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Abstract In this paper, we study the properties of the penalized Fischer-Burmeister
(FB) second-order cone (SOC) complementarity function. We show that the func-
tion possesses similar desirable properties of the FB SOC complementarity function
for local convergence; for example, with the function the second-order cone comple-
mentarity problem (SOCCP) can be reformulated as a (strongly) semismooth system
of equations, and the corresponding nonsmooth Newton method has local quadratic
convergence without strict complementarity of solutions. In addition, the penalized
FB merit function has bounded level sets under a rather weak condition which can be
satisfied by strictly feasible monotone SOCCPs or SOCCPs with the Cartesian Ry;-
property, although it is not continuously differentiable. Numerical results are included
to illustrate the theoretical considerations.
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1 Introduction

Let F and G be continuously differentiable mappings from R” to R”. We consider
the second-order cone complementarity problem (SOCCP) which is to find a { € R"
such that

F@yek, Gk)ek, (F(£),G(£)) =0, (D
where (-, -) is the Euclidean inner product, and IC = K" x K2 x --- x K" is the
Cartesian product of second-order cones (SOCs) with r,ny,...,n, > 1, n1 +---+

n, =n, and
K o= { i xio) € R x R iy = izl

In the rest of this paper, corresponding to the Cartesian structure of I, we write
F=(F,...,F,)and G=(Gy,...,G,) with F;,G; :R" - R" fori =1,2,...,r.

An important special case of the SOCCP corresponds to G(¢) = ¢. Then (1) re-
duces to

F@)ek, tek, (F(¢),8) =0, @

which is a natural extension of the nonlinear complementarity problem (NCP) over
the nonnegative orthant cone £ = R’} ; see [9, 11]. Another important special case
corresponds to the optimality conditions of the second-order cone program (SOCP):

min g(x)
st. Ax=b, xek, 3

where g : R" — R is a twice continuously differentiable function, A € R"*" has full
row rank and b € R™. From [6], the KKT conditions of (3) can be reformulated as
(1) with

F@)=i+U—-AT(AAD)Y Ay,  G):=Veg(F(©)—-AT(AAT) Az, 4)

where x € R” satisfies Ax = b. The SOCP (3) has numerous applications arising
from the fields of engineering design, finance, robust optimization, combinatorial op-
timization, and includes as special cases convex quadratically constrained quadratic
programs; see [1, 18].

In the past ten years, there have proposed various methods for SOCPs and SOC-
CPs. They include the interior-point methods [2, 19, 27, 28], the smoothing Newton
methods [7, 13, 14], the merit function method [6], and the semismooth Newton
method [16]. Among others, SOC complementarity functions play a key role in the
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The penalized Fischer-Burmeister SOC complementarity function 459

last three ones. Specifically, we call ¢ : R” x R" — R" an SOC complementarity
function associated with [C" if

p(x,y)=0 < xeK", yeK", (x,y)=0. 5)

Clearly, when n = 1, an SOC complementarity function reduces to an NCP function.
A popular choice of ¢ is the vector-valued FB function ¢y, : R” x R" — R" given
by

G (1, ¥) 1= (x +y) — (% +yH1/2, (©6)

where x2 = x o x denotes the Jordan product of x and itself, x1/2 is a vector such that
(x'/2)2 = x for any x € K", and x + y means the usual componentwise addition of
vectors. This function was shown to be strongly semismooth in [4, 26] via different
ways, and its squared norm ¥, = 3 || [|* induces a continuously differentiable
merit function [6]. Recently, we analyze that, to guarantee the boundedness of the
level sets of the function

Wi () = > Y (Fi(0), Gi(0)),

i=1

it requires that F' and G at least have the uniform Cartesian P-property; see [21]
for details. This means that ¢, has a limitation in handling monotone SOCCPs. In
fact, observing the disadvantage of the FB merit function W, Chen [5] extended
two classes of regularized merit functions for the NCPs to deal with the monotone
SOCCPs. But, those functions can not be used to design fast Newton-type methods.
We notice that in the setting of NCPs, the penalized FB function was proposed in [3]
to overcome such shortcoming of the FB function. Thus, it is natural to ask whether
the extension of the penalized FB function to the SOCs can become an effective tool
in the solution of monotone SOCCPs or not. The main contribution of this paper is to
offer partial answers to this question.

The vector-valued penalized FB function ¢, : R" x R" — R" is defined as follows

Gp(x,y) =P (x, ) + (1 — p) [(xX)4 0 (4] (7

where p € (0,1) is an arbitrary but fixed parameter, and (-)4 means the mini-
mum Euclidean distance projection on K. We show that ¢, has similar favorable
properties of ¢, for local convergence. For example, ¢, is a strongly semismooth
SOC complementarity function, by which the SOCCP (1) can be reformulated as a
(strongly) semismooth system
¢p(F1(£), G1(2))
Pp(¢) = ; =0, ®)
¢p(Fr(£), Gr(£))

and consequently one can apply the nonsmooth Newton method in [24, 25], i.e.,

=k we, et Wiedpd,gh), k=0,1,2,... )
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to solve (1). Particularly, we establish that the nonsmooth method has the local
quadratic convergence without strict complementarity of solutions, although their
nondegeneracy is still necessary just like the FB semismooth method [20]. This is an
advantage compared to interior-point methods where singular Jacobians will occur if
strict complementarity is not satisfied. In addition, we also prove that the penalized
FB merit function

Vo) = ) ¥, (F(0), Gi(0)) (10)

i=1

with

1
Yp(x,y) = 5||<z>p<x,y)||2 (11)

has bounded level sets under a rather weak condition, which can be satisfied by
strictly feasible monotone SOCCPs or SOCCPs with the Cartesian Rg;-property. In
other words, W, enjoys some nice features of the merit functions studied by [5] for
global convergence. However, unlike its counterpart in the NCP setting, ¥, is not
smooth even not differentiable.

Throughout this paper, I represents an identity matrix of suitable dimension, R"
denotes the space of n-dimensional real column vectors, and R"! x - - - x R™ is identi-
fied with R™1+ " We denote by int(K"*) and bd(K") the interior and the boundary
of K", respectively. For any x € R”, (x)4+ and (x)_ denote the Euclidean projec-
tion of x onto X" and —K", respectively. For a differentiable mapping F, F’(x) and
V F(x) denotes the Jacobian of F and the transposed Jacobian at x, respectively. For
amatrix B € R™*" if (x, Bx) >0 (> 0) for all 0 # x € R”, we say that B is positive
semidefinite (positive definite) and use the symbol B > 0 (>~ 0) to mean that B is
symmetric and positive semidefinite (positive definite). For any x € R/ with [ > 1,
we write x = (x, x2) where x is the first component of x, and x, means the vector
consisting of the rest / — 1 components.

2 Preliminaries

This section recalls some background materials and shows that ¢, is a strongly semi-
smooth SOC complementarity function. We start with the definition of Jordan product
[10]:

xoy:=({x,y),x1y2+y1x2) Vx,yeR".

The Jordan product, unlike matrix multiplication, is not associative in general. The
identity element under this productis e := (1,0, ..., O)T e R", i.e., e ox = x for any

x € R", Let
L. — X1 sz
Y xa x|

which can be viewed as a linear mapping from R” to R” with L,y = x o y for any
y e R".
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The penalized Fischer-Burmeister SOC complementarity function 461

From [10] we recall that each x € R” has a spectral factorization associated
with K"
x = A(x) -ug) + Aa(x) - u)((z),
where X;(x) and uff) for i = 1,2 are the spectral values of x and the associated
spectral vectors, respectively, defined by

i .1 is
) =x+ Dl =2 (L D).
with xy = ”jﬁ if x7 # 0 and otherwise X, being any vector from R"~! with || %, || = 1.

