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when dealing with general conic optimization. More specifically, we believe that spectral

decomposition associated with cones, nonsmooth analysis regarding cone-functions, pro-

jections onto cones, and cone-convexity are the bridges between symmetric cone programs

and nonsymmetric cone programs. Hence, this paper is devoted to looking into the first

three items in the setting of nonsymmetric cones. The importance of cone-convexity is

recognized in the literature so that it is not discussed here. All results presented in this

paper are very crucial to subsequent study about the optimization problems associated

with nonsymmetric cones.

Key words. Spectral decomposition, nonsmooth analysis, projection, symmetric cone,

nonsymmetric cone.
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1 Introduction

Symmetric cone optimization, including SDP (positive semidefinite programming) and

SOCP (second-order cone programming) as special cases, has been a popular topic during

the past two decades. In fact, for many years, there has been much attention on sym-

metric cone optimization, see [10, 11, 14, 20, 27, 30, 32, 35, 38] and references therein.

Recently, some researchers have paid attention to nonsymmetric cones, for example, ho-

mogeneous cone [9, 28, 40], matrix norm cone [18], p-order cone [1, 23, 41], hyperbolicity

cone [24, 26, 36], circular cone [13, 15, 42] and copositive cone [16], etc.. In general,

the structure of symmetric cone is quite different from the one of non-symmetric cone.

In particular, unlike the symmetric cone optimization in which the Euclidean Jordan

algebra can unify the analysis, so far no unified algebra structure has been found for

non-symmetric cone optimization. This motivates us to find the common bridge between

them. Based on our earlier experience, we think the following four items are crucial:

• spectral decomposition associated with cones.

• smooth and nonsmooth analysis for cone-functions.

• projection onto cones.

• cone-convexity.

The role of cone-convexity had been recognized in the literature. In this paper, we focus

on the other three items that are newly explored recently by the authors. Moreover,

we look into several kinds of nonsymmetric cones, that is, the circular cone, the p-order

cone, the geometric cone, the exponential cone and the power cone, respectively. The

symmetric cone can be unified under Euclidean Jordan algebra, which will be introduced
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later. Unlike the symmetric cone, there is no unified framework for dealing with non-

symmetric cones. This is the main source where the difficulty arises from. Note that the

homogeneous cone can be unified under so-called T -algebra [28, 39, 40].

We begin with introducing Euclidean Jordan algebra [29] and symmetric cone [19].

Let V be an n-dimensional vector space over the real field R, endowed with a bilinear

mapping (x, y) 7→ x ◦ y from V× V into V. The pair (V, ◦) is called a Jordan algebra if

(i) x ◦ y = y ◦ x for all x, y ∈ V,

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V.

Note that a Jordan algebra is not necessarily associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z
may not hold for all x, y, z ∈ V. We call an element e ∈ V the identity element if

x ◦ e = e ◦ x = x for all x ∈ V. A Jordan algebra (V, ◦) with an identity element e is

called a Euclidean Jordan algebra if there is an inner product, 〈·, ·〉V , such that

(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y, z ∈ V.

Given a Euclidean Jordan algebra A = (V, ◦, 〈·, ·〉V), we denote the set of squares as

K :=
{
x2 |x ∈ V

}
.

By [19, Theorem III.2.1], K is a symmetric cone. This means that K is a self-dual closed

convex cone with nonempty interior and for any two elements x, y ∈ intK, there exists

an invertible linear transformation T : V→ V such that T (K) = K and T (x) = y.

Below are three well-known examples of Euclidean Jordan algebras.

Example 1.1. Consider Rn with the (usual) inner product and Jordan product defined

respectively as

〈x, y〉 =
n∑
i=1

xiyi and x ◦ y = x ∗ y ∀x, y ∈ Rn

where xi denotes the ith component of x, etc., and x ∗ y denotes the componentwise

product of vectors x and y. Then, Rn is a Euclidean Jordan algebra with the nonnegative

orthant Rn
+ as its cone of squares.

Example 1.2. Let Sn be the space of all n× n real symmetric matrices with the trace

inner product and Jordan product, respectively, defined by

〈X, Y 〉T := Tr(XY ) and X ◦ Y :=
1

2
(XY + Y X) ∀X, Y ∈ Sn.

Then, (Sn, ◦, 〈·, ·〉T) is a Euclidean Jordan algebra, and we write it as Sn. The cone of

squares Sn+ in Sn is the set of all positive semidefinite matrices.

3



Example 1.3. The Jordan spin algebra Ln. Consider Rn (n > 1) with the inner product

〈·, ·〉 and Jordan product

x ◦ y :=

[
〈x, y〉

x0ȳ + y0x̄

]
for any x = (x0, x̄), y = (y0, ȳ) ∈ R × Rn−1. We denote the Euclidean Jordan algebra

(Rn, ◦, 〈·, ·〉) by Ln. The cone of squares, called the Lorentz cone (or second-order cone),

is given by

L+
n :=

{
(x0; x̄) ∈ R× Rn−1 |x0 ≥ ‖x̄‖

}
.

For any given x ∈ A, let ζ(x) be the degree of the minimal polynomial of x, i.e.,

ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
.

