
A novel generalization of the natural residual function and a neural
network approach for the NCP

Jan Harold Alcantara, Jein-Shan Chen1,∗

Department of Mathematics, National Taiwan Normal University

Abstract

The natural residual (NR) function is a mapping often used to solve nonlinear complementarity

problems (NCPs). Recently, three discrete-type families of complementarity functions with param-

eter p ≥ 3 (where p is odd) based on the NR function were proposed. Using a neural network

approach based on these families, it was observed from some preliminary numerical experiments

that lower values of p provide better convergence rates. Moreover, higher values of p require larger

computational time for the test problems considered. Hence, the value p = 3 is recommended

for numerical simulations, which is rather unfortunate since we cannot exploit the wide range of

values for the parameter p of the family of NCP functions. This paper is a follow-up study on

the aforementioned results. Motivated by previously reported numerical results, we formulate a

continuous-type generalization of the NR function and two corresponding symmetrizations. The

new families admit a continuous parameter p > 0, giving us a wider range of choices for p and

smooth NCP functions when p > 1. Moreover, the generalization subsumes the discrete-type gen-

eralization initially proposed. The numerical simulations show that in general, increased stability

and better numerical performance can be achieved by taking values of p in the interval (1, 3). This

is indeed a significant improvement of preceding studies.

Keywords: Complementarity Functions, Natural Residual Function, Nonlinear Complementarity

Problem

2010 MSC: 37-N40, 65-K10, 65-K15

∗Corresponding author
Email addresses: 80640005s@ntnu.edu.tw (Jan Harold Alcantara), jschen@math.ntnu.edu.tw (Jein-Shan

Chen)
1The author’s work is supported by Ministry of Science and Technology, Taiwan.

Preprint submitted to Neurocomputing April 19, 2020

1. Motivation

The nonlinear complementarity problem (NCP) is very important in engineering and economic

applications [11], as well as in operations research [8]. In particular, given a mapping F : IRn → IRn,

the problem consists of finding a vector x ∈ IRn satisfying the conditions

x ≥ 0, F (x) ≥ 0 and 〈x, F (x)〉 = 0.

This problem will be denoted by NCP(F). The solution set of this problem is denoted by SOL(F)

and the feasible region is denoted by ΩF := {x ∈ IRn | x ≥ 0, F (x) ≥ 0}. Some solution methods

for NCP(F) can be found in [1, 6, 9, 10, 13, 14, 21, 17, 18, 25, 27]. A natural reformulation of

NCP(F) is to consider the fixed-point problem

x = PK(x− F (x)),

where PK denotes the projection onto K with K = IRn
+. Consequently, NCP(F) is equivalent to

solving the equation
φNR(x1, F1(x))

...

φNR(xn, Fn(x))

 = 0,

where

φ
NR

(a, b) = a− (a− b)+, (1)

and t+ := max{t, 0}. The function φNR is called the natural residual (NR) function. In fact, φNR

can be replaced by any other function φ : IR2 → IR with the property that

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (2)

that is, NCP(F) and the system

ΦF(x) :=

φ(x1, F1(x))

...

φ(xn, Fn(x))

 = 0 (3)

are equivalent. A function satisfying (2) is known in the literature as an NCP-function. Other than

the NR function, the generalized Fischer-Burmeister (GFB) function

φp
FB

(a, b) = ‖(a, b)‖p − (a+ b), p > 1 (4)

2

is another popular NCP function used in dealing with the complementarity problem. The GFB

function is known as a “continuous” extension of the famous Fischer-Burmeister (FB) function

given by

φ
FB

(a, b) =
√
a2 + b2 − (a+ b),

which can be obtained by taking p = 2 in expression (4). The generalization is considered continuous

since p can take on any value in the interval (1,∞). Motivated by this extension, a generalization

of the NR function (1) was formulated in [5] which is given by

φp
NR

(a, b) = ap − [(a− b)+]p, (5)

where p is an odd integer. Indeed, taking p = 1 yields the NR function (1). This generalization

is considered to be of “discrete’” type since p can only take odd integral values. Note that φp
NR

is

a twice continuously differentiable function for p ≥ 3 but its surface is not symmetric. To resolve

this, two symmetrizations were proposed in [3], which are given by

φp
S−NR

(a, b) =

 ap − (a− b)p if a ≥ b,

bp − (b− a)p if a < b,
(6)

and

ψp
S−NR

(a, b) =

 apbp − (a− b)pbp if a ≥ b,

apbp − (b− a)pap if a < b,
(7)

where p ≥ 3 is an odd integer. Properties of these three discrete-type families are elaborated in

[2, 15].

The first attempt to use the above three discrete-type functions in designing solution methods for

NCP was a neural network approach, which was presented in our previous work [2]. To construct the

neural network, note that by taking ΦF as defined in (3), the unconstrained minimization problem

minx∈IRn ΨF(x), where

ΨF(x) =
1

2
‖ΦF(x)‖2 =

1

2

n∑
j=1

φ(xj , Fj(x))2, (8)

is equivalent to NCP(F). Then the gradient dynamical system

dx

dt
= −ρ∇ΨF(x(t)), x(0) = x0 (9)

3

is a natural neural network to be considered to deal with NCP(F). In [2], the discrete-type functions

(5), (6), and (7) were used to form the merit function ΨF. Preliminary numerical experiments5

conducted in [2] showed that lower values of the parameter p result to faster convergence, although

theoretical evidence for this phenomenon is yet to be verified. Moreover, longer computation time

is usually required when a higher value of p is used. There are also test instances when larger values

of p lead to ill-conditioning problems. In turn, the choice p = 3 may seem optimal in practice. In

other words, the results suggest that choosing higher values of p need not be done. Consequently,10

this seems to suggest that the discrete-type generalization appears to be not very useful in the

sense that only one member of each of the families is useful for numerical purposes. This motivates

us to explore if there exists a continuous generalization of the NR function, i.e. a generalization

parametrized by p which assumes values on some interval. This will provide us more values to

consider for the tunable parameter, instead of just the odd integers with value at least 3.15

We provide an affirmative answer to this problem. More precisely, the main contributions of

this paper are as follows:

(i) We propose a continuous-type generalization of the NR function. The proposed function

does not have a symmetric surface, but we provide two symmetrizations which also admit a

continuous parameter p. This generalizes the results in [3, 5].20

(ii) We establish several properties of these newly formulated NCP functions which are prerequi-

site to designing solution methods for the complementarity problem, which are not limited to

the neural network approach. These properties extend the results in [15].

(iii) Stability properties of the neural network (9) will be established as important extensions of

the results in [2].25

More importantly,

(iv) We illustrate that the proposed continuous generalization is meaningful. In particular, it

provides a wider range of values of p which offer better convergence rates than the ones based

on the discrete-type generalization and their symmetrizations illustrated in [2].

(v) We provide theoretical evidence for the performance dependence on p of the gradient dynam-30

ical systems based on the three new families of NCP functions. This was not accomplished in

[2].

4

(vi) This work is a significant improvement of the numerical results that were initially presented

in [2], since the proposed families not only provide faster convergence rates but also higher

stability. That is, the proposed generalizations yield neural networks which are less sensitive35

to initial conditions, which is one of the main issues encountered in [2].

In summary, this paper can be viewed as an important extension of the works presented in

[2, 3, 5, 15] where the discrete-type generalization and two discrete-type symmetrizations of the NR

function were studied.

This paper is organized as follows: In Section 2, we present our proposed continuous gener-40

alization of the NR function. We also prove important properties of the obtained generalization,

which are extensions of the results given in [2, 3, 5, 15]. The theoretical properties proved in this

section will later be used in the analysis of the neural network, which will be presented in Section

3. Results of several numerical experiments are presented in Section 4 and elaborately discussed in

Section 5. Concluding remarks are presented in Section 6.45

2. Continuous Generalization

Our proposed generalization of the NR function is defined as

φ̃p
NR

(a, b) = sgn(a)|a|p − [(a− b)+]p. (10)

Here, we assume that p is any number in (0,∞) and

sgn(t) :=

1 if t > 0

0 if t = 0

−1 if t < 0

.

Observe that φ̃p
NR

is an NCP function. Indeed, note that φ̃p
NR

(a, b) = f(a) − f((a − b)+), where

f(t) = sgn(t)|t|p which is a bijective function. It follows that

φ̃p
NR

(a, b) = 0⇐⇒ f(a) = f((a− b)+)⇐⇒ a = (a− b)+ ⇐⇒ φNR(a, b) = 0.

Note that if p is odd, then φ̃p
NR

= φp
NR

and so the above generalization subsumes the discrete-type

extension given by (5). We note herein that the transformation employed on φ
NR

via the monotonic

function f can always be applied to any NCP function of the form φ = φ1 − φ2. This fact has also

been noted in [12].50

5

It is easy to see that the function (10) does not have a symmetric surface. Employing the same

strategy as in [3], we propose two symmetrizations of φ̃p
NR

as

φ̃p
S−NR

(a, b) =

 sgn(a)|a|p − (a− b)p if a ≥ b,

sgn(b)|b|p − (b− a)p if a < b,
(11)

and

ψ̃p
S−NR

(a, b) =

 sgn(a)sgn(b)|a|p|b|p − sgn(b)(a− b)p|b|p if a ≥ b,

sgn(a)sgn(b)|a|p|b|p − sgn(a)(b− a)p|a|p if a < b,
(12)

where p > 0. Notice that φ̃p
S−NR

= φp
S−NR

and ψ̃p
S−NR

= ψp
S−NR

whenever p is odd.

Proposition 2.1. For any p > 0, the functions φ̃p
NR
, φ̃p

S−NR
, and ψ̃p

S−NR
are NCP functions. More-

over, φ̃p
NR

(a, b) > 0 (φ̃p
S−NR

(a, b) > 0) if and only if a > 0 and b > 0, while ψ̃p
S−NR

(a, b) ≥ 0 for all

(a, b) ∈ IR2.

