
Neurocomputing 74 (2011) 3646–3653
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

Theoret

E-m

(J.-S. Ch
1 Th

Taiwan
journal homepage: www.elsevier.com/locate/neucom
Recurrent neural networks for solving second-order cone programs
Chun-Hsu Ko a, Jein-Shan Chen b,1,�, Ching-Yu Yang b

a Department of Electrical Engineering, I-Shou University, Kaohsiung County 840, Taiwan
b Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
a r t i c l e i n f o

Article history:

Received 6 January 2011

Received in revised form

1 June 2011

Accepted 14 July 2011
Communicated by Y. Liu
neural networks. We propose two kinds of neural networks with the different SOCCP functions. The
Available online 10 August 2011

Keywords:

SOCP

Neural network

Merit function

Fischer–Burmeister function

Cone projection function

Lyapunov stable
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2011.07.009

esponding author. Member of Mathematics

ical Sciences, Taipei Office.

ail addresses: chko@isu.edu.tw (C.-H. Ko), jsch

en), yangcy@math.ntnu.edu.tw (C.-Y. Yang).

e author’s work is partially supported by

.

a b s t r a c t

This paper proposes using the neural networks to efficiently solve the second-order cone programs

(SOCP). To establish the neural networks, the SOCP is first reformulated as a second-order cone

complementarity problem (SOCCP) with the Karush–Kuhn–Tucker conditions of the SOCP. The SOCCP

functions, which transform the SOCCP into a set of nonlinear equations, are then utilized to design the

first neural network uses the Fischer–Burmeister function to achieve an unconstrained minimization

with a merit function. We show that the merit function is a Lyapunov function and this neural network

is asymptotically stable. The second neural network utilizes the natural residual function with the cone

projection function to achieve low computation complexity. It is shown to be Lyapunov stable and

converges globally to an optimal solution under some condition. The SOCP simulation results

demonstrate the effectiveness of the proposed neural networks.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Second-order cone program (SOCP) has been widely applied in
engineering optimization [1]. It requires solving the optimization
problem subject to the linear equality and second-order cone
inequality constraints [2]. Numerical approaches such as the
interior-point method [1] or the merit function method [3] can
effectively solve the SOCP. However, many engineering dynamic
systems, such as force analysis in robot grasping [1,4] and control
applications [5,6], require the real-time SOCP solutions. As a
result, efficient approaches for solving the real-time SOCP are
needed. Prior research [7–18] indicates that the neural networks
can be used to solve various optimization problems. Furthermore,
the neural networks based on circuit implementation exhibit the
real-time processing ability. We consider that it is appropriate to
utilize the neural networks for efficiently solving the SOCP
problems.

The recurrent neural network was introduced by Hopfield and
Tank [7] for solving linear programming problems. Kennedy and
Chua [8] proposed an extended neural network for solving non-
linear convex programming problems thereafter, while their
ll rights reserved.

Division, National Center for

en@math.ntnu.edu.tw

National Science Council of
approach involves the penalty parameter which affects the neural
network accuracy. To find the exact solutions, more neural
networks for optimization have been further developed. Among
them, the primal-dual neural network [9–11] with the global
stability is proposed for providing the exact solutions of the linear
and quadratic programming problems. The projection neural
network, developed by Xia and Wang [12,14,15], was proposed
to efficiently solve many optimization problems and variational
inequalities. Since the SOCP is a nonlinear convex problem, both
primal-dual neural network [16] and projection neural network
[17] can be used to provide the SOCP solution. However, they
require many state variables, leading to high model complexity. It
thus motivates the development of more compact neural
networks for SOCP.

The SOCP can be solved by analyzing its Karush–Kuhn–Tucker
(KKT) optimality conditions which leads to the second-order cone
complementarity problem (SOCCP) [3,19,20]. The approaches
[3,20] based on the SOCCP functions, such as Fischer–Burmeister
(FB) and natural residual functions, can be further utilized for
solving the SOCCP. In the merit function approach [3], an
unconstrained smooth minimization with the FB function is
achieved in finding the SOCCP solution. On the other hand, the
semi-smooth approach [20] uses the natural residual function
with the cone projection (CP) function to reformulate the SOCCP
as a set of nonlinear equations and then apply the non-smooth
Newton method to obtain the solution. Previous studies have
demonstrated the feasibility of these SOCCP functions in solving
the SOCP problems. We also use them in our neural network

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2011.07.009
mailto:chko@isu.edu.tw
mailto:jschen@math.ntnu.edu.tw
mailto:jschen@math.ntnu.edu.tw
mailto:yangcy@math.ntnu.edu.tw
dx.doi.org/10.1016/j.neucom.2011.07.009


C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–3653 3647
design. In this paper, we propose two novel neural networks for
efficiently solving the SOCP problems. One is based on the
gradient of the smooth merit function derived from the FB
function [18]. The other is an extended projection neural network
by replacing the scalar projection function [12,14,15] with the CP
function. These neural networks are with less state variables than
those previously proposed [16,17] for solving the SOCP. Further-
more, they are shown to be stable and globally convergent to the
SOCP solutions.

