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a b s t r a c t 

In this paper, we consider a family of neural networks for solving nonlinear complementarity problems 

(NCP). The neural networks are constructed from the merit functions based on three classes of NCP- 

functions: the generalized natural residual function and its two symmetrizations. In this paper, we first 

characterize the stationary points of the induced merit functions. Growth behavior of the complemen- 

tarity functions is also described, as this will play an important role in describing the level sets of the 

merit functions. In addition, the stability of the steepest descent-based neural network model for NCP 

is analyzed. We provide numerical simulations to illustrate the theoretical results, and also compare the 

proposed neural networks with existing neural networks based on other well-known NCP-functions. Nu- 

merical results indicate that the performance of the neural network is better when the parameter p as- 

sociated with the NCP-function is smaller. The efficiency of the neural networks in solving NCPs is also 

reported. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction and motivation 

Given a function F : IR 

n → IR 

n , the nonlinear complementarity

problem (NCP) is to find a point x ∈ IR 

n such that 

x ≥ 0 , F (x ) ≥ 0 , 〈 x, F (x ) 〉 = 0 , (1)

where 〈·, · 〉 is the Euclidean inner product and ≥ means the

component-wise order on IR 

n . Throughout this paper, we assume

that F is continuously differentiable, and let F = (F 1 , . . . , F n ) 
T with

F i : IR 

n → IR for i = 1 , . . . , n . 

For decades, substantial research efforts have been devoted in

the study of nonlinear complementarity problems because of their

wide range of applications in many areas such as optimization,

operations research, engineering, and economics [8,9,12,48] . Some

source problems of NCPs include models of equilibrium problems

in the aforementioned fields and complementarity conditions in

constrained optimization problems [9,12] . 

There are many methods in solving the NCP (1). In general,

these solution methods may be categorized into two classes, de-

pending on whether or not they make use of the so-called NCP-

function (see Definition 2.1 ). Some techniques that usually exploit

NCP-functions include merit function approach [11,19,26] , nons-
� The research is supported by Ministry of Science and Technology, Taiwan. 
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ooth Newton method [10,45] , smoothing methods [4,31] , and

egularization approach [17,37] . On the other hand, interior-point

ethod [29,30] and proximal point algorithm [33] are some well-

nown approaches to solve (1) which do not utilize NCP-functions

n general. The excellent monograph of Facchinei and Pang [9] pro-

ides a thorough survey and discussion of solution methods for

omplementarity problems and variational inequalities. 

The above numerical approaches can efficiently solve the NCP;

owever, it is often desirable in scientific and engineering appli-

ations to obtain a real-time solution. One promising approach

hat can provide real-time solutions is the use of neural networks,

hich were first introduced in optimization by Hopfield and Tank

n the 1980s [13,38] . Neural networks based on circuit implemen-

ation exhibit real-time processing. Furthermore, prior researches

how that neural networks can be used efficiently in linear and

onlinear programming, variational inequalities and nonlinear

omplementarity problems [2,7,14,15,20,23,42–44,47,49] and as

ell as in other fields [25,28,34,36,39,40,46,50,51,55] . 

Motivated by the preceding discussion, we construct a new

amily of neural networks based on recently discovered discrete-

ype NCP-functions to solve NCPs. Neural networks based on the

ischer-Burmeister (FB) function [23] and the generalized Fischer-

urmeister function [2] have already been studied. The latter

CP-functions, which have been extensively used in the different

olution methods, are strongly semismooth functions, which often

rovide efficient performance [9] . In this paper, we explore the use

f smooth NCP-functions as building blocks of the proposed neural

https://doi.org/10.1016/j.neucom.2019.05.078
http://www.ScienceDirect.com
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etworks. Moreover, the NCP-functions we consider herein have

iecewise-defined formulas, as opposed to the FB and generalized

B functions which have simple formulations. In turn, the subse-

uent analysis is more complicated. Nevertheless, we show that

he proposed neural networks may offer promising results too. The

nalysis and numerical reports in this paper, on the other hand,

ave the way for the use of piecewise-defined NCP-functions. 

This paper is organized as follows: In Section 2 , we revisit

quivalent reformulations of the NCP (1) using NCP-functions. We

lso elaborate on the purpose and limitations of the paper. In

ection 3 , we review some mathematical preliminaries related

o nonlinear mappings and stability analysis. We also summarize

ome important properties of the three classes of NCP-functions

e used in constructing the neural networks. In Section 4 , we de-

cribe the general properties of the neural networks, which include

he characterization of stationary points of the induced merit func-

ions. In Section 5 , we look at the growth behavior of the three

lasses of NCP-functions considered. This result will be used to

rove the boundedness of the level sets of the induced merit func-

ions. We also prove some stability properties of the neural net-

orks. In Section 6 , we present the results of our numerical simu-

ations. Conclusions and some recommendations for future studies

re discussed in Section 7 . 

Throughout the paper, IR 

n denotes the space of n -dimensional

eal column vectors, IR 

m × n denotes the space of m × n real matri-

es, and A 

T denotes the transpose of A ∈ IR 

m × n . For any differen-

iable function f : IR 

n → IR , ∇f ( x ) means the gradient of f at x . For

ny differentiable mapping F = (F 1 , . . . , F m 

) T : IR 

n → IR 

m 

, ∇F (x ) =
 ∇ F 1 (x ) · · · ∇ F m 

(x )] ∈ IR 

n ×m denotes the transposed Jacobian of F

t x . We assume that p is an odd integer greater than 1, unless

therwise specified. 

. Overview and contributions of the paper 

In this section, we give an overview of this research. We be-

in by looking at equivalent reformulations of the nonlinear com-

lementarity problem (1) using NCP-functions, which is defined as

ollows. 

efinition 2.1. A function φ: IR × IR → IR is called an NCP-function

f it satisfies 

(a, b) = 0 ⇐⇒ a ≥ 0 , b ≥ 0 , ab = 0 . 

The well-known natural-residual function given by 

NR 
(a, b) = a − (a − b) + = min { a, b} 

s an example of an NCP-function, which is widely used in solv-

ng NCP. Recently, in [3] , the discrete-type generalization of φ
NR 

is

roposed and described by 

p 
NR 

(a, b) = a p − (a − b) p + where p > 1 is odd integer . (2)

t is shown in [3] that φp 
NR 

is twice continuously differentiable.

owever, its surface is not symmetric, which may result to diffi-

ulties in designing and analyzing solution methods [16] . To con-

uer this, two symmetrizations of the φp 
NR 

are presented in [1] . A

atural symmetrization of φp 
NR 

is given by 

p 
S −NR 

(a, b) = 

{ 

a p − (a − b) p if a > b, 

a p = b p if a = b, 

b p − (b − a ) p if a < b. 

(3) 

he above NCP-function is symmetric, but is only differentiable

n { (a, b) | a � = b or a = b = 0 } . It was however shown in [16] that
p 
S −NR 

is semismooth and is directionally differentiable. The second 

ymmetrization of φp is described by 

NR 
 

p 
S −NR 

(a, b) = 

{ 

a p b p − (a − b) p b p if a > b, 

a p b p = a 2 p if a = b, 

a p b p − (b − a ) p a p if a < b, 

(4) 

hich possesses both differentiability and symmetry. The functions
p 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

are three classes of the four discrete-type

amilies of NCP-functions which are recently discovered, together

ith the discrete-type generalization of the Fischer-Burmeister

unction given by 

p 
D −FB 

(a, b) = 

(√ 

x 2 + y 2 
)p 

− (x + y ) p . (5)

 comprehensive discussion of their properties is presented in [16] .

To see how an NCP-function φ can be useful in solving NCP (1),

e define �: IR 

n → IR 

n by 

(x ) = 

⎛ 

⎝ 

φ(x 1 , F 1 (x )) 
. . . 