Proof. That φ̃p
NR

is an NCP function follows from the above discussion. Moreover, note that a > 0

and b > 0 if and only if a > (a− b)+. Since f(t) = sgn(t)|t|p is strictly increasing, we see that a > 0

and b > 0 if and only if sgn(a)|a|p > sgn((a− b)+)|(a− b)+|p, i.e. φ̃p
NR

(a, b) > 0. On the other hand,

observe that

φ̃p
S−NR

(a, b) =

 φ̃p
NR

(a, b) if a ≥ b,

φ̃p
NR

(b, a) if a < b,
, (13)

and

ψ̃p
S−NR

(a, b) =

 sgn(b)|b|pφ̃p
NR

(a, b) if a ≥ b,

sgn(a)|a|pφ̃p
NR

(b, a) if a < b.
(14)

Using above identities and the fact that φ̃p
NR

is an NCP function, then φ̃p
S−NR

and ψ̃p
S−NR

are also55

NCP functions with algebraic signs as specified in the proposition. 2

In view of the above proposition, we may then view the functions φ̃p
NR

, φ̃p
S−NR

and ψ̃p
S−NR

as con-

tinuous generalizations of the functions φp
NR

, φp
S−NR

and ψp
S−NR

. Now, we establish some properties

of the above functions which will later be used in the neural network approach. We begin with

smoothness properties. By C1(Ω) and C2(Ω), we mean the class of continuously differentiable and60

twice continuously differentiable functions defined on Ω ⊂ IRn, respectively.

Proposition 2.2. The following result holds:

6

(a) If p > 1, the function φ̃p
NR
∈ C1(IR2) whose gradient is given by

∇φ̃p
NR

(a, b) = p

 |a|p−1 − (a− b)p−1sgn((a− b)+)

(a− b)p−1sgn((a− b)+)

 .
If p > 2, then φ̃p

NR
∈ C2(IR2) whose Hessian is given by

∇2φ̃p
NR

(a, b) = p(p−1)

 sgn(a)|a|p−2 − (a− b)p−2sgn((a− b)+) (a− b)p−2sgn((a− b)+)

(a− b)p−2sgn((a− b)+) −(a− b)p−2sgn((a− b)+)

 .
(b) If p > 1, the function φ̃p

S−NR
∈ C1(Ω) where Ω := {(a, b) | a 6= b}. In this case, the gradient of

φ̃p
S−NR

is given by

∇φ̃p
S−NR

(a, b) =

 p [|a|p−1 − (a− b)p−1, (a− b)p−1]T if a > b,

p [(b− a)p−1, |b|p−1 − (b− a)p−1]T if a < b.

Further, φ̃p
S−NR

is differentiable at (0, 0) with ∇φ̃p
S−NR

(0, 0) = [0, 0]T . If p > 2, then φ̃p
S−NR

∈

C2(Ω) with Hessian given by

∇2φ̃p
S−NR

(a, b) =

p(p− 1)

 sgn(a)|a|p−2 − (a− b)p−2 (a− b)p−2

(a− b)p−2 −(a− b)p−2

 if a > b,

p(p− 1)

 −(b− a)p−2 (b− a)p−2

(b− a)p−2 sgn(b)|b|p−2 − (b− a)p−2

 if a < b.

(c) If p > 1, then ψ̃p
S−NR

∈ C1(IR2) whose gradient is given by

∇ψ̃p
S−NR

(a, b) =

p

 sgn(b)|b|p(|a|p−1 − (a− b)p−1)

sgn(a)|a|p|b|p−1 − (a− b)p|b|p−1 + sgn(b)(a− b)p−1|b|p

 if a > b,

p|a|2p−1
1

1

 if a = b,

p

sgn(b)|a|p−1|b|p − (b− a)p|a|p−1 + sgn(a)(b− a)p−1|a|p

sgn(a)|a|p(|b|p−1 − (b− a)p−1)

 if a < b,

7

If p > 2, then ψ̃p
S−NR

∈ C2(IR2) whose Hessian is given by

∇2ψ̃p
S−NR

(a, b) =

p

(p− 1)[sgn(a)sgn(b)|a|p−2|b|p]

−(p− 1)(a− b)p−2sgn(b)|b|p
(p− 1)(a− b)p−2sgn(b)|b|p

+p[|a|p−1 − (a− b)p−1]|b|p−1

(p− 1)(a− b)p−2sgn(b)|b|p

+p[|a|p−1 − (a− b)p−1]|b|p−1

(p− 1)[sgn(a)sgn(b)|a|p|b|p−2]

−(p− 1)(a− b)psgn(b)|b|p−2

+2p(a− b)p−1|b|p−1

−(p− 1)(a− b)p−2sgn(b)|b|p

if a > b,

p

 (p− 1)sgn(a)sgn(b)|a|p−2|b|p p|a|p−1|b|p−1

p|a|p−1|b|p−1 (p− 1)sgn(a)sgn(b)|a|p|b|p−2

if a = b,

p

(p− 1)[sgn(a)sgn(b)|a|p−2|b|p]

−(p− 1)(b− a)psgn(a)|a|p−2

+2p(b− a)p−1|a|p−1

−(p− 1)(b− a)p−2sgn(a)|a|p

(p− 1)(b− a)p−2sgn(a)|a|p

+p[|b|p−1 − (b− a)p−1]|a|p−1

(p− 1)(b− a)p−2sgn(a)|a|p

+p[|b|p−1 − (b− a)p−1]|a|p−1
(p− 1)[sgn(a)sgn(b)|a|p|b|p−2]

−(p− 1)(b− a)p−2sgn(a)|a|p

if a < b.

Proof. Note that f(t) = sgn(t)|t|p is continuously differentiable when p > 1 with f ′(t) = p|t|p−1.

Moreover, f is twice continuously differentiable when p > 2 with f ′′(t) = p(p−1)sgn(t)|t|p−2. Using

these and the alternative formulas given in (13) and (14), the gradients and Hessians can be easily65

obtained. The calculations are omitted. 2

The above proposition is a generalization of [5, Proposition 2.2], [3, Proposition 2.2 and Propo-

8

sition 3.2], and [15, Proposition 4.3]. On the other hand, the following result is an extension of [15,

Proposition 3.4, Proposition 4.5, and Proposition 5.4].

Proposition 2.3. Let p > 1. Then, the following hold:70

(a) ∇aφ̃pNR
(a, b) · ∇bφ̃pNR

(a, b)

> 0 on {(a, b) | a > b > 0 or a > b > 2a},

= 0 on {(a, b) | a ≤ b or a > b = 2a or a > b = 0},

< 0 otherwise.

(b) ∇aφ̃pS−NR
(a, b)·∇bφ̃pS−NR

(a, b)

> 0 on {(a, b) | a > b > 0 or a > b > 2a}

and on {(a, b) | b > a > 0 or b > a > 2b},

= 0 on {(a, b) | φ̃p
S−NR

(a, b) = 0 or a > b = 2a or b > a = 2b},

< 0 otherwise.

(c) ∇aψ̃pS−NR
(a, b) · ∇bψ̃pS−NR

(a, b) > 0 on the first quadrant IR2
++, and ψ̃p

S−NR
(a, b) = 0 ⇐⇒

∇ψ̃p
S−NR

(a, b) = 0.

Proof. Using Proposition 2.2(a),

∇aφ̃pNR
(a, b) · ∇bφ̃pNR

(a, b) = p2[|a|p−1 − (a− b)p−1sgn((a− b)+)](a− b)p−1sgn((a− b)+) p2[|a|p−1 − (a− b)p−1](a− b)p−1 if a > b

0 if a ≤ b
.

Suppose now that a > b. Since g(t) := tp−1 is a strictly increasing function on [0,∞), |a|p−1− (a−75

b)p−1 > 0 if and only if |a| > a− b, which happens if and only if b > 0 or b > 2a. This establishes

Proposition 2.3(a). Statement (b) easily follows from (a), while (c) can be easily verified using the

result of Proposition 2.2(c). 2

We now establish the growth behavior of the proposed families of functions. We first establish

the following simple lemma.80

Lemma 2.1. For any x ∈ [0, 1] and any p > 0, we have

(1− x)p ≤ 1

1 + px
.

Proof. Define f : [0, 1] → IR by f(x) = (1 − x)p(1 + px). A simple calculation yields f ′(x) =

−p(p + 1)x(1 − x)p−1. Then, f monotonically decreases on [0, 1] from f(0) = 1 to f(1) = 0.

Consequently, 0 ≤ f(x) ≤ 1. This completes the proof. 2

9

Proposition 2.4. Let φ ∈ {φ̃p
NR
, φ̃p

S−NR
, ψ̃p

S−NR
}. Then |φ(ak, bk)| → ∞ for any sequence {(ak, bk)}∞k=1

in IR2 such that |ak| → ∞ and |bk| → ∞.85

Proof. The proposition follows from the preceding lemma and analogous arguments in the proof

of [2, Lemma 5.1]. 2

3. Stability Analysis

In this section, we consider the neural network given by (9) using the functions φ̃p
NR

, φ̃p
S−NR

and

ψ̃p
S−NR

. The corresponding merit functions defined by (8) will be denoted, respectively, by Ψ̃p
NR

,90

Ψ̃p
S1−NR

and Ψ̃p
S2−NR

. The case when p is an odd integer greater than 1 is the neural network studied

in [2].

We note that since the results presented in Section 2 generalize the results for the discrete

families originally formulated in [3, 5, 15], then the discussion presented in [2] can be extended to

establish the properties of the induced merit functions Ψ̃p
NR

, Ψ̃p
S1−NR

and Ψ̃p
S2−NR

corresponding to95

the continuous generalization. In the following proposition, we summarize the properties of these

merit functions. For conciseness and clarity, we present a shortened proof of the following result

pointing out the arguments that needed to be modified in the proofs of the results in [2]. We refer

the reader to the monograph [8] for definitions and properties of nonlinear mappings (P0-functions,

monotone functions, etc.) and the book [22] for standard results in the theory of ordinary differential100

equations.