If x2 # 0, the factorization is unique. It is easy to verify that the following rela-
tion holds between the spectral factorization of x and the eigenvalue decomposition
of L.

Lemma 2.1 For any x € R", L, has two single eigenvalues A1 (x) and Ay(x) with

u)(cl) and u)(cz) being the corresponding eigenvectors, and the remaining n — 2 eigen-

values are identically x1 = (A2 (x) + A1(x))/2 with the corresponding eigenvectors of
the form (0, v), where ¥ lies in the linear subspace of R"~" orthogonal to x».

To show that ¢, is an SOC complementarity function, we need the following
lemma.

Lemma 2.2 Let ¢, and ¢, be given by (6) and (7), respectively. Then, for any
x,y eR",

[ (X, 1 = =21 + (-1 and
llp (s W = pmax{]| )|, [[(y)-11}-

Proof The first inequality follows from the trace inequality of [17, Theorem 3.1],
since

2y (v, )1 = tr(x + ) — (2 +57)12)

> tr(x) + tr(y) — tr(jx[) — tr(ly[)
=2tr[(x)-]+2t(y)-]
= —4(llx—II + [ly-1D-

We next prove the second inequality. Using x = (x)+ + (x)_, it follows that
2
9o Ce I = [ ol + 3 = (2 43321+ (1 = o))+ 0 ()]

2
= |-+ o1+ + 3 = P+ D1+ (1= )4 0 1]

= p2[l(x)— |2
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2
+ oLy = 62+ )14 (1= L)+ 0 0)4]]
+2p[(x)-1" [p ((X)+ +y— %+ y2)1/2> + (1 = p)(x)4 0 (y)+]
> P[> + 202 () 1T [(0) 1+ 207 ()17 [y — (x* + yH'/?]
+2p(1 = P)L)-1"[(X)+ 0 ()]
> p? )l (x)—|I?

where the last inequality is since (x)_, y — (x2 + y»)/2 € —K", ((x)4, (x)_) =0
and

xonTz=(yoz) x=(zox)Ty forallx,y,zeR".
By the symmetry of x and y in ¢, similarly, we have [¢,(x, y)I| = o||(y)—1I. |

Proposition 2.1 Let ¢, and ®, be defined as in (7) and (8), respectively. Then,

(@ ¢p(x,y)=0&xeK", yeK"and (x,y)=0.

(b) @, is strongly semismooth.

(c) @, is semismooth, and strongly semismooth if F', G" are locally Lipschitz con-
tinuous.

Proof (a) The sufficiency is direct by noting that (x,y) =0 <& x oy =
(x)+ o (¥)+ =0 and ¢ is an SOC complementarity function. Now suppose that
¢, (x,y) = 0. From the second inequality of Lemma 2.2, we have (x)_ =0 and
(y)_ = 0, which implies x,y € K", and hence x”y > 0. In addition, by the first
inequality of Lemma 2.2 and [¢, (x, y)]1 =0,

0 = ol (X, M1+ (1 = p)xTy > =2p(C) | + 1= + (1 — p)xTy
=1-px’y.

The two sides show that x € K", y € K" and (x, y) =0.

(b) Since the FB function ¢, and the projection function (-)4 are strongly semi-
smooth by [26, Corollary 3.3] and [14, Proposition 4.5], respectively, the result fol-
lows from the fact given by [12] that the composite of (strongly) semismooth func-
tions is (strongly) semismooth.

(c) The result is immediate by using part (b) and Theorem 19 of [12]. g

To close this section, we review several concepts that will be used in the sequel.

Definition 2.1 (a) Two mappings F, G : R” — R” are said to have the jointly Carte-
sian Ro;-property if for any sequence {¢*} satisfying

[=GEHY , [=FEHL

k
—+00, s
J5) = oo 1F] Tl

-0, (12)
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The penalized Fischer-Burmeister SOC complementarity function 463

there exists an index v € {1, 2, ..., r} such that

. AR5, Gy (")

= > 0.
k—+00 [rd

(b) A mapping F : R" — R” is said to have the Cartesian weak coercive property
with respect to an element & € R”, if there exists an index v € {1,2,...,r} such
that

iminf &7~ & O
R e =&l

Given a mapping H : R" — R™, if H is locally Lipschitz continuous, then the
set

dpH (2) == [V cR"™" M C Dy F — 7, H'(Z) — V}

is nonempty and called the B-subdifferential of H at z, where Dy C R” is the set
of points at which H is differentiable. The convex hull d H (z) := convdp H(z) is the
generalized Jacobian of H at z in the sense of Clarke [8]. We assume that the reader
is familiar with the concepts of (strongly) semismooth functions, and refer to [24, 25]
for details.

3 B-subdifferential

In this section, we present the representation of the elements in the B-subdifferential
of ¢, at a general point, and then concentrate on the elements of the B-subdifferential
of ¢, at complementarity pairs (x;, y/') withi € {1,2,...,r},i.e., each pair of x* and
y; satisfies

xFek", yrek™, (xF, ¥y =0. (13)

For this purpose, we need the following two lemmas which overestimate the B-
subdifferential of the FB function ¢, and the projection function ()4 at a general
point, respectively.

Lemma 3.1 [20, Proposition 3.1] For any given (x,y) € R" x R", each element
[U V] € 0pos (x, y) has the following representation:

(@) If x> + y* €int(K"), then ¢y is continuously differentiable at (x, y) with
T —1
U=V p(x,y) :I—L(x2+y2)1/2Lx,
T —1
V=Vypy(x,y) =1 _L(xz_,_y2)1/2Ly-

(b) If x2 + y? € bd(K") and (x, y) # (0, 0), then

[U V]e {[I—HLX - % <—:z)2>“T I—HLy— % <_:I)2)UTi|
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for some u, v satisfying lui| < |luzll <1, v <|lv2]l <1,
(1 —vp) < luz —v2|l, (ug+vy) <|luz + 2|,

2 2 2 2
(wr —v)"+lluz + vl <2, (w1 +v)"+lluz — 2|~ <2,

(L, wHu=0, (1, —w) yu=2u;, (1,03 =0,

(1, —wlH =2v1}, (14)
where
e 1 ( 1 wl ) with iy = 122 +y1y2
4 fx2 4 y2 \B2 AL =3y 12 + yiy2ll’

(©) If (x,y)=(0,0), then [U V]e{[I — Lg I — Ly] for some g* + h*> = e} or
1/ 1 r 1(1\.r (0 0
o viefli-5(cn) =3 (a)¢ - (0 1o duar)
1/ 1 r LY 4, (0 0
13 () ‘z(w)” (01— aap) -

for some || Wy || = 1, some u, v satisfying (14) with such wo,
some &, 1 € R" satisfying 1§ < &0l < 1, Im| < In2ll < 1,
Er—m) =& —n2ll, G1+n0) <1152+ n2l,

1 =) + 152+ m2l> <2, G+ 00 + 62— ml? <2,

(1, w3)8 =241,

(1, —w3)§ =0, (1,w])n =21, (1, —w;)n =0,

ands =ocu+ (1 —-0)¢, o=cv+ ({1 —0)n
foro €10,1/2] with 1/2 < |is||> + lo||? 52}. (15)

Furthermore, all UVT + VUT are symmetric and positive semidefinite.