φ(x n , F n (x )) 

⎞ 

⎠ . (6) 

t is easy to see that x ∗ solves NCP (1) if and only if �(x ∗) = 0 (see

lso Proposition 4.1 (a)). Thus, the NCP is equivalent to the non-

inear system of equations �(x ) = 0 . Meanwhile, if φ is an NCP-

unction, then ψ : IR × IR → IR + given by 

(a, b) := 

1 

2 

| φ(a, b) | 2 (7)

s also an NCP-function. Accordingly, if we define � : IR 

n → IR + by

(x ) = 

n ∑ 

i =1 

ψ(x i , F i (x )) = 

1 

2 

‖ �(x ) ‖ 

2 , (8)

hen the NCP can be reformulated as a minimization problem

in x ∈ IR n �(x ) . Hence, � given by (8) is a merit function for the

CP, that is, its global minimizer coincides with the solution of

he NCP. Consequently, it is only natural to consider the steepest

escent-based neural network 

dx (t) 

dt 
= −ρ∇�(x (t)) , x (t 0 ) = x 0 , (9)

here ρ > 0 is a time-scaling factor. The above neural network

9) is also motivated by the ones considered in [23] and in [2] ,

here the NCP functions used are the Fischer-Burmeister (FB)

unction given by 

FB 
(a, b) = 

√ 

a 2 + b 2 − (a + b) , (10)

nd the generalized Fischer–Burmeister functions given by 

p 
FB 
(a, b) = ‖ (a, b) ‖ p − (a + b) where p ∈ (1 , + ∞ ) , (11)

espectively. We aim to compare the neural networks based on

he generalized natural-residual functions (2), (3) and (4) with the

ell-studied networks based on the FB functions (10) and (11) . 

One of the contributions of this paper lies on establishing the

heoretical properties of the generalized natural residual functions.

hese are fundamental in designing NCP-based solution methods,

nd in this paper, we use the neural network approach. Basic prop-

rties of these functions are already presented in [16] . The pur-

ose of this paper is to elaborate some more properties and ap-

lications of the newly discovered discrete-type classes of NCP-

unctions given by (2), (3) and (4) . Specifically, we look at the

roperties of their induced merit functions given by (8) . First, it is

mportant for us to determine the correspondence between the so-

utions of NCP (1) and the stationary points of � . From the above

iscussion (also see Proposition 4.1 (d)), we already know that an

CP solution is a stationary point. On the other hand, we also

ant to determine which stationary points of � are solutions to

he NCP. For certain NCP functions such as the Mangasarian and
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Solodov function [19] , FB function [11] and generalized FB function

[5] , a stationary point of the merit function was shown to be a so-

lution to the NCP when F is monotone or a P 0 -function. It should

be pointed out that these NCP-functions possess the following nice

properties: 

(P1) ∇ a ψ( a, b ) ·∇ b ψ( a, b ) ≥ 0 for all ( a, b ) ∈ IR 

2 ; and 

(P2) For all ( a, b ) ∈ IR 

2 , ∇ a ψ(a, b) = 0 ⇐⇒ ∇ b ψ(a, b) = 0 ⇐⇒
φ(a, b) = 0 . 

However, these properties are not possessed by φp 
NR 

, φp 
S −NR 

and

ψ 

p 
S −NR 

, which leads to some difficulties in the subsequent analysis.

Hence, we seek for other conditions which will guarantee that a

stationary point is an NCP solution. Furthermore, we also want to

look at the growth behavior of the functions (2), (3) and (4) . This

will play a key role in characterizing the level sets of the induced

merit functions. It must be noted that since the NCP functions

φp 
S −NR 

and ψ 

p 
S −NR 

are piecewise-defined functions, then the analyses

of their growth behavior and the properties of their induced merit

functions are more difficult, as compared with the commonly used

FB functions (10) and (11) which have simple formulations. 

Another purpose of this paper is to discuss the stability prop-

erties of the neural networks based on φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

. We

further look into different examples to see the influence of p on

the convergence of trajectories of the neural network to the NCP

solution. Finally, we compare the numerical performance of these

three types of neural networks with two well-studied neural net-

works based on the FB function [23] and generalized FB function

[2] . 

We recall that a solution x ∗ is said to be degenerate if { i | x ∗
i 

=
F i (x ∗) = 0 } is not empty. Note that if x ∗ is degenerate and φ is dif-

ferentiable at x ∗, then ∇�( x ∗) is singular. Consequently, one should

not expect a locally fast convergence of numerical methods based

on smooth NCP-functions if the computed solution is degenerate

[9,18] . Because of the differentiability of φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

on

the feasible region of the NCP problem, it is also expected that the

convergence of the trajectories of the neural network (9) to a de-

generate solution could be slow. Hence, in this paper, we will give

particular attention to nondegenerate NCPs. 

3. Preliminaries 

In this section, we review some special nonlinear mappings,

some properties of φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

, as well as some tools

from stability theory in dynamical systems that will be crucial in

our analysis. We begin with recalling concepts related to nonlinear

mappings. 

Definition 3.1. Let F = (F 1 , . . . , F n ) 
T : IR 

n → IR 

n . Then, the mapping

F is said to be 

(a) monotone if 〈 x − y, F (x ) − F (y ) 〉 ≥ 0 for all x, y ∈ IR 

n . 

(b) strictly monotone if 〈 x − y, F (x ) − F (y ) 〉 > 0 for all x, y ∈ IR 

n

and x � = y . 

(c) strongly monotone with modulus μ> 0 if 〈 x − y, F (x ) −
F (y ) 〉 ≥ μ‖ x − y ‖ 2 for all x, y ∈ IR 

n . 

(d) a P 0 -function if max 
1 ≤i ≤n 
x i � = y i 

(x i − y i )(F i (x ) − F i (y )) ≥ 0 for all x,

y ∈ IR 

n and x � = y . 

∇ψ 

p 
S −NR 

(a, b) = 

⎧ ⎨ 

⎩ 

p [ a p−1 b p −
p [ a p−1 b p , 

p [ a p−1 b p −
(e) a P -function if max 
1 ≤i ≤n 

(x i − y i )(F i (x ) − F i (y )) > 0 for all x, y ∈ IR 

n

and x � = y . 

(f) a uniform P -function with modulus κ > 0 if max 
1 ≤i ≤n 

(x i −
y i )(F i (x ) − F i (y )) ≥ κ‖ x − y ‖ 2 , for all x, y ∈ IR 

n . 

From Definition 3.1 , the following one-sided implications can be

btained: 

F is strongly monotone �⇒ F is a uniform P -function �⇒ F is a

P 0 -function. 

It is known that F is monotone (resp. strictly monotone) if and

nly if ∇F ( x ) is positive semidefinite (resp. positive definite) for all

 ∈ IR 

n . In addition, F is a P 0 -function if and only if ∇F ( x ) is a P 0 -

atrix for all x ∈ IR 

n ; that is, its principal minors are nonnegative.

urther, if ∇F ( x ) is a P -matrix (that is, its principal minors are pos-

tive) for all x ∈ IR 

n , then F is a P -function. However, we point out

hat a P -function does not necessarily have a Jacobian which is a

 -matrix. 

The following characterization of P -matrices and P 0 -matrices

ill be useful in our analysis. 

emma 3.1. A matrix M ∈ IR 

n × n is a P-matrix (resp. a P 0 -matrix) if

nd only if whenever x i ( Mx ) i ≤ 0 (resp. x i ( Mx ) i < 0 ) for all i, then x =
 . 

roof. Please see [6] . �

The following two lemmas summarize some properties of φp 
NR 

,
p 
S −NR 

and ψ 

p 
S −NR 

that will be useful in our subsequent analysis. 

emma 3.2. Let p > 1 be an odd integer. Then, the following hold. 

(a) The function φp 
NR 

is twice continuously differentiable. Its gradi-

ent is given by 

∇φp 
NR 

(a, b) = p 

[
a p−1 − (a − b) p−2 (a − b) + 

(a − b) p−2 (a − b) + 

]
. 

(b) The function φp 
S −NR 

is twice continuously differentiable on the

set � := {( a, b ) | a � = b } . Its gradient is given by 

∇φp 
S −NR 

(a, b) = 

{
p [ a p−1 − (a − b) p−1 , (a − b) p−1 ] T if a > b, 

p [ (b − a ) p−1 , b p−1 − (b − a ) p−1 ] T if a < b. 