Proposition 3.1. Let p > 1. Then the following hold:

(a) If (∇F − I) is a P -matrix, then every stationary point of Ψ̃p
NR

is a global minimizer.

(b) If F (x∗) ≥ 0, (∇F (x∗) − I) is a P0-matrix and x∗ is a stationary point of Ψ̃p
NR

, then x∗ is a

global minimizer of Ψ̃p
NR

.105

(c) Suppose that x∗ ∈ ΩF and ∇F (x∗) is a P0-matrix. If x∗is a stationary point of Ψ̃p
S1−NR

or

Ψ̃p
S2−NR

, then x∗ is a global minimizer.

Proof. To prove (a) and (b), we define two diagonal matrices A(x∗) and B(x∗) where

Aii(x
∗) = |x∗i |p−1 and Bii(x

∗) = (x∗i − Fi(x∗))sgn(x∗i − Fi(x∗))+,

10

where x∗ is an equilibrium point of (9) with ΨF = Ψ̃p
NR

. Then, analogous arguments as in the proof

of [2, Proposition 4.4 and Remark 4.1] lead to the desired conclusion. To prove (c), we proceed as

in the proof of [2, Proposition 4.5]. That is, we verify the following properties:110

(P1) ∀(a, b) ∈ IR2
+, we have ∇aψ(a, b) · ∇bψ(a, b) ≥ 0; and

(P2) ∀(a, b) ∈ IR2
+, we have ∇aψ(a, b) = 0⇐⇒ ∇bψ(a, b) = 0⇐⇒ φ(a, b) = 0,

where ψ := 1
2φ

2 and φ ∈ {φ̃p
S−NR

, ψ̃p
S−NR
}. Property (P1) can be easily verified. To show (P2), we

only need to show that given a, b ≥ 0, the following holds:

(i) ∇aφ̃pS−NR
(a, b) = 0 implies φ̃p

S−NR
(a, b) = 0; and115

(ii) ∇aψ̃pS−NR
(a, b) = 0 implies ψ̃p

S−NR
(a, b) = 0.

We first prove (i). If ∇aφ̃pS−NR
(a, b) = 0, then we see from Proposition 2.2 (b) that we must have

a > b or a = b = 0. Otherwise, ∇aφ̃pS−NR
(a, b) = p(b− a)p−1 would be positive. If a = b = 0, then

φ̃p
S−NR

(a, b) = 0 as desired. If a > b, then 0 = 1
p∇aφ̃

p
S−NR

(a, b) = ap−1 − (a− b)p−1. Since t 7→ tp−1

is strictly increasing on [0,∞), then a = a − b, i.e. b = 0. Then φ̃p
S−NR

(a, b) = 0 since a > b = 0

and φ̃p
S−NR

is an NCP function. To prove (ii), assume that ∇aψ̃pS−NR
(a, b) = 0. From Proposition

2.2 (c), we must have

0 =
1

p
∇aψ̃pS−NR

(a, b) =

 ap−1bp − (a− b)p−1bp if a ≥ b,

ap−1bp − (b− a)pap−1 + (b− a)p−1ap if a < b.

If a ≥ b, then we can proceed as in [2, Prop 4.5]. If a < b, then

0 = ap−1bp − (b− a)pap−1 + (b− a)p−1ap = ap−1(bp − (b− a)p + (b− a)p−1a). (15)

From here, we conclude that a = 0. Otherwise, we must have bp > (b− a)p and so bp − (b− a)p +

(b− a)p−1a > (b− a)p−1a > 0. This contradicts (15). Hence, a = 0 and since b > a = 0, we obtain

that ψ̃p
S−NR

(a, b) = 0 by definition of an NCP function. 2

In view of the above proposition and the stability analysis presented in [2], we present herein120

analogous stability results. The proofs are similar to corresponding propositions for the discrete

generalization established in [2], and are thus omitted. In particular, Proposition 3.2 (a) follows

from [2, Theorem 5.1], Proposition 3.2 (b) and (c) follow from [2, Theorem 5.2], and Proposition

3.2 (d) is a consequence of [2, Theorem 5.2].

11

Proposition 3.2. Let x∗ be an equilibrium point of (9).125

(a) If ΨF ∈ {Ψ̃p
NR
, Ψ̃p

S1−NR
, Ψ̃p

S2−NR
} and F is a uniformly P -function, then the solution to (9)

through any x0 ∈ IRn converges to x∗.

(b) If ΨF = Ψ̃p
NR

, then x∗ ∈ SOL(F) provided that (∇F − I) is a P -matrix. If x∗ is isolated, then

it is asymptotically stable.

(c) If x∗ ∈ ΩF and ΨF = Ψ̃p
S1−NR

or ΨF = Ψ̃p
S2−NR

, then x∗ ∈ SOL(F) provided that F is a130

P0-function. If x∗ is isolated, then it is asymptotically stable.

(d) If ∇ΦF(x∗) is nonsingular, where φ ∈ {φ̃p
NR
, φ̃p

S−NR
, ψ̃p

S−NR
}, and x∗ is isolated, then x∗ ∈

SOL(F) and x∗ is exponentially stable.

The parameter p has a very significant influence in the rate of convergence of the neural network.

For the discrete type families, a few set of test problems was considered in [2], where the numerical135

experiments revealed that a lower value of p ∈ {3, 5, 7, . . . } often provides faster convergence.

However, there is no theoretical evidence yet for this phenomenon.

In fact, as we shall see in Section 4, different convergence behaviors can be observed when we vary

the values of p. In particular, a lower value of p does not always lead to faster convergence. There

are test instances when a higher value of p offers faster convergence rate. The numerical experiments140

presented in the next section suggest that there is no simple relation that can be obtained regard-

ing the performance dependence on p of the neural network (9) with ΨF ∈ {Ψ̃p
NR
, Ψ̃p

S1−NR
, Ψ̃p

S2−NR
}.

Moreover, the simulations suggest that initial conditions have a significant influence on the perfor-

mance of the neural network and its dependence on p. To make sense of these phenomenon, we

establish the following theorem. The first part of the proof is a derivation of an error bound for the145

NCP(F) (see equation (18)) where F is a locally Lipschitz uniformly P -function. The technique

employed in the derivation is similar to the idea used in [8, Proposition 6.3.1].

Theorem 3.1. Consider the neural network (9) with ΨF = Ψ̃p
S1−NR

for a given p > 1. Suppose

that x∗ ∈ SOL(F) is exponentially stable and F is a uniformly P function that is locally Lipschitz

continuous. Then there exist positive constants K, ω and δ such that for all t ≥ 0, we have

‖x(t)− x∗‖ ≤ K
(
p+ 1

p

√
2Ψ̃p

S1−NR
(x0)

) 1
p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x∗),

where Nδ(x
∗) = {y : ‖y − x∗‖ < δ}.

12

Proof. Suppose F is uniformly P with modulus κ > 0. Given x ∈ IRn, let j ∈ {1, . . . , n} such that

(xj − x∗j)(Fj(x)− Fj(x∗)) ≥ (xi − x∗i)(Fi(x)− Fi(x∗)) ∀i = 1, . . . , n.

Then

κ‖x− x∗‖2 ≤ (xj − x∗j)(Fj(x)− Fj(x∗)) = −xjFj(x∗)− (x∗j − xj)Fj(x). (16)

Meanwhile, note that (s − t+)(t+ − t) ≥ 0 for any s ≥ 0 and t ∈ IR. Since min{xj , Fj(x)} =

xj − (xj − Fj(x))+, then taking s = x∗j ≥ 0 and t = xj − Fj(x), we have

(x∗j − xj + min{xj , Fj(x)})(Fj(x)−min{xj , Fj(x)}) ≥ 0

which implies that

(x∗j − xj)Fj(x) ≥ (x∗j − xj) min{xj , Fj(x)} − Fj(x) min{xj , Fj(x)}. (17)

Since xj ≥ min{xj , Fj(x)} and Fj(x
∗) ≥ 0, we have from inequalities (16) and (17) that

κ‖x− x∗‖2 ≤ [(Fj(x)− Fj(x∗))− (x∗j − xj)] min{xj , Fj(x)}

≤ (‖F (x)− F (x∗)‖+ ‖x− x∗‖)|min{xj , Fj(x)}|

Since F is locally Lipschitz, we conclude that given any x ∈ IRn in some neighborhood of x∗, there

exists an index j = j(x) and L > 0 such that

κ‖x− x∗‖2 ≤ (1 + L) · |min{xj , Fj(x)}| · ‖x− x∗‖. (18)

Now, let x0 ∈ ΩF. We have from part (a) of the proof of [2, Lemma 5.1] and using Lemma 2.1

that φ̃p
S−NR

(a, b) ≥ p
p+1 (min{a, b})p for any a, b ≥ 0. By (18), there exists j = j(x0) ∈ {1, . . . , n}

such that

κ‖x0 − x∗‖ ≤ (1 + L) ·
[
p+ 1

p
φ̃p

S−NR
(x0j , Fj(x

0))

] 1
p

. (19)

Since x∗ is exponentially stable, there exist positive constants δ, c and ω such that for any t ≥ 0,

‖x(t) − x∗‖ ≤ ce−ωt‖x0 − x∗‖ for all x0 ∈ Nδ(x∗). This, together with inequality (19), gives the150

desired result with K := c
κ (1 + L). 2

Similarly, we get the following error bound result for the other two merit functions Ψ̃p
NR

and

Ψ̃p
S2−NR

.