Then, the rank of A is defined as max{ζ(x) : x ∈ V}. In this paper, we use r to denote

the rank of the underlying Euclidean Jordan algebra. Recall that an element c ∈ V is

idempotent if c2 = c. Two idempotents ci and cj are said to be orthogonal if ci ◦ cj = 0.

One says that {c1, c2, . . . , ck} is a complete system of orthogonal idempotents if

c2
j = cj, cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, · · · , k, and

k∑
j=1

cj = e.

An idempotent is primitive if it is nonzero and cannot be written as the sum of two other

nonzero idempotents. We call a complete system of orthogonal primitive idempotents a

Jordan frame. Now we state the second version of the spectral decomposition theorem.

Theorem 1.1. [19, Theorem III.1.2] Suppose that A is a Euclidean Jordan algebra with

the rank r. Then, for any x ∈ V, there exists a Jordan frame {c1, . . . , cr} and real

numbers λ1(x), . . . , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x),

such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

The numbers λj(x) (counting multiplicities), which are uniquely determined by x, are

called the eigenvalues and tr(x) =
∑r

j=1 λj(x) the trace of x.

From [19, Prop. III.1.5], a Jordan algebra (V, ◦) with an identity element e ∈ V is

Euclidean if and only if the symmetric bilinear form tr(x ◦ y) is positive definite. Then,

we may define another inner product on V by 〈x, y〉 := tr(x ◦ y) for any x, y ∈ V. The

inner product 〈·, ·〉 is associative by [19, Prop. II. 4.3], i.e., 〈x, y ◦ z〉 = 〈y, x ◦ z〉 for

any x, y, z ∈ V. Every Euclidean Jordan algebra can be written as a direct sum of so-

called simple ones, which are not themselves direct sums in a nontrivial way. In finite

dimensions, the simple Euclidean Jordan algebras come from the following five basic

structures.
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Theorem 1.2. [19, Chapter V.3.7] Every simple Euclidean Jordan algebra is isomorphic

to one of the following.

(i) The Jordan spin algebra Ln.

(ii) The algebra Sn of n× n real symmetric matrices.

(iii) The algebra Hn of all n× n complex Hermitian matrices.

(iv) The algebra Qn of all n× n quaternion Hermitian matrices.

(v) The algebra O3 of all 3× 3 octonion Hermitian matrices.

Given an n-dimensional Euclidean Jordan algebra A = (V, 〈·, ·〉, ◦) with K being its

corresponding symmetric cone in V. For any scalar function f : R → R, we define a

vector-valued function f
sc

(x) (called Löwner function) on V as

f
sc

(x) = f(λ1(x))c1 + f(λ2(x))c2 + · · ·+ f(λr(x))cr (1)

where x ∈ V has the spectral decomposition

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

When V is the space Sn which means n × n real symmetric matrices. The spectral

decomposition reduces to the following: for any X ∈ Sn,

X = P

 λ1

. . .

λn

P T ,

where λ1, λ2, · · · , λn are eigenvalues of X and P is orthogonal (i.e., P T = P−1). Under

this setting, for any function f : R → R, we define a corresponding matrix valued

function associated with the Euclidean Jordan algebra Sn := Sym(n,R), denoted by

fmat : Sn → Sn, as

fmat(X) = P

 f(λ1)
. . .

f(λn)

P T .

For this case, Chen, Qi and Tseng in [12] show that the function f
mat

inherits from

f the properties of continuity, Lipschitz continuity, directional differentiability, Fréchet

differentiability, continuous differentiability, as well as semismoothness. We state them

as below.

Theorem 1.3. (a) f
mat

is continuous if and only if f is continuous.
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(b) f
mat

is directionally differentiable if and only if f is directionally differentiable.

(c) f
mat

is Fréchet-differentiable if and only if f is Fréchet-differentiable.

(d) f
mat

is continuously differentiable if and only if f is continuously differentiable.

(e) f
mat

is locally Lipschitz continuous if and only if f is locally Lipschitz continuous.

(f) f
mat

is globally Lipschitz continuous with constant κ if and only if f is globally Lip-

schitz continuous with constant κ.

(g) f
mat

is semismooth if and only if f is semismooth.

When V is the Jordan spin algebra Ln in which K corresponds to the second-order

cone (SOC), which is defined as

Kn := {(x1, x̄) ∈ R× Rn−1 | ‖x̄‖ ≤ x1},

the function f
sc

reduces to so-called SOC-function f
soc

studied in [4, 6, 7, 8]. More

specifically, under such case, the spectral decomposition for any x = (x1, x̄) ∈ R× Rn−1

becomes

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (2)

where λ1(x), λ2(x), u
(1)
x and u

(2)
x with respect to Kn are given by

λi(x) = x1 + (−1)i‖x̄‖,

u(i)
x =


1
2

(
1, (−1)i

x̄

‖x̄‖

)
if x̄ 6= 0,

1
2

(
1, (−1)iw

)
if x̄ = 0,

for i = 1, 2, with w being any vector in Rn−1 satisfying ‖w‖ = 1. If x̄ 6= 0, the decompo-

sition (2) is unique. With this spectral decomposition, for any function f : R → R, the

Löwner function f
sc

associated with Kn reduces to f
soc

as below:

f
soc

(x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x ∀x = (x1, x̄) ∈ R× Rn−1. (3)

The picture of second-order cone Kn in R3 is depicted in Figure 1.