Further, φp 
S −NR 

is differentiable at (0,0) with ∇φp 
S −NR 

(0 , 0) =
[0 , 0] T . 

(c) The function ψ 

p 
S −NR 

is twice continuously differentiable. Its gra-

dient is given by 

b) p−1 b p , a p b p−1 − (a − b) p b p−1 + (a − b) p−1 b p ] T if a > b, 

1 ] T = pa 2 p−1 [1 , 1 ] T if a = b, 

a ) p a p−1 + (b − a ) p−1 a p , a p b p−1 − (b − a ) p−1 a p ] T if a < b. 

roof. Please see [3, Proposition 2.2] , [1, Propositions 2.2 and 3.2] ,

nd [16, Proposition 4.3] . �

emma 3.3. Let p > 1 be a positive odd integer. Then, the following

old. 

(a) If φ ∈ { φp 
NR 

, φp 
S −NR 

} , then φ( a, b ) > 0 ⇐⇒ a > 0, b > 0 . On the

other hand, ψ 

p 
S −NR 

(a, b) ≥ 0 on IR 

2 . 

(b) ∇ a φp 
NR 

(a, b) · ∇ b φ
p 
NR 

(a, b) { 

> 0 on { (a, b) | a > b > 0 or a > b > 2 a } , 
= 0 on { (a, b) | a ≤ b or a > b = 2 a or a > b = 0 } , 
< 0 otherwise , 

∇ a φp 
S −NR 

(a, b) · ∇ b φ
p 
S −NR 

(a, b) > 0 on { (a, b) | a > b > 0 }⋃ { (a, b) | b > a > 0 } , and 

∇ a ψ 

p 
S −NR 

(a, b) · ∇ b ψ 

p 
S −NR 

(a, b) > 0 on the first quadrant IR 

2 
++ . 
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(c) If φ ∈ { φp 
NR 

, φp 
S −NR 

} , then ∇ a φ(a, b) · ∇ b φ(a, b) = 0 provided

that φ(a, b) = 0 . On the other hand, ψ 

p 
S −NR 

(a, b) = 0 ⇐⇒
∇ψ 

p 
S −NR 

(a, b) = 0 . In particular, we have ∇ a ψ 

p 
S −NR 

(a, b) ·
∇ b ψ 

p 
S −NR 

(a, b) = 0 provided that ψ 

p 
S −NR 

(a, b) = 0 . 

roof. Please see [16, Propositions 3.4, 4.5, and 5.4] . �

Next, we recall some materials about first order differential

quations (ODE): 

˙ 
 (t) = H(x (t)) , x (t 0 ) = x 0 ∈ IR 

n (12)

here H : IR 

n → IR 

n is a mapping. We also introduce three kinds of

tability that we will consider later. These materials can be found

n ODE textbooks; see [27] . 

efinition 3.2. A point x ∗ = x (t ∗) is called an equilibrium point

r a steady state of the dynamic system (12) if H(x ∗) = 0 . If

here is a neighborhood �∗⊆IR 

n of x ∗ such that H(x ∗) = 0 and

 ( x ) � = 0 ∀ x ∈ �∗\ { x ∗}, then x ∗ is called an isolated equilibrium point.

emma 3.4. Assume that H : IR 

n → IR 

n is a continuous mapping.

hen, for any t 0 ≥ 0 and x 0 ∈ IR 

n , there exists a local solution x ( t ) for

12) with t ∈ [ t 0 , τ ) for some τ > t 0 . If, in addition, H is locally Lip-

chitz continuous at x 0 , then the solution is unique; if H is Lipschitz

ontinuous in IR 

n , then τ can be extended to ∞ . 

efinition 3.3. (Stability in the sense of Lyapunov) Let x ( t ) be a so-

ution for (12) . An isolated equilibrium point x ∗ is Lyapunov stable

f for any x 0 = x (t 0 ) and any ε > 0, there exists a δ > 0 such that

 x (t) − x ∗‖ < ε for all t ≥ t 0 and ‖ x (t 0 ) − x ∗‖ < δ. 

efinition 3.4. (Asymptotic stability) An isolated equilibrium point

 

∗ is said to be asymptotically stable if in addition to being Lya-

unov stable, it has the property that x ( t ) → x ∗ as t → ∞ for all

 x (t 0 ) − x ∗‖ < δ. 

efinition 3.5. (Lyapunov function) Let �⊆IR 

n be an open neigh-

orhood of x̄ . A continuously differentiable function W : IR 

n → IR is

aid to be a Lyapunov function at the state x̄ over the set � for

q. (12) if 
 

W ( ̄x ) = 0 , W (x ) > 0 , ∀ x ∈ �\{ ̄x } . 
dW (x (t)) 

dt 
= ∇W (x (t)) T H(x (t)) ≤ 0 , ∀ x ∈ �. 

emma 3.5. 

(a) An isolated equilibrium point x ∗ is Lyapunov stable if there ex-

ists a Lyapunov function over some neighborhood �∗ of x ∗. 

(b) An isolated equilibrium point x ∗ is asymptotically stable if there

is a Lyapunov function over some neighborhood �∗ of x ∗ such

that 
dW (x (t)) 

dt 
< 0 for all x ∈ �∗\ { x ∗} . 

efinition 3.6. (Exponential stability) An isolated equilibrium

oint x ∗ is exponentially stable if there exists a δ > 0 such that ar-

itrary point x ( t ) of (12) with the initial condition x (t 0 ) = x 0 and

 x (t 0 ) − x ∗‖ < δ is well-defined on [0 , + ∞ ) and satisfies 

 x (t) − x ∗‖ 2 ≤ ce −ωt ‖ x (t 0 ) − x ∗‖ ∀ t ≥ t 0 , 

here c > 0 and ω > 0 are constants independent of the initial

oint. 

The following result will also be helpful in our stability analysis.

emma 3.6. Let F be locally Lipschitzian. If all V ∈ ∂F ( x ) are nonsingu-

ar, then there is a neighborhood N ( x ) of x and a constant C such that

or any y ∈ N ( x ) and any V ∈ ∂F ( y ), V is nonsingular and ‖ V −1 ‖ ≤ C
roof. Please see [32, Propositions 3.1] . �
. Neural network model 

In this section, we describe the properties of the neural net-

ork (9) based on the functions φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

. Before this,

e summarize first some important properties of � as defined in

8) for general NCP-functions. Proposition 4.1 (a) is in fact Lemma

.2 in [19] . On the other hand, Proposition 4.1 (b) and (e) are true

or all gradient systems (9) . 

roposition 4.1. Let � : IR 

n → IR + be defined as in (8) , with φ being

ny NCP-function, and let ψ be as in (7) . Suppose that F is continu-

usly differentiable. Then, 

(a) �( x ) ≥ 0 for all x ∈ IR 

n . If the NCP (1) has a solution, x is a

global minimizer of �( x ) if and only if x solves the NCP. 

(b) �( x ( t )) is a nonincreasing function of t, where x ( t ) is a solution

of (9) . 

(c) Let x ∈ IR 

n , and suppose that φ is differentiable at ( x i , F i ( x )) for

each i = 1 , . . . , n . Then 

∇�(x ) = ∇ a ψ(x, F (x )) + ∇F (x ) ∇ b ψ(x, F (x )) (13)

where 

∇ a ψ(x, F (x )) := [ ∇ a ψ(x 1 , F 1 (x )) , . . . , ∇ a ψ(x n , F n (x )) ] 
T 
, 

∇ b ψ(x, F (x )) := [ ∇ b ψ(x 1 , F 1 (x )) , . . . , ∇ b ψ(x n , F n (x )) ] 
T 
. 

(d) Let x be a solution to the NCP such that φ is differentiable at

( x i , F i ( x )) for each i = 1 , . . . , n . Then, x is a stationary point of

� . 

