(
1 + e

x
µ

)]
. (15)

φ5(µ, x) =


x if x ≥ µ

2 ,
x2

µ + µ
4 if −µ2 < x < µ

2 ,

−x if x ≤ −µ2 .
(16)

φ6(µ, x) =
√

4µ2 + x2. (17)

as well as the Huber function (3). If we take a Epanechnikov kernel function

K(x) =

{
3
4 (1− x2) if |x| ≤ 1,

0 otherwise,

we achieve the smoothing function for |x|:

φ7(µ, x) =


x if x > µ,

− x4

8µ3 + 3x2

4µ + 3µ
8 if −µ ≤ x ≤ µ,

−x if x < −µ.
(18)

Moreover, if we take a Gaussian kernel function K(x) = 1√
2π
e−

x2

2 for all x ∈ IR. Then, it yields

ŝ(µ, x) :=
1

µ
K

(
x

µ

)
=

1√
2πµ2

e
− x2

2µ2 .
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Hence, we obtain the below smoothing function [35] for |x|:

φ8(µ, x) = x erf

(
x√
2µ

)
+

√
2

π
µe
− x2

2µ2 . (19)

where the error function is defined by

erf(x) =
2√
π

∫ x

0

e−u
2

du, ∀x ∈ IR.

To sum up, we have eight smoothing functions in total through the above constructions. Figure 2
depicts the graphs of all the aforementioned smoothing functions φi, i = 1, · · · , 8 and the absolute value
equation. Not only from the geometric view, φi, i = 1, · · · , 8 are clearly smoothing functions of |x|, it
can be also verified theoretically in Proposition 2.1.

φ1(µ, x) = sup
|z|≤1

{
zx− µ

2
z2
}

=

{
x2

2µ , if |x| ≤ µ,
|x| − µ

2
, otherwise.

φ2(µ, x) = µ log

(
cosh

(
x

µ

))
.

φ3(µ, x) = sup
−1≤y≤1

(
xy + µ

√
1− y2 − µ

)
=
√
x2 + µ2 − µ.

φ4(µ, x) = µ
[
log
(

1 + e−
x
µ

)
+ log

(
1 + e

x
µ

)]
.

φ5(µ, x) =


x if x ≥ µ

2 ,
x2

µ + µ
4 if −µ2 < x < µ

2 ,

−x if x ≤ −µ2 .

φ6(µ, x) =
√

4µ2 + x2.

φ7(µ, x) =


x if x > µ,

− x4

8µ3 + 3x2

4µ + 3µ
8 if −µ ≤ x ≤ µ,

−x if x < −µ.

φ8(µ, x) = x erf

(
x√
2µ

)
+

√
2

π
µe
− x2

2µ2 .

From Figure 2, we see that the local behavior of all eight smoothing functions can be described as

φ3 ≤ φ2 ≤ φ1 ≤ |x| ≤ φ5 ≤ φ7 ≤ φ8 ≤ φ4 ≤ φ6. (20)

In particular, three smoothing function φ1, φ2, φ3 approach to |x| from below with φ1 ≥ φ2 ≥ φ3.
To the contrast, the other five smoothing functions φ4, φ5, φ6, φ7, φ8 appraoch to |x| from above with
φ5 ≤ φ7 ≤ φ8 ≤ φ4 ≤ φ6. Apparently, the smoothing function φ1 and φ5 are closest to |x| among these
smoothing functions.

Besides the geometric observation, we also provide algebraic analysis for (20). Noting that each
function φi(µ, x), for i = 1, 2, · · · , 8, is symmetric, so we only need to prove (20) with x ≥ 0. To proceed,
for fixed µ > 0, we let y = x

µ . The verifications consist of seven parts.

Part (1): φ3(µ, x) ≤ φ2(µ, x). To verify this inequality, we consider

f(y) = log

(
ey + e−y

2

)
−
√
y2 + 1 + 1.
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Then, we compute the derivation of f(y) as below:

f ′(y) =
ey − e−y

ey + e−y
− y√

y2 + 1

=
e2y − 1

e2y + 1
− y√

y2 + 1

= 1− 2

e2y + 1
− 1 +

√
y2 + 1− y√
y2 + 1

=
1√

y2 + 1
(√

y2 + 1 + y
) − 2

e2y + 1

=
e2y − 1− 2y2 − 2y

√
y2 + 1

(e2y + 1)
√
y2 + 1

(√
y2 + 1 + y

) .
For convenience, we denote g(y) = e2y − 1− 2y2 − 2y

√
y2 + 1. It is known that the function ex can be

expressed as

ex =

∞∑
n=0

xn

n!
, (21)

which indicates ex − 1 ≥ x+ x2

2 + x3

6 . Then, it follows that

g(y) ≥ 2y +
(2y)2

2
+

(2y)3

6
− 2y2 − 2y

√
y2 + 1

=
4y3

3
+ 2y

(
1−

√
y2 + 1

)
=

4y3

3
− 2y3

1 +
√
y2 + 1

= 2y3

(
2

3
− 1

1 +
√
y2 + 1

)

≥ 2y3
(

2

3
− 1

2

)
≥ 0, ∀y ≥ 0.