For general symmetric cone case, Baes [2] consider the convexity and differentiability

properties of spectral functions. For this SOC setting, Chen, Chen and Tseng in [8] show

that the function f
soc

inherits from f the properties of continuity, Lipschitz continuity,

directional differentiability, Fréchet differentiability, continuous differentiability, as well

as semismoothness. In other words, the following hold.

Theorem 1.4. (a) f
soc

is continuous if and only if f is continuous.

(b) f
soc

is directionally differentiable if and only if f is directionally differentiable.
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Figure 1: The second-order cone in R3

(c) f
soc

is Fréchet-differentiable if and only if f is Fréchet-differentiable.

(d) f
soc

is continuously differentiable if and only if f is continuously differentiable.

(e) f
soc

is locally Lipschitz continuous if and only if f is locally Lipschitz continuous.

(f) f
soc

is globally Lipschitz continuous with constant κ if and only if f is globally Lips-

chitz continuous with constant κ.

(g) f
soc

is semismooth if and only if f is semismooth.

As for general symmetric cone case, Sun and Sun [38] uses φV to denote f
sc

defined

as in (1). More specifically, for any function φ : R → R, they define a corresponding

function associated with the Euclidean Jordan algebra V by

φV(x) = φ(λ1(x))c1 + φ(λ2(x))c2 + · · ·+ φ(λr(x))cr,

where λ1(x), λ2(x), · · · , λr(x) and c1, c2, · · · , cr are the spectral values and spectral vec-

tors of x, respectively. In addition, Sun and Sun [38] extend some of the aforementioned

results to more general symmetric cone case regarding f
sc

(i.e., φV).

Theorem 1.5. Assume that the symmetric cone is simple in the Euclidean Jordan algebra

V.

(a) φV is continuous if and only if φ is continuous.

(b) φV is directionally differentiable if and only if φ is directionally differentiable.

(c) φV is Fréchet-differentiable if and only if φ is Fréchet-differentiable.

(d) φV is continuously differentiable if and only if φ is continuously differentiable.
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(e) φV is semismooth if and only if φ is semismooth.

With respect to matrix cones, Ding et al. [17] recently introduce a class of matrix-

valued functions, which is called spectral operator of matrices. This class of functions

generalizes the well known Löwner operator and has been used in many important appli-

cations related to structured low rank matrices and other matrix optimization problems

in machine learning and statistics. Similar to Theorem 1.4 and Theorem 1.5, the con-

tinuity, directional differentiability and Frechet-differentiability of spectral operator are

also obtained. See [17, Theorem 3, 4 and 5] for more details.

For subsequent needs, for a closed convex cone K ⊆ Rn, we also recall its dual cone,

polar cone, and the projection onto itself. For any a given closed convex cone K ⊆ Rn,

its dual cone is defined by

K∗ := {y ∈ Rn | 〈y, x〉 ≥ 0, ∀x ∈ K},

and its polar cone is K◦ := −K∗. Let ΠK(z) denote the Euclidean projection of z ∈ Rn

onto the closed convex cone K. Then, it follows that z = ΠK(z)− ΠK∗(−z) and

ΠK(z) = argminx∈K
1

2
‖x− z‖2.

2 Circular cone

The definition of the circular cone Lθ is defined as [42]:

Lθ :=
{
x = (x1, x̄) ∈ R× Rn−1 | ‖x‖ cos θ ≤ x1

}
=

{
x = (x1, x̄) ∈ R× Rn−1 | ‖x̄‖ ≤ x1 tan θ

}
.

From the concept of the circular cone Lθ, we know that when θ = π
4
, the circular cone

is exactly the second-order cone Kn. In addition, we also see that Lθ is solid (i.e.,

intLθ 6= ∅), pointed (i.e., Lθ ∩ −Lθ = 0), closed convex cone, and has a revolution axis

which is the ray generated by the canonical vector e1 := (1, 0, · · · , 0)T ∈ Rn. Moreover,

its dual cone is given by

L∗θ := {y = (y1, ȳ) ∈ R× Rn−1 | ‖y‖ sin θ ≤ y1}
= {y = (y1, ȳ) ∈ R× Rn−1 | ‖ȳ‖ ≤ y1 cot θ}
= Lπ

2
−θ.

The pictures of circular cone Lθ in R3 are depicted in Figure 2.

In view of the expression of the dual cone L∗θ, we see that the dual cone L∗θ is also a

solid, pointed, closed convex cone. By the reference [42], the explicit formula of projection

onto the circular cone Lθ can be expressed by in the following theorem.
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Figure 2: Three different circular cones in R3.

Theorem 2.1. ([42]) Let x = (x1, x̄) ∈ R×Rn−1 and x+ denote the projection of x onto

the circular cone Lθ. Then x+ is given below:

x+ =


x if x ∈ Lθ,
0 if x ∈ −L∗θ,
u otherwise,

where

u =


x1 + ‖x̄‖ tan θ

1 + tan2 θ(
x1 + ‖x̄‖ tan θ

1 + tan2 θ
tan θ

)
x̄

‖x̄‖

 .
Zhou and Chen [42] also present the decomposition of x, which is similar to the one

in the setting of second-order cone.