(e) Every accumulation point of a solution x ( t ) of neural network

(9) is an equilibrium point. 

roof. (a) It is clear that � ≥ 0. Notice that �(x ) = 0 if and only if

(x ) = 0 , which occurs if and only if φ(x i , F i (x )) = 0 for all i . Since

is an NCP-function, this is equivalent to having x i ≥ 0, F i ( x ) ≥ 0

nd x i F i (x ) = 0 . Thus, �(x ) = 0 if and only if x ≥ 0, F ( x ) ≥ 0 and

 x, F (x ) 〉 = 0 . This proves part (a). 

(b) The desired result follows from 

d�(x (t)) 

dt 
= ∇�(x (t)) T 

dx 

dt 
= ∇�(x (t)) T (−ρ∇�(x (t))) 

= −ρ‖∇�(x (t)) ‖ 

2 ≤ 0 

or all solutions x ( t ). 

(c) The formula is clear from chain rule. 

(d) First, note that from Eq. (7) , we have ∇ψ(a, b) = φ(a, b) ·
φ(a, b) . Thus, if x is a solution to the NCP, it gives ∇ψ(x i , F i (x )) =
 for all i = 1 , . . . , n . Then, it follows from formula (13) in part(c)

hat ∇�(x ) = 0 . That is, x is a stationary point of � . 

(e) Please see page 232 of [41] . �

We adopt the neural network (9) with �(x ) = 

1 
2 ‖ �(x ) ‖ 2 ,

here � is given by (6) with φ ∈ { φp 
NR 

, φp 
S −NR 

, ψ 

p 
S −NR 

} . The func-

ion � corresponding to φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

is denoted, re-

pectively, by �p 
NR 

, �p 
S1 −NR 

and �p 
S2 −NR 

. Their corresponding merit

unctions will be denoted by � p 
NR 

, � p 
S1 −NR 

and � p 
S2 −NR 

, respec-

ively. We note that by formula (13) and the differentiability of

∈ { � p 
NR 

, � p 
S1 −NR 

, � p 
S2 −NR 

} (see Proposition 4.2 ), the neural network

9) can be implemented on hardware as in Fig. 1 . 

We first establish the existence and uniqueness of the solutions

f neural network (9) . 

roposition 4.2. Let p > 1 be an odd integer. Then, the following

old. 

(a) � p 
NR 

and � p 
S2 −NR 

are both continuously differentiable on IR 

n . 

(b) � p 
S1 −NR 

is continuously differentiable on the open set � = { x ∈
n 
IR | x i � = F i (x ) , ∀ i = 1 , 2 , . . . , n } . 
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Fig. 1. Simplified block diagram for neural network (9) . This figure is lifted from 

Chen et al. [2] . 
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Consequently, the neural network (9) with � p 
NR 

or � p 
S2 −NR 

has a

unique solution for all x 0 ∈ IR 

n . The neural network (9) with � p 
S1 −NR 

has a unique solution for all x 0 ∈ �. 

Proof. Part (a) and (b) directly follow from Proposition 4.1 (c) and

Lemma 3.2 . The existence and uniqueness of the solutions follows

from Lemma 3.4 , noting the continuous differentiability of F and

� p 
NR 

, � p 
S1 −NR 

(on �), and � p 
S2 −NR 

. �

We note that because of Proposition 4.2 (b), we only consider

the neural network (9) with � = � p 
S1 −NR 

as a dynamical system

defined on the set �. Our next goal is to determine the condi-

tions such that equilibrium points of (9) are global minimizers of

� . When an NCP-function has properties (P1) and (P2) (see Intro-

duction), an equilibrium point is a global minimizer when F is a

P 0 -function. However, these properties only hold on a proper sub-

set of IR 

n for the functions φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

. Thus, we seek

for other conditions to achieve the goal. We start with the merit

function � p 
NR 

. 

Proposition 4.3. If F is strongly monotone with modulus μ> 1, then

every stationary point of � p 
NR 

is a global minimizer. 

Proof. Let x ∗ be a stationary point of � p 
NR 

, that is, ∇� p 
NR 

(x ∗) = 0 .

For convenience, we denote by A ( x ∗) and B ( x ∗) the diagonal matri-

ces such that for each i = 1 , . . . , n, 

A ii (x ∗) = (x ∗i ) 
p−1 and B ii (x ) = (x ∗i − F i (x ∗)) p−2 (x ∗i − F i (x ∗)) + . 

Then, by formula (13) and Lemma 3.2 (b), we have 

p[ A (x ∗) − B (x ∗)]�p 
NR 

(x ∗) + p∇F (x ∗) B (x ∗)�p 
NR 

(x ∗) = 0 , 

which yields 

A (x ∗)�p 
NR 

(x ∗) + (∇F (x ∗) − I) B (x ∗)�p 
NR 

(x ∗) = 0 . (14)

Analogous to the technique in [11] , pre-multiplying both sides of

(14) by (B (x ∗)�p 
NR 

(x ∗)) T leads to 

�p 
NR 

(x ∗) T [ B (x ∗) A (x ∗)]�p 
NR 

(x ∗) 

+ (B (x ∗)�p 
NR 

(x ∗)) T (∇F (x ∗) − I) B (x ∗)�p 
NR 

(x ∗) = 0 . (15)

Since p is odd integer, we have A ( x ∗) ≥ 0 and B ( x ∗) ≥ 0; and hence, 

�p 
NR 

(x ∗) T [ B (x ∗) A (x ∗)]�p 
NR 

(x ∗) ≥ 0 . 

On the other hand, since F is strongly monotone with modulus

μ> 1, defining G (x ) := F (x ) − x gives 
 

x − y, G (x ) − G (y ) 〉 = 〈 x − y, F (x ) − x − F (y ) + y 〉 
= 〈 x − y, F (x ) − F (y ) 〉 − ‖ x − y ‖ 

2 

≥ (μ − 1) ‖ x − y ‖ 

2 

> 0 , 

or all x, y ∈ IR 

n . Note then that ∇G (x ) = ∇F (x ) − I is positive def-

nite. Consequently, each term of the left-hand side of (15) is

on-negative. With (∇F (x ∗) − I) being positive definite, it yields

 (x ∗)�p 
NR 

(x ∗) = 0 . In addition, from (14) , we have A (x ∗)�p 
NR 

(x ∗) =
 . To sum up, we have proved that A ii (x ∗) φp 

NR 
(x ∗

i 
, F i (x ∗)) = 0 and

 ii (x ∗) φp 
NR 

(x ∗
i 
, F i (x ∗)) = 0 for all i . 

Now, if φp 
NR 

(x ∗
i 
, F i (x ∗)) � = 0 for some i , then we must have

 ii (x ∗) = B ii (x ∗) = 0 . Thus, (x ∗
i 
) p−1 = 0 (i.e., x ∗

i 
= 0 ), and x ∗

i 
≤

 i (x ∗) . Since φp 
NR 

is an NCP-function, the latter implies that
p 
NR 

(x i , F i (x ∗)) = 0 . Hence, φp 
NR 

(x i , F i (x ∗)) = 0 for all i , that is, x ∗ is a

lobal minimizer of � p 
NR 

. This completes the proof. �

The following proposition provides a weaker condition on F to

uarantee that a stationary point of � p 
NR 

is a global minimizer. 

roposition 4.4. If (∇F − I) is a P-matrix, then every stationary

oint of � p 
NR 

is a global minimizer. 

roof. Suppose that ∇� p 
NR 

(x ∗) = 0 . If B (x ∗)�p 
NR 

(x ∗) = 0 , then

 (x ∗)�p 
NR 

(x ∗) = 0 by Eq. (14) . As in the preceding proof, we ob-

ain �p 
NR 

(x ∗) = 0 , and hence we are done. It remains to consider

nother case that B (x ∗)�p 
NR 

(x ∗) � = 0 . Note that 

(B (x ∗)�p 
NR 

(x ∗)) i 

= (x ∗i − F i (x ∗)) p−2 (x ∗i − F i (x ∗)) + φp 
NR 

(x ∗i , F i (x ∗)) 

= 

{
0 if x ∗

i 
≤F i (x ∗) or x ∗

i 
> F i (x ∗) = 0 ,

(x ∗
i 
−F i (x ∗)) p−1 φp 

NR 
(x ∗

i 
, F i (x ∗)) if x ∗

i 
> F i (x ∗) and F i (x ∗) � = 0 . 

hus, the nonzero entries of B (x ∗)�p 
NR 

(x ∗) appear at indices i

here x ∗
i 

> F i (x ∗) and F i ( x 
∗) � = 0. To proceed, we denote 

 1 = { i | x ∗i � = 0 and (B (x ∗)�p 
NR 

(x ∗)) i � = 0 } , 
 2 = { i | x ∗i = 0 and (B (x ∗)�p 

NR 
(x ∗)) i � = 0 } . 

ith these notations, we observe the following facts. 