This implies that f ′(y) ≥ 0 for all y ≥ 0. Thus, f is monotonically nondecreasing which yields f(y) ≥
f(0) = 0. Then, we verify the assertion that φ3(µ, x) ≤ φ2(µ, x).

Part (2): φ2(µ, x) ≤ φ1(µ, x). In order to prove this inequality, we discuss two cases.

(i) For 0 ≤ x ≤ µ, this implies that 0 ≤ y ≤ 1. Considering

f(y) =
y2

2
− log

(
ey + e−y

2

)
yields that

f ′(y) = y − e2y − 1

e2y + 1
=
ye2y + y − e2y + 1

e2y + 1
.
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By denoting g(y) := ye2y + y − e2y + 1 and using (21) leads to

g(y) = ye2y + y − e2y + 1

= y

∞∑
n=0

(2y)n

n!
−
∞∑
n=0

(2y)n

n!
+ y + 1

= y

∞∑
n=0

(2y)n

n!
−

( ∞∑
n=0

(2y)n+1

(n+ 1)!
+ 1

)
+ y + 1

= y

( ∞∑
n=0

(2y)n

n!

(
1− 2

n+ 1

))
+ y

≥ 0, ∀y ∈ [0, 1].

Therefor, we obtain that f ′(y) ≥ 0 for all y ∈ [0, 1].

(ii) For x > µ, this implies that y > 1. Considering

f(y) = y − 1

2
− log

(
ey + e−y

2

)
gives

f ′(y) = 1− e2y − 1

e2y + 1
> 0.

To sum up, we obtain that f ′(y) ≥ 0 for all y ∈ [0, 1] in both cases. Following the same arguments as in
part(1), we conclude that φ2(µ, x) ≤ φ1(µ, x).

Part (3): φ1(µ, x) ≤ |x| and |x| ≤ φ5(µ, x). It is easy to verify these inequalities. We omit the verification.

Part (4): φ5(µ, x) ≤ φ7(µ, x). We will prove this inequality by discussing three cases.

(i) For x > µ, it is easy to see that φ5(µ, x) = φ7(µ, x) = x.

(ii) For µ
2 ≤ x ≤ µ, it means 1

2 ≤ y ≤ 1. Considering

f(y) = −y
4

8
+

3y2

4
+

3

8
− y

=
−y4 + 6y2 − 8y + 6

8

=
−(y2 − 1)2 + 4(y − 1)2 + 3

8

=
(y − 1)2

(
4− (y + 1)2

)
+ 3

8

ad using the facts of 1
2 ≤ y ≤ 1 and 9

4 ≤ (y + 1)2 ≤ 4, it follows that f(y) ≥ 0.

(iii) For 0 ≤ x < µ
2 , 0 ≤ y < 1

2 . Considering

f(y) = −y
4

8
+

3y2

4
+

3

8
− y2 − 1

4

= −y
4

8
− y2

4
+

1

8

=
−y4 − 2y2 + 1

8

=
2− (y2 + 1)2

8
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and applying the facts 0 ≤ y < 1
2 and 1 ≤ (y2 + 1)2 ≤ 25

16 , it follows that f(y) > 0. From all the above,
we achieve that φ5(µ, x) ≤ φ7(µ, x).

Part (5): φ7(µ, x) ≤ φ8(µ, x). To proceed this assertion, we discuss two cases.

(i) For 0 ≤ x ≤ µ, this implies that 0 ≤ y ≤ 1. Consider

f(y) = yerf

(
y√
2

)
+

√
2

π
e−

y2

2 +
y4

8
− 3y2

4
− 3

8
.

By applying [35, Lemma 2.5], we have erf
(
y√
2

)
≥
(

1− e−
y2

2

) 1
2

. Then, it implies that

f(y) ≥ y
(

1− e−
y2

2

) 1
2

+

√
2

π
e−

y2

2 +
y4

8
− 3y2

4
− 3

8
:= g(y).