This paper is organized as follows. Section 2 introduces the
second-order cone program and its SOCCP formulation. In Section
3, the neural network based on the Fischer–Burmeister function is
proposed and analyzed. In Section 4, the second neural network
based on the cone projection function is proposed. Its global
stability is also verified. In Section 5, several SOCP examples are
presented to demonstrate the effectiveness of the proposed
neural networks. Finally, the conclusions are given in Section 6.
2. Problem formulation

In this section, we introduce the second-order cone program
and reformulate it as a second-order cone complementarity
problem. The second-order cone program is in the form of

minimize f ðxÞ

subject to Ax¼ b, xAK : ð1Þ

Here f : Rn-R is a nonlinear continuously differentiable func-
tion, AARm�n is a full row rank matrix, bARm is a vector, and K is
a Cartesian product of second-order cones (or Lorentz cones),
expressed as

K ¼ Kn1 � Kn2 � � � � � KnN , ð2Þ

where N,n1, . . . ,nN Z1,n1þ � � � þnN ¼ n, and

Kni :¼ fðxi1,xi2, . . . ,xini
Þ
T ARni 9 Jðxi2, . . . ,xini

ÞJrxi1g

with J � J denoting the Euclidean norm and K1 the set of non-
negative reals Rþ . A special case of Eq. (2) is K ¼Rn

þ , namely the
nonnegative orthant in Rn, which corresponds to N¼n and
n1 ¼ � � � ¼ nN ¼ 1. When f is linear, i.e., f ¼ cT x with cARn, SOCP
(1) reduces to the following linear SOCP:

minimize cT x

subject to Ax¼ b, xAK : ð3Þ

The KKT optimality conditions for (1) are given by

rf ðxÞ�AT y�l¼ 0,

xTl¼ 0, xAK , lAK ,

Ax¼ b,

8><
>: ð4Þ

where yARm and lARn. When f is convex, these conditions are
sufficient for optimality. It also can be written as

xT ðrf ðxÞ�AT yÞ ¼ 0, xAK , rf ðxÞ�AT yAK ,

Ax¼ b:

(
ð5Þ

By solving the system (5), we may obtain a primal-dual optimal
solution of SOCP (1). Note that system (5) involves the SOCCP. To
efficiently solve it, we propose using the neural network
approaches with the FB function and CP function, respectively,
described below.
Fig. 1. Block diagram of the proposed neural network with FB function.
3. Neural network design with Fischer–Burmeister function

It is known that the merit function approach [3] can be used
for solving system (5). Motivated by this approach, we propose a
neural network with the Fischer–Burmeister function to find the
minimal of the merit function and study its global stability.

In [3], system (5) is shown to be equivalent to an uncon-
strained smooth minimization problem via the merit function
approach, described as

min Eðx,yÞ ¼CFBðx,rf ðxÞ�AT yÞþ1
2JAx�bJ2, ð6Þ

where Eðx,yÞ is a merit function, CFBðx,yÞ ¼ 1
2

PN
i ¼ 1 JfFBðxi,yiÞJ

2,

x¼ ðx1, . . . ,xNÞ
T , y¼ ðy1, . . . ,yNÞ

T ARn1 � � � � �RnN , and fFB is the
Fischer–Burmeister function defined as

fFBðxi,yiÞ :¼ ðx
2
i þy2

i Þ
1=2
�xi�yi: ð7Þ

Based on the gradient of the objective Eðx,yÞ in minimization
problem (6), we propose the first neural network for solving the
SOCP, with the following dynamic equation:

d

dt

x

y

 !
¼ r

�rxEðx,yÞ

�ryEðx,yÞ

 !
, ð8Þ

where r is a positive scaling factor and

rxEðx,yÞ ¼rxCFBðx,rf ðxÞ�AT yÞ

þr
2f ðxÞ � ryCFBðx,rf ðxÞ�AT yÞþAT ðAx�bÞ,

ryEðx,yÞ ¼�A � ryCFBðx,rf ðxÞ�AT yÞ:

8>><
>>: ð9Þ

For linear SOCP (3), the above equations reduce to

rxEðx,yÞ ¼rxCFBðx,c�AT yÞþAT ðAx�bÞ,

ryEðx,yÞ ¼�A � ryCFBðx,c�AT yÞ:

(
ð10Þ

Note that the Jordan product [3] is required for calculating rxCFB

and ryCFB which are introduced in Appendix. And, the dynamic

equation (8) can be realized by a recurrent neural network with
FB function as shown in Fig. 1. The circuit for the neural network

realization requires nþm integrators, n processors for rf ðxÞ, n2

processors for r2f ðxÞ, n processors for rxCFB, m processors for

ryCFB, 4mn connection weights and some summers. Further-

more, the neural network (8) is asymptotically stable, as proven
in the following theorem.



C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–36533648
Theorem 3.1. If un ¼ ðxn,ynÞ is an isolated equilibrium point of

neural network (8), then un ¼ ðxn,ynÞ is asymptotically stable for (8).