13

Theorem 3.2. Consider the neural network (9) for a given p > 1, and let x∗ ∈ SOL(F) be

exponentially stable. Suppose that F is a uniformly P -function and locally Lipschitz continuous.155

Then

(a) If ΨF = Ψ̃p
NR

, there exist positive constants K, ω and δ such that for all t ≥ 0, we have

‖x(t)− x∗‖ ≤ K
(
p+ 1

p

√
2Ψ̃p

NR
(x0)

) 1
p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x∗).

(b) If ΨF = Ψ̃p
S2−NR

, there exist positive constants K, ω and δ such that for all t ≥ 0, we have

‖x(t)− x∗‖ ≤ K
(
p+ 1

p

√
2Ψ̃p

S2−NR
(x0)

) 1
2p

e−ωt ∀x0 ∈ ΩF ∩Nδ(x∗).

Proof. For a ≥ b ≥ 0, then φ̃p
NR

(a, b) = φ̃p
S−NR

(a, b) ≥ p
p+1b

p as in part (a) of the proof of [2, Lemma

5.1]. When 0 ≤ a < b, we have φ̃p
NR

(a, b) = ap ≥ p
p+1a

p. It follows that φ̃p
NR

(a, b) ≥ p
p+1 (min{a, b})p.

On the other hand, using the identity (14) and the fact that φ̃p
S−NR

(a, b) ≥ p
p+1 (min{a, b})p for any

a, b ≥ 0, we derive that ψ̃p
S−NR

(a, b) ≥ p
p+1 (min{a, b})2p. Using these identities and the same160

arguments as in Theorem 3.1, we get the desired inequalities. 2

As mentioned in the discussion before Theorem 3.1, there is no simple relation describing the

influence of p. To see this clearly, consider the function φ̃p
S−NR

. From the proof of Theorem 3.1,

there exists an index j = j(x0) given any x0 ∈ ΩF close enough to x∗ such that

‖x(t)− x∗‖ ≤ c(1 + L)

κ

[
p+ 1

p
φ̃p

S−NR
(x0j , Fj(x

0))

] 1
p

e−ωt, ∀t ≥ 0. (20)

For a fixed x0 ∈ ΩF ∩Nδ(x∗), we define the function

ga,b(p) :=

[
p+ 1

p
φ̃p

S−NR
(a, b)

] 1
p

,

where a = x0j and b = Fj(x
0) and p > 1. Without loss of generality, by taking into account the

symmetry of φ̃p
S−NR

, we may suppose that a ≥ b. Then

ga,b(p) =

[
p+ 1

p
(ap − (a− b)p)

] 1
p

.

Note that M := limp→∞ ga,b(p) = a. As we shall see in the following example, the function ga,b

is not necessarily monotonic, and the values of a and b have a significant effect on the behavior of

ga,b.

14

Example 3.1. In Figure 1, we see that ga,b(p) increases for increasing values of p for (a, b) = (4, 0.5)165

on the interval (1, 25]. In view of the error bound (20), this indicates that lower values of p ∈ (1, 25]

will provide faster convergence rate. We shall note that g4,0.5 does not continue to increase on

[25,∞). In particular, it is increasing from p = 1 to p ≈ 34.4458, then decreases afterwards (see

Figure 2). On the other hand, Figure 1 suggests that for (a, b) = (4, 3), higher values of p result

to faster convergence rate. Finally, the nonmonotonic graph depicted in Figure 1 for (a, b) = (4, 2)170

indicates different convergence behaviors for values of p on different intervals. However, observe

too that the values of g4,2(p) are close to the limit value M = 4 when p belongs to some interval

(1, 1 + ε), for some small ε > 0.

0 5 10 15 20 25
p

0

1

2

3

4

5

6

7

g
a,

b
(p

) (2.0748,4.2431)

a=4, b=0.5
a=4,b=3
a=4,b=2

Figure 1: Graph of upper bound for the error term ‖x(t)− x∗‖ for some values of a and b with a, b ≥ 0 and a > b.

Remark 3.1.

(a) From the preceding example, it is evident that the influence on the upper bound of varying175

the values of p is heavily dependent on the chosen initial condition for the neural network (9).

Despite this, we wish to point out that there is minimal change in the value of ga,b(p) for large

15

30 32 34 36 38 40
p

4.0019

4.00195

4.002

4.00205

4.0021

4.00215

4.0022

g
a,

b
(p

)

(34.4458,4.0022)

Figure 2: Graph of g4,0.5(p) on the interval [30, 40].

16

values of p, and thus, we expect that there will be no significant change in the convergence

behavior for large values of p.

(b) We remark that these observed behaviors hold under the hypotheses of Theorem 3.1 and180

Theorem 3.2, which include very strong assumptions on F and on the equilibrium point x∗.

Hence, we expect more varying convergence behaviors for other classes of functions F .

(c) Finally, note that for the generalized FB function φp
FB

we may define a similar upper bound

function ha,b (see [4]) as

ha,b(p) =
|φp

FB
(a, b)|

2− 21/p
, p > 1.

In comparison with the function ga,b, the function ha,b defined above can be verified to be

always monotonically decreasing. In line with this, it was found in [4] that the neural network

approach using φp
FB

achieves faster convergence rate when higher values of p are used.185

From the above example and remarks, we see the complex dynamics of the role of p, which

we will demonstrate via numerical examples in the next section. Hence, it still remains an open

question to determine precisely how p affects the convergence behavior of the trajectories of the

ODE. Nevertheless, we have provided a theoretical evidence as to why a non-monotonic type of

relationship between p and convergence rates are observed in general when using the dynamical190

systems approach based on φ̃p
NR

, φ̃p
S−NR

and ψ̃p
S−NR

.

4. Numerical Experiments

In this section, we present the results of numerical simulations of the neural networks (9) using

the continuous generalization of the NR function and its two symmetrizations proposed in Section 2.

We consider several test problems to illustrate the applicability and some advantages of the proposed195

continuous generalizations. We also present the varying convergence behaviors of trajectories using

different values of p for different classes of functions F . Moreover, comparisons of the performance

of the three neural networks and the traditional FB and GFB networks will be discussed.

We used the solver ode23s in Matlab to simulate the neural network. The simulation is stopped

at time tf if ‖∇ΨF(x(tf))‖ ≤ 10−6, i.e. when the trajectory is “close” to an equilibrium point. The200

value of ρ is set to 103 for all of the simulations.

17

The test problems we considered are described in the Appendix, consisting of P0-functions

(NCP1−NCP5) and non-P0-functions (NCP6−NCP10). We simulate the three neural networks

based on φ̃p
NR

, φ̃p
S−NR

and ψ̃p
S−NR

for different values of p, and the results when x0 = (1, 1, . . . 1)T is

used as the initial condition are summarized in the Appendix. Using the functions φ̃p
NR

, φ̃p
S−NR

and205

ψ̃p
S−NR

, respectively, to construct the network, CT1, CT2 and CT3 denote the convergence time

of the trajectories, while Gap1, Gap2 and Gap3 denote the value of |〈x(tf), F (x(tf))〉|.

We now summarize the findings from the numerical experiments.

Influence of p on convergence time

Using the functions φ̃p
NR

and ψ̃p
S−NR

, most of the simulations revealed that lower p value provides210

faster convergence (see Table 1 to Table 5). For the φ̃p
NR
−neural network, this phenomenon can be

observed for all NCP test problems except NCP5, while the same conclusion can be made for the

ψ̃p
S−NR
−neural network when solving all test problems except NCP7. The influence of p when φ̃p

S−NR

is used for the neural network approach is quite indeterminate. For NCP1-NCP3, higher values of

p results to slow convergence of the neural network. In contrast, higher values of p seem desirable215

for NCP4, NCP5, NCP6 and NCP9 in providing faster convergence rate. For the remaining test

problems which involve non-P0-functions, the pattern is indiscernible.

In summary, we observe that the convergence of the three neural networks has no monotonic

type of dependence on the values of p. That is, there is no guarantee whether lower values of p

will provide faster convergence or not, even for strongly monotone functions (NCP1-NCP4). For220

functions F which are not of P0-type, the observed convergence behaviors are even more varied.

Influence of p on the error term

As mentioned above, the simulations were stopped provided that ‖∇ΨF(x(tf))‖ ≤ 10−6. Under

this stopping criterion, we have observed that for larger values of p, the Gap values are not suf-

ficiently close to zero for most of the simulations (see Table 1 to Table 5). In turn, a large error225

‖x(tf) − x∗‖ is usually obtained for large values of p, and thus, the problem was not successfully

solved using the said stopping criterion. For the φ̃p
NR
−neural network, this can be observed in all

the test problems except for NCP5. For the ψ̃p
S−NR

-network, the same phenomenon can be inferred

from all test problems except NCP6. Meanwhile, for the neural network based on φ̃p
S−NR

, this also

holds true for all test problems except NCP4, NCP5, NCP6 and NCP9 (i.e., the test problems where230

18

higher values of p provide faster convergence rate). Nevertheless, the error term for the latter test

problems is sufficiently small even when lower values of p is used.

Ill-conditioning

In the numerical experiments, the large values of p we used are 20 and 50. One problem that we

usually encountered in simulating the neural networks with large values of p is the ill-conditioning235

effect which results to failed simulations, which is indicated by “∗” in Table 1 to Table 5. This

problem has been encountered for NCP3, NCP4, NCP5 and NCP8 for neural network based on

φ̃p
NR

, and NCP3 and NCP5 for the network based on ψ̃p
S−NR

. On the other hand, the problem is

more prominent when we used φ̃p
S−NR

which is evident in the test problems NCP2-NCP6, NCP8

and NCP9. For NCP6 and NCP9, the simulations failed when p > 2.240

Numerical Comparison of the Neural Networks

Among the three neural networks, we have observed that in all simulations, the one based on

φ̃p
S−NR

has the best numerical performance followed by φ̃p
NR
−neural network (see Figures 3-12). The

simulations reveal that a very slow convergence rate is obtained when using ψ̃p
S−NR

compared with

the other two NCP functions.245

We now compare the φ̃p
S−NR
−neural network with the FB and GFB (with p = 4) neural networks

(see Figures 3-12). In general, we have observed that there is no significant difference in the

performance of FB and GFB neural network and the φ̃p
S−NR
−neural network when p = 1.01 is

used, except for NCP8 where the latter has better performance than FB and GFB neural networks.