Lemma 3.2 [16] For any x € R", each X € dp(x)y+ has the following representa-
tion:
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The penalized Fischer-Burmeister SOC complementarity function 465

(@) If x1 # x||x2l|, then (x)4+ is continuously differentiable at x with

0 ifxr < —|lxll
X=w,=11 - ifxr > |x2l
(7)) =l <x <l
where
Bri= X::(x‘ +1>1—x—‘xzf{.
llx2l [lx2l llx2l

(b) If x2 # 0 and x1 = ||x2||, then

1(1 xI -
XG{L < 3)}, whereizzzﬁandX:ZI—)EzizT.
X2

(¢) If x#0 and xy = —||x2l|, then

11 &I _ x2 - _ 7
Xeil0, - ._ z ,  where xp .= and X :=XxzXx, .
2\x, X flx2 |l

(d) If x =0, then either X =0 or X = I or X belongs to the set

1{1 xI\|. _ 7 B,
—|_ 2| X =0+ DI —xox2x] for some |xo| <1and ||%p] =1} .
2\x, X

Proposition 3.1 Let ¢, be defined as in (7). Then, for any given (x,y) € R" x R",
each element [S T| € 0pg,(x, y) has the following representation:

S=pU+(1—p)Ly,X, T=pV+d—-p)Lw,Y,
where [U V] € 0ppgg (x,y), X € 0p(x)y and Y € dp(y)+.
Proof From the definition of the B-subdifferential, it is not hard to verify that
dpdp(x,y) S PO (x,y) + (1 = p)3p[(x)4 0 (¥)+]. (16)

Let F(x,y):=xoyand G(x, y) := (((;‘))i). Then, (x)4 o ()4 = F(G(x, y)). Using

Proposition 7 and Lemma 14 of [22] and noting that G (x, y) = dp(x)+ X dp(¥)+
yields

0g[(x)+ 0o (M) +1=JF(G(x,y)0pG(x,y) = L(y),0p(x)1+ X L(x), 98(¥)+,
where the set on the right hand side denotes the set of all matrices whose first n

columns belong to Ly), dp(x)+ and last n columns belong to L), dg(y)+. Com-
bining the last two equations, we immediately obtain the desired result. O
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In the rest of this section, we concentrate on the elements of the B-subdifferential
of ¢, at all complementarity pairs (x;, y) which satisfies (13). As remarked in [1],
the index set {1,2, ..., r} can be partitioned as J; U Jp U Jo U Jpo U Jop U Joo With

Jp:={i|xf eint(K"), yF =0},

Jp = {i | x} ebdt(K™), y* ebdt(K")},
Jo:= {i | x/=0, y/ eint(lC”i)},
(17)
Jpo = {i | x} ebdt(K"), y* =0},
Jog = {i | xF =0, yF ebdt (K"},
Joo :={i | x¥ =0, y} =0}

where bd™ (K") denotes the boundary of K" excluding the origion. First of all, let us
pay attention to the elements of dp¢, (x;" , y;" ) fori € J; U Jp U Jy. For convenience,
the notation “x” in the sequel always represents some real number from the interval

(0, +00).

Proposition 3.2 Let [S; T;] € dpp,(x[', y]) for i =1,2,...,r. Then, for i € J; U
Jp U Jo, there exists an orthogonal matrix Q; such that S; = QiDiQiT and T; =
Qi A Ql.T where,

(a) ifi € Jy, then D; and A; satisfy one of the following cases:

D; =0, A;=pl, 0i=1I, (18)
D; =0, A; =diag(x, *, ..., %, %); (19)
D; =0, A; is a nonsingular lower triangular matrix. (20)

(b) Ifi € Jy, then D; and A; satisfy one of the following cases:

D; =pl, A =0, Qi=1I, 2n
D; =diag(x, *, ..., %, %), A =0; (22)
D; is a nonsingular lower triangular matrix, A; =0. (23)

(c) Ifi € Jp, then D; and A; have one of the following representations:
D; = diag(x, x, ..., *,0), A; =diag(0, x, ..., x, %); (24)
D; = diag(0, *, ..., *, %), A; =diag(x, %, ..., *,0). (25)

Proof Foreachi=1,...,r, let [U; V;] € 0pdys (x7, ¥7), X € dp(x])4 and Y €
B (Y])+-
(a) From Lemma 3.1(a) and Lemma 3.2(a) and (d), it follows that

. . 11 )
U; =0, Vi=Il and X; =1, Y'=0, TorH =~ _ <,
2 w;2 Hi
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The penalized Fischer-Burmeister SOC complementarity function 467

where H; = (t + 1)1 — rd)igd)iTz for some |7| < 1 and ||w;2|| = 1. By Proposition 3.1,
Si=0 and T;=pl, pl+(1 —,o)in* orpl 4 (1 —,o)in*H,-.

In what follows, we proceed the arguments by the possible cases of T;.
Case I: T; = pI. The result is obvious with Q; =1, D; =0and A; = pl.

Case2: T, =pl + (1 — p)Lxl_*. Under this case, let Q; =[g; 41 ... gn;—2 q;] With

q~—i<1> c}~—<0> forj=1 ni—2 q’—i< : >
=ale) =l o2 a= )

_ xk _ _ . . . L
where xl?"z = W and vy, ..., Uy, are arbitrary unit vectors in R" ! that span the
1
linear subspace {v € R%~! | ET)EEE = 0}. From Lemma 2.1, such orthogonal matrix

Q; satisfies
Ly = Qidiag (o). x i ())) OF

Therefore, S; = Q; D; QiT and T; = Q; A; QiT with D; and A; having the expression
of (19).

Case 3: T; = pI + (1 — p)L* H;. Now T; is similar to pl + (1 — p)(in*)l/2Hi x
(in*)l/2 since
T; = (L) 2ol + (1= p) (L) P Hy (L) VAL ) ™2
Since H; > 0 by Lemma 2.7 of [16], all eigenvalues of 7; are positive. Using Theo-
rem 2.3.1 of [15], there exists an orthogonal Q; such that 7; = Q; A; Ql.T, where A;
is lower triangular with diagonal entries being the eigenvalues of 7;. Such Q; clearly
satisfies the result of (20).
(b) The desired result is due to part (a) and the symmetry of x; and y in
Do i, ¥D).
(c) In this case, from Lemma 3.2(b) and Proposition 3.1, it follows that
Si=pUi+ (A —p)Ly or S;=pU+(1—p)Ly:X7,

. (26)
Ii=pVi+(A=p)Ly or Ti=pVi+(1—-p)LeY],

11 GT X} —
X+ — 5 < (),_(23 ) with &, = “x’*z“ and X =21 —)Eiz(i;a)T,
; i

11 Gy’ - e = -
Y= 5 ()_}* )’_/2 with y% = ||yl*2|| and Y =21 — 35,557,
i2 i i2

Since x; and y’ share with the same Jordan frame, without loss of generality we
assume

x;k =019q; + O’2£]l~/ and y,* = un1qi + /‘L2ql/
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for some o1, 07, 41, 42 € R, where the Jordan frame {g;, qlf } has the form of

11 and 101 with g; € R" ! satisfying ||g; | = 1
q,—z qi ql_z —(,ji qi yg%—.

Note that x + y € int(X"") holds for this case, which along with x}", y} € bd ™t (KC™)
implies
o1+ oy =|o] — 02, w1+ 2 =|p1 — pal,
ortox+pr+p2>lor —o2+ pur — pal.

From this, we deduce that oy = 0,020 > 0, u; > 0, u2 =0 or o1 > 0,00 =0,

A A . A 0 .
p1r=0,p2 > 0. Let Qi =[v24; 41 ... gn—2 V2¢]] with g; = (;,) for j =
1,...,n; — 2, where vy, ..., v,,—2 are arbitrary unit vectors that span the linear sub-

space {0 € R"~! | 57 g; = 0}. Clearly, such Q; is an orthogonal matrix. We proceed
the arguments by two cases.

Case 1: 01 =0,02 >0, uy > 0, up = 0. From the proof of Proposition 4.1(c) of [20],
Ui = Q; diag(l,*, ..., % 0)Q] . Vi = Q;diag(0,+,.... 1)O].