Theorem 2.2. ([42, Theorem 3.1]) For any x = (x1, x̄) ∈ R× Rn−1, one has

x = λ1(x)u(1)
x + λ2(x)u(2)

x ,

where

λ1(x) = x1 − ‖x̄‖ cot θ

λ2(x) = x1 + ‖x̄‖ tan θ

and

u(1)
x =

1

1 + cot2 θ

[
1 0

0 cot θ

](
1

−w

)
u(2)
x =

1

1 + tan2 θ

[
1 0

0 tan θ

](
1

w

)
with w = x̄

‖x̄‖ if x̄ 6= 0, and any vector in Rn−1 satisfying ‖w‖ = 1 if x̄ = 0.
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Theorem 2.3. ([42, Theorem 3.2]) For any x = (x1, x̄) ∈ Rn × R, we have

x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x ,

where (a)+ := max{0, a}, λi(x) and u
(i)
x for i = 1, 2 are given as in Theorem 2.2.

With this spectral decomposition of x, for any function f : R → R, the Löwner

function f circ associated with Lθ is defined as below:

f circ(x) = f(λ1(x))u(1)
x + f(λ2(x))u(2)

x ∀x = (x1, x̄) ∈ R× Rn−1. (4)

In [15], Chang, Yang and Chen have obtained that many properties of the function f circ

are inherited from the function f , which is represented in the following theorem.

Theorem 2.4. ([15]) For any the function f : R → R, the vector-valued function f circ

is defined by (4). Then, the following results hold.

(a) f circ is continuous at x ∈ Rn with spectral values λ1(x), λ2(x) if and only if f is

continuous at λ1(x), λ2(x).

(b) f circ is directionally differentiable at x ∈ Rn with spectral values λ1(x), λ2(x) if and

only if f is directionally differentiable at λ1(x), λ2(x).

(c) f circ is differentiable at x ∈ Rn with spectral values λ1(x), λ2(x) if and only if f is

differentiable at λ1(x), λ2(x).

(d) f circ is strictly continuous at x ∈ Rn with spectral values λ1(x), λ2(x) if and only if

f is strictly continuous at λ1(x), λ2(x).

(e) f circ is semismooth at x ∈ Rn with spectral values λ1(x), λ2(x) if and only if f is

semismooth at λ1(x), λ2(x).

(f) f circ is continuously differentiable at x ∈ Rn with spectral values λ1(x), λ2(x) if and

only if f is continuously differentiable at λ1(x), λ2(x).

We point out that there is a close relation between Lθ and Kn (see [34, 42]) as below

Kn = ALθ where A :=

[
tan θ 0

0 I

]
.

We point out a few points regarding circular cones. First, as mentioned in [43], it is

possible to construct a new inner product which ensures the circular cone is self-dual.

However, it is not possible to make both Lθ and Kn are self-dual under a certain inner

product. Secondly, as shown in [43], the relation Kn = ALθ does not guarantee that there

exists a similar close relation between f circ and f
soc

. The third point is that the structure

of circular cone helps on constructing complementarity functions for the circular cone

complementarity problem as indicated in [34].
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3 The p-order cone

The p-order cone in Rn, which is a generalization of the second-order cone Kn[14], is

defined as

Kp :=

x ∈ Rn

∣∣∣∣∣x1 ≥

(
n∑
i=2

|xi|p
) 1

p

 (p ≥ 1). (5)

In fact, the p-order cone Kp can be equivalently expressed as

Kp =
{
x = (x1, x̄) ∈ R× Rn−1 |x1 ≥ ‖x̄‖p

}
, (p ≥ 1),

where x̄ := (x2, · · · , xn)T ∈ Rn−1. From (5), it is clear to see that when p = 2, K2 is

exactly the second-order cone Kn. That means that the second-order cone is a special

case of p-order cone. Moreover, it is known that Kp is a convex cone and its dual cone is

given by

K∗p =

y ∈ Rn

∣∣∣∣∣ y1 ≥

(
n∑
i=2

|yi|q
) 1

q


or equivalently

K∗p =
{
y = (y1, ȳ) ∈ R× Rn−1 | y1 ≥ ‖ȳ‖q

}
= Kq

with ȳ := (y2, · · · , yn)T ∈ Rn−1, where q ≥ 1 and satisfies 1
p

+ 1
q

= 1. From the expression

of the dual cone K∗p, we see that the cone K∗p is also a convex cone. For an application of

p-order cone programming, we refer the readers to [41], in which a primal-dual potential

reduction algorithm for p-order cone constrained optimization problems is studied. Be-

sides, in [41], a special optimization problem called sum of p-norms is transformed into

an p-order cone constrained optimization problems. The pictures of three different cones

Kp in R3 are depicted in Figure 3.

Figure 3: Three different p-order cones in R3
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In [33], Miao, Qi and Chen explore the expression of the projection onto p-order

cone and the spectral decomposition associated with p-order cone, which are shown the

following theorems.