Proof. We assume that un ¼ ðxn,ynÞ is an isolated equilibrium
point of neural network (8) over a neighborhood OnDRn of un

such that rEðxn,ynÞ ¼ 0 and rEðx,yÞa0, 8ðx,yÞAOn\fðxn,ynÞg. First
we show that Eðx,yÞ is a Lyapunov function for un at On. Since

ryEðxn,ynÞ ¼�A � ryCFBðx
n,rf ðxnÞ�AT ynÞ ¼ 0,

from Lemma 3 and Proposition 1 of [3], we have

rxCFBðx
n,rf ðxnÞ�AT ynÞ ¼ryCFBðx

n,rf ðxnÞ�AT ynÞ ¼ 0:

Moreover, from Proposition 1 of [3], this says

CFBðx
n,rf ðxnÞ�AT ynÞ ¼ 0:

Then from Eq. (9),

rxEðxn,ynÞ ¼rxCFBðx
n,rf ðxnÞ�AT ynÞ

þr2f ðxnÞ � ryCFBðx
n,rf ðxnÞ�AT ynÞ

þAT ðAxn
�bÞ ¼ 0,

which implies that AT ðAxn
�bÞ ¼ 0. Because AARm�n is a full row

rank matrix, we must have Axn
�b¼ 0, which yields

Eðxn,ynÞ ¼CFBðx
n,rf ðxnÞ�AT ynÞþ1

2JAxn
�bJ2

¼ 0:

Next, we claim that Eðx,yÞ40, 8ðx,yÞAOn\fðxn,ynÞg. If not, there is
an ðx,yÞAOn\fðxn,ynÞg such that Eðx,yÞ ¼ 0, this says that
CFBðx,rf ðxÞ�AT yÞ ¼ 0 and Ax¼b, then rxEðx,yÞ ¼ 0 and
ryEðx,yÞ ¼ 0. Hence, (x,y) is an equilibrium point of neural net-
work (8), contradicting with that un ¼ ðxn,ynÞ is an isolate equili-
brium point. Finally,

dEðxðtÞ,yðtÞÞ

dt
¼ ½rðxðtÞ,yðtÞÞEðxðtÞ,yðtÞÞ�

T ð�rrðxðtÞ,yðtÞÞEðxðtÞ,yðtÞÞÞ

¼ �rJrðxðtÞ,yðtÞÞEðxðtÞ,yðtÞÞJ2r0:

Therefore, the function Eðx,yÞ is a Lyapunov function for neural
network (8) over the set On. Since un ¼ ðxn,ynÞ is an isolated
equilibrium point of neural network (8), we have

dEðxðtÞ,yðtÞÞ

dt
o0, 8ðxðtÞ,yðtÞÞAOn\fðx

n,ynÞg:

Thus, un is asymptotically stable for neural network (8). &

4. Neural network design with cone projection function

In this section, we propose another neural network associated
with the cone projection function to solve system (5) for obtain-
ing the SOCP solution and study its stability. In fact, from [24,
Proposition 3.3], we know that such cone projection onto K has a
special formula given as

PK ðzÞ ¼ ½l1ðzÞ�þuð1Þz þ½l2ðzÞ�þuð2Þz ,

where ½��þ means the scalar projection, l1ðzÞ, l2ðzÞ and uð1Þz , uð2Þz are
the spectral values and the associated spectral vectors of
z¼ ðz1,z2ÞAR�Rn�1, respectively, given by

liðzÞ ¼ z1þð�1ÞiJz2J,

uðiÞz ¼
1

2
1,ð�1Þi

z2

Jz2J

� �
,

8><
>:
for i¼1,2. The CP function PK(z) has the following property, called
projection theorem [21], which is useful in our subsequent
analysis.

Property 4.1. Let K be a nonempty closed convex subset of Rn. Then,
for each zARn, PK(z) is the unique vector zAK satisfying

ðy�zÞT ðz�zÞr0, 8yAK.
Employing the natural residual function with the CP function
[19,20], system (5) can be equivalently written as

x�PK ðx�rf ðxÞþAT yÞ ¼ 0,

Ax�b¼ 0,

(
ð11Þ

where x¼ ðx1, . . . ,xNÞ
T ARn1 � � � � �RnN with xi ¼ ðxi1,xi2, . . . ,xini

Þ
T ,

i¼ 1, . . . ,N, and PK ðxÞ ¼ ½PK ðx1Þ, . . . ,PK ðxNÞ�
T .

Based on the equivalent formulation in (11) and employing the
ideas for networks used in [12,13], we consider the second neural
network for solving the SOCP, with the following dynamic
equations:

d

dt

x

y

 !
¼ r

�xþPK ðx�rf ðxÞþAT yÞ

�Axþb

 !
, ð12Þ

where r is a positive scaling factor. The dynamic can be realized
by a recurrent neural network with the cone projection function
as shown in Fig. 2. The circuit for the neural network realization
requires nþm integrators, n processors for rf ðxÞ, N processors for
cone projection mapping PK, 2mn connection weights and some
summers. Compared with the first neural network in (8), the
second neural network (12) dose not require to calculate r2f ðxÞ,
resulting in lower model complexity.

To analyze the stability of the neural network in Eq. (12), we
first give three lemmas and one proposition.

Lemma 4.1. Let F(u) be defined as

FðuÞ :¼ Fðx,yÞ :¼
�xþPK ðx�rf ðxÞþAT yÞ

�Axþb

 !
: ð13Þ

Then, F(u) is semi-smooth. Moreover, F(u) is strongly semi-smooth if

r
2f ðxÞ is locally Lipschitz continuous.

Proof. This is an immediate consequence of [20, Theorem 1]. &

Proposition 4.1. For any initial point u0 ¼ ðx0,y0Þ where

x0 :¼ xðt0ÞAK , there exists a unique solution uðtÞ ¼ ðxðtÞ,yðtÞÞ for

neural network (12). Moreover, xðtÞAK.