By Lemma 2.1 and the expressions of x* and y/, it is not difficult to verify that

. . 02 02
Ly = Qs diag (11 (). iy da) ©F = Qiding (0.5 2o 0]

Ly = 0 diag (3], s -, ¥ M 0D) ©f

. K1 23! T
= Qidlag<u1,7,...,7,0) 0; .
In addition, by Lemma 2.7 of [16] and the expressions of x and y, we have

X¥=Q;diag(0,1,...,1,1)Qf, Y= Q;diag(1,1,...,1,0)Q}.

Combining the last three equations with (26) yields the desired result in (24).

Case 2: 01 > 0,07 =0, u1 =0, ua > 0. By the proof of Proposition 4.1(c) of [20],
U; = Q; diag(0, *, ..., 1) Q! V; = Q; diag(1,*,...,%,0)0] .

Also, by Lemma 2.1, Lemma 2.7 of [16], and the expressions of x; and y}, we verify
that

. . o1 o1
Ly = Qs diag (20, oy i () ©F = Qi ding (01, 5. 5.0) 0]
Lys = Qi diag (M1 (y)), -+ vi, 22) @

. H“2 K2 M2\ 7

- 0uding (0,12, 22,12 o1
Q; diag > 22 0,

X¥ = Q,;diag(1,1,...,1,0) 07, Y = Q;diag(0,1,...,1,1) QF .
The last two equations and (26) gives the result, with D;, A; given by (25). O
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In view of Proposition 3.2, we may partition the index sets J;, Jo and Jp as J; =
JI1 u 112, Jo = JO1 U 102 and Jp = Jllg U JI%, respectively, with

J}:={i|Si=D;, T; = A; with D;, A; given by (18)},

J? = {i 1S = 0:D; 0, T; = Qi A; QT with D;, A; given by (19) or (20)},
J&:=1{i | Si = D;, T; = A; with D;, A; given by (21)},

I3 = {i 1S, = 0:iD; QT T; = Q;A; QT with D;, A; given by (22) or (23)},
Jhi= {i 1S = 0:D; 07, T; = Qi A; QT with D;, A; given by (24)} ,

J2 = {i 1S = 0:D; 07, T; = Qi A; QT with D;, A; given by (25)} .

Next we take a look at the elements of the B-subdifferential dg¢, (x;, y[) for i €
Jpo U Jop.

Proposition 3.3 Let [S; T;] € dpp,(x], y/) fori =1,2,...,r. Then, fori € Jgo U
JoB, there exists an orthogonal Q; = [qi Q,- ql.’] such that S; = Q,-D,-Ql.T and T; =
Q,-A,-QiT where,

(a) ifi € Jpo, then D; and A; exactly have one of the following representations:

D; =0, A =pl, 0i=1, (27
D; =0, A; =diag(x, *, ..., %, %); (28)
D; = diag(0,0,...,0, %), A; =diag(x, *, ..., *,0); 29)
* 0 0
D; =diag (0,0,...,0,%), A;=]0 LY F (30)
0 —%viTQl *
. Zi %
D; = diag (0,0, ...,0,0), A,-=(O ); (31
0
. 2,' 21’
D; =diag(0,0,...,0, p), A,-=<O O); (32)
D; = diag (0,0,...,0 Ni=Zi 33
; =diag (0,0,...,0,%), (0_%UiTQi) N (33)

where v; is same as in (41) and every eigenvalue of Z; e Ri=Dxi=1) g posi-
tive.
(b) Ifi € Jo, then D; and A; have one of the following representations:

D; = pl, A; =0, 0,=1, (34)
D; = diag(x, %, ..., *, %), A; =0; 35)
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D; = diag(x, x, ..., *,0), A; =diag(0,0,...,0,%); (36)
* 0 0
D;=|0 - 0) A;=diag(0,0,...,0,%); (37
0 —%ulr Qi *
_ Zi % T .
D; = 0 p) A; =diag(0,0,...,0,0); (38)
Zi % . .
Dl= 0 0 ’ Ai:dlag(0907"'70’p)’ (39)
D Zi 4 A; =diag(0,0,...,0,%) (40
= A , ; =diag (0,0,...,0,%
T\O-5ul 0+ e
where u; is same as in (41) and every eigenvalue of Z; € R7%~D*i=1 g phogi-

tive.

Proof Foreachi=1,...,r, let [U; V;] € 0py (x7, ), X € dp(x])4 and Y[ €
() +-

(a) By Proposition 3.1, S; = pU; and T; = pV; + (1 — p)Lx;ﬂ Y* with Y =0, 1
or H;, where H; is defined as in Proposition 3.3(a). Let Q; =[¢; 41 ... Gn,—2 q/1=
l9; Qi ¢/ with

._L 1 h: — 0 forj=1 ni —2 ’_L 1
T\ Ty T et s A - )

_ xk _ _ . . . .
where x;“z = ﬁ and v1, ..., Uy,—2 are arbitrary unit vectors in R ! that span the
i2

linear subspace {v € R" ™| ET)E;E = 0}. From the proof of [20, Prop. 4.2(a)], such
orthogonal matrix Q; is such that U; = Q; %; Ql.T and V; = Q;T; Ql.T with

0 0 0 1 0 0
% =0 0 o |. nr=|o I 0
0 —%M,TQ:' I —uj 0 —%fzviTQi I -

for some u; = (u;1, u;n), v; = (vi1, vi2) € R x Rl satisfying

luir] < luizll < 1, [vit] < llvizll = 1,
(i1 —vi1) < llui2 — vizll, (i1 +vi1) < lluiz + vizl, @
(i1 — vi1)? + lluiz + via|I> < 2, (it +vi1)? + lluiz — vial> < 2,

ulgi =0, ul'q] = 2u;, v/ qi =0, vl gl =V2vi.
Moreover, the above X; and I'; may reduce to one of the following three cases:

@ Springer



The penalized Fischer-Burmeister SOC complementarity function 471

EiZO, F,’:I, Q,’:I;

%; =diag(0,0,...,0,1), I; =diag(1,1,...,1,0); (42)
1 0 0

5 = diag(0,0,...,0,%), Ti=[0 I 0
0 _%U,'TQI' *

In the following, we proceed the arguments by the possible values of Y.

Case I: Y = 0. Now, we have S; = Q; D; Ql.T and T; = QiA,-QiT with D; = p%;
and A; = pI';. From (42), clearly, D; and A; have one of the representations given
by (27), (29) and (30).

Case 2: Y} = I. Under this case , S; = Q; D; 7 and T; = Q; A; QT with
Di=p%; and A;=pl+1- P)Q,-TLx;* 0;.
From Lemma 2.1, the orthogonal matrix Q; is also such that

Ly = Qi diag (A (x]), X[y, ..., %71, 0) Q] . (43)

1

Combining with (42), D; and A; have one of representations given by (28), (29) and
(30).

Case 3: Y} = H;. For this case, we have S; = Q; D; O and T; = Q; A; Q7 with
Di=p%; and A;=pli+(1—p)Q Ly HiQi.

Using (43) and an elementary calculation gives

)\2(x;k) 0 0 Z: 7
O/ LyHiQi=| 0  x4I 0 QiTHiQi=(Ol (;),
0 0 0

where

(G 0\ AT A (Mgl Hig!
Zl - ( 0 .X;kll Qi Hl Qh i = )C;kl QlTqul/

with Qi = [g; Q,-] e Rrix(i=1), Together with the expressions of ¥; and I';, the
matrices D; and A; exactly have one of the expressions in (31)—(33) with Z; =

pl + (1 —p)Z; and Z; = (1 — p)z;. Since (AZ((;C")X_::I) >0 and Ql.THi 0; =0, Z; is
diagonalizable and all eigenvalues are real and nonnegative by the result of Problem 3
in [15, p. 468]. From the expression of Z;, it then follows that every eigenvalue of Z;
is positive.