Theorem 3.1. ([33, Theorem 2.1]) For any z = (z1, z̄) ∈ R× Rn−1, then the projection

of z onto Kp is given by

ΠKp(z) =


z, z ∈ Kp
0, z ∈ −K∗p = −Kq
u, otherwise (i.e.,−‖z̄‖q < z1 < ‖z̄‖p)

where u = (u1, ū) with ū = (u2, u3, · · · , un)T ∈ Rn−1 satisfying

u1 = ‖ū‖p = (|u2|p + |u3|p + · · ·+ |un|p)
1
p

and

ui − zi +
u1 − z1

up−1
1

|ui|p−2ui = 0, ∀i = 2, · · · , n.

Theorem 3.2. ([33, Theorem 2.2]) Let z = (z1, z̄) ∈ R × Rn−1. Then, z can be decom-

posed as

z = α1(z) · v(1)(z) + α2(z) · v(2)(z),

where 
α1(z) =

z1 + ‖z̄‖p
2

α2(z) =
z1 − ‖z̄‖p

2

and


v(1)(z) =

(
1

w̄

)
v(2)(z) =

(
1

−w̄

)
with w̄ = z̄

‖z̄‖p if z̄ 6= 0; while w̄ being an arbitrary element satisfying ‖w̄‖p = 1 if z̄ = 0.

For the projection onto p-order cone, we notice that this projection is not an explicit

formula because it is hard to solve the equations which in Theorem 3.1. Moreover, the

decomposition for z is not an orthogonal decomposition, which is different from the case

in the second-order cone and circular cone setting. Because the decomposition for z is

not an orthogonal decomposition, the corresponding nonsmooth analysis for its cone-

functions is not established.

4 Geometric cone

The geometric cone is defined as bellow [22]:

Gn :=

{
(x, θ) ∈ Rn

+ × R+

∣∣∣∣ n∑
i=1

e−
xi
θ ≤ 1

}
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where x = (x1, · · · , xn)T ∈ Rn
+ and we also use the convention e−

xi
0 = 0. From the

definition of the geometric cone Gn, we know that Gn is solid (i.e., intGn 6= ∅), pointed

(i.e., Gn ∩ −Gn = 0), closed convex cone, and its dual cone is given by

(Gn)∗ =

{
(y, µ) ∈ Rn

+ × R+

∣∣µ ≥∑
yi>0

yi ln
yi∑n
i=1 yi

}

where µ ∈ R+ and y = (y1, · · · , yn)T ∈ Rn
+. In view of the expression of the dual cone

(Gn)∗, we see that the dual cone (Gn)∗ is also a solid, pointed, closed convex cone, and

((Gn)∗)∗ = Gn. When n = 1, we note that the geometric cone G1 is just nonnegative

octant cone R2
+. In addition, by the expression of the geometric cone Gn and its dual

cone (Gn)∗, it is not hard to verify that the boundary of the geometric cone Gn and its

dual cone (Gn)∗ can be respectively expressed as follows:

bdGn =

{
(x, θ) ∈ Rn

+ × R+

∣∣ n∑
i=1

e−
xi
θ = 1

}

and

bd (Gn)∗ =

{
(y, µ) ∈ Rn

+ × R+

∣∣µ =
∑
yi>0

yi ln
yi∑n
i=1 yi

}
.

For an application of geometric cone programming, we refer the readers to [21], in which

the author shows how to transform a prime-dual pair of geometric optimization problem

into a constrained optimization problem related with Gn and (Gn)∗. The pictures of Gn
and its dual cone (Gn)∗ in R3 are depicted in Figure 4.

Figure 4: The geometric cone (left) and its dual cone (right) in R3

Next, we present the projection of (x, θ) ∈ Rn × R onto the geometric cone Gn.

13



Theorem 4.1. Let x = (x, θ) ∈ Rn × R. Then the projection of x onto the geometric

cone Gn is given by

ΠGn(x) =


x, if x ∈ Gn,
0, if x ∈ (Gn)◦,

u, otherwise,

(6)

where u = (u, λ) ∈ Rn
+ × R+ with u = (u1, u2, · · · , un)T ∈ Rn

+ satisfying

ui − xi +
λ(λ− θ)∑n
j=1 e

−
uj
λ uj

e−
ui
λ = 0, i = 1, 2, · · · , n (7)

and
n∑
i=1

e−
ui
λ = 1. (8)

Proof. From Projection Theorem [3, Prop. 2.2.1], we know that, for every x = (x, θ) ∈
Rn × R, a vector u ∈ Gn is equal to the projection point ΠGn(x) if and only if

u ∈ Gn, x− u ∈ (Gn)◦, and 〈x− u,u〉 = 0.

With this, the first two cases of (6) are obvious. Hence, we only need to consider the third

case. Based on (8) and the definition of Gn, it is obvious that u ∈ Gn. In addition, from

(7), we obtain that
∑n

i=1 ui(ui − xi) + λ(λ− θ) = 0, which explains that 〈x− u,u〉 = 0.

Next, we argue that x− u ∈ (Gn)◦. To see this, by (7) and (8), we have

n∑
i=1

(ui − xi) = − λ(λ− θ)∑n
j=1 e

−
uj
λ uj

.