Faster convergence rate, on the other hand, was achieved when p = 1.1 was used for the φ̃p
S−NR

-250

neural network, specifically for NCP1, NCP4-NCP7 and NCP10. Finally, note that the FB and

GFB networks were significantly outperformed by φ̃p
S−NR

-neural network for NCP4, NCP5, NCP6,

NCP9 and NCP10 when p = 7, p = 7 (or 20), p = 1.5 (or 2), p = 1.1 (or 2) and p = 2 were used,

respectively, for the latter neural network.

Neural network based on φ̃p
S−NR

255

With φ̃p
S−NR

as the best NCP function among the functions, we simulate the trajectories of the

corresponding neural network using six random initial conditions. From Figures 3-12, we see that

the neural network was able to successfully converge to a point in SOL(F). In particular, note

that NCP7 has two solutions, one of which is degenerate. Despite the degeneracy of the solution,

19

φ̃p
S−NR
−neural network was able to converge to this point. Similarly, for the the Matthiesen problem260

NCP9 which has infinitely many solutions of the form (k, 0, 0, 0)T where k ∈ [0, 3], the neural

network based on φ̃p
S−NR

was able to converge to a solution.

5. Discussion of Numerical Results

Using the proposed continuous generalization and their symmetrizations, we solved herein sev-

eral test problems which include P0- and non-P0-functions. From the preceding section, we see265

that the influence of p on the convergence rate of the trajectories is difficult to characterize for

all the three neural networks considered. For the neural networks based on φ̃p
NR

and ψ̃p
S−NR

, most

experiments suggest that lower values of p is desirable to obtain faster convergence. However, this

cannot be concluded in the general case because there are test instances which involve non-P0-

functions where smaller values of p offer slower convergence rate. The influence of p is even harder270

to characterize when we use the neural network based on φ̃p
S−NR

, where several distinct convergence

behaviors are observed when we vary the values of p. Theoretically, we have shown that these vary-

ing behaviors are expected because of the non-monotonicity (w.r.t. p) of the error bounds obtained

for ‖x(t)− x∗‖ (see Theorem 3.1, Theorem 3.2, Remark 3.1).

In spite of the non-monotonic dependence on p of the convergence rates of the neural network, we275

wish to point out that in practical applications, our numerical results suggest that taking p ∈ (1, 3)

is a better choice in general. In most simulations, we have observed that choosing higher values

of p result to ill-conditioning problems in the implementations. Moreover, it can be inferred from

the numerical experiments that for higher values of p, large values of the error term ‖x(tf) − x∗‖

are obtained using the stopping criterion ‖∇Ψ(x(tf))‖ ≤ ε = 10−6. Hence, it is necessary to280

choose a smaller value of ε in order to obtain more accurate solutions when higher values of p are

used. However, the latter might constitute more numerical problems due to higher propensity to

encounter ill-conditioning, especially when p becomes larger. In addition, we have also found from

numerical experiments that the neural network is often more sensitive to initial conditions when

larger values of p are used. We suspect that for larger values of p, an isolated asymptotically stable285

NCP solution has a smaller region of attraction (i.e. a set S such that the limit x(t) → x∗ (as

t→∞) holds for any initial condition x(0) = x0 ∈ S).

Finally, the experiments reveal that it is not preferable to use the neural network based on

ψ̃p
S−NR

because of its unfavorable convergence rate. On the other hand, the neural network based

20

on φ̃p
NR

is efficient in solving the test problems, specifically when using values of p close to 1. In290

particular, its rate of convergence (for small values of p) is almost at par with the neural network

based on φ̃p
S−NR

, which has the best convergence rate among the three families of neural networks

considered. Surprisingly, the φ̃p
S−NR
−neural network can significantly outperform the FB and GFB

neural networks for some choices of p.

6. Concluding Remarks295

We have successfully constructed a meaningful continuous generalization of the natural residual

function, which subsumes the discrete generalization originally proposed in [5]. We also proposed

continuous generalization of their symmetrizations, which also subsumes the discrete symmetriza-

tion proposed in [3]. The extensions are motivated by the results in our earlier work [2] where

preliminary numerical experiments show that lower values of p seem favorable in simulations, which300

was not theoretically established in [2].

In this paper, we have demonstrated via several test problems that the influence of p on the

convergence rate of the neural network is difficult to characterize, even for P0 or monotone functions.

Theoretical evidence for this phenomenon was also provided in this paper by proving some error

bound estimates. In any case, as mentioned in the preceding section, lower values of p are more305

desirable in practical applications due to issues related to ill-conditioning, accuracy of the obtained

solution, and sensitivity to initial conditions.

From the numerical experiments, we conclude that the neural network based on φ̃p
NR

can be

efficiently utilized by choosing values of p close to 1. Its second symmetrization ψp
S−NR

, on the other

hand, is not recommended to be used for the neural network approach because of its (extremely) slow310

convergence. Meanwhile, the first symmetrization φ̃p
S−NR

offers promising convergence rates despite

its complexity. The neural network based on this function is capable of significantly outperforming

the well-known FB and GFB neural networks by some suitable choice of p. Hence, it might be

worthwhile to revisit some NCP functions-based algorithms to see whether or not this function can

be adopted as well, instead of the traditionally used FB or NR functions, to improve numerical315

performance of the algorithm.

21

References

[1] B.-H. Ahn, Iterative methods for linear complementarity problems with upperbounds on primary

variables, Mathematical Programming 26 (1983) 295–315.

[2] J.H. Alcantara, J.-S. Chen, Neural networks based on three classes of NCP-functions for320

solving nonlinear complementarity problems, Neurocomputing 359 (2019) 102–113.

[3] Y.-L. Chang, J.-S. Chen, C.-Y. Yang, Symmetrization of generalized natural residual func-

tion for NCP, Operations Research Letters 43 (2015) 354–358.

[4] J.-S. Chen, C.-H. Ko, S.-H. Pan, A neural network based on generalized Fischer-Burmeister

function for nonlinear complementarity problems, Information Sciences 180 (2010) 697–711.325

[5] J.-S. Chen, C.-H. Ko, X.-R. Wu, What is the generalization of natural residual function for

NCP?, Pacific Journal of Optimization 12 (2016) 19–27.

[6] J.-S. Chen, S.-H. Pan, A family of NCP functions and a descent method for the nonlinear

complementarity problem, Computational Optimization and Applications 40 (2008) 389–404.

[7] C. Dang, Y. Leung, X. Gao, K. Chen, Neural networks for nonlinear and mixed comple-330

mentarity problems and their applications, Neural Networks 17 (2004) 271–283.

[8] F. Facchinei, J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity

Problems, Volumes I and II, Springer-Verlag, New York, 2003.

[9] F. Facchinei, J. Soares, A new merit function for nonlinear complementarity problems and

a related algorithm, SIAM Journal on Optimization 7 (1997) 225–247.335

[10] M. C. Ferris, O. L. Mangasarian, J.-S. Pang, editors, Complementarity: Applications,

Algorithms and Extensions, Kluwer Academic Publishers, Dordrecht 2001.

[11] M. C. Ferris, J.-S. Pang, Engineering and economic applications of complementarity prob-

lems, SIAM Review 39 (1997) 669–713.

[12] A. Galantai, Properties and construction of NCP functions, Computational Optimization340

and Applications 52 (2012) 805–824.

22

[13] B. Huang, C. F. Ma, The modulus-based Levenberg-Marquardt method for solving linear

complementarity problem, Numerical Mathematics-Theory Methods and Applications 12 (2018)

154–168.

[14] B. Huang, C. F. Ma, Accelerated modulus-based matrix splitting iteration method for a class345

of nonlinear complementarity problems, Computational & Applied Mathematics 37 (2018) 3053–

3076.

[15] C.-H. Huang, K.-J. Weng, J.-S. Chen, H.-W. Chu, M.-Y. Li, On four discrete-type

families of NCP Functions, Journal of Nonlinear and Convex Analysis 20 (2) (2019) 215–228.

[16] C. Kanzow, Some equation-based methods for the nonlinear complementarity problem, Opti-350

mization Methods and Software 3 (1994) 327–340.

[17] Y. F. Ke, C. F. Ma, A neural network for the generalized nonlinear complementarity problem

over a polyhedral cone, Journal of the Australian Mathematical Society 99 (2015) 364–379.

[18] Y. F. Ke, C. F. Ma, H. Zhang, The modulus-based matrix splitting iteration methods for

second-order cone linear complementarity problems, Numerical Algorithms 79 (2018) 1283-1303.355

[19] M. Kojima, S. Shindo, Extensions of Newton and quasi-Newton methods to systems of PC1

equations, Journal of Operations Research Society of Japan 29 (1986) 352–374.

[20] L.-Z. Liao, H.-D. Qi, A neural network for the linear complementarity problem, Mathematical

and Computer Modelling 29 (1999) 9–18.

[21] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,360

SIAM Journal on Matrix Analysis and Applications 17 (1996) 851–868.

[22] R. K. Miller, A. N. Michel, Ordinary Differential Equations, Academic Press, 1982.

[23] M. A. G. Ruggiero, J. M. Martinez, S. A. Santos, Solving nonsmooth equations by means

of quasi-Newton methods with globalization, In: Recent Advances in Nonsmooth Optimization,

pp. 121–140. World Scientific, Singapore (1995)365

[24] E. Spedicato, Z. Huang, Numerical experience with Newton-like methods for nonlinear

algebraic systems, Computing 58 (1997) 69–89.