(i) For i ∈ I 1 , since p is odd, it is clear that the i th entry of

A (x ∗)�p 
NR 

(x ∗) and B (x ∗)�p 
NR 

(x ∗)) are both nonzero and have the

same sign. 

ii) For i ∈ I 2 , then (B (x ∗)�p 
NR 

(x ∗)) i � = 0 and (A (x ∗)�p 
NR 

(x ∗)) i = 0 . 

Because (∇F − I) is a P -matrix, it follows from Lemma 3.1 that

here exists an index j such that 

(B (x ∗)�p 
NR 

(x ∗)) j [(∇F (x ∗) − I)(B (x ∗)�p 
NR 

(x ∗))] j > 0 . 

his says that (B (x ∗)�p 
NR 

(x ∗)) j � = 0 and therefore j ∈ I 1 ∪ I 2 . Note

hat by (i) above, (A (x ∗)�p 
NR 

(x ∗)) i and (B (x ∗)�p 
NR 

(x ∗)) i have the

ame sign if j ∈ I 1 which will contradict Eq. (14) . On the other hand,

f j ∈ I 2 , we have from fact (ii) that (A (x ∗)�p 
NR 

(x ∗)) j = 0 . However,

e also have that [(∇F (x ∗) − I)(B (x ∗)�p 
NR 

(x ∗))] j � = 0 . This certainly

iolates Eq. (14) . Thus, we conclude that B (x ∗)�p 
NR 

(x ∗) = 0 , and

ence �p 
NR 

(x ∗) = 0 . Then, the proof is complete. �

emark 4.1. In fact, if the function F is nonnegative (or if we at

east have F ( x ∗) ≥ 0 for an equilibrium point x ∗), then case (ii) in

he above proof cannot happen. Thus, the above theorem is valid

ven when (∇F − I) is a P 0 -matrix by Lemma 3.1 . 

From Lemma 2.2(b) and Lemma 2.2(c), we see that the struc-

ures of ∇�p 
S1 −NR 

and ∇�p 
S2 −NR 

corresponding to the NCP-functions
p 
S −NR 

and ψ 

p 
S −NR 

are complex because of the piecewise nature of
p 
S −NR 

and ψ 

p 
S −NR 

. This makes it difficult to find conditions on F so
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hat a stationary point of � p 
S1 −NR 

or � p 
S2 −NR 

is also a global mini-

izer. However, if F is a nonnegative function, we have the follow-

ng proposition. 

roposition 4.5. Suppose that F is a nonnegative P 0 -function and

 

∗ ≥ 0 . If x ∗ is a stationary point of � p 
S1 −NR 

or � p 
S2 −NR 

, then it is a

lobal minimizer. 

roof. If we can show that properties (P1) and (P2) mentioned

n the Introduction Section hold for φp 
S −NR 

and ψ 

p 
S −NR 

on the non-

egative quadrant IR 

2 
+ , then we can proceed as in the proof of

5, Proposition 3.4] . Thus, it is enough to show that (P1) and

P2) hold on IR 

2 
+ . To simplify our notations, we denote φ1 = φp 

S −NR 
,

2 = ψ 

p 
S −NR 

, and ψ i = 

1 
2 | φi | 2 (i = 1 , 2) . Note that the domain of

� p 
S1 −NR 

is { x | x i � = F i (x ) or x i = F i (x ) = 0 } . Thus, for ψ 1 , it suf-

ces to check that it has properties (P1) and (P2) only on the set

 (a, b) ∈ IR 

2 
+ | a � = b or a = b = 0 } . 

To proceed, we observe that 

 a ψ i (a, b) = φi (a, b) ∇ a φi (a, b) and 

 b ψ i (a, b) = φi (a, b) ∇ b φi (a, b) , 

hich imply 

 a ψ i (a, b) · ∇ b ψ i (a, b) = (φi (a, b)) 2 · ∇ a φi (a, b) · ∇ b φi (a, b) , 

i = 1 , 2 . 

f a ≥ b = 0 or b ≥ a = 0 , then φi (a, b) = 0 ; and thus, the above

roduct is zero. Otherwise, the above product is positive by Lemma

.3 (b). This asserts (P1). 

To show (P2), note that it is obvious that ∇ a ψ i (a, b) =
 b ψ i (a, b) = 0 if φi (a, b) = 0 for i = 1 , 2 . 

To show the converse, it is enough to argue that if ∇ a φi (a, b) =
 or ∇ b φi (a, b) = 0 , then φi (a, b) = 0 . First, we analyze the case for

1 . Suppose that ∇ a φ1 (a, b) = 0 . From Lemma 2.2(c), 

1 

p 
∇ a φ1 (a, b) = 

{ 

a p−1 − (a − b) p−1 if a > b 
0 if a = b = 0 

(b − a ) p−1 if a < b 

or a = b = 0 , then φ1 (a, b) = 0 . For a > b , then a = | a − b| = a − b

ince p is an odd integer. Thus, b = 0 and because a > b , we ob-

ain φ1 (a, b) = 0 . For a < b , we have from (4) that (b − a ) p−1 = 0 ,

hich is impossible. This proves that ∇ a φ1 (a, b) = 0 implies that

1 (a, b) = 0 . Similarly, we can show that ∇ b φ1 (a, b) = 0 implies

hat φ1 (a, b) = 0 . This asserts (P2) for the function ψ 1 . 

Analogously, for ψ 2 , assume that ∇ a φ2 (a, b) = 0 . From Lemma

.2(d), we have 

1 

p 
∇ a φ2 (a, b) = 

{ 

a p−1 b p − (a −b) p−1 b p if a > b,

a 2 p−1 if a = b,

a p−1 b p − (b −a ) p a p−1 + (b − a ) p−1 a p if a < b.

or a = b, then a 2 p−1 = 0 , and hence a = 0 and φ2 (a, b) = 0 .

or a > b , then a p−1 b p − (a − b) p−1 b p = 0 . For b = 0 , we obtain

2 (a, b) = 0 by using a > b . Otherwise, a p−1 − (a − b) p−1 = 0 . Be-

ause p is odd and a > b , we have a = | a − b| = a − b. consequently,

 = 0 and φ2 (a, b) = 0 . For a < b , then we have from the above for-

ula for ∇ a φ2 that a p−1 b p − (b − a ) p a p−1 + (b − a ) p−1 a p = 0 . For

 = 0 , then φ2 (a, b) = 0 due to a < b . Otherwise, a > 0 and 

 = b p − (b − a ) p + (b − a ) p−1 a 

= b p − (b − a ) p−1 (b − 2 a ) 

= (a + k ) p − k p−1 (k − a ) where k = b − a > 0 

= 

p−1 ∑ 

i =0 

(
p 

i 

)
a p−i k i + ak p−1 
> 0 t
hich is a contradiction. To sum up, we have shown that

 a φ2 (a, b) = 0 implies that φ2 (a, b) = 0 . Similarly, it can be veri-

ed φ2 (a, b) = 0 provided ∇ b φ2 (a, b) = 0 . Thus, ψ 2 possesses the

roperty (P2). This completes the proof. �

. Stability analysis 

We now look at the properties of the neural network (9) re-

ated to the behavior of its solutions. We have the following con-

equences, which easily follow from Propositions 4.1 (a), 4.1 (d), 4.4 ,

nd 4.5 . 

roposition 5.1. Consider the neural network (9) with � ∈
 � p 

NR 
, � p 

S1 −NR 
, � p 

S2 −NR 
} . 

(a) Every solution of the NCP is an equilibrium point. 