Together with (7) again, it follows that ui−xi∑n
j=1(uj−xj) = e−

ui
λ , which leads to ln ui−xi∑n

j=1(uj−xj) =

−ui
λ

. Hence, we have ∑
ui−xi>0

(ui − xi) ln
ui − xi∑n

j=1(uj − xj)

= −
∑

ui−xi>0

(ui − xi)
ui
λ

= −1

λ

∑
ui−xi>0

(ui − xi)ui

≤ 1

λ
· λ(λ− θ) = λ− θ,

where the inequality holds since
∑n

i=1 ui(ui − xi) + λ(λ − θ) = 0. This explains that

u− x ∈ (Gn)∗, i.e, x− u ∈ (Gn)◦. Then, the proof is complete. 2
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For the projection onto geometric cone Gn, we notice again that this projection is not

an explicit formula since the equations (7) and 8 cannot be easily solved. Moreover, the

decomposition associated with the geometric cone Gn and the corresponding nonsmooth

analysis for its cone-functions are not established.

5 The exponential cone

The exponential cone is defined as bellow [5, 37]:

Ke := cl
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
.

In fact, the exponential cone can be expressed as the union of two sets, i.e.,

Ke :=
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≤ 0, x3 ≥ 0

}
.

As shown in [5], the dual cone K∗e of the exponential cone Ke is given by

K∗e = cl
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 ≤ ey3, y1 < 0

}
.

In addition, the dual cone K∗e is expressed as the union of the two following sets:

K∗e =
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 ≤ ey3, y1 < 0

}
∪
{

(0, y2, y3)T
∣∣ y2 ≥ 0, y3 ≥ 0

}
.

From the expression of the exponential cone Ke and its dual cone K∗e , it is known that

the exponential cone Ke and its dual cone K∗e are closed convex cone in R3. Moreover,

based on the expression of Ke and K∗e , it is easy to verify that their boundary can be

respectively expressed as follows:

bdKe :=
{

(x1, x2, x3)T ∈ R3
∣∣x2e

x1
x2 = x3, x2 > 0

}
∪
{

(x1, 0, x3)T
∣∣x1 ≤ 0, x3 ≥ 0

}
.

and

bdK∗e :=
{

(y1, y2, y3)T ∈ R3
∣∣ − y1e

y2
y1 = ey3, y1 < 0

}
∪
{

(0, y2, y3)T
∣∣ y2 ≥ 0, y3 ≥ 0

}
.

For an application of exponential cone programming, we refer the readers to [5], in which

interior-point algorithms for structured convex optimization involving exponential have

been investigated. The pictures of the exponential cone Ke and its dual cone K∗e in R3

are depicted in Figure 5.

For the geometric cone Gn and the exponential cone Ke, there exists the relationship

between these two types of cones, which is described in the following proposition.

Proposition 5.1. Under the suitable conditions, there is a corresponding relationship

between the geometric cone Gn and exponential cone Ke.
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Figure 5: The exponential cone (left) and its dual cone (right) in R3

Proof. For any (x, θ) ∈ Gn with x = (x1, x2, · · · , xn)T ∈ Rn
+, we have

∑n
i=1 e

−xi
θ ≤ 1.

With this, it is equivalent to say

e−
xi
θ ≤ zi, and

n∑
i=1

zi = 1.

Hence, we obtain that

(−xi
θ
, 1, zi)

T ∈ Ke (i = 1, 2, · · · , n) and
n∑
i=1

zi = 1.

For the above analysis, it is clear to see that the proof is reversible.

Besides, we give another form of transformation for the exponential cone Ke. Indeed, for

any x̃ := (x1, x2, x3)T := (x̂T , x3)T ∈ Ke with x̂ := (x1, x2)T , we have two cases, i.e.,

(a) x2e
x1
x2 ≤ x3 and x2 > 0, or

(b) x1 ≤ 0, x2 = 0, x3 ≥ 0.

For the case (a), if x2 = x3 and x1 ≤ 0, it follows that e
x1
x2 ≤ 1 and x2 > 0, which

yields (−x1, x2)T ∈ G1. Under the condition x2 = x3, if x1 > 0, we find that there is no

relationship between Ke and G1. For the case (b), if x2 = x3, then, we have x1 ≤ 0 and

x2 = x3 = 0. this implies that e
x1
0 = 0. By this, we have x̂ = (−x1, 0)T ∈ G1. 2

We also present the projection of x ∈ R3 onto the exponential cone Ke.
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Theorem 5.1. Let x = (x1, x2, x3)T ∈ R3. Then the projection of x onto the exponential

cone Ke is given by

ΠKe(x) =


x, if x ∈ Ke,
0, if x ∈ (Ke)◦ = −K∗e ,
v, otherwise,

(9)

where v = (v1, v2, v3)T ∈ R3 has the following form:

(a) if x1 ≤ 0 and x2 ≤ 0, then v = (x1, 0,
x3+|x3|

2
)T .

(b) otherwise, the projection ΠKe(x) = v satisfies the equations:

v1 − x1 + e
v1
v2

(
v2e

v1
v2 − x3

)
= 0,

v2(v2 − x2)− (v1 − x1)(v2 − v1) = 0,

v2e
v1
v2 = v3.