Proof. For simplicity, we assume K ¼ Kn. The analysis can be
carried over to the general case where K is the Cartesian product
of second-order cones. From Lemma 4.1, FðuÞ :¼ Fðx,yÞ is semi-
smooth and Lipschitz continuous. Thus, there exists a unique
solution uðtÞ ¼ ðxðtÞ,yðtÞÞ for neural network (12). Therefore, it
remains to show that xðtÞAKn. For convenience, we denote
xðtÞ :¼ ðx1ðtÞ,x2ðtÞÞAR�Rn�1. To complete the proof, we need to
verify two things: (i) x1ðtÞZ0 and (ii) Jx2ðtÞJrx1ðtÞ. First, from
(12), we have

dx

dt
þrxðtÞ ¼ rPK ðx�rf ðxÞþAT yÞ:

The solution of the first-order ordinary differential equation
above is

xðtÞ ¼ e�rðt�t0Þxðt0Þþre�rt

Z t

t0

ersPK ðx�rf ðxÞþAT yÞds:

If we let xðt0Þ :¼ ðx1ðt0Þ,x2ðt0ÞÞAR�Rn�1 and denote zðtÞ :¼
ðz1ðt0Þ,z2ðt0ÞÞ as the term PK ðx�ðrf ðxÞ�AT yÞÞ, which leads to

x1ðtÞ ¼ e�rðt�t0Þx1ðt0Þþre�rt

Z t

t0

ersz1ðsÞds,

x2ðtÞ ¼ e�rðt�t0Þx2ðt0Þþre�rt

Z t

t0

ersz2ðsÞds:

Due to both x0ðtÞ and z(t) belong to Kn, there have x1ðt0ÞZ0,
Jx2ðt0ÞJrx1ðt0Þ and z1ðtÞZ0, Jz2ðtÞJrz1ðtÞ. Therefore, x1ðtÞZ0
since both terms in the right-hand side are nonnegative.



Fig. 2. Block diagram of the proposed neural network with CP function.

C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–3653 3649
In addition,

Jx2ðtÞJre�rðt�t0ÞJx2ðt0ÞJþre�rt

Z t

t0

ersJz2ðsÞJds

re�rðt�t0Þx1ðt0Þþre�rt

Z t

t0

ersz1ðsÞds¼ x1ðtÞ,

which implies that xðtÞAKn. &

Lemma 4.2. Let H(u) be defined as

HðuÞ :¼ Hðx,yÞ :¼
rf ðxÞ�AT y

Ax�b

 !
: ð14Þ

Then, H is a monotone function if f is a convex function. Moreover,
rHðuÞ is positive semi-definite if and only if r2f ðxÞ is positive semi-
definite.

Proof. Let u¼ ðx,yÞ and ~u ¼ ð ~x, ~yÞ. Then, the monotonicity of H

holds since

ðu� ~uÞT ðHðuÞ�Hð ~uÞÞ ¼ ðx� ~xÞT ðrf ðxÞ�rf ð ~xÞÞ�ðx� ~xÞT ðAT ðy� ~yÞÞ

þðy� ~yÞT ðAðx� ~xÞÞ ¼ ðx� ~xÞT ðrf ðxÞ�rf ð ~xÞÞZ0,
where the last inequality is due to the convexity of f(x), see [22,
Theorem 3.4.5]. Furthermore, we observe that

rHðuÞ ¼
r2f ðxÞ �AT

A 0

" #
:

Thus, we have

uTrHðuÞu¼ ½xT yT �
r

2f ðxÞ �AT

A 0

" #
x

y

" #
¼ xTr

2f ðxÞx,

which indicates that the positive semi-definiteness of rHðuÞ is
equivalent to the positive semi-definiteness of r2f ðxÞ. &

Lemma 4.3. Let F(u) and H(u) be defined as in (13) and (14),
respectively. Also, let un ¼ ðxn,ynÞ be an equilibrium point of neural

network (12) with xn being an optimal solution of SOCP. Then, the

following inequalities hold:

ðFðuÞþu�unÞ
T
ð�FðuÞ�HðuÞÞZ0: ð15Þ

Proof. First, we denote l :¼ rf ðxÞ�AT y. Then, we obtain

ðFðuÞþu�unÞ
T
ð�FðuÞ�HðuÞÞ



C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–36533650
¼
�xþPK ðx�lÞþðx�xnÞ

ð�AxþbÞþðy�ynÞ

" #T
x�PK ðx�lÞ�l
ðAx�bÞ�ðAx�bÞ

" #

¼
�xnþPK ðx�lÞ
ð�AxþbÞþðy�ynÞ

" #T
ðx�lÞ�PK ðx�lÞ

0

� �

¼�ðxn�PK ðx�lÞÞT ððx�lÞ�PK ðx�lÞÞ:

Since xnAK , applying Property 4.1 gives

ðxn�PK ðx�lÞÞT ððx�lÞ�PK ðx�lÞÞr0:

Thus, inequality (15) is proved. &

We now investigate the stability and convergence issues of
neural network (12). First, we analyze the behavior of the solution
trajectory of neural network (12) including existence and con-
vergence. We then establish two kinds of stability for an isolated
equilibrium point.

We know that every solution un to SOCP is an equilibrium
point of neural network (12). If further un is an isolated equili-
brium point of neural network (12), we show that un is Lyapunov
stable.

Theorem 4.1. If f is convex and twice differentiable, then the

solution of neural network (12), with initial point u0 ¼ ðx0,y0Þ where

x0AK , is Lyapunov stable. Moreover, the solution trajectory of neural

network (12) is extendable to the global existence.