(b) If (∇F − I) is a P-matrix, then every equilibrium point of

(9) with � = � p 
NR 

solves the NCP. 

(c) If F is a nonnegative P 0 -function, every equilibrium point x ∗ ≥ 0

of (9) with � ∈ { � p 
S1 −NR 

, � p 
S2 −NR 

} solves the NCP. 

Theorem 5.1 below addresses the boundedness of the level sets

f � and convergence of the trajectories of the neural network.

efore we state this theorem, we need the following lemma. 

emma 5.1. Let { (a k , b k ) } ∞ 

k =1 
⊆ IR 

2 such that | a k | → ∞ and | b k | → ∞
s k → ∞ . Then, | φp 

NR 
(a k , b k ) | → ∞ , | φp 

S −NR 
(a k , b k ) | → ∞ , and

 ψ 

p 
S −NR 

(a k , b k ) | → ∞ . 

roof. (a) First, we verify that | φp 
S −NR 

(a k , b k ) | → ∞ . To proceed, we

onsider three cases. 

(i) Suppose a k → ∞ and b k → ∞ . Note that for all x ∈ [ −1 , 0] and

 ∈ N , there holds 

(1 + x ) n ≤ (1 − nx ) −1 

hich is a useful inequality. Thus, when a > b > 0, we have 

p 
S −NR 

(a, b) = a p − (a − b) p = a p − a p 
(

1 − b 

a 

)p 

≥ a p − a p 
(

1 − p 

(
− b 

a 

))−1 

= a p − a p 
(

a 

a + pb 

)
= 

pa p b 

a + pb 

≥ pa p−1 b 

1 + p 

≥ pb p 

1 + p 
. 

imilarly, φp 
S −NR 

(a, b) ≥ pa p 

1+ p for b > a > 0. Thus, φp 
S −NR 

(a k , b k ) → ∞
s k → ∞ . 

(ii) Suppose a k → −∞ and b k → −∞ . Observe that
p 
S −NR 

(a, b) ≤ a p when a > b , and φp 
S −NR 

(a, b) ≤ b p when a < b .

hus, φp 
S −NR 

(a k , b k ) → −∞ as k → ∞ . 

(iii) Suppose a k → ∞ and b k → −∞ . For a > 0 and b < 0, we

ave 

(a − b) p ≥ a p + (−b) p = a p − b p . 

hus, φp 
S −NR 

(a, b) = a p − (a − b) p ≤ b p and we conclude that
p 
S −NR 

(a k , b k ) → −∞ as k → ∞ . In the case that a k → −∞ and

 

k → ∞ , we also have φp 
S −NR 

(a k , b k ) → −∞ as k → ∞ by symmetry

f φp 
S −NR 

. 

(b) Next, we show that | φp 
NR 

(a k , b k ) | → ∞ . Again, we consider

hree cases. 
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(i) Suppose that a k → −∞ . Since φp 
NR 

(a, b) = a p − (a − b) p + ≤ a p

for all ( a, b ) ∈ IR 

2 , it is trivial to see that φp 
NR 

(a k , b k ) → −∞ . 

(ii) Suppose that a k → ∞ and b k → ∞ . For a > b > 0, then we

have 

φp 
NR 

(a, b) = φp 
S −NR 

(a, b) ≥ pb p 

1 + p 
. 

For 0 ≤ a < b , it is clear that φp 
NR 

(a, b) = a p . Then, we conclude that

φp 
NR 

(a k , b k ) → ∞ . 

(iii) Suppose that a k → ∞ and b k → −∞ . For a > 0 and b < 0, we

have 

φp 
NR 

(a, b) = φp 
S −NR 

(a, b) ≤ b p 

and so φp 
NR 

(a k , b k ) → −∞ . Thus, we have proved that

| φp 
NR 

(a k , b k ) | → ∞ . 

(c) The last limit, | ψ 

p 
S −NR 

(a k , b k ) | → ∞ , follows from the fact

that 

ψ 

p 
S −NR 

(a, b) = 

{ 

φp 
S −NR 

(a, b) b p if a > b, 

a p b p = a 2 p if a = b, 

φp 
S −NR 

(b, a ) a p if a < b. 

and the inequalities obtained above for φp 
S −NR 

. �

Theorem 5.1. Let F be a uniform P-function and let � ∈
{ � p 

NR 
, � p 

S1 −NR 
, � p 

S2 −NR 
} . 

(a) The level sets L ( � , γ ) := { x ∈ IR 

n | �( x ) ≤γ } of � are bounded

for any γ ≥ 0 . Consequently, the trajectory x ( t ) through any ini-

tial condition x 0 ∈ IR 

n is defined for all t ≥ 0 . 

(b) The trajectory x ( t ) of (9) through any x 0 ∈ IR 

n converges to an

equilibrium point. 

Proof. (a) Suppose otherwise. Then, there exists a sequence

{ x k } ∞ 

k =1 
⊆ L (�, γ ) such that ‖ x k ‖ → ∞ as k → ∞ . A similar argu-

ment as in [10] shows that there exists an index i such that

| x k 
i 
| → ∞ and | F i ( x 

k )| → ∞ as k → ∞ . By Lemma 5.1 , we have

| φ(x k 
i 
, F i (x k )) | → ∞ , where φ ∈ { φp 

NR 
, φp 

S −NR 
, ψ 

p 
S −NR 

} . But, this is im-

possible since �( x k ) ≤γ for all k . Thus, the level set L ( � , γ ) is

bounded. The remaining part of the theorem can be proved simi-

lar to Proposition 4.2 (b) in [2] . 

(b) From part(a), the level sets of � are compact and so

by LaSalle’s Invariance Principle [22] , we reach the desired

conclusion. �

Theorem 5.2. Suppose x ∗ is an isolated equilibrium point of (9) .

Then, x ∗ is asymptotically stable provided that either 

(i) � = � p 
NR 

and (∇F − I) is a P-matrix; or 

(ii) � ∈ { � p 
S1 −NR 

, � p 
S2 −NR 

} , F is a nonnegative P 0 -function, and the

equilibrium point is nonnegative. 

Proof. Let x ∗ be an isolated equilibrium point of (9) . Then, it has a

neighborhood O such that 

∇�(x ∗) = 0 and ∇�(x ) � = 0 for all x ∈ O \{ x ∗} . 
We claim that � is a Lyapunov function at x ∗ over �. To pro-

ceed, we note first that �( x ) ≥ 0. By Proposition 5.1 (b) and (c),

�(x ∗) = 0 . Further, if �(x ) = 0 for some x ∈ O \ { x ∗}, then x solves

the NCP and by Proposition 5.1 (a), it is an equilibrium point. This

contradicts the isolation of x ∗. Thus, �( x ) > 0 for all x ∈ O \ { x ∗}. Fi-

nally, it is clear that 

d�(x (t)) 

dt 
= −ρ‖∇�(x (t)) ‖ 

2 < 0 

over the set O \ { x ∗}. Then, applying Lemma 3.5 yields that x ∗ is

asymptotically stable. �

We look now at the exponential stability of the neural network.
heorem 5.3. Consider the neural network (9) with � ∈
 � p 

NR 
, � p 

S1 −NR 
, � p 

S2 −NR 
} . If ∇�( x ∗) is nonsingular for some isolated

quilibrium point x ∗, then x ∗ solves the NCP and x ∗ is exponentially

table. 

roof. Let x ∗ be an equilibrium point such that ∇�( x ∗) is nonsin-

ular. Note that ∇�(x ∗) = ∇�(x ∗)�(x ∗) , and so ∇�(x ∗) = 0 im-

lies that �(x ∗) = 0 . This proves the first claim of the theorem.

urther, using � as a Lyapunov function as in the preceding theo-

em, x ∗ is asymptotically stable. 

Note that since � is differentiable at x ∗, we have 

(x ) = ∇�(x ) T (x − x ∗) + o(‖ x − x ∗‖ ) as x → x ∗ (16)

y Lemma 3.6 , there exists δ > 0 and a constant C such that ∇�( x )

s nonsingular for all x with ‖ x − x ∗‖ < δ, and ‖∇�(x ) −1 ‖ ≤ C.

hen, it gives 

‖ y ‖ 

2 ≤ ‖∇�(x ) y ‖ 

2 (17)

or any x in the δ-neighborhood (call it N δ) and any y ∈ IR 

n , where

= 1 /C 2 . 