It is easy to verify g(y) is monotonically decreasing on [0, 1] which indicates that g(y) ≥ g(1) > 0. Hence,
we obtain f(y) > 0 and φ7(µ, x) ≤ φ8(µ, x) is proved.

(ii) For x > µ, it means y > 1. Consider

f(y) = yerf

(
y√
2

)
+

√
2

π
e−

y2

2 − y,

which yields f ′(y) = erf
(
y√
2

)
− 1 < 0. Hence, f(y) is monotonically decreasing on [1,+∞). Moreover,

using [35, Lemma 2.5] gives

f(y) ≥ y
(

1− e−
y2

2

) 1
2

+

√
2

π
e−

y2

2 − y.

Taking the limit in this inequality, we obtain limy→∞ f(y) ≥ 0. Therefore, f(y) ≥ limy→∞ f(y) ≥ 0,
which show the assertion φ7(µ, x) ≤ φ8(µ, x).

Part (6): φ8(µ, x) ≤ φ4(µ, x). Consider

f(y) = log
(
1 + e−y

)
+ log (1 + ey)− yerf

(
y√
2

)
−
√

2

π
e−

y2

2 .

Then, we have

f ′(y) =
ey − 1

ey + 1
− erf

(
y√
2

)
= 1−

(
2

ey + 1
+ erf

(
y√
2

))
:= 1− g(y),

which says that

g′(y) = − 2ey

ey + 1
+

2√
π

1√
2
e−

y2

2

= 2

(
− ey

ey + 1

2√
2π
e−

y2

2

)
= 2

(
−
√

2πey + (1 + ey)e−
y2

2

√
2π(1 + ey)

)

≤ 2

(
−
√

2πey + 1 + ey√
2π(1 + ey)

)
, as y ≥ 0,

= 2

(
(1−

√
2π)ey + 1√

2π(1 + ey)

)
≤ 2(1−

√
2π + 1) < 0, as ey ≥ 1, 1−

√
2π < 0.

10



Hence, g(y) < g(0) = 1 which leads to f ′(y) > 0 for all y ≥ 0. Then, it follows that f(y) > f(0) =

2 log 2−
√

2
π > 0, and hence φ8(µ, x) ≤ φ4(µ, x) is proved.

Part (7): φ4(µ, x) ≤ φ6(µ, x). Consider

f(y) =
√

4 + y2 −
[
log
(
1 + e−y

)
+ log (1 + ey)

]
,

which gives

f ′(y) =
y√

4 + y2
− ey − 1

ey + 1

=
y√

4 + y2
− 1 +

2

ey + 1

=
y −

√
4 + y2√

4 + y2
+

2

ey + 1

=
−4(1 + ey) + 2

√
4 + y2

(
y +

√
4 + y2

)
√

4 + y2
(
y +

√
4 + y2

)
(1 + ey)

.

For convenience, we denote

g(y) := −2(1 + ey) +
√

4 + y2
(
y +

√
4 + y2

)
= −2ey + 2 + y2 + y

√
4 + y2.

Because ey > 1 + y + y2

2 , it yields

g(y) < −2y + y
√

4 + y2 = y(2−
√

4 + y2) ≤ 0, ∀y ≥ 0.

This means that f ′(y) < 0, i.e., f(y) is monotonically decreasing on [0,+∞). On the other hand, we
know that

lim
y→∞

f(y) = lim
y→∞

√
4 + y2 −

[
log
(
1 + e−y

)
+ log (1 + ey)

]
= lim
y→∞

√
4 + y2 − y + y −

[
log
(
1 + e−y

)
+ log (1 + ey)

]
= lim
y→∞

√
4 + y2 − y + lim

y→∞
y −

[
log
(
1 + e−y

)
+ log (1 + ey)

]
= lim
y→∞

y − log (1 + ey) = lim
y→∞

log
ey

1 + ey
= 0.

Thus, f(y) ≥ limy→∞ f(y) = 0 which implies that φ4(µ, x) ≤ φ6(µ, x).

From Parts (1)-(7), the proof of (20) is complete.

Proposition 2.1. Let φi : IR2 → IR for i = 1, . . . , 6 be defined as in (3)-(5) and (15)-(19), respectively.
Then, we have

(a) φi is continuously differentiable at (µ, x) ∈ IR++ × IR;

(b) lim
µ↓0

φi(µ, x) = |x|.

Proof. The proof is straightforward and we omit it. 2

11
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Figure 2: The graphs of |x| and the smoothing functions φi, i = 1, · · · , 8 (µ = 0.3).