Proof. Again, for simplicity, we assume K ¼ Kn. From Proposition
4.1, there exists a unique solution uðtÞ ¼ ðxðtÞ,yðtÞÞ for neural
network (12) and xðtÞAKn. Let un ¼ ðxn,ynÞ be an equilibrium point
of neural network (12) with xn being an optimal solution of SOCP.
We define a Lyapunov function as below:

EðuÞ :¼ Eðx,yÞ :¼ �HðuÞT FðuÞ�1
2 JFðuÞJ2

þ1
2Ju�unJ2, ð16Þ

where F(u) and H(u) are given as in (13) and (14), respectively.
From [23, Theorem 3.2], we know that E is continuously differ-
entiable with

rEðuÞ ¼HðuÞ�½rHðuÞ�I�FðuÞþðu�unÞ:

It is also trivial that EðunÞ ¼ 0. Then, we have

dEðuðtÞÞ

dt
¼rEðuðtÞÞT

du

dt
¼ fHðuÞ�½rHðuÞ�I�FðuÞþðu�unÞgTrFðuÞ

¼ rf½HðuÞþðu�unÞ�T FðuÞþJFðuÞJ2
�FðuÞTrHðuÞFðuÞg:

Hence, inequality (15) in Lemma 4.3 implies

ðHðuÞþu�unÞ
T FðuÞr�HðuÞT ðu�unÞ�JFðuÞJ2,

which yields

dEðuðtÞÞ

dt
rrf�HðuÞT ðu�unÞ�FðuÞTrHðuÞFðuÞg

¼ rf�HðunÞ
T
ðu�unÞ�ðHðuÞ�HðunÞÞ

T
ðu�unÞ

�FðuÞTrHðuÞFðuÞg: ð17Þ

On the other hand, we know that

ðFðunÞþun�uÞT ð�FðunÞ�HðunÞÞ ¼ �ðx�PK ðx
n�ln

ÞÞ
T
ððxn�ln

Þ�PK ðx
n�ln

ÞÞ:

Since xAKn, applying Property 4.1 gives

ðx�PK ðx
n�ln

ÞÞ
T
ððxn�ln

Þ�PK ðx
n�ln

ÞÞr0:

Thus, we have ðFðunÞþun�uÞT ð�FðunÞ�HðunÞÞZ0. Note that
FðunÞ ¼ 0, we therefore obtain �HðunÞ

T
ðu�unÞ

T r0. Also the mono-
tonicity of H implies �ðHðuÞ�HðunÞÞ

T
ðu�unÞr0. In addition, f is

convex and twice differentiable if and only if r2f ðxÞ is positive
semidefinite and hence rH is positive semidefinite by Lemma 4.2,
i.e., the second term �FðuÞTrHðuÞFðuÞr0. The above discussions
lead to dEðuðtÞÞ=dtr0.
In order to obtain E(u) is a Lyapunov function and un is

Lyapunov stable, we will show the following inequality:

�HðuÞT FðuÞZJFðuÞJ2: ð18Þ

To see this, we first observe that

JFðuÞJ2
þHðuÞT FðuÞ ¼ ðx�PK ðx�lÞÞT ððx�lÞ�PK ðx�lÞÞ:

Since xAK , applying Property 4.1 again, there holds

ðx�PK ðx�lÞÞT ððx�lÞ�PK ðx�lÞÞr0,

which yields the desired inequality (18). By combining Eq. (16)

and inequality (18), we have

EðuÞZ1
2 JFðuÞJ2

þ1
2Ju�unJ2,

which says EðuÞ40 if uaun. Hence E(u) is indeed a Lyapunov

function and un is Lyapunov stable. Moreover, it holds that

Eðu0ÞZEðuÞZ1
2Ju�unJ2 for tZt0, ð19Þ

which means the solution trajectory u(t) is bounded. Hence, it can

be extended to global existence. &

Theorem 4.2. Let un ¼ ðxn,ynÞ be an equilibrium point of (12) with

xn being an optimal solution of SOCP. If f is twice differentiable and

r
2f ðxÞ is positive definite, the solution of neural network (12), with

initial point u0 ¼ ðx0,y0Þ where x0AK , is globally convergent to un

and has finite convergence time.

Proof. From (19), the level set

Lðu0Þ :¼ fu 9 EðuÞrEðu0Þg

is bounded. Then, the Invariant Set Theorem [25] implies the
solution trajectory u(t) converges to y as t-1 where y is the
largest invariant set in

P¼ uALðu0Þ
dEðuðtÞÞ

dt
¼ 0

����
��
:

We will show that du=dt¼ 0 if and only if dEðuðtÞÞ=dt¼ 0 which
yields that u(t) converges globally to the equilibrium point
un ¼ ðxn,ynÞ. Suppose du=dt¼ 0, then it is clear that dEðuðtÞÞ=dt¼

rEðuÞT ðdu=dtÞ ¼ 0. Let û ¼ ðx̂,ŷÞAP which says dEðûðtÞÞ=dt¼ 0.
From (17), we know that

dEðûðtÞÞ

dt
rrf�ðHðûÞ�HðunÞÞ

T
ðû�unÞ�FðûÞTrHðûÞFðûÞg:

Both terms inside the big parenthesis are nonpositive as shown in
Lemma 4.2, so ðHðûÞ�HðunÞÞ