(b) The result is direct by part (a) and the symmetry of x; and y; in ¢, (x/, y1). O]
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By Proposition 3.3, we partition the index sets Jpo and Jop into Jpo = J éo U---u
Jgo and Jop = JéB U---u J(?B, respectively, with

Jao :=1i | Si = D, T; = A; with D;, A; given by (27)},

I3 = {i | 8= 0:D; 0, T; = Qi A; Q7 with D;, A; given by (28) or (31)] ,
I3 = {i |Si=0:Di 0T, T; = Qi A; Q7 with D;, A; given by (29) or (32)] ,
Jh = {i |Si=0:Di Q7. T; = Qi A; Q7 with D;, A; given by (30) or (33)},
Jlg :=1i | Si = D;, T; = A; with D;, A; given by (34)},

Jey = {i |Si = Q:iD; QT Ty = Qi A; O with D;, A; given by (35) or (38)},
I3y = {i |Si = QiD; QT Ti = Qi A; QT with D;, A; given by (36) or (39)] ,
Jog = {i |S; = Q;D; 0, T; = Q; A; O with D;, A; given by (37) or (40)] )
Finally, we come to look at [S; T;] € dp¢p,(x, y7) for i € Joo. From Propo-

sition 3.1, S; = pU; and T; = pV; with [U; V;] € 0pdgs(x],y]), where by
Lemma 3.1(c)

U=I—-Lg and Vi=1I—1Ly, (44)
for some g = (gi1. gi2). hi = (i1, hi2) € R x R~ satisfying g2 + h? = e, or

11\ y 1(1\.p (O 0
Vi=l-3 (—wn) “i T3 (u')i2> 57 \o r—wowl)
Vi=l-3 (—li)n) K (1111'2) o 1- Wia;, Lo

for some w; € R%~! with ||w;2] = 1, some u;, v; satisfying all the inequalities of
(41) and

(45)

(1, wh)u; =0, (1, —wh)u; = 2u;, (1, wh)v; =0,
(1, —wj)vi =2v;1,
some & = (&1, &2), i = (i1, ni2) € R x R%~1 such that
i1l < &2l <1, [nit] < lImi2ll <1
i1 —ni1) < &2 — ma2ll, it +mi) < ll&i2 + na2ll;
G —miD)* + &2 + niall* <2, En +mi)* + &2 — n2ll* < 2,
(W& =281, (1, —w& =0, (1, w)n =2m,
(1, —w})n; =0,
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and s; =ou; + (1 —0)é;, wi =0ov; + (1 —o)n; for some o € [0, 1/2], with (1/2) <
IsilI2 + llwil|* < 2. Furthermore, all U; ViT + ViUl.T > 0. Using Proposition 4.3 of
[20], we readily have the following result, where D,- and 1~\,- denote the submatrices
consisting of the first n; — 1 rows and n; — 1 columns of D; and A;, respectively,
and D; and A; denote the submatrices consisting of the last n; — 1 rows and n; — 1
columns of D; and A;.

Proposition 3.4 Let [S; T;] € 0pdp(x], y]) for i =1,2,...,r. Then, for i € Jo,
there exists an orthogonal matrix Q; = [g; Qi qi’] such that S; = Q; D; QZ.T and T; =
Qi A; QiT. If U; and V; are given by (44), then D; and A; have one of the following
expressions:

0i=1, D; =0, Ai=pl; (46)
Qi=1, D;=pl, A =0; (47
0, =1, D; =diag(x, *, ..., *, %), A; =diag(x, *, ..., %, %);  (48)
D; = diag(x, x, ..., %, %), A; =diag(x, *, ..., *, *); 49)
D; = diag(x, *, ..., %, %), A; =diag(0, x, ..., %, *); (50)
D; = diag(0, x, ..., *, %), A =diag(x, *, ..., %, *); (€28
D; = diag(*, *, ..., %, %), A; =diag(x, x, ..., *,0); (52)
D; = diag(0, x, ..., *, %), A; =diag(x, %, ..., *,0); (53)
0i=1, D;=p( —Lg,), Aij=p —Ly,)

with A; ' D;, D' A; positive definite. (54)

If U; and V; are given by (45), then D; and A; have one of the following expressions:

Qi=1, D; =0, Ai=pl; (55)
Qi=1, D; =pl, A =0; (56)
D; = diag (x, %, ..., ,0), A; =diag (0,0, ...,0,%); 57)
D; =diag (x, x,...,*,0), A =diag (0, *, ..., %, *); (58)
D; =diag (0,0, ...,0,%), A; =diag (x,%,...,%,0); (59)
D; =diag (0, %, ..., %, %), A; =diag (x, *, ..., %,0); (60)
1 0 0
D; =diag(0,0,...,0,%), A;=p]|0 r 0] (61)
0 —%U?Q, *
1 0 0
Di=p|0 r o, A; = diag(0,0,...,0,%); (62)
0 —%MITQ,‘ *
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* 0 0
D=0 xI 0],
0 0 O
1 —miy —%277? 0 0
Ai=p| 250 (1—U-omnl 20l n (63)
0 0 1
where o € [0, 1/2] and 1~\ is positive semidefinite;
L= 56 Qi 0
Di = f 243 TRy =0/& |
0 1 (64)
* 0 0
Al'z 0 =1 O
0 0 O
where o € [0, 1/2] and 1~\l._ll~),~ is positive semidefinite;
0 0 0 1 0 0
Di=(0 « o)., Ai=p|HQv I FOlv (65)
0 0 * O T;U[TQ[ *
where o € (0, 1/2] and Di_lz_\i is positive semidefinite;
A o 0 0 0
D;i=p fQ, uj xl ﬁQ, ui || Ai=10 %I O (66)
—1 A
0 EuiTQi * 0 0 =«
where o € (0, 1/2] and [\l._ll_)i is positive semidefinite;
I—&n  3E0 0
Di=p| Z0lsi (—sinl ZO[si|,
0 :/—%M,T Oi 1l—-un
) (67)
1 —ni j/—lzmT 0, 0
Ai=p|HQwi (1-w)l ZOlw
0 _Tiv,-TQi I -1

whereuj1 < 1,v;1 <1,&1 <landni <1.
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By Proposition 3.4, we may partition the index set Joo as Joo = Jolo U---u Jolg
with

Jol0 :={i | U; = D;, V; = A; with D;, A; given by (46) or (55)},
J020 :={i | U; = D;, V; = A; with D;, A; given by (47) or (56)},
Jgo :={i | U; = D;, V; = A; with D;, A; given by (48) or (54)},

J& = {i | Ui = 0:D; Q7 Vi = Qi A; QT with D;, A; given by (49)] ,

33 =1i Ui = 0iD: QT Vi = Qi A; QT with Dy, A; given by (52)} ,
i|Ui=Q:D;:QF, Vi = Q;A; Q7 with D;, A; given by (53) or (60)} ,
Ty =i 10 = 0;D; 0] . Vi = 0iA; O] with D;, A; given by (57)|

{
[
[
Jho .= {i |U; = 0;D; OF, Vi = Qi A; QT with D;, A; given by (58)}
{
[

53 =i 1U = 0iDi ] Vi = 0iA; Q] with Di, A; givenby (59)],
Jog :=1i Ui =QiDi Q] , V; = QiA; Q] with D;, A; given by (61){,

I8 = {i | Ui = 0:D; 7, Vi = Qi A; QT with D;, A; given by (67)] .

Taking account into the structure of D; and A; in Propositions 3.2-3.4, in the
subsequent section we sometimes partition the corresponding Q; as

0:i=10; ql=Ilg O q¢l=Ilg O, i=12,...r

where ¢;, q{ € R" denote the first column and the last column of Q;, respectively,
Qi e Rmix(ni=2) ig composed of the middle n; — 2 columns of Q;, and Q,-, Qi €
Rri*0i=D) gpe composed of the first n; — 1 columns and the last n; — 1 columns
of Q;, respectively.