Next, we recall some materials about first order differential equations (ODE):

ẇ(t) = H(w(t)), w(t0) = w0 ∈ IRn, (22)

where H : IRn → IRn is a mapping. We also introduce three kinds of stability that will be discussed later.
These materials can be found in usual ODE textbooks. A point w∗ = w(t∗) is called an equilibrium
point or a steady state of the dynamic system (22) if H(w∗) = 0. If there is a neighborhood Ω∗ ⊆ IRn of
w∗ such that H(w∗) = 0 and H(w) 6= 0 ∀w ∈ Ω∗ \ {w∗}, then w∗ is called an isolated equilibrium point.

Lemma 2.1. Suppose that H : IRn → IRn is a continuous mapping. Then, for any t0 > 0 and w0 ∈ IRn,
there exists a local solution w(t) to (22) with t ∈ [t0, τ) for some τ > t0. If, in addition, H is locally
Lipschitz continuous at x0, then the solution is unique; if H is Lipschitz continuous in IRn, then τ can
be extended to ∞.

Let w(t) be a solution to dynamic system (22). An isolated equilibrium point w∗ is Lyapunov stable
if for any w0 = w(t0) and any ε > 0, there exists a δ > 0 such that ‖w(t) − w∗‖ < ε for all t ≥ t0 and
‖w(t0)−w∗‖ < δ. An isolated equilibrium point w∗ is said to be asymptotic stable if in addition to being
Lyapunov stable, it has the property that w(t) → w∗ as t → ∞ for all ‖w(t0) − w∗‖ < δ. An isolated
equilibrium point w∗ is exponentially stable if there exists a δ > 0 such that arbitrary point w(t) of (22)
with the initial condition w(t0) = w0 and ‖w(t0)− w∗‖ < δ is well defined on [0,+∞) and satisfies

‖w(t)− w∗‖ ≤ ce−ωt‖w(t0)− w∗‖ ∀t ≥ t0,

where c > 0 and ω > 0 are constants independent of the initial point.

Let Ω ⊆ IRn be an open neighborhood of w̄. A continuously differentiable function V : IRn → IR is
said to be a Lyapunov function at the state w̄ over the set Ω for equation (22) if{

V (w̄) = 0, V (w) > 0, ∀w ∈ Ω \ {w̄},
V̇ (w) ≤ 0, ∀w ∈ Ω \ {w̄}.

The Lyapunov stability and asymptotical stability can be verified by using Lyapunov function, which is
a useful tool for analysis.

12



Lemma 2.2. (a) An isolated equilibrium point w∗ is Lyapunov stable if there exists a Lyapunov function
over some neighborhood Ω∗ of w∗.

(b) An isolated equilibrium point w∗ is asymptotically stable if there exists a Lyapunov function over
some neighborhood Ω∗ of w∗ such that V̇ (w) < 0, ∀w ∈ Ω∗ \ {w∗}.

3 Neural Network Model for AVE

In order to design a suitable neural network for absolute value equation (1), the key step is to construct
an appropriate energy function E(x) for which the global minimization x∗ is simultaneously a solution
of the AVE (1). One approach to constructing a desired energy function is the merit function method.
The basic idea in this approach is to transform the AVE (1) into an unconstrained problem.

To this end, we define Hi : IRn+1 → IRn+1 as

Hi(µ, x) =

[
µ

Ax+BΦi(µ, x)− b

]
, for µ ∈ IR, and x ∈ IRn, (23)

where Φi : IRn+1 → IRn is given by

Φi(µ, x) :=


φi(µ, x1)
φi(µ, x2)

...
φi(µ, xn)

 , for µ ∈ IR, and x ∈ IRn, (24)

with various smoothing functions φi : IR2 → IR that is introduced in Section 2. Then, the AVE (1) can
be transformed into an unconstrained optimization problem:

min Ψ(µ, x) =
1

2
‖Hi(µ, x)‖2. (25)

Let w = (µ, x), the AVE (1) is equivalent to Hi(µ, x) = 0. It is clear that if w∗ ∈ IR++ × IRn solves
Hi(w) = 0, then w∗ solves ∇Ψ(w) = 0. Applying the gradient approach to the minimization of the
energy function (25), we obtain the system of differential equation:{

du(t)

dt
= −ρ∇Ψ(v(t), u(t)) = −ρ∇Hi(v(t), u(t))THi(v(t), u(t)),

u(t0) = u0.
(26)

where u0 = x0 ∈ IRn, v(t) = µ0e
−t, ρ > 0 is a time scaling factor. In fact, letting τ = ρt leads to

du(t)
dt = ρdu(τ)dτ . Hence, it follows from (26) that du(τ)

dτ = −∇( 1
2‖Hi(w

∗)‖2). In view of this, we set ρ = 1
in the subsequent analysis.