Proof. As the argument of Theorem 4.1, the first two cases of (9) are obvious. Hence,

we only need to consider the third case, i.e., x /∈ Ke ∪ (Ke)◦. For convenience, we denote

A :=
{

(x1, x2, x3)T
∣∣x2e

x1
x2 ≤ x3, x2 > 0

}
and B :=

{
(x1, 0, x3)T

∣∣x1 ≤ 0, x3 ≥ 0
}
.

(a) If x1 ≤ 0 and x2 ≤ 0, since the exponential cone Ke is closed and convex, by

Proposition 2.2.1 in [3], we get that v is the projection of x onto Ke if and only if

〈x− v, y − v〉 ≤ 0, ∀y ∈ Ke. (10)

From this, we need to verify that v = (x1, 0,
x3+|x3|

2
)T satisfies (10). For any y :=

(y1, y2, y3)T ∈ Ke, it follows that

〈x− v, y − v〉 = x2y2 +
x3 − |x3|

2

(
y3 −

x3 + |x3|
2

)
= x2y2 + y3

x3 − |x3|
2

.

If y ∈ A, we have y2 > 0 and y3 ≥ y2e
y1
y2 > 0, which leads to

〈x− v, y − v〉 = x2y2 + y3
x3 − |x3|

2
≤ 0.

If y ∈ B, we have y2 = 0 and y3 ≥ 0, which implies that

〈x− v, y − v〉 = y3
x3 − |x3|

2
≤ 0.

Hence, under the conditions of x1 ≤ 0 and x2 ≤ 0, we can obtain that ΠKe(x) = v =

(x1, 0,
x3+|x3|

2
)T .
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(b) If x belongs to other cases, we assert that the projection ΠKe(x) of x onto Ke lies in

the set A. Suppose not, i.e., ΠKe(x) ∈ B. Then, for any x = (x1, x2, x3)T ∈ R3, it follows

that ΠKe(x) = v = (min{x1, 0}, 0, x3+|x3|
2

)T ∈ B. By Projection Theorem [3, Prop. 2.2.1],

we know that the projection v should satisfy the condition

v ∈ Ke, x− v ∈ (Ke)◦, and 〈x− v, v〉 = 0.

However, we see that there exists x1 > 0 or x2 6= 0 such that

v − x = (min{x1, 0} − x1,−x2,
|x3| − x3

2
)T /∈ K∗e ,

i.e., x − v /∈ (Ke)◦. For example, when x1 = 1, x2 = 0 and x3 = 1, we have v − x =

(−1, 0, 0)T /∈ K∗e . This contradicts with x−v ∈ (Ke)◦. Hence, the projection ΠKe(x) ∈ A.

To obtain the expression of ΠKe(x), we look into the following problem:

min f(x) = 1
2
‖v − x‖2

s.t. v ∈ A. (11)

In light of the convexity of the function f and the set A, it is easy to verify that the

problem (11) is a convex optimization problem. Moreover, it follows from v ∈ A that

v1

v2

− ln v3 + ln v2 ≤ 0.

Thus, the KKT conditions of the problem (11) are recast as
v1 − x1 + µ

v2
= 0,

v2 − x2 + µ(− v1
v22

+ 1
v2

) = 0,

v3 − x3 − µ
v3

= 0,

µ ≥ 0, v1
v2
− ln v3 + ln v2 ≤ 0, µ(v1

v2
− ln v3 + ln v2) = 0.

(12)

From (12), by the fact that the projection of x ∈/∈ Ke ∪ (K∗e)◦ must be a point in the

boundary, it is not hard to see that v1
v2
− ln v3 + ln v2 = 0 and µ > 0, i.e., v3 = v2e

v1
v2 and

µ > 0. In addition, by the first and third equations in (12), we have

v1 − x1 +
v3(v3 − x3)

v2

= 0.

Combining with v3 = v2e
v1
v2 , this implies that

v1 − x1 + e
v1
v2

(
v2e

v1
v2 − x3

)
= 0.

On the other hand, by the first and second equations in (12), we have

v2(v2 − x2) = (v1 − x1)(v2 − v1).
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Therefore, we obtain that the projection ΠKe(x) = v satisfies the following equations:

v1 − x1 + e
v1
v2

(
v2e

v1
v2 − x3

)
= 0,

v2(v2 − x2)− (v1 − x1)(v2 − v1) = 0,

v2e
v1
v2 = v3.

Then, the proof is complete. 2

Here, we say a few words about Theorem 5.1. Unfortunately, unlike second-order

cone or circular cone cases, we do not obtain an explicit formula for the projection onto

the exponential cone, since there are nonlinear transcendental equations in Theorem

5.1. For example, when we examine the projection onto the exponential cone Ke. Let

x = (1,−2, 3). For the case in Theorem 5.1(b), using the second condition v2(v2 − x2)−
(v1 − x1)(v2 − v1) = 0, we have

v2 =
v1 − 3 +

√
−3v2

1 − 2v1 + 9

2
.

Combining with the first condition v1 − x1 + e
v1
v2

(
v2e

v1
v2 − x3

)
= 0 in the case (b), this

yields a nonlinear transcendental equations as bellow:

v1 − 1 + e

2v1

v1−3+
√

−3v21−2v1+9

(
v1 − 3 +

√
−3v2

1 − 2v1 + 9

2
e

2v1

v1−3+
√

−3v21−2v1+9 − 3

)
= 0.