4 Nonsingularity conditions

In this section, we give suitable conditions to guarantee the nonsingularity of all el-
ements of the B-subdifferential of ®, at solutions which do not necessarily satisfy
strict complementarity. The following technical lemma will play an important role in
the analysis.
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Lemma 4.1 Let Ay, Ay € R"™" be given. Let V, VP € R"" be matrices such
that there is an orthogonal matrix Q € R"™" and block diagonal matrices D* =
diag(D¢, ..., D¢) and D" = diag(D?, ..., D?) satisfying V¢ = QD* Q" and V* =
OD?QT, where each pair of D} and Df’ belongs to one of the following cases:
D} =0 and Dl.b is nonsingular; DY, Df are nonsingular and (Df’)*lDf, (Df‘)’lDf
are positive definite; D{ is nonsingular and Df = 0; D{ is nonsingular and
(Df’)lel].J is positive semidefinite; Df’ is nonsingular and (Df’)lef’ is positive
semidefinite. Let the set {1,2, ..., k} be partitioned as « U Uy U§ U0 with

a:={i| D} =0, Df’ is nonsingular}, y :={i | D} is nonsingular, Df’ =0},

B :={i | D¢, D! are nonsingular and (D¢) ™' D?, (D?)~' D¢ are positive definite},
8 :={i | D} is nonsingular, (Df)*l Df»’ is positive semidefinite},

0 :={i] Df’ is nonsingular, (Df’ )*l D¢ is positive semidefinite},

and Qy, O, Oy, Qs and Qg denote the submatrices consisting of those columns
from Q corresponding to o, B,y,8 and 6, respectively. Assume that the following
conditions hold:

(a) The matrix AlTAz is positive semidefinite.

(b) The matrix [AzT Oy AZT 0g] has full row rank.

Then the matrix V4A| + VP A, is nonsingular. If, in addition, A, is invertible, then
the matrix V2 Ay + VP Ay is nonsingular under the following conditions:

(al) The matrix [Qp Q) Os Q01" AlAgl[Qﬁ 0, Os Qg] is positive semidefinite.
(bl) The matrix [Q, Qs 0ol” A1A2_1[Qy 0Os Qo] is positive definite.

Proof Note that the nonsingularity of V¢ A+ V% A is equivalent to that of the matrix

-1 A 0
W=|0 A, -—-I
ve 0 vb

An elementary calculation shows that W is nonsingular if and only if the matrix
-1 0TA; 0
W:=1]0 A -0
ps o Db
is nonsingular. Let Wz =0 for a suitably partitioned vector z = (w,d, s) € R" x

R" x R" with w = (wy, wg, wy, ws, wy) and s = (s, S8, Sy, S5, S¢). It suffices to
prove z = 0. Since

D® = diag (0, DY, D%, D, Dg) and D’ = diag (Dg, D},0, DL, Dg) ,
the system Wz =0 can be rewritten as
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0TAid=w,  Ayd=0s,

w, =0, s =0,

ws+(Dg) " Dlss =0, (68)

ws + (D¢) ' Dlss =0,
p\ !
(Dg) Dgwg +sg =0.
From the first two equations of (68), dTA]TAzd —sTw =0, which can be rewritten as
—1 —1
d" AT Azd + 5] (D§)  Dpsp+si (D§)™" Dyss +wf (Df)  Dgws =0,

Since (Dg)_ng is positive definite, (Dg’)_lDé’ and (Dé7 )_ng are positive semi-
definite, the second term on the left hand side of last equality is strictly positive
whenever sg # 0 and the last two terms are always nonnegative. Therefore, assump-
tion (a) implies sg = 0. Using s =0, sg =0 and A>d = Os, we obtain QgAzd =0
and QgAzd = 0, which by assumption (b) implies d = 0. Hence, w =0 and s =0
follow from the first equation and the second equation of (68), respectively. Thus, we
prove z =0.

Suppose that A, is invertible. From the first two equations in (68), it follows that

0" A1A; Qs —w=0.

Premultiplying with s” and using w,, = 0 and s, = 0, it then follows that

T
sg Sp
s T - s
ol [26 0 0 ] aat[op 0 05 Q]|
S S6
—slgwﬁ — st ws —sfwy =0,
which along with the last four equations of (68) yields
T
SB Sg
s T _ s
ol [0 & 0 o] A [0 0 05 Q][
So S0
+ slg(DgY1 Dgs,g + SST(D(‘;)*1 Dss + u)gT(Dgy1 Djwg =0. (69)

Since (D,f;)_1 Df; is positive definite, (Df;)_1 Dg and (Dé7 )1 Dy are positive semidef-
inite, assumption (al) implies sg = 0. Plugging sg = 0 into (69) and using assump-
tion (b1), we obtain s, =0, s5 = 0 and sp = 0, and so s = 0. From A>d = Qs and the
nonsingularity of A;, we get d =0, and w = 0 follows by the first equation of (68).
Thus, z =0. O
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In what follows, we employ Lemma 4.1 to establish the nonsingularity result for
the B-subdifferential of @, at a solution ¢*. We first consider that {* is nondegener-
ate, 1.e.,

(F;i(£%),Gi(*) #(0,0) foralli=1,2,...,r.

Obviously, such a solution does not necessarily satisfy strict complementarity which
requires

Fi(¢H+Gi(¢") eint(K") foralli=1,2,...,r.

Theorem 4.1 Let {* be a nondegenerate solution of (1), and Jy, Jg, Jo, Jpo, Jop be
defined by (17) with x} = F;(¢*) and y! = G;(¢*). Then all matrices W € dp®,(¢*)
are nonsingular if, for the partitions J; = JI1 U JIZ, Jo = JO1 U .102, Jp = Jé U Jé,
Jpo = Jéo U---uU Jgo and Jop = JolB U---uU J(?B, the following two conditions hold:
(a) The matrix VF(¢*)G'(¢*) € R™™" is positive semidefinite.

(b) The matrix [EQy EQpg] € R**WNi+N2) has full row rank, where E = VG(*)

and
Nii= Y mi+ Y u—D+1JpU gl
ieJjUJk Ul ielpUlh,
Nyi= Y (i —2)+ |75 U Jggl.
ieJp

EQqu:=[Ei(ieJ] Ulg) EiQiieJfUJg) EiQilie pyUpy)
Eiqi(i € Jg) Eig{(ie JgUJsp)],
EQp := [EiQi(i €Jp) EiqjieJjU JéB)] :

If G'(¢*) is invertible, then all W € dp® ,(¢*) are nonsingular under the conditions
that

(al) the block matrix [C

1 G (N2+N3)x (N2+N3) ; . ; ; :
s C4] eR is positive semidefinite with

Ny== Y mi+ Y (i—1D+JgUJTl.

ieJoUJL,UIZ, i€l3pUJsy

where the expressions of C1, Ca, C3z and C4 are given in appendix;
(bl) the matrix Cq € RV3*N3 g positive definite.