Assumption 3.1. The minimal singular value of the matrix A is strictly greater than the maximal
singular value of the matrix B.

Proposition 3.1. The AVE (2) is uniquely solvable for any b ∈ IRn if Assumption 3.1 is satisfied.

Proof. Please see [9, Proposition 2.3] for a proof. 2

Proposition 3.2. Let Φi(µ, x) for i = 1, · · · , 8 be defined as in (24). Then, we have

13



(a) Hi(µ, x) = 0 if and only if x solves the AVE (2);

(b) Hi is continuously differentiable on IRn\ {0} with the Jacobian matrix given by

∇Hi(µ, x) := [A+B∇Φi(µ, x)] , (27)

where

∇Φi(µ, x) :=



∂φi(µ, x1)

∂x1
0 · · · 0

0
∂φi(µ, x2)

∂x2
· · · 0

...
...

. . .
...

0 · · · 0
∂φi(µ, xn)

∂xn


.

Proof. The arguments are straightforward and we omit them. 2

Proposition 3.3. Let Hi and ∇Hi be given as in (23) and (27), respectively. Suppose that Assumption
3.1 holds. Then, ∇Hi(µ, x) is invertible at any x ∈ IRn and µ > 0.

Proof. The result follows from Proposition 3.2 immediately. 2

Proposition 3.4. Let Ψ : IRn → IR+ be given by (25). Then, the following results hold.

(a) Ψ(x) ≥ 0,∀(µ, t) ∈ IR++ × IR and Ψ(µ, x) = 0 if and only if x solve the AVE (2).

(b) The function Ψ(x) is continuously differentiable on IRn+1\ {0} with

∇Ψ(µ, x) = ∇HTH(µ, x),

where ∇H is the Jacobian of H(µ, x).

(c) The function Ψ(w(t)) is nonincreasing with respect to t.

Proof. Parts (a)-(b) follow from Proposition 3.2 immediately.

For part (c), we observe that

dΨ(w(t))

dt
=

〈
dw

dt
,∇Ψ(µ, x)

〉
= 〈−ρ∇Ψ(µ, x),∇Ψ(µ, x)〉
= −ρ ‖∇Ψ(µ, x)‖2 < 0,

for all x ∈ Ω \ {x∗}. Then, the desired result follows. 2
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4 Stability and Existence

In this section, we first adress the relation between the solution of AVE (1) and the equilibrium point of
neural network (26). Then, we discuss the issues of the stability and the the solution trajectory of the
neural network (26).

Lemma 4.1. Let x∗ be a equilibrium of the neural network (26) and suppose that the singular values of
A ∈ IRn×n exceed 1. Then x∗ solves the system (1).

Proof. Since ∇ (Ψ(w∗)) = ∇HT
i Hi(w

∗) and from the Proposition 3.3 obtain ∇H is nonsingular. It is
clear to see that

∇ (Ψ(w∗)) = 0,

if and only if Hi(w
∗) = 0. 2

Theorem 4.1. (a) For any initial point w0 = w(t0), there exists a unique continuously maximal solu-
tion w(t) with t ∈ [t0, τ) for the neural network (26).

(b) If the level set L(w0) :=
{
w | ‖Hi(w)‖2 ≤ ‖H(w0)‖2

}
is bounded, then τ can be extended to ∞.

Proof. This proof is exactly the same as the one in [33, Proposition 3.4], so we omit it here. 2

Now, we are going to analyze the stability of an isolated equilibrium x∗ of the neural network (26),
which is to assert that ∇Ψ(x∗) = 0 and ∇Ψ(x) 6= 0 for x ∈ Ω \ {x∗}, Ω is a neighborhood of x∗.

Theorem 4.2. If the singular values of A ∈ IRn×n exceed 1, then the isolated equilibrium x∗ of the
neural network (26) is asymptotically stable, and hence Lyapunov stable.

Proof. We consider the Lyapunov function Ψ(w) : Ω → IR defined by (25). First, it is clear that
Ψ(x) ≥ 0 and from (a) of Proposition 3.4 we have Ψ(·) is continuously differentiable. Considering the
singular values of A exceed 1 and Proposition 3.3 we obtain ∇H(w∗) is nonsingular. Then applying
∇H(x∗) and Lemma 4.1, we have H(w∗) = 0 and Ψ(w∗) = 0. Furthermore, if Ψ(w) = 0 on Ω, then
H(w) = 0 and hence ∇Ψ = 0 on Ω. This yields that w = w∗ since w∗ is isolated.