From this equation, we do not have the specific expression of v1. Hence, the explicit for-

mula for the projection onto exponential cone cannot be obtained. Moreover, analogous

to the geometric cone Gn, the decomposition for x associated with the exponential cone

Ke and the corresponding nonsmooth analysis for its cone-functions are not established.

6 The power cone

The high dimensional power cone is defined as bellow [25, 39]:

Kαm,n :=

{
(x, z) ∈ Rm

+ × Rn
∣∣ ‖z‖ ≤ m∏

i=1

xαii

}
,

where αi > 0,
∑m

i=1 αi = 1 and x = (x1, · · · , xm)T . For the power cone, when m =

2, n = 1, Truong and Tuncel [39] have discussed the homogeneity of the power cone.

However, Hien [25] states that the power cone is not homogeneous in general case, and

the power cone is self-dual cone. Moreover, when m = 2 and α1 = α2 = 1
2
, we see that

the power cone Kαm,n is exactly the rotated second-order cone, which has a broad range
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of applications. In [25], Hien provides the expression of the dual cone of the power cone

Kαm,n as below:

(Kαm,n)∗ =

{
(s1, · · · , sm, ω1, · · · , ωn) ∈ Rm

+ × Rn

∣∣∣∣ m∏
i=1

(
si
αi

)αi
≥ ‖ω‖

}
,

where ω = (ω1, · · · , ωn)T ∈ Rn. For an application of power cone programming, we

refer the readers to [5], in which a lot of practical applications such as location problems

and geometric programming can be modelled using Kαm,n and its limiting case Ke. The

pictures of the power cone Kαm,n and its dual cone (Kαm,n)∗ in R3 are depicted in Figure

6, where the parameters (m,n) = (2, 1) and (α1, α2) = (0.8, 0.2).

Figure 6: The power cone (left) and its dual cone (right) in R3.

The projection onto the power cone Kαm,n is already figured out by Hien in [25], which

is presented in the following theorem.

Theorem 6.1. ([25, Proposition 2.2]) Let (x, z) ∈ Rm×Rn with x = (x1, · · · , xm)T ∈ Rm

and z = (z1, · · · , zn)T ∈ Rn. Set (x̂, ẑ) be the projection of (x, z) onto the power cone

Kαm,n. Denote

Φ(x, z, r) =
1

2

m∏
i=1

(
xi +

√
x2
i + 4αir(‖z‖ − r)

)αi
− r.

(a) If (x, z) /∈ Kαm,n ∪ −(Kαm,n)∗ and z 6= 0, then its projection onto Kαm,n is{
x̂i = 1

2

(
xi +

√
x2
i + 4αir(‖z‖ − r)

)
, i = 1, · · · ,m,

ẑl = zl
r
‖z‖ , l = 1, · · · , n,
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where r = r(x, z) is the unique solution of the following system:

E(x, z) :

{
Φ(x, z, r) = 0,

0 < r < ‖z‖.

(b) If (x, z) /∈ Kαm,n ∪ −(Kαm,n)∗ and z = 0, then its projection onto Kαm,n is{
x̂i = (xi)+ = max{0, xi}, i = 1, · · · ,m,
ẑl = 0, l = 1, · · · , n.

(c) If (x, z) ∈ Kαm,n, then its projection onto Kαm,n is itself, i.e., (x̂, ẑ) = (x, z).

(d) If (x, z) ∈ −(Kαm,n)∗, then its projection onto Kαm,n is zero vector, i.e., (x̂, ẑ) = 0.

Nonetheless, Hein does not obtain an explicit formula for the projection onto the

power cone Kαm,n in [25]. Accordingly, analogous to the geometric cone Gn and the

exponential cone Ke, the decomposition for (x, z) associated with the power cone Kαm,n
and the corresponding nonsmooth analysis for its cone-functions are not established yet.

7 Conclusion

According to the authors’ earlier experience on symmetric cone optimization, we believe

that spectral decomposition associated with cones, nonsmooth analysis regarding cone-

functions, projections onto cones, and cone-convexity are the bridges between symmetric

cone programs and nonsymmetric cone programs. Therefore, in this paper, we survey

some related results about circular cone, p-order cone, geometric cone, exponential cone,

and the power cone. Although the results are not quite complete due to the difficulty of

handling nonsymmetric cones, they are very crucial to subsequent study towards nonsym-

metric cone optimization. Further investigations are definitely desirable. We summarize

and list out some future topics as below.

1. Exploring more structures and properties for each non-symmetric cone. Also look-

ing for more non-symmetric cones, e.g., EDM cone.

2. For geometric cone, exponential cone, and power cone, etc., figuring out their spec-

tral decompositions, projections, and doing nonsmooth analysis for their corre-

sponding cone-functions like f
sc

, f
mat

and f circ. We point out that through appro-

priate transformations (for example, α-representation and extended α-representation

defined in [5]), the aforementioned geometric cone, exponential cone, and power

cone can be generated from the 3-dimensional power cone and the exponential

cone in Figure 5 and 6. More recently, Lu et al. [31] propose two types of decom-

position approaches for these cones. We believe their results yield a possibility to

construct the corresponding cone-functions.

3. Designing appropriate algorithms based on the structures of non-symmetric cones.
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