T
ðû�unÞ ¼ 0, FðûÞTrHðûÞFðûÞ ¼ 0, and

FðûÞTrHðûÞFðûÞ ¼ f�x̂þPK ðx̂�rf ðx̂ÞþAT ŷÞgTr2f ðx̂Þf�x̂

þPK ðx̂�rf ðx̂ÞþAT ŷÞg ¼ 0:

The condition of r2f ðx̂Þ being positive definite leads to

�x̂þPK ðx̂�rf ðx̂ÞþAT ŷÞ ¼ 0,

which is equivalent to dx̂=dt¼ 0. On the other hand, similar to the
arguments in Lemma 4.2, we have

ðû�unÞ
T
ðHðûÞ�HðunÞÞ ¼ ðx̂�xnÞ

T
ðrf ðx̂Þ�rf ðxnÞÞ

¼ ðx̂�xnÞ
Tr2f ðxsÞðx̂�xnÞ ¼ 0,

where xsA ½xn,x̂�. Again, the condition of r2f ðxsÞ being positive
definite yields x̂ ¼ xn. Hence dŷ=dt¼ 0 and therefore dûðtÞ=dt¼ 0.
From above, u(t) converges globally to the equilibrium point
un ¼ ðxn,ynÞ. Moreover, with Theorem 4.1 and following the same
arguments as in [12, Theorem 2], the neural network (12) has finite
convergence time. &



C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–3653 3651
5. Simulations

To demonstrate the effectiveness of the proposed neural net-
works, three illustrative SOCP problems are tested, described as
below.

Example 5.1. Consider the nonlinear convex SOCP [20] given by

minimize exp ðx1�x3Þþ3ð2x1�x2Þ
4
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð3x2þ5x3Þ

2
q

subject to Ax¼ b, xAK3 � K2,

where

A¼
4 6 3 �1 0

�1 7 �5 0 �1

� �
and b¼

1

�2

� �
:

This problem has an approximate solution xn ¼ ½0:2324,
�0:07309,0:2206,0:153,0:153�T . We use the proposed neural net-
works with the FB and CP functions, respectively, to solve the
problem with the trajectories obtained by them shown in
Figs. 3 and 4. From the simulation results, we found that both
trajectories are globally convergent to xn and the neural network
with the CP function converged to xn quicker than that with the FB
0 0.05 0.1 0.15 0.2
−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

Tr
aj

ec
to

rie
s 

of
 x

 (t
)

x1

x2

x3

x4, x5

Fig. 3. Transient behavior of the neural network with FB function in Example 5.1.

0 0.005 0.01 0.015 0.02 0.025 0.03
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

Tr
aj

ec
to

rie
s 

of
 x

 (t
)

x1

x2

x3

x4, x5

Fig. 4. Transient behavior of the neural network with CP function in Example 5.1.
function. On the other hand, the neural network with the CP function
also has lower model complexity than that with the FB function as
mentioned in Section 4. Hence, the neural network with the CP
function is preferable to the neural network with the FB function
when both can globally converge to the optimal solution.

Example 5.2. Consider the following linear SOCP given by

minimize x1þx2þx3þx4þx5þx6

subject to Ax¼ b, xAK3 � K3,

where

A¼

1 2 0 0 0 1

1 0 0 1 4 0

0 1 1 0 1 0

1 1 0 0 0 0

0 0 1 0 2 0

2
6666664

3
7777775

and b¼

9

20

6

4

8

2
6666664

3
7777775

This problem has an optimal solution xn ¼ ½3,1,2,5,3,4�T . Note
that, its objective function is convex and the Hessian matrix
r2f ðxÞ is a zero matrix. Hence, the neural network with the FB
function is asymptotically stable from Theorem 3.1 while the
neural network with the CP function is Lyapunov stable from
Theorem 4.1. Figs. 5 and 6 display the trajectories obtained using
the neural networks with the FB and CP functions, respectively.
The simulation results show that both trajectories are convergent
to xn. Coinciding with above results of Theorems 3.1 and 4.1, the
neural network with the CP function yields the oscillating
trajectory and has longer convergence time than the neural
network with the FB function.

Example 5.3. Consider the grasping force optimization problem
for the multi-fingered robotic hand [1,4,17]. Its goal is to find the
minimum grasping force for moving an object. For the robotic hand
with m fingers, the optimization problem can be formulated as

minimize 1
2 f T f

subject to
Gf ¼�fext

Jðfi1,fi2ÞJrmfi3 ði¼ 1, . . . ,mÞ,

where f ¼ ½f11,f12, . . . ,fm3�
T is the grasping force, G the grasping

transformation matrix, fext the time-varying external wrench, and m
the friction coefficient.
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

Time (sec)

Tr
aj

ec
to

rie
s 

of
 x

 (t
)

x1, x5

x2

x3

x4

x6

Fig. 5. Transient behavior of the neural network with FB function in Example 5.2.



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Time (sec)

Tr
aj

ec
to

rie
s 

of
 x

 (t
)

x1, x5

x2

x3

x4

x6

Fig. 6. Transient behavior of the neural network with CP function in Example 5.2.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

Time (sec)

G
ra

sp
in

g 
fo

rc
e 

(N
)

f11,f32

f12

f13

f21

f22

f23

f31

f33

Fig. 7. Grasping force obtained by using proposed neural networks in Example

5.3.