23

[25] L. T. Watson, Solving the nonlinear complementarity problem by a homotopy method, SIAM

Journal on Control and Optimization 17 (1979) 36–46.

[26] Y. Xia, H. Leung, J. Wang, A projection neural network and its application to constrained370

optimization problems, IEEE Transactions on Circuits and Systems-I 49 (2002) 447–458.

[27] H. Yu, D. Pu, Smoothing Levenberg-Marquardt method for general nonlinear complementarity

problems under local error bound, Applied Mathematical Modelling 35 (2011) 1337–1348.

Appendix: Test Problems and Summary of Results

We collect herein some standard test problems for NCP.375

Category I: NCP(F) where F is a P0-function

(NCP1,[1]) Let F (x) = Ax + b where A =

4 1 0 · · · 0

−2 4 1 · · · 0

0 −2 4 · · · 0
...

...
...

...
...

0 0 0 · · · 1

0 0 0 · · · 4

is a tridiagonal P -matrix

and b = (−1, · · · ,−1)T . For the simulations, we take n = 5.

(NCP2,[7]) Let Fi(x) = −xi−1 + 2xi − xi+1 + bi(x) + ci for i = 1, . . . , n, where x0 = xn+1 = 0,

and let bi(x) = arctan(xi) and ci = i− n
2 . For the simulations, we take n = 5.380

(NCP3,[25]) Let F be given by

F (x) = 2 exp

(
5∑
i=1

(xi − i+ 2)2

)

x1 + 1

x2

x3 − 1

x4 − 2

x5 − 3

.

24

(NCP4,[27]) Let F : IR3 → IR3 the strictly monotone function

F (x) =

x1 − 2

x2 − x3 + x32 + 3

x2 + x3 + 2x33 − 3

 .

The unique solution of NCP(F) is x∗ = (2, 0, 1)T .

(NCP5,[20]) We consider the linear complementarity problem with F (x) = Ax + b, where A =
1 −4 1 0

0 1 0 1

−1 0 0 0

0 −1 0 0

 and b = (−5,−5, 1, 1)T . This problem arises from quadratic program-

ming [20] which has a unique solution x∗ = (1, 1, 8, 4)T .

Category II: NCP(F) where F is a non-P0-function385

(NCP6,[19]) Consider the Kojima-Shindo problem where F is defined as

F (x) =

3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6

2x21 + x1 + x22 + 3x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 3x4 − 1

x21 + 3x22 + 2x3 + 3x4 − 3

 .

The unique (non-degenerate) solution of NCP(F) is x∗ = (
√

6/2, 0, 0, 1/2)T .

(NCP7,[19]) We consider a modification of the Kojima-Shindo problem

F (x) =

3x21 + 2x1x2 + 2x22 + x3 + 3x4 − 6

2x21 + x1 + x22 + 10x3 + 2x4 − 2

3x21 + x1x2 + 2x22 + 2x3 + 9x4 − 9

x21 + 3x22 + 2x3 + 3x4 − 3

 .

NCP(F) has two solutions: x∗ = (
√

6/2, 0, 0, 1/2)T and x∗ = (1, 0, 3, 0T , which are degenerate

and non-degenerate, respectively.

25

(NCP8,[26]) Let F : IR5 → IR5 be given by

F (x) =

x1 + x2x3x4x5/50

x2 + x1x3x4x5/50− 3

x3 + x1x2x4x5/50− 1

x4 + x1x2x3x5/50 + 1/2

x5 + x1x2x3x4/50

.

The solution of NCP(F) is x∗ = (0, 3, 1, 0, 0)T .

(NCP9,[16]) We consider the modified Matthiesen problem, where F is given by

F (x) =

−x2 + x3 + x4

x1 − (4.5x3 + 2.7x4)/(x2 + 1)

5− x1 − (0.5x3 + 0.3x4)/(x3 + 1)

3− x1

 ,

which has infinitely many solutions x∗ = (k, 0, 0, 0)T , where k ∈ [0, 3].390

(NCP10,[23, 24]) We follow the construction of F used in [23]. Let f : IRn → IRn be a con-

tinuously differentiable function, and let x∗ = (0, 1, 0, 1, . . .)T ∈ IRn. Define F : IRn → IRn

by

Fi(x) =

fi(x)− fi(x∗) + 1 if i is odd

fi(x)− fi(x∗) otherwise

.

It is clear that x∗ is a nondegenerate solution of NCP(F). For this example, we take f from

[24] given by

fi(x) = n− i
n∑
j=1

cos(xj) + i(1− cos(xi))− sin(xi).

For the simulations, we take n = 5.

26

Table 1: Numerical results for NCP1 and NCP2 using the neural networks based on φ̃p
NR
, φ̃p

S−NR
and ψ̃p

S−NR
for different values of p.

p

NCP1 NCP2

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.0 3.0E+0 1.4E-7 3.0E+0 7.6E-8 1.4E+3 6.1E-3 1.9E+1 6.7E-7 1.7E+1 3.4E-7 6.7E+3 3.1E-2

1.1 3.2E+0 1.5E-7 2.7E+0 9.5E-8 1.8E+3 8.4E-3 5.1E+1 1.6E-5 2.0E+1 3.1E-7 7.9E+3 3.7E-2

1.5 5.1E+0 1.9E-7 3.1E+0 1.8E-7 3.9E+3 2.5E-2 1.1E+3 2.4E-3 4.5E+1 6.0E-7 1.4E+4 7.5E-2

1.9 1.0E+1 4.1E-7 6.5E+0 3.6E-7 6.9E+3 5.4E-2 4.7E+3 1.9E-2 1.2E+2 1.9E-6 2.0E+4 1.3E-1

2.0 1.2E+1 4.2E-7 8.0E+0 4.3E-7 7.8E+3 6.4E-2 6.0E+3 2.7E-2 1.6E+2 2.6E-6 2.1E+4 1.5E-1

2.1 1.5E+1 6.1E-7 1.0E+1 5.4E-7 8.7E+3 7.5E-2 7.3E+3 3.6E-2 2.1E+2 3.7E-6 2.2E+4 1.7E-1

2.5 3.5E+1 1.5E-6 2.5E+1 1.5E-6 1.3E+4 1.3E-1 1.3E+4 9.1E-2 6.1E+2 1.5E-5 2.6E+4 2.5E-1

2.9 8.9E+1 4.0E-6 6.7E+1 4.0E-6 1.7E+4 2.0E-1 1.9E+4 1.7E-1 1.6E+3 6.2E-5 2.9E+4 3.4E-1

3.0 1.1E+2 5.2E-6 8.6E+1 5.2E-6 1.7E+4 2.2E-1 2.0E+4 1.9E-1 1.9E+3 8.8E-5 3.0E+4 3.7E-1

3.5 3.9E+2 2.0E-5 3.1E+2 2.0E-5 2.1E+4 3.4E-1 2.7E+4 3.3E-1 4.2E+3 4.2E-4 3.3E+4 5.0E-1

4.0 1.4E+3 8.0E-5 1.1E+3 8.0E-5 2.3E+4 4.8E-1 3.2E+4 4.8E-1 6.1E+3 1.3E-3 3.4E+4 6.3E-1

4.5 5.1E+3 3.4E-4 4.2E+3 3.4E-4 2.3E+4 6.3E-1 3.5E+4 6.5E-1 7.4E+3 2.9E-3 3.5E+4 7.7E-1

5.0 1.8E+4 1.7E-3 1.5E+4 1.7E-3 2.4E+4 7.8E-1 3.8E+4 8.3E-1 8.3E+3 5.1E-3 3.6E+4 9.1E-1

5.5 2.8E+4 2.8E-2 1.7E+4 2.8E-2 2.4E+4 9.2E-1 4.0E+4 1.0E+0 9.0E+3 7.9E-3 3.6E+4 1.0E+0

6.0 2.8E+4 6.6E-2 4.6E+3 5.5E-2 2.3E+4 1.1E+0 4.1E+4 1.2E+0 9.4E+3 1.1E-2 3.6E+4 1.2E+0

6.5 2.8E+4 1.1E-1 1.2E+4 5.7E-2 2.3E+4 1.2E+0 4.2E+4 1.4E+0 9.8E+3 1.5E-2 3.5E+4 1.3E+0

7.0 2.9E+4 1.6E-1 2.9E+4 6.1E-2 2.2E+4 1.3E+0 4.3E+4 1.5E+0 1.0E+4 1.9E-2 3.5E+4 1.4E+0

20.0 3.7E+4 3.3E+0 1.5E+4 1.4E+0 1.2E+4 3.1E+0 3.1E+4 4.4E+0 * * 1.5E+4 2.9E+0

50.0 1.9E+4 6.9E+0 5.6E+3 2.2E+0 5.5E+3 4.1E+0 1.9E+4 6.3E+0 * * 6.3E+3 3.5E+0

27

Table 2: Numerical results for NCP3 and NCP4 using the neural networks based on φ̃p
NR
, φ̃p

S−NR
and ψ̃p

S−NR
for different values of p.

p

NCP3 NCP4

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 1.5E+1 5.2E-6 1.4E+1 1.2E-6 5.1E+3 4.5E-2 1.6E+1 2.3E-6 1.4E+1 3.3E-7 5.1E+3 1.9E-3