Secondly, consider the (b) of Proposition 3.4 and Lemma 2.2, it says the isolated equilibrium x∗ is
asymptotically stable, and hence is Lyapunov stable. 2

Theorem 4.3. If the singular values of A ∈ IRn×n exceed 1, then the isolated equilibrium x∗ of the
neural network (26) is exponentially stable.

Proof. The proof is routine and similar to that in the literature. For completeness, we include it again.
Let Ω = IR++ × IRn, it is clear that H(·) is continuously differentiable, which implies

H(w) = H(w∗) +∇H(w∗)T (w − w∗) + o(‖w − w∗‖), ∀w ∈ Ω. (28)

Let g(t) := 1
2‖w(t)− w∗‖2 and we compute the derivative of g(t) as below:

dg(t)

dt
=

(
dw

dt

)T
(w(t)− w∗) = −ρ

2
∇(‖H(w)‖2)T (w(t)− w∗)

= −ρ (∇H(w) ·H(w))T (w(t)− w∗) = −ρH(w)T∇H(w)T (w(t)− w∗)
= −ρ (w(t)− w∗)T∇H(w∗)∇H(w)T (w(t)− w∗)− ρ o(‖w − w∗‖)T∇H(w)T (w(t)− w∗),
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where the last equality is due to (28). To proceed, we claim two assertions. First, we claim that
(w − w∗)T∇H(w∗)∇H(w)T (w − w∗) ≥ κ||w − w∗||2, for some κ. To see this, from the Proposition 3.3
and Proposition 3.4, we know ∇H(w) is nonsingular and H is a continuously differentiable function,
which implies the matrix ∇H(w∗)∇H(w∗)T is symmetric and positive semi-definite. Hence, we have
(w − w∗)T∇H(w∗)∇H(w∗)T (w − w∗) ≥ κ1‖w − w∗‖2 > 0 over Ω \ {w∗} for some κ1 ≥ 0. Then, by the
continuity of ∇H(·), we can conclude that

(w − w∗)T∇H(w∗)∇H(w)T (w − w∗) ≥ κ‖w − w∗‖2 > 0, for some κ ≥ 0.

Secondly, we claim that

−ρ o(‖w − w∗‖)T∇H(w)T (w(t)− w∗) ≤ ε‖w − w∗‖2, for some ε > 0.

This is because that∣∣− ρ o(‖w − w∗‖)T∇H(w)T (w(t)− w∗)
∣∣

‖w − w∗‖2
≤ ρ‖∇H(w)‖

(
‖o(‖w − w∗‖)‖
‖w − w∗‖

)
,

where the right-hand side vanishes eventually. Thus, it yields that

−ρ o(‖w − w∗‖)T∇H(w)T (w(t)− w∗) ≤ ε‖w − w∗‖2, for some ε > 0.

Now, from the above two assertions and noting that g(t) = 1
2‖w(t)− w∗‖2, we have

dg(t)

dt
≤ 2(−ρκ+ ε)g(t),

which gives
g(t) ≤ e2(−ρκ+ε)tg(t0).

Thus, we have
‖w(t)− w∗‖ ≤ e(−ρκ+ε)t ‖w(t0)− w∗‖,

which says w∗ is exponentially stable as we can set ρ larger enough such that −ρκ + ε < 0. Then, the
proof is complete. 2

5 Numerical Results

In order to demonstrate the effectiveness of the proposed neural network, we test several examples for
our neural network (26) in this section. The numerical implementation is coded by Mathematica 11.3
and the ordinary differential equation solver adopted is NDSolve[ ], which uses an Runge-Kutta (2,3)
formula. The initial point of each problems are selected by randomly and the initial point is same for
different smoothing functions. The results are collected together in Tables 1-4, where

φi denotes the smoothing functions φi, i = 1, · · · , 8,
N denotes the number of iterations,
t denotes the time when algorithm terminates,
Er denotes the value of ‖x(t)− x∗‖ when algorithm terminates,
H(xt) denotes the value of ‖H(x(t)) = ‖Ax− |x| − b‖ when algorithm terminates,
CT denotes the CPU time in seconds.