Let ε < 2 ρκ . Since x ∗ is asymptotically stable, we may choose

small enough so that o(‖ x − x ∗‖ 2 ) < ε‖ x − x ∗‖ 2 and x ( t ) → x ∗ as

 → ∞ for any initial condition x (0) ∈ N δ . Now, define g : [0, ∞ ] → IR

y 

(t) := ‖ x (t) − x ∗‖ 

2 

here x ( t ) is the unique solution through x (0) ∈ N δ . Using

qs. (16) and (17) , we obtain 

dg(t) 

dt 
= 2(x (t) − x ∗) T 

dx (t) 

dt 

= −2 ρ(x (t) − x ∗) T ∇�(x (t)) 

= −2 ρ(x (t) − x ∗) T ∇�(x (t))�(x (t)) 

= −2 ρ(x (t) − x ∗) T ∇�(x (t)) ∇�(x ) T (x (t) − x ∗) 

+ o(‖ x (t) − x ∗‖ 

2 ) 

≤ (−2 ρκ + ε) ‖ x (t) − x ∗‖ 

2 

= (−2 ρκ + ε) g(t) . 

hen, it follows that g(t) ≤ e (−2 ρκ+ ε) t g(0) , which says 

 x (t) − x ∗‖ ≤ e (−ρκ+ ε/ 2) t ‖ x (0) − x ∗‖ , 

here −ρκ + ε/ 2 < 0 . This proves that x ∗ is exponentially

table. �

. Simulation results 

In this section, we look at some nonlinear complementarity

roblems and test them using the neural network (9) with � ∈
 � p 

NR 
, � p 

S1 −NR 
, � p 

S2 −NR 
} . We also compare the rate of convergence of

ach network for different values of p . Further, we compare the

umerical performance of these networks with the neural net-

ork based on the Fischer-Burmeister (FB) function [23] given by

10) and the neural network based on the generalized Fischer-

urmeister function [2] given by (11) . 

In the following simulations, we use the Matlab ordinary dif-

erential equation solver ode23s . Recall that ρ is a time-scaling pa-

ameter. In particular, if we wish to achieve faster convergence, a

igher value of ρ can be used. In our simulations, the values of ρ
sed are 10 3 , 10 6 or 10 9 , as indicated in the figures. The stopping

riterion in simulating the trajectories is ‖∇�(x (t)) ‖ ≤ 10 −5 . 

xample 6.1. [21, Kojima-Shindo] Consider the NCP, where F :

R 

4 → IR 

4 is given by 
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Fig. 2. Convergence behavior of the error ‖ x (t) − x ∗‖ in Example 5.1 using the neu- 

ral network with φp 
NR 

for different values of p , where x 0 = (2 , 0 . 5 , 0 . 5 , 1 . 5) T and 

ρ = 10 6 . 

Fig. 3. Convergence behavior of the error ‖ x (t) − x ∗‖ in Example 5.1 using the neu- 

ral network with φp 
S −NR 

for different values of p , where x 0 = (2 , 0 . 5 , 0 . 5 , 1 . 5) T and 

ρ = 10 3 . 

F
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p  

Fig. 4. Convergence behavior of the error ‖ x (t) − x ∗‖ in Example 5.1 using the neu- 

ral network with ψ 

p 
S −NR 

for different values of p , where x 0 = (2 , 0 . 5 , 0 . 5 , 1 . 5) T and 

ρ = 10 9 . 

Fig. 5. Comparison of convergence rates of ‖ x (t) − x ∗‖ in Example 5.1 using the 

neural network with different NCP functions, where x 0 = (2 , 0 . 5 , 0 . 5 , 1 . 5) T and ρ = 

10 3 . 

O  

a  

w  

T  

b  

w  

t  

b  

v  

i  

ρ

E  

I

F

 (x ) = 

⎛ 

⎜ ⎜ ⎝ 

3 x 2 1 + 2 x 1 x 2 + 2 x 2 2 + x 3 + 3 x 4 − 6 

2 x 2 1 + x 1 + x 2 2 + 3 x 3 + 2 x 4 − 2 

3 x 2 1 + x 1 x 2 + 2 x 2 2 + 2 x 3 + 3 x 4 − 1 

x 2 1 + 3 x 2 2 + 2 x 3 + 3 x 4 − 3 

⎞ 

⎟ ⎟ ⎠ 

. 

This is a non-degenerate NCP and the solution is x ∗ =
( 
√ 

6 / 2 , 0 , 0 , 1 / 2) . 

We simulate the network (9) with different � ∈
 � p 

NR 
, � p 

S1 −NR 
, � p 

S2 −NR 
} for various values of p to see the influ-

nce of p on convergence of trajectories to the NCP solution.

rom Figs. 2–4 , we see that a smaller value of p yields a faster

onvergence when the initial condition is x 0 = (2 , 0 . 5 , 0 . 5 , 1 . 5) T .

ig. 5 depicts the comparison of the different NCP-functions with

p = 3 , together with the FB and generalized FB functions. Among

hese five classes of NCP-functions, we see that the neural network

ased on φp 
S −NR 

has the best numerical performance. In Fig. 6 , we

imulate the neural network based on φp 
S −NR 

using 6 random initial

oints, and the trajectories converges to x ∗ at around t = 5 . 5 ms.
ne can also observe from Fig. 6 that the convergence of x 2 ( t )

nd x 3 ( t ) is very fast. We note that ∇�p 
S1 −NR 

(x ∗) is non-singular,

hich leads to the exponential stability of x ∗ by Theorem 5.3 .

his particular problem was also simulated using neural networks

ased on the FB function [23] and the generalized FB function

ith p = 2 . 4 [2] , with convergence time at around t = 22 ms and

 = 18 ms, respectively. It can be verified that the neural networks

ased on φp 
NR 

and ψ 

p 
S −NR 

also converge to the solution, but the con-

ergence rate is very slow. This can be observed in Figs. 2 and 4 ,

n which the convergence will even be worse if a smaller value of

is chosen. 

xample 6.2. [21, Kojima-Shindo] Consider the NCP, where F :

R 

4 → IR 

4 is given by 

 (x ) = 

⎛ 

⎜ ⎜ ⎝ 

3 x 2 1 + 2 x 1 x 2 + 2 x 2 2 + x 3 + 3 x 4 − 6 

2 x 2 1 + x 1 + x 2 2 + 10 x 3 + 2 x 4 − 2 

3 x 2 1 + x 1 x 2 + 2 x 2 2 + 2 x 3 + 9 x 4 − 9 

x 2 1 + 3 x 2 2 + 2 x 3 + 3 x 4 − 3 

⎞ 

⎟ ⎟ ⎠ 

. 
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Fig. 6. Transient behavior of x ( t ) Example 5.1 of the neural network with φp 
S −NR 

( p = 

3 ) with 6 random initial points, where ρ = 10 3 . 

Fig. 7. Convergence behavior of the error ‖ x (t) − x ∗‖ in Example 5.2 using the neu- 

ral network with φp 
NR 

for different values of p , where x 0 = (0 . 5 , 0 . 5 , 3 . 5 , 0 . 5) T and 

ρ = 10 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Convergence behavior of the error ‖ x (t) − x ∗‖ in Example 5.2 using the neu- 

ral network with ψ 

p 
S −NR 

for different values of p , where x 0 = (0 . 5 , 0 . 5 , 3 . 5 , 0 . 5) T and 

ρ = 10 6 . 

Fig. 9. Comparison of convergence rates of ‖ x (t) − x ∗‖ in Example 5.2 using the 

neural network with different NCP functions, where x 0 = (0 . 5 , 0 . 5 , 3 . 5 , 0 . 5) T and 

ρ = 10 3 . 
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The corresponding NCP problem has a degenerate solution x ∗ =
( 
√ 

6 / 2 , 0 , 0 , 1 / 2) and a non-degenerate solution x ∗ = (1 , 0 , 3 , 0) . 