1.1 4.3E+1 3.8E-5 2.7E+1 1.9E-10 5.8E+3 4.9E-2 4.3E+1 1.8E-5 1.1E+1 5.2E-8 5.6E+3 2.5E-3

1.5 9.7E+2 3.7E-3 2.4E+2 3.3E-7 8.7E+3 7.6E-2 8.3E+2 1.6E-3 3.5E+0 2.0E-7 7.6E+3 7.1E-3

1.9 4.0E+3 2.7E-2 7.2E+2 9.1E-6 1.1E+4 1.1E-1 3.2E+3 1.2E-2 1.4E+0 1.2E-7 9.3E+3 1.4E-2

2 5.0E+3 3.7E-2 8.6E+2 1.6E-5 1.1E+4 1.2E-1 4.0E+3 1.6E-2 1.1E+0 9.5E-8 9.7E+3 1.7E-2

2.1 6.1E+3 5.0E-2 1.3E+1 6.0E-1 1.1E+4 1.3E-1 4.9E+3 2.1E-2 9.0E-1 7.0E-8 1.0E+4 1.9E-2

2.5 1.1E+4 1.1E-1 8.2E+0 6.9E-1 1.2E+4 1.7E-1 8.5E+3 5.1E-2 4.0E-1 2.5E-8 1.1E+4 1.8E-2

2.9 1.6E+4 1.9E-1 6.9E+0 7.4E-1 1.3E+4 2.1E-1 1.2E+4 9.3E-2 1.9E-1 6.2E-9 1.2E+4 1.7E-2

3 1.7E+4 2.1E-1 6.8E+0 7.5E-1 1.3E+4 2.2E-1 1.3E+4 1.0E-1 1.6E-1 3.6E-9 1.3E+4 2.4E-2

3.5 2.2E+4 3.1E-1 6.6E+0 8.0E-1 1.3E+4 2.7E-1 1.6E+4 1.7E-1 7.0E-2 1.6E-10 1.4E+4 5.3E-2

4 2.6E+4 3.8E-1 7.4E+0 8.2E-1 1.3E+4 3.2E-1 1.9E+4 2.4E-1 4.0E-2 1.1E-10 1.4E+4 8.0E-2

4.5 2.8E+4 4.3E-1 8.9E+0 8.4E-1 1.3E+4 3.6E-1 2.1E+4 3.2E-1 3.0E-2 3.7E-10 1.5E+4 1.1E-1

5 3.0E+4 4.6E-1 1.1E+1 8.6E-1 1.3E+4 4.1E-1 2.3E+4 4.0E-1 3.0E-2 2.5E-13 1.5E+4 1.3E-1

5.5 3.1E+4 4.8E-1 1.4E+1 8.7E-1 1.3E+4 4.5E-1 2.4E+4 4.8E-1 2.0E-2 5.3E-10 1.5E+4 1.6E-1

6 3.1E+4 4.8E-1 1.8E+1 8.8E-1 1.2E+4 4.9E-1 2.5E+4 5.6E-1 2.0E-2 4.5E-13 1.5E+4 1.9E-1

6.5 2.9E+4 4.7E-1 2.4E+1 8.9E-1 1.0E+4 5.4E-1 2.5E+4 6.3E-1 2.0E-2 1.3E-15 1.5E+4 2.1E-1

7 2.6E+4 4.8E-1 3.1E+1 9.0E-1 8.2E+3 6.0E-1 2.5E+4 7.1E-1 2.0E-2 1.5E-15 1.5E+4 2.4E-1

20 * * * * * * 4.6E+4 1.9E+0 9.1E+4 4.5E-16 1.1E+4 6.8E-1

50 * * * * * * * * * * 5.2E+3 9.7E-1

28

Table 3: Numerical results for NCP5 and NCP6 using the neural networks based on φ̃p
NR
, φ̃p

S−NR
and ψ̃p

S−NR
for different values of p.

p

NCP5 NCP6

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 2.4E+2 7.9E-6 2.4E+2 7.9E-6 3.6E+4 1.6E-2 2.8E+1 4.0E-6 2.4E+1 3.0E-6 6.3E+3 5.9E-2

1.1 1.6E+2 5.6E-6 1.6E+2 5.6E-6 3.7E+4 1.6E-2 7.6E+1 2.6E-5 1.4E+1 1.5E-6 6.5E+3 6.9E-2

1.5 3.7E+1 1.1E-6 3.7E+1 1.1E-6 4.1E+4 1.9E-2 1.1E+3 5.6E-3 5.9E+0 4.6E-8 7.5E+3 8.5E-2

1.9 1.1E+1 1.3E-7 1.1E+1 1.3E-7 4.3E+4 3.8E-2 4.4E+3 4.3E-2 4.6E+0 1.6E-7 9.7E+3 7.1E-2

2 8.7E+0 4.7E-8 8.7E+0 4.7E-8 4.4E+4 5.3E-2 5.6E+3 6.0E-2 4.7E+0 1.7E-7 1.0E+4 6.2E-2

2.1 7.0E+0 1.7E-9 7.0E+0 1.7E-9 4.4E+4 6.7E-2 6.8E+3 8.0E-2 * * 1.1E+4 5.4E-2

2.5 3.4E+0 7.6E-8 3.4E+0 7.6E-8 4.7E+4 1.1E-1 1.2E+4 1.9E-1 * * 1.2E+4 2.8E-2

2.9 2.1E+0 1.1E-7 2.1E+0 1.1E-7 4.9E+4 1.4E-1 1.8E+4 3.5E-1 * * 1.4E+4 2.1E-2

3 2.0E+0 5.5E-8 2.0E+0 5.5E-8 4.9E+4 1.5E-1 1.9E+4 4.0E-1 * * 1.4E+4 2.2E-2

3.5 1.4E+0 3.7E-8 1.4E+0 3.7E-8 5.1E+4 2.0E-1 2.5E+4 6.5E-1 * * 1.6E+4 3.7E-2

4 1.0E+0 6.0E-8 1.0E+0 6.0E-8 5.2E+4 2.4E-1 3.0E+4 9.2E-1 * * 1.7E+4 6.2E-2

4.5 8.0E-1 3.1E-8 8.0E-1 3.1E-8 5.2E+4 2.9E-1 3.4E+4 1.2E+0 * * 1.8E+4 8.8E-2

5 9.0E-1 4.1E-11 9.0E-1 4.1E-11 5.2E+4 3.3E-1 3.8E+4 1.5E+0 * * 1.8E+4 1.1E-1

5.5 7.0E-1 1.2E-10 7.0E-1 1.2E-10 5.2E+4 3.7E-1 4.0E+4 1.7E+0 * * 1.9E+4 1.3E-1

6 5.0E+2 8.9E-16 1.0E+3 8.9E-16 5.1E+4 4.0E-1 3.9E+4 2.0E+0 * * 1.9E+4 1.4E-1

6.5 5.0E-1 8.5E-11 5.0E-1 8.5E-11 5.1E+4 4.3E-1 3.3E+4 2.2E+0 * * 1.9E+4 1.6E-1

7 4.0E-1 3.3E-10 4.0E-1 3.3E-10 5.0E+4 4.7E-1 4.6E+4 2.4E+0 * * 1.9E+4 1.7E-1

20 1.0E-1 1.5E-12 1.0E-1 1.5E-12 3.1E+4 8.4E-1 3.6E+4 6.8E+0 * * 1.4E+4 7.6E-1

50 * * * * * * 1.7E+4 1.5E+1 * * 7.2E+3 1.5E+0

29

Table 4: Numerical results for NCP7 and NCP8 using the neural networks based on φ̃p
NR
, φ̃p

S−NR
and ψ̃p

S−NR
for different values of p.

p

NCP7 NCP8

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 5.0E+2 5.4E-5 4.4E+2 3.7E-5 5.8E+4 2.7E-1 1.6E+1 8.0E-8 1.6E+1 3.3E-7 6.8E+3 9.3E-3