Example 5.1. Consider the following absolute value equation where

A =


10 1 2 0
1 11 3 1
0 2 12 1
1 7 0 13

 , b =


12
15
14
20

 .
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Table 1: computing results of Example 5.1 (dt=0.2)
function N t Er H(x0) CT
φ1 34 6.8 9.3686 ∗ 10−7 0.0000136037 1.5090863
φ2 36 7.2 8.70587 ∗ 10−7 0.0000126414 0.7760444
φ3 38 7.6 8.41914 ∗ 10−7 0.000012225 0.4980285
φ4 2 0.4 2.90785 ∗ 10−15 1.59872 ∗ 10−14 0.0340019
φ5 2 0.4 1.11772 ∗ 10−12 8.41527 ∗ 10−12 0.0740043
φ6 10 2. 7.52691 ∗ 10−7 0.0000109295 0.1150066
φ7 2 0.4 1.29976 ∗ 10−12 8.61527 ∗ 10−12 0.0730042
φ8 34 6.8 9.3686 ∗ 10−7 0.0000136037 0.6880393

We can verify that one solution of the absolute value equations is x∗ = (1, 1, 1, 1). The parameter
ρ is set to be 1, time step is set to be dt = 0.2 and the initial point is generated by randomly. Table
1 summarizes the computing results for Example 5.1. From Table 1, we see that nor matter from the
trajectory convergence time, the error, or the computation time, the smoothing function φ4, φ5, φ7
perform significantly better than other functions. Figure 3 depicts the norm error ‖x(t) − x∗‖ with
various time. This figure indicates the smoothing functions φ4, φ5, φ7 also outperform than others (it
follows by φ6).
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Figure 3: Convergence behaviour of the error ‖x(t)− x∗‖ for φi, i = 1, · · · , 8, in Example
5.1 (dt=0.2).

Example 5.2. Consider the following linear complementary problem: find x ∈ IRn such that

x ≥ 0, Mx+ q ≥ 0, 〈x,Mx+ q〉 = 0,

where

M =


1 2 2 2
0 1 2 2
0 0 1 2
0 0 0 1

 , q =


−1
−1
−1
−1

 .

17



Table 2: computing results of Example 5.2 (dt=0.2)
function N T Er H(x0) CT
φ1 55 11 9.84216 ∗ 10−7 2.03995 ∗ 10−7 3.1531804
φ2 57 11.4 9.14593 ∗ 10−7 1.89565 ∗ 10−7 1.3690783
φ3 59 11.8 8.84473 ∗ 10−7 1.83322 ∗ 10−7 0.6920396
φ4 2 0.4 2.67859 ∗ 10−9 4.86096 ∗ 10−10 0.0370021
φ5 2 0.4 2.68658 ∗ 10−9 4.87548 ∗ 10−10 0.1510086
φ6 18 3.6 9.56666 ∗ 10−7 2.57215 ∗ 10−7 0.2210127
φ7 2 0.4 2.16413 ∗ 10−9 3.92736 ∗ 10−10 0.1600091
φ8 55 11 9.84216 ∗ 10−7 2.03995 ∗ 10−7 1.5320877

Because of 1 is the eigenvalue of M , we use the idea given as in [37] in which multiplying by positive
constant λ = 3. Then, we transform the new linear complementary problem into the following AVE by
the method introduced in [14]:

A =


2 −3 6 −12
0 2 −3 6
0 0 2 −3
0 0 0 2

 , b =


24
−12

6
−3

 .

Again, we can verify that one solution of the absolute value equation is x∗ = (−3, 3, 3,−1). The parameter
ρ is set to be 1000, time step is set to be dt = 0.2 and the initial point is generated by randomly. Table
2 presents the computing results for Example 5.2 and Figure 4 demonstrates the norm error ‖x(t)− x∗‖
with various time. From Table 2 and Figure 4, we also see that the smoothing functions φ4, φ5, φ7
perform better than others (followed by φ6). This phenomenon is similar to that appeared in Example
5.1.
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Figure 4: Convergence behaviour of the error ‖x(t)− x∗‖ for φi, i = 1, · · · , 8, in Example
5.2.
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Example 5.3. Consider the following linear complementary problem: find x ∈ IRn such that

x ≥ 0, Mx+ q ≥ 0, 〈x,Mx+ q〉 = 0,

where

M =


1 −4 1 0
0 1 0 1
−1 0 0 0

0 −1 0 0

 , q =


−5
−5

1
1

 .

Likewise, we can transform this linear complementary problem into an AVE by the method introduced
in [14], where

A =


−1 8 −2 8

0 −1 0 −2
2 −8 1 −8
0 2 0 1

 , b =


−24

8
22
−10

 .