Proof Choose W € dp®,(¢*) arbitrarily. A calculation gives W = SF'(¢*) +
TG'(¢*) for suitable block diagonal matrices § = diag(Sy,...,S,) and T =
diag(Ty, ..., T,) with [S; T;] € 0pe,(x7, y7) fori =1,2,...,r. Since ¢* is a non-
degenerate solution, the index set {1,2,...,r} can be partitioned as J; U Jp U
Jo U Jpo U Jop. By Propositions 3.2-3.3, there exists an orthogonal matrix Q =
diag(Q1,..., Q) e R™" such that S = QD QT and T = QA QT with the block di-
agonals D = diag(Dy, ..., D;) and A =diag(Aq, ..., A,), and we are in a position
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to apply Lemma 4.1 with D* = D, D> = A and A| = F'(¢*), Ay = G'(¢*). To apply
this result, we need identify the index sets «, 8 and y since § =) and 0 =, and the
structure of the orthogonal matrix Q. From Propositions 3.2-3.3 and the partition of
Jr. JB, Jo, Jo, Jop, we see that the following indices belong to o of Lemma 4.1:

e cvery block index i € JI] U J12 U Jtlzo U Jz230’ with Q; =1 fori € JI1 U Jtlzo and Q;
fori e le U Jéo being the corresponding orthogonal matrix;

e cvery block index i € jgo U Jgo, with Q; consisting of the first n; — 1 columns of
the corresponding orthogonal matrix Q;;

e cach block index i € Jé, with g; being the first column of the corresponding Q;;

e cach block index i € J 113 U J033, with g/ being the last column of the correspond-
ing Qi3

and the following indices belong to 8 of Lemma 4.1:

e every block index i € Jg, with Qi consisting of the middle n; — 2 columns of the
corresponding orthogonal matrix Q;;

e cvery block index i € Jgo U Jé > With ¢/ being the last column of the corresponding
orthogonal matrix Q;;

and the following indices belong to y of Lemma 4.1:

e every block index i € JO1 U JO2 U J()IB U JOZB, with Q; =1 fori e JO1 U J()lB and Q;
fori e J()2 U J()zB being the corresponding orthogonal matrix;
e every block index i € JO33 u JS‘B, with Q; consisting of the first n; — 1 columns of
the corresponding orthogonal matrix Q;;
e each block index i € J é, with ¢; being the first column of the corresponding Q;;
e cach block index i € le; U Jgo, with g/ being the last column of the correspond-
ing Q;.
The above observations show that the conditions (a)—(b) correspond to the condi-
tions (a)—(b), respectively, of Lemma 4.1. When G’(¢*) is invertible, the expressions
of C1, C, C3 and Cy4 in Appendix show that the conditions (al)—(b1) correspond to

the conditions (al)—(bl), respectively, of Lemma 4.1. The result then follows from
Lemma4.1. O

Next, we come to the case that ¢* is degenerate. For such ¢*, we can establish the
nonsingularity for the B-subdifferential g ®,({*) under the requirement of J(}g =0.
From Proposition 4.3(b9) of [20], this condition can be satisfied only when one of
U1, vi1, &1 and ;1 equals 1. In other words, this condition can be satisfied only for
some elements of the B-subdifterential dg®,(£*). Since the proof is similar to that
of Theorem 4.1, we omit it.

Theorem 4.2 Let £* be an arbitrary solution of (1). Let J;, Jg, Jo, Jo, Jog and Jyy
be given by (17) with x} = F;(¢*), y7 = G;(¢*), and the partitions J; = J[1 U J,z,
Jo=J VI, Jg=J U3, Jgo=JhyU---UlJgg, Jog=Jlg U+ UJp and
Joo = Jol0 u---u J(}g. IfJO]O8 =0, then all W € g @, (¢ *) are nonsingular under the
following two conditions:
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(a) The matrix VF(¢*)G'(¢*) € R™™" is positive semidefinite.
(b) The matrix [EQy EQg] € RPXWN+N2) has full row rank, where E = VG(*)
and

N; = Z n; + Z (ni — 1
ieJUJk UIZ, Uk, i€T3,UT Ul UIi
+ I U Jg5 U IS U IS U Jg U IS U iy U I8l
Nai= ) mi+ ) u-D+ Y (-2
NN A iU Ui, ieJpuJGUIN
+ 150U Jop U Jog U Jgo |,
EQqy :=[Ei(ieJ] UJL UL EiQilieJ?UJI})
EiQi(i e JpoUJaoUlJgg UJod) Eiqilie JgUJSUISUI0
Eiql(i € T} U Jgp U g U Jod U Jg].
EQp:=[Eiiely) EQilely EiQilielyp
EiQi(i e JpU IS U I
E;iQi(i € JjUJ&)  Eiglli € JgoUJgg U g U o))
If G'(¢*) is invertible, then all W € 9, (¢*) are nonsingular under the conditions:

(al) The block matrix

A1 Cr C3 (4
B, Ay Cs5 Cgq
By By Az C7
Bs Bg B7 A4

is positive semidefinite with

N3 := Ny + Z n; + Z (n; — 1)

P 1 2 2 e 73 4 9 13
i€JoUJ)UI3,UI i€J3pUIdUI0UI4

+ > -1

P 14 17
T A URRUN A,

c RN3><N3

+[Jp U T U I U o U IS U I U Jid U s U Jgg 1,

where the expressions of the submatrices A;, B; and C; are given in Appendix.
(bl) The block matrix

Ay Cs GCg
Bs A3 Cile RN3=N2)x(N3—N2)
Bs By Ay

is positive definite.
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Note that condition (al) of Theorem 4.2 is satisfied when F/(¢*)G’(¢*) ™! is posi-
tive semidefinite. For the SOCCP (2), this condition is equivalent to the monotonicity
of the mapping F, and moreover, conditions (al) and (b1) of Theorem 4.2 are satis-
fied if F’(¢*) is positive definite. In addition, we want to point out that it is impossi-
ble for the SOCCP reformulation of the linear SOCPs to satisfy conditions (al) and
(b1) of Theorem 4.2, since G'(¢) = —AT (AAT)~! A is not invertible. However, such
SOCCPs always satisfy condition (a) of Theorem 4.2 since VF (£*)G’(¢*) is a zero
matrix. Of course, for the linear and nonlinear SOCPs, we are able to deal with their
KKT conditions directly via the penalized FB function, i.e., we apply the nonsmooth
Newton methods [24, 25] to

Vg(x)—ATe —y
Ax —b

®,(2) = bp(x1,y1) =0. (70)

¢p xr, yr)

Using Propositions 3.2-3.4 and following the arguments in [16] and [20], similar
conditions can be provided for the nonsingularity of all elements of 35 ® o(2) at KKT
points.

Based on Theorem 4.2 and Proposition 2.1(c), from [25] we get the following
result.

Theorem 4.3 Let ™* be a (not necessarily strict complementary) solution of (1). Sup-
pose that the assumptions of Theorem 4.2 hold at ¢*. Then, the nonsmooth Newton
method (9) applied to the system ®,(¢) = 0 is locally superlinearly convergent. If, in
addition, F' and G’ are locally Lipschitz continuous, then it is quadratically conver-
gent.

5 The penalized FB merit function

The last section shows that the penalized FB SOC complementarity function ¢, in-
herits the desirable properties of the FB SOC complementarity function for local
convergence. But, unlike its counterpart in the NCP setting, the squared norm of ¢,,,
i.e. the penalized FB merit function ,, is not continuously differentiable; see the
counterexample below.

Example 5.1 Consider the point (x,y) € R3 x R3 with x = (2, —2,0)7 and y =
2,0,2)T. Since x% + y2 € int(KC3), ¢ 1s continuously differentiable at such point.
This means that

B¢y (x,y) = 0pdps (x, y) + 0B[(x) 4 0 (¥)+].

By the proof of Proposition 3.1, dp[(x)+ o (¥)4] = L(y), 08(x)+ + L(x), 9 (¥)+.
Noting that x; = [x2ll, y1 = [[y2ll and x] y» # £[x2[[[[y2]l, we can verify that
op[(x)4 o (y)+]T¢p (x, ¥) contains more than one element by Lemma 3.2. This along
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with the last equality implies that d¢, (x, y)T¢p (x, y) contains more than one ele-
ment, and so does 9, (x, y) since

W, e, T =30, (xc, T dp(x, ¥) D 3pdp(x, ) dp(x, ¥).