1.1 1.2E+3 3.7E-4 3.1E+2 1.2E-5 6.0E+4 2.6E-1 4.6E+1 2.9E-6 4.4E+1 9.5E-11 8.6E+3 8.9E-3

1.5 1.4E+4 2.9E-2 4.6E+4 1.4E-1 6.7E+4 2.5E-1 1.1E+3 3.1E-4 9.7E+2 9.4E-7 1.8E+4 5.0E-3

1.9 4.2E+4 1.9E-1 5.4E+2 1.9E-6 1.3E+4 2.8E-2 4.5E+3 2.4E-3 4.0E+3 5.1E-5 2.6E+4 6.6E-3

2 5.0E+4 2.5E-1 6.9E+2 4.1E-6 1.4E+4 2.8E-2 5.7E+3 3.4E-3 5.0E+3 1.0E-4 2.7E+4 1.1E-2

2.1 5.9E+4 3.3E-1 8.6E+2 7.9E-6 1.5E+4 2.8E-2 7.0E+3 4.7E-3 6.1E+3 1.8E-4 2.9E+4 1.6E-2

2.5 9.1E+4 7.4E-1 1.5E+1 3.1E-2 2.1E+4 1.8E-2 1.3E+4 1.2E-2 1.1E+4 1.1E-3 3.3E+4 4.3E-2

2.9 9.1E+4 1.3E+0 6.4E+1 6.7E-2 2.8E+4 3.2E-2 1.8E+4 2.5E-2 1.6E+4 3.5E-3 3.6E+4 7.9E-2

3 9.1E+4 1.4E+0 8.1E+1 6.7E-2 3.0E+4 4.7E-2 2.0E+4 2.9E-2 1.7E+4 4.5E-3 3.7E+4 9.0E-2

3.5 9.1E+4 2.1E+0 9.1E+3 1.4E-1 4.1E+4 1.5E-1 2.6E+4 5.4E-2 2.2E+4 1.2E-2 3.8E+4 1.5E-1

4 9.1E+4 2.6E+0 9.1E+3 1.4E-1 3.9E+4 3.1E-1 3.0E+4 8.6E-2 2.6E+4 2.4E-2 3.9E+4 2.1E-1

4.5 9.1E+4 2.9E+0 9.1E+3 1.4E-1 3.4E+4 2.3E-1 4.6E+4 1.2E-1 2.9E+4 4.0E-2 3.9E+4 2.7E-1

5 9.1E+4 3.0E+0 3.6E+3 8.2E-2 1.7E+4 2.3E-1 4.6E+4 1.6E-1 3.1E+4 6.0E-2 3.8E+4 3.4E-1

5.5 9.1E+4 3.0E+0 5.4E+3 8.9E-2 1.9E+4 2.9E-1 4.6E+4 2.2E-1 1.0E-1 2.0E+1 3.7E+4 4.0E-1

6 6.5E+4 2.9E+0 9.1E+3 1.4E-1 1.9E+4 3.6E-1 4.6E+4 2.7E-1 1.0E-1 2.1E+1 3.6E+4 4.7E-1

6.5 9.1E+4 2.4E+0 9.1E+3 1.4E-1 1.8E+4 4.3E-1 4.5E+4 3.3E-1 1.0E-1 2.2E+1 3.5E+4 5.3E-1

7 9.1E+4 1.2E+0 9.1E+3 1.4E-1 1.8E+4 4.9E-1 4.6E+4 3.9E-1 1.0E-1 2.2E+1 3.4E+4 5.8E-1

20 3.6E+4 7.1E+0 9.1E+3 6.6E-1 9.9E+3 1.3E+0 * * * * 1.8E+4 1.4E+0

50 1.7E+4 1.8E+1 4.3E+3 9.3E-1 4.7E+3 1.8E+0 * * * * 8.1E+3 1.8E+0

30

Table 5: Numerical results for NCP9 and NCP10 using the neural networks based on φ̃p
NR
, φ̃p

S−NR
and ψ̃p

S−NR
for different values of p.

p

NCP9 NCP10

CT1 Gap1 CT2 Gap2 CT3 Gap3 CT1 Gap1 CT2 Gap2 CT3 Gap3

1.01 3.5E+2 4.1E-5 3.0E+2 3.1E-5 4.6E+4 9.7E-2 1.6E+1 2.2E-6 1.4E+1 1.6E-6 6.0E+3 1.9E-2

1.1 9.0E+2 2.3E-4 1.2E+2 2.7E-6 4.8E+4 1.1E-1 4.6E+1 1.7E-5 1.2E+1 1.4E-6 6.8E+3 2.3E-2

1.5 1.2E+4 1.3E-2 6.0E+0 5.4E-7 1.0E+4 9.8E-2 1.1E+3 1.9E-3 9.2E+0 3.7E-7 1.1E+4 5.0E-2

1.9 3.6E+4 7.3E-2 2.9E+0 2.6E-7 1.3E+4 1.5E-1 4.5E+3 1.4E-2 9.0E+0 2.4E-7 1.6E+4 8.6E-2

2 4.2E+4 9.7E-2 2.7E+0 1.6E-7 1.4E+4 1.6E-1 5.7E+3 2.0E-2 9.5E+0 2.1E-7 1.7E+4 9.7E-2

2.1 4.9E+4 1.2E-1 2.8E+0 7.9E-8 1.5E+4 1.8E-1 7.0E+3 2.6E-2 1.0E+1 1.7E-7 1.8E+4 1.1E-1

2.5 7.1E+4 2.6E-1 * * 1.9E+4 2.4E-1 1.3E+4 6.4E-2 5.2E+1 3.3E-1 2.3E+4 1.5E-1

2.9 8.6E+4 4.2E-1 * * 2.3E+4 3.0E-1 1.8E+4 1.2E-1 2.2E+1 3.7E-1 2.8E+4 1.6E-1

3 8.9E+4 4.6E-1 * * 2.4E+4 3.1E-1 2.0E+4 1.3E-1 2.1E+1 3.7E-1 2.9E+4 1.6E-1

3.5 9.1E+4 6.6E-1 * * 3.0E+4 3.9E-1 2.6E+4 2.1E-1 2.1E+1 3.9E-1 3.6E+4 1.7E-1

4 9.1E+4 8.5E-1 * * 3.6E+4 4.6E-1 3.1E+4 2.9E-1 4.6E+4 1.8E-1 4.4E+4 2.0E-1

4.5 9.1E+4 1.0E+0 * * 4.2E+4 5.3E-1 3.4E+4 3.7E-1 4.6E+4 1.8E-1 4.6E+4 2.4E-1

5 9.1E+4 1.2E+0 * * 4.6E+4 5.9E-1 3.7E+4 4.6E-1 4.8E+2 2.3E-1 4.6E+4 2.8E-1

5.5 9.1E+4 1.3E+0 * * 5.0E+4 6.4E-1 3.9E+4 5.4E-1 3.9E+2 2.4E-1 4.6E+4 3.3E-1

6 9.1E+4 1.4E+0 * * 5.2E+4 6.9E-1 4.1E+4 6.2E-1 5.6E+2 2.4E-1 4.6E+4 3.8E-1

6.5 8.2E+4 1.5E+0 * * 5.3E+4 7.4E-1 4.2E+4 6.9E-1 9.2E+2 2.4E-1 4.6E+4 4.1E-1

7 6.4E+4 1.6E+0 * * 5.3E+4 7.7E-1 4.3E+4 7.7E-1 1.4E+3 2.4E-1 3.6E+4 4.4E-1

20 2.5E+1 1.6E+0 * * 2.5E+4 1.2E+0 2.6E+4 2.4E+0 4.3E+4 3.9E-1 1.1E+4 1.8E+0

50 2.5E+4 1.5E+0 * * 5.1E+3 1.3E+0 1.9E+4 5.5E+0 2.1E+4 6.5E-1 4.6E+3 2.8E+0

31

0 1 2 3 4 5 6

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (ms)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4
x5

(c)

Figure 3: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the approximate solution x∗ =

(0.1837, 0.2652, 0.3068, 0.3030, 0.4015)T for NCP1.

0 5 10 15 20 25 30

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 5 10 15 20 25 30

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101
||x

(t
)-

x*
||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 2 4 6 8 10 12 14 16

Time (ms)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4
x5

(c)

Figure 4: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the approximate solution x∗ =

(0.6555, 0.3913, 0, 0, 0)T for NCP2.

32

0 5 10 15 20 25

Time (ms)

10-6

10-4

10-2

100

102

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 5 10 15 20 25

Time (ms)

10-6

10-4

10-2

100

102

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 1 2 3 4 5 6 7 8 9 10

Time (ms)

-2

-1

0

1

2

3

4

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4
x5

(c)

Figure 5: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the solution x∗ = (0, 0, 1, 2, 3)T for NCP3.

0 5 10 15 20 25

Time (ms)

10-6

10-4

10-2

100

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 2 4 6 8 10 12 14 16 18 20

Time (ms)

10-6

10-4

10-2

100

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 2 4 6 8 10 12

Time (ms)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3

(c)

Figure 6: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the solution x∗ = (2, 0, 1)T for NCP4.

33

0 50 100 150 200 250 300 350 400 450

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 50 100 150 200 250 300

Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)
(c)

Figure 7: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the solution x∗ = (1, 1, 8, 4)T for NCP5.

0 5 10 15 20 25 30 35 40

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 5 10 15 20 25

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||
FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 5 10 15 20

Time (ms)

-0.5

0

0.5

1

1.5

2

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4

(c)

Figure 8: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the solution x∗ = (
√

6/2, 0, 0, 0.5)T for

NCP6.

34

0 100 200 300 400 500 600

Time (ms)

10-12

10-10

10-8

10-6

10-4

10-2

100

102

(x
(t

))

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(a)

0 2 4 6 8 10 12 14 16 18 20

Time (ms)

-1

-0.5

0

0.5

1

1.5

2

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4

(b)

0 5 10 15

Time (ms)

-2

-1

0

1

2

3

4

5

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4

(c)

Figure 9: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

to the degenerate solution x∗ = (
√

6/2, 0, 0, 0.5)T and

non-degenerate solution x∗ = (1, 0, 3, 0)T (using p = 1.01 and p = 2, respectively) for NCP7.

0 5 10 15 20 25 30

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.01)
NN2 (p=1.01)
NN3 (p=1.01)

(a)

0 5 10 15 20 25 30 35 40

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

||x
(t

)-
x*

||
FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(b)

0 5 10 15

Time (ms)

-2

-1

0

1

2

3

4

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4
x5

(c)

Figure 10: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to the solution x∗ = (0, 3, 1, 0, 0)T for NCP8.

35

0 50 100 150 200

Time (ms)

10-15

10-10

10-5

100

105

 (
x(

t)
)

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(a)

0 5 10 15 20

Time (ms)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4

(b)

0 2 4 6 8 10 12

Time (ms)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4

(c)

Figure 11: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

(p = 1.01) to a solution x∗ = (k, 0, 0, 0)T (where k ∈ [0, 3])

for NCP9.

0 5 10 15 20

Time (ms)

10-6

10-4

10-2

100

||x
(t

)-
x*

||

FB
GFB (p=4)
NN1 (p=1.1)
NN2 (p=1.1)
NN3 (p=1.1)

(a)

0 2 4 6 8 10 12 14 16 18

Time (ms)

10-8

10-6

10-4

10-2

100
||x

(t
)-

x*
||

FB
GFB (p=4)
NN1 (p=2)
NN2 (p=2)
NN3 (p=2)

(b)

0 2 4 6 8 10 12

Time (ms)

-1

-0.5

0

0.5

1

1.5

2

T
ra

je
ct

or
ie

s
x(

t)

x1
x2
x3
x4
x5

(c)

Figure 12: Comparison of neural networks based on NR and FB functions, and the convergence of the neural network based on φ̃p
S−NR

to the solution x∗ = (0, 1, 0, 1, 0)T for NCP10.

36

	Motivation
	Continuous Generalization
	Stability Analysis
	Numerical Experiments
	Discussion of Numerical Results
	Concluding Remarks