C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–36533652
Letting ½xi1,xi2,xi3� ¼ ½mfi3,fi1,fi2�,i¼ 1, . . . ,m, and x¼ ½x11,x12, . . . ,

xm3�
T , the problem can be reformulated as a nonlinear convex

SOCP. For the three-finger grasp example in [17], the robot hand

grasps a polyhedral with the grasp points ½0,1,0�T , ½1,0:5,0�T , and

½0,�1,0�T , and the robot hand moves along a vertical circular
trajectory of radius r with a constant velocity n. We reformulate
the example as

minimize 1
2 xT Qx

subject to Ax¼ b, xAK3 � K3 � K3, ð20Þ

where Q ¼ diagð1=m2,1,1,1=m2,1,1,1=m2,1,1Þ

A¼

0 0 1 �1=m 0 0 0 1 0

�1=m 0 0 0 0 �1 1=m 0 0

0 �1 0 0 �1 0 0 0 �1

0 �1 0 0 �0:5 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 �1 0:5=m 0 �1 0 1 0

2
6666666664

3
7777777775

and

b¼

0

�fc sin yðtÞ
Mg�fc cos yðtÞ

0

0

0

2
666666664

3
777777775

,

where M is the mass of the polyhedral, g¼9.8 m/s2, fc ¼Mn2=r the

centripetal force, t the time, and y¼ nt=rA ½0,2p�. Note that
problem (20) is a nonlinear convex SOCP and the matrix Q is
positive definite. We know from Theorems 3.1 and 4.2 that both
the proposed neural networks are globally convergent to the
optimal solution. Under the conditions M¼0.1 kg, r¼0.2 m,
n¼ 0:4p m=s, and m¼ 0:6, the time-varying grasping force
obtained from the proposed neural networks is shown in Fig. 7.
We found that the maximum grasping force occurs at the position

y¼ p (t¼0.5 s) which corresponds to the maximum downward
wrench. The simulation results demonstrate that the neural
networks are effective in the SOCP applications.
6. Conclusion

In this paper, we have proposed two neural networks for
efficiently solving the SOCP. The first neural network is based on
gradient of the merit function derived from the FB function and
was shown to be asymptotically stable. The second neural network
with the CP function has low model complexity, and has been
shown to be Lyapunov stable and converge globally to the SOCP
solution under the positive definite condition of Hessian matrix of
the objective function. The convergence of the neural networks has
been validated with the simulation results of the SOCP examples.
When the second neural network with the CP functions yields
oscillating trajectory, we can employ the neural network based on
FB function instead, though it has higher model complexity. The
proposed neural networks are thus ready for the SOCP applications.

During the reviewing process of this paper, we published another
paper [26] which focuses on second-order cone constrained varia-
tional inequality problem. Since the KKT conditions of second-order
cone programs can be recast as variational inequality problem, the
paper [26] indeed deals with a broader class of optimization
problems. However, the two neural networks considered therein
are different from the two neural networks studied in this paper.
More specifically, the FB method used in [26] is based on the
smoothed FB function while the one studied here is based on regular
FB function; the CP method in [26] is based on a Lagrangian model
which is, even when it reduces to SOCP, not the same as the one
investigated here. Due to the essential difference, the assumptions
used to establish stability are also different. In view of this, it will be
an interesting topic to do numerical comparison among these neural
networks for SOCP.
Acknowledgement

The work was supported by National Science Council of
Taiwan under the Grant NSC 97-2221-E-214-034.
Appendix

In this appendix, we introduce the Jordan product and its
properties used in the neural network with the FB function, which
are needed when we write codes for simulations.



C.-H. Ko et al. / Neurocomputing 74 (2011) 3646–3653 3653
For any x¼ ðx1,x2ÞAR�Rn�1, their Jordan product is defined as

xJy¼ ðxT y,y1x2þx1y2Þ:

Their sum of square is calculated by

x2þy2 ¼ ðJxJ2
þJyJ2,2x1x2þ2y1y2Þ:

The square root of x is

x1=2 ¼ s,
x2

2s


 �
, s¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðx1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1�Jx2J
2

q
Þ

r
if x¼ 0, x1=2 ¼ 0

and the determinant of x is det ðxÞ ¼ x2
1�Jx2J

2. Furthermore, a
matrix Lx is defined as

Lx ¼
x1 xT

2

x2 x1I

" #
,

and when detðxÞa0, Lx is invertible with

L�1
x ¼

1

det ðxÞ

x1 �xT
2

�x2
detðxÞ

x1
Iþ 1

x1
x2xT

2

2
4

3
5:

Based on the properties of the Jordan product described above, the
formulae of rxCFBðx,yÞ and ryCFBðx,yÞ in neural network (8) are
calculated (see [3]) as

rxCFBðx,yÞ ¼ ðLxL�1
ðx2þy2Þ

1=2�IÞfFBðx,yÞ

and

ryCFBðx,yÞ ¼ ðLyL�1
ðx2þy2Þ

1=2�IÞfFBðx,yÞ:

References

[1] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order
cone programming, Linear Algebra and its Applications 284 (1) (1998) 193–228.

[2] F. Alizadeh, D. Goldfarb, Second-order cone programming, Mathematical
Programming 95 (1) (2003) 3–51.

[3] J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of
the second-order cone complementarity problem, Mathematical Program-
ming 104 (2005) 293–327.