One solution of this absolute value equation is x∗ = (−1,−1,−8,−4). The parameter ρ is set to be 10,
time step is set to be dt = 0.2 and the initial point is generated by randomly. Table 3 summarizes the
computing results for Example 5.3 and Figure 5 depicts the norm error ‖x(t) − x∗‖ with various time.
From Table 3 and Figure 5, we see that performance of the smoothing function φ4, φ5, φ6, φ7 is better
than others.
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Figure 5: Convergence behaviour of the error ‖x(t)− x∗‖ for φi, i = 1, · · · , 8, in Example
5.3.

Example 5.4. Consider the AVE, where the matrix A of which all the singular values are greater than
1 is generated by the following Mathematica procedure:

R = RandomInteger[{0,50},{n,n}];

A = R.R + n*IdentityMatrix[n];

b = (A - IdentityMatrix[n]).Table[1,n];

The parameter ρ is set to be 1, time step is set to be dt = 0.1 and the initial point is generated by
randomly. When the dimension n = 50, In Table 4 presents the computing results for Example 5.4 and
Figure 6 shows the norm error ‖x(t) − x∗‖ with various time. For this AVE with high dimension, the
smoothing functions φ4, φ5, φ6, φ7 is again the leading group regarding the efficiency.
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Table 3: computing results of Example 5.3 (dt=0.2)
function N T Er H(x0) CT
φ1 48 9.6 8.77421 ∗ 10−7 8.27241 ∗ 10−7 2.6401510
φ2 49 9.8 9.95875 ∗ 10−7 9.3892 ∗ 10−7 1.0670610
φ3 51 10.2 9.63078 ∗ 10−7 9.07998 ∗ 10−7 0.6060347
φ4 9 1.8 1.88878 ∗ 10−8 8.88851 ∗ 10−9 0.2820161
φ5 9 1.8 1.89870 ∗ 10−8 8.93517 ∗ 10−9 0.3770216
φ6 15 3.0 7.23527 ∗ 10−7 1.06615 ∗ 10−6 0.1870107
φ7 9 1.8 1.85496 ∗ 10−8 8.72934 ∗ 10−9 0.4020229
φ8 48 9.6 8.77421 ∗ 10−7 8.27241 ∗ 10−7 1.2330706

Table 4: computing results of Example 5.4
function N T Er H(x0) CT
φ1 58 5.8 9.97651 ∗ 10−7 0.000118298 465.6496337
φ2 62 6.2 9.27099 ∗ 10−7 0.000109929 191.1859352
φ3 65 6.5 9.90869 ∗ 10−7 0.000117487 162.2222786
φ4 4 0.4 1.48112 ∗ 10−7 5.51822 ∗ 10−7 11.9286822
φ5 4 0.4 1.49218 ∗ 10−7 5.55955 ∗ 10−7 32.2308435
φ6 14 1.4 8.85812 ∗ 10−7 0.000105037 35.2450159
φ7 4 0.4 1.48181 ∗ 10−7 5.52006 ∗ 10−7 33.0088880
φ8 58 5.8 9.97689 ∗ 10−7 0.000118298 207.7848846

20



Out[ ]=

0 1 2 3 4 5 6

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

t


x
(t
)-
x
*


ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

Figure 6: Convergence behaviour of the error ‖x(t)− x∗‖ for φi, i = 1, · · · , 8, in Example
5.4.

6 Concluding Remarks

In this conclusion section, we summarize our findings based from the preceding simulations. In general,
we can conclude that the smoothing functions φ4, φ5, φ6, φ7 are effective functions that work well along
with the neural network (26). In particular, all these smoothing functions are produced from the convo-
lution way. The other ways like convex conjugate way, Moreau proximal way, Nesterov’s smoothing way,
and infimal-convolution way, do not offer effective smoothing functions for the proposed neural network
approach. This is a very interesting discovery, which deserves further investigation. For example, what
kind of factor causes this phenomenon theoretically? Is similar phenomenon occurs in other algorithms?
We leave them for our future study.

To close this section, we point out one observation. If we are given two smoothing functions ψ1

and ψ2 for f , then tψ1 + (1 − t)ψ2 is also a smoothing function for f . This means that any convex
combination of two smoothing functions for |x| is again a smoothing function for |x|. In particular, we
choose ψ1 ∈ {φ1, φ2, φ3} and pick another ψ2 ∈ {φ4, φ5, φ6, φ7, φ8} to make new smoothing functions for
|x| (through 15 convex combinations and with different value t ∈ [0, 1]). In other words, we can obtain
many more smoothing functions. How do these types of smoothing functions perform? We leave it as
our future study.
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