Figs. 7 and 8 show the convergence behavior of the error

‖ x (t) − x ∗‖ for different values of p using the neural network

(9) with φp 
NR 

and ψ 

p 
S −NR 

, where x ∗ is the non-degenerate solution.

As one may observe, a smaller value of p leads to a faster con-

vergence of the error. Unfortunately, it is computationally expen-

sive to simulate (9) with p ≥ 5. Nevertheless, we provide a compar-

ison of the performance of the three discrete-type NCP functions

(with p = 3 ) and the FB functions as shown in Fig. 9 . We can see

the same performance as in Example 5.1, with the neural network

based on φp 
S −NR 

as the one with the fastest convergence, whereas

the one based on φp 
NR 

is also the slowest. From Fig. 10 , we see the

that the solution converges to the NCP solution at around t = 12

ms. From this figure, we can also see that the solutions x 2 ( t ) and

x 4 ( t ) converges to 0 at a very fast rate. It should be noted that

∇�p 
S1 −NR 

(x ∗) is nonsingular, and therefore x ∗ is exponentially stable

by Theorem 5.3 . On the other hand, the neural network based on
he generalized FB function (with p = 1 . 2 ) converged to the equi-

ibrium point at around t = 800 ms. 

xample 6.3. Consider the NCP, where F : IR 

5 → IR 

5 is given by 

 (x ) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

x 1 + x 2 x 3 x 4 x 5 / 50 + 5 

x 2 + x 1 x 3 x 4 x 5 / 50 − 3 

x 3 + x 1 x 2 x 4 x 5 / 50 − 1 

x 4 + x 1 x 2 x 3 x 5 / 50 + 1 / 2 

x 5 + x 1 x 2 x 3 x 4 / 50 + 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. 

The above function is a slight modification of [42, Example 2] .

he NCP has only one solution x ∗ = (0 , 3 , 1 , 0 , 0) . It can be verified

hat similar to the preceding examples, a smaller value of p yields

 faster convergence for all the three discrete-type classes of NCP-

unctions. Among all the five neural networks, the neural network

ith the fastest convergence is the one based on the FB function,

ollowed by the generalized FB function (with p = 1 . 8 ) and by φp 

NR 
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Fig. 10. Transient behavior of x ( t ) in Example 5.2 of the neural network with φp 
S −NR 

( p = 3 ) with 6 random initial points, where ρ = 10 3 . 

Fig. 11. Comparison of convergence rates of ‖ x (t) − x ∗‖ in Example 5.3 using the 

neural network with different NCP functions, where x 0 = (0 . 5 , 1 , 1 . 5 , 0 . 5 , 0 . 5) T and 

ρ = 10 3 . 

Fig. 12. Transient behavior of x ( t ) in Example 5.3 of the neural network with φp 
S −NR 

( p = 3 ) with 6 random initial points, where ρ = 10 3 . 
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with p = 3 ); see Fig. 11 . Nevertheless, the neural network based

n φp 
NR 

is also efficient in solving the NCP as shown in Fig. 12 . 

To close this section, we summarize our findings based from

he preceding simulations. We also discuss some advantages of the

eural networks based on the three discrete-type NCP-functions

ver other existing models. 

• A smaller value of p yields faster convergence of trajectories for

the three neural networks based on φp 
NR 

, φp 
S −NR 

and ψ 

p 
S −NR 

. 

• Among these three classes of NCP-functions, simulations show

that the neural network based on ψ 

p 
S −NR 

has the worst perfor-

mance in all the examples. Note that this function possesses

both differentiability and symmetry. Meanwhile, the first sym-

metrization φp 
S −NR 

which is symmetric but not differentiable on

the line a = b ( a, b � = 0) has the best numerical performance. 

• Although we only consider nondegenerate NCPs in the above

examples, the three neural networks based on the discrete-type

classes of NCP-functions can also be used in degenerate cases. It

can be verified, for instance, that the trajectories in Example 5.2

can converge to the degenerate solution x ∗ = ( 
√ 

6 / 2 , 0 , 0 , 1 / 2) .

However, the convergence is very slow. As remarked in the

Introduction, this phenomenon is expected since these three

classes of NCP-functions are differentiable at all points in the

feasible region x ≥ 0, F ( x ) ≥ 0. 

• Interestingly, the neural network based on φp 
S −NR 

has the poten-

tial to outperform the neural networks based on the FB func-

tion φ
FB 

and generalized FB function φp 
FB 

, as illustrated in Exam-

ples 5.1 and 5.2. The difference in the numerical performance,

in fact, is very large. In Example 5.1, the convergence time is

only t = 5 . 5 ms when φp 
S −NR 

is used. There is a significant mar-

gin when FB or generalized FB is used, where the convergence

time is t = 22 ms and t = 18 ms, respectively. 

• In particular, in Example 5.2, the convergence of trajectories for

the network based on φp 
S −NR 

is achieved at around t = 12 ms

only. This is a significant improvement over the convergence

time of t = 800 ms when the neural network based on φp 
FB 

was

used. Looking at Fig. 9 , the performance of φ
FB 

is even slower. 

• In Example 5.3, despite the better performance of the FB

and generalized FB function over φp 
S −NR 

, the difference is only

marginal. 

• One can check that the functions considered above are not

monotone. This is a requirement for Lyapunov stability and ex-

ponential stability for the networks used in [7,42,43] . Nonethe-

less, it is not needed for our experiments. 

. Conclusions and future directions 

In this paper, we established the properties of the induced

erit function of three classes of discrete-type NCP-functions φp 
NR 

,
p 
S −NR 

and ψ 

p 
S −NR 

. This includes the characterization of stationary

oints and level sets of the corresponding merit functions. We

ave also described the growth behavior of these three families of

CP-functions. Moreover, we proved the Lyapunov and asymptotic

tability properties of the proposed steepest descent-based neural

etworks. Finally, numerical simulations indicate that for all three

amilies of neural networks, a smaller value of p always yields

aster convergence to the NCP solution. We leave it for future re-

earch to determine under what conditions on F does this behavior

ccur. 

Numerical reports suggest that the neural network based on
p 
S −NR 

is capable of outperforming the neural network based on the 

xtensively used FB function, as well as the network based on

he generalized FB function. However, it must be noted that as in

ther neural networks, results may be dependent on the choice of

nitial conditions. Nevertheless, it would be an interesting future
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research endeavor to find out when φp 
S −NR 

can be best used and

whether it is capable of outperforming other NCP-functions when

other solution methods are employed. Exploring this could pos-

sibly provide an alternative NCP-function to use when designing

algorithms. Furthermore, the effect of varying the values of p

when other approaches are used can also be considered. That is,

one could find out if smaller values of p will also yield faster con-

vergence when other solution methods are used. Theoretical proof

for performance-dependence on p can also be investigated. Explor-

ing deeper the properties of φp 
S −NR 

deserves particular attention

because of its numerical performance, despite its complexity. 

A lot of future research directions can be taken on from here

since many algorithms in optimization rely on NCP-functions. In

the case of nonlinear complementarity problems, the three classes

of NCP-functions used in this paper can be exploited to design

other solution methods such as merit function approach, nons-

mooth Newton method, smoothing methods, and regularization

approach, among others. This paper serves as a starting point in

designing such approaches, since we have established herein the

properties of level sets and stationary points of the induced merit

functions. Indeed, these properties are fundamental in constructing

other NCP-based methods. Of course, the NCP-functions studied in

this paper can be adopted to formulate neural network approaches

to other complementarity problems, as well as variational inequali-

ties and linear and nonlinear programming problems. For instance,

delayed neural networks for optimization is an interesting direc-

tion [24,34,35,39,40,51–55] . Stochastic nonlinear complementarity

problems [48] can also be explored. In [48] , φ
NR 

, φ
FB 

and the pe-

nalized FB functions are used to solve stochastic NCPs. A numeri-

cal comparison of the performance of the newly discovered NCP-

functions considered in this paper with old NCP-functions used in

[48] can be done. Stochastic neural networks for these types of

NCPs can also be investigated [51–55] . 
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