[4] S.P. Boyd, B. Wegbreit, A Fast computation of optimal contact forces, IEEE
Transactions on Robotics 23 (6) (2007) 1117–1132.

[5] S. Boyd, C. Crusius, A. Hansson, Control applications of nonlinear convex
programming, Journal of Control Process 8 (5) (1998) 313–324.

[6] D. Bertsimas, D.B. Brown, Constrained stochastic LQC: a tractable approach,
IEEE Transactions on Automatic Control 52 (10) (2007) 1826–1841.

[7] D.W. Tank, J.J. Hopfield, Simple neural optimization networks: an A/D
converter, signal decision circuit, and a linear programming circuit, IEEE
Transactions on Circuits and Systems 33 (5) (1986) 533–541.

[8] M.P. Kennedy, L.O. Chua, A Neural network for nonlinear programming, IEEE
Transaction on Circuits and Systems 35 (5) (1988) 554–562.

[9] Y.S. Xia, A new neural network for solving linear and quadratic programming
problems, IEEE Transactions on Neural Networks 7 (6) (1996) 1544–1547.

[10] Q. Tao, J.D. Cao, M.S. Xue, H. Qiao, A high performance neural network for
solving nonlinear programming problems with hybrid constraints, Physics
Letters A 288 (2) (2001) 88–94.

[11] J. Wang, Q. Hu, D. Jiang, A Lagrangian neural network for kinematic control of
redundant robot manipulators, IEEE Transactions on Neural Networks 10 (5)
(1999) 1123–1132.

[12] Y. Xia, J. Wang, A recurrent neural network for solving nonlinear convex
programs subject to linear constraints, IEEE Transactions on Neural Networks
16 (3) (2005) 379–386.

[13] Y. Xia, H. Leung, J. Wang, A projection neural network and its application to
constrained optimization problems, IEEE Transactions on Circuits and Sys-
tems – Part I 49 (2002) 447–458.

[14] Y. Xia, J. Wang, A recurrent neural network for nonlinear convex optimization
subject to nonlinear inequality constraints, IEEE Transactions on Circuits and
Systems I: Regular Papers 51 (7) (2004) 1385–1394.
[15] Y. Xia, H. Leung, J. Wang, A general projection neural network for solving
monotone variational inequalities and related optimization problems, IEEE
Transactions on Neural Networks 15 (2) (2004) 318–328.

[16] X. Mu, S. Liu, Y. Zhang, A neural network algorithm for second-order conic
programming, in: Proceedings of the Second International Symposium on
Neural Networks, Chongqing, China, Part II, 2005, pp. 718–724.

[17] Y. Xia, J. Wang, L.M. Fok, Grasping-force optimization for multifingered
robotic hands using a recurrent neural network, IEEE Transactions on
Robotics and Automation 20 (3) (2004) 549–554.

[18] L.Z. Liao, H.D. Qi, A neural network for the linear complementarity problem,
Mathematical and Computer Modeling 29 (3) (1999) 9–18.

[19] J.S. Chen, X. Chen, P. Tseng, Analysis of nonsmooth vector-valued function
associated with second-order cone, Mathematical Programming 101 (1)
(2004) 95–117.

[20] C. Kanzow, I. Ferenczi, M. Fukushima, On the local convergence of semi-
smooth Newton methods for linear and nonlinear second-order cone pro-
grams without strict complementarity, SIAM Journal on Optimization 20
(2009) 297–320.

[21] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.
[22] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables, SIAM, Philadelphia, 2000.
[23] M. Fukushima, Equivalent differentiable optimization problems and descent

methods for asymmetric variational inequality problems, Mathematical
Programming 53 (1) (1992) 99–110.

[24] M. Fukushima, Z.-Q. Luo, P. Tseng, Smoothing functions for second- order-cone
complementarity problems, SIAM Journal on Optimization 12 (2002) 436–460.

[25] R. Golden, Mathematical Methods for Neural Network Analysis and Design,
The MIT Press, Cambridge, MA, 1996.

[26] J. Sun, J.-S. Chen, C.-H. Ko, Neural networks for solving second-order cone
constrained variational inequality problem, Computational Optimization and
Applications, in press, doi:10.1007/s10589-010-9359-x.
Chun-Hsu Ko received the Ph.D. degree in Electrical
and Control Engineering from National Chiao Tung
University, Taiwan, ROC, in 2003. He worked at ITRI
in Taiwan in 1994–1998. He is currently an Associate
Professor in the Department of Electrical Engineering,
I-Shou University, Taiwan. His research interests
include neural networks, control, and robotics.
Jein-Shan Chen, an associate professor at National
Taiwan Normal University, obtained his Ph.D. degree
in mathematics under Prof. Paul Tseng from University
of Washington in 2004. His research interest is mainly
on continuous optimization. He has published over 50
papers including a few in top journals like Mathema-
tical Programming, SIAM Journal on Optimization, etc.
Ching-Yu Yang obtained his Ph.D. degree in mathe-
matics from National Taiwan Normal University, Tai-
wan, ROC, in 2010. He is currently a Lecturer in the
Department of Mathematics, National Taiwan Normal
University. His research interest is optimization.

dx.doi.org/doi:10.1007/s10589-010-9359-x

	Recurrent neural networks for solving second-order cone programs
	Introduction
	Problem formulation
	Neural network design with Fischer-Burmeister function
	Neural network design with cone projection function
	Simulations
	Conclusion
	Acknowledgement
	Appendix
	References