Applying Proposition 2.2.4 of [8] shows that v, is not strictly differentiable at (x, y),
and consequently v, is not continuously differentiable at such point.

Next, we argue that the function W, has bounded level sets under a very weak
condition.

Condition 5.1 For any sequence {¢*} C R" such that ||c¥|| — +oo, |[F(H]_| <
+00 and ||[G(c%)]1_|| < 400, there holds that

lim sup max <[Fi(§k)]+, [Gi(ck)]+> = 400. (71)

k— 00

Proposition 5.1 Ifthe mappings F, G : R" — R” satisfy Condition 5.1, then the level
sets L, (¢) :=={¢ e R" | W, (¢) <y} are bounded for all y > 0.

Proof Assume on the contrary that there is an unbounded sequence {chy ¢ L,()
for some y > 0. Since \Ilp(g“k) <y for each k, we have ||[[F(ZF)]_|| < 400 and
IIG(F)]—| < 400 from Lemma 2.2. By Condition 5.1, there exists a subsequence
{¢¥}, g such that

(R 16,601, = +o0 (72)

for some v € {1, 2, ..., r}. In addition, from Lemma 2.2 it follows that for each k,

[0 (P69, Gue D | = =2 (IAEH1 + 116, @511 > —oc.
Combining the last two equations with the following inequality
190 (Fo(65). @D = |p [ (165, Guc )|
— (1= PR 1661
> (1= P FE GO
0 [$a (€5, Gu 6]

we get {||¢p(Fv({k),Gv(gk))||}k€12 — 4o00. This is a contradiction to {¢¥} C

Ly (8). O

As will be shown in the following proposition, Condition 5.1 is rather weak which
can be satisfied by the strictly feasible monotone SOCCP or the SOCCP with the
Cartesian Ry -property, or the SOCCP (2) with the Cartesian weak coercive property.
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Proposition 5.2 Condition 5.1 is satisfied if one of the following assumptions holds:

(a) The mappings F and G are jointly monotone with lim; |- oo | F(O) |+ |G () || =
+00, and there exists ¢ € R" such that F(¢), G(¢) € int(K");

(b) The mappings F and G have the jointly Cartesian Ro|-property.

(¢c) F has the Cartesian weak coercive property with respect to & € KC for the
SOCCP (2).

Proof Let {¢*} be such that [|¢¥]] — +o00, [[F(¢¥)]-|| < 400 and [[G(t")]-|| <
+-00.

(a) From the joint monotonicity of the mappings F' and G, it follows that for
each k,

(F(5), G@©)) + (F(£), GM) < (F(c"), G(cM) + (F (D), G(©)).

Since ||[F(§k)]_|| < +o0 and ||[G(§k)]_|| < +o00 imply the lower boundedness of
{(M[F (%]} and {11[G(¢¥)]}, from the given condition || F (¢%)|| + |G (¢¥) || — 400
we may deduce that A,[F(¢%)] = 400 or A2[G(¢¥)] — +o0. Using Lemma 9(b) of
[6] then yields that

(F(¢"), G(©)) + (F(2), G (")) — +oo.

The last two equations imply (F "), G(¢%)) — +00. Now from the following in-
equality

(F(5), G(h)) = (IF M4 + [FEH-, [GEH + G (M)
< ([FEH1 IGEH) + (FEHI-, IGEH1),  (73)

it follows that ([F({k)]+, [G(;‘k)]+) — +00, and inequality (71) then follows.
(b) The result is direct by Definition 2.1(a) and the following implications:

. (Fy(¢%), Gy (£h))
iminf ————= "~

(F(RY. Gk
¢ N hminfmams,gr( (%), Gi(&%))
k=00 g 1l k

>0
—00 Ikl

= max (F (5", Gi(¢") — +oo
1<i<r
= max ([F (¢4 [Gi(¢)]+) — +o0
1<i<r
where the last implication holds due to (73) with F and G replaced by F; and G;,

respectively, and the boundedness of ([ F; (;‘k)]_, [G; (g“k)]_>.
(c) By Definition 2.1(b), there exists an index v € {1, 2, ..., r} such that for each k

&y Fo (&) _ [@5 —&. R (YD) G Fu(zk»} Ig* — £l

Ik ik — &l Ik — gl k|
ek —&,, F.(25) (&, [Fv(c")]_>] ek — g
+ £ 74
2[ gk —&] ek —&] gk 79
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where the inequality is due to F,(¢¥) = [F,(¢M)]y + [Fo(CH]- and (&),
[Fy(£%)14) = 0. Since ||[F,(Z¥)]—|| < +o0 and ||Z¥|| — 400, it follows that

k k
Y ) 6 O < 3
NG oo 12F]

Therefore, from (74) we immediately obtain that

i (k Ry L Tk =&, Fo@d)  (E RO T gk =&l
iminf —— > liminf k z z
k—oo  [ICK]| k=00 ek —&] gk —&] I
k_ k k _
 liming &6 = &0 Bo@D) IE* — ]
koo |Igk —£| gkl
This implies that (¢¥, F,(¢¥)) — +oo, and then (71) follows. O

Proposition 5.2(a) and Proposition 5.1 indicate that W, possesses the nice features
of the merit functions proposed by Luo and Tseng for the NCPs and extended to the
SOCCP by Chen [5]. In addition, it is not hard to verify that the uniformly Carte-
sian P-property implies the Cartesian weak coercive property, and hence Proposition
5.2(b) is weak than the coerciveness condition of the FB merit function W .

6 Numerical experiments

In this section, we apply the nonsmooth Newton method (9) for solving the SOCCP.
Since the benchmark for the SOCCP is not available, we utilize the SOCCP reformu-
lations of the standard SOCPs from DIMACS collection [23] as test examples, whose
KKT conditions can be rewritten as the SOCCP (1) with F and G given by (4). Note
that the method is only locally convergent in theory and the aim of our numerical
experiments is to demonstrate the theoretical results in the previous sections by ex-
amining the local behavior of the method. Also, we compare the method with the
following nonsmooth Newton method

= —w e, b, Wiedpd, (), k=0,1,2,... (75)

where the mapping ®, : R"™"+" — R"™+m+7 jg defined as in (70).

During our tests, the vector x in F was computed as a solution of min, ||Ax — b||
with Matlab’s least square solver, and F and G were evaluated via the Cholesky
factorization of AAT. All experiments were done with a PC of Pentium Dual CPU
E2200 and 2047MB memory. The computer codes were written in Matlab 7.0. We
started with the initial point ¢ = 0 for the method (9), and z° = (0,0, 0) for the
method (75). The two methods were terminated once ||®, "1l &Dp &0 is less
than 10~ or the number of iteration is over 150.

In addition, the parameter p is chosen as 0.9 throughout the testing. We want to
point out that a smaller p is not advisable since the penalized FB nonsmooth method
may suffer from the singularity of the B-subdifferential of ®,, noting that Proposi-
tion 3.1 and Lemma 3.2 imply that the B-subdifferential of ®, will be singular if
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Table 1 Numerical results for the linear SOCP nb_L2_Dbessel

Nonsmooth Newton method (9) Nonsmooth Newton method (75)
Iter ) Iter D) Il Ax — b| op (K, yb)
1 2.829000e+1 1 3.866252e+0 7.090517e—15 3.866252e+0
2 3.307341e—1 2 1.325962e+0 1.344775e—14 1.325962e+-0
3 1.856300e—1 3 4.731416e—1 8.116507e—15 4.731416e—1
4 2.440313e—1 4 1.024512e+0 5.736403e—15 1.024512e+0
5 3.396525e—2 5 9.246263e—1 4.138420e—15 9.246263e—1
6 1.380350e—2 6 5.472736e—1 4.394618e—15 5.472736e—1
7 4.972790e—3 7 4.559772e—1 3.282193e—15 4.559772e—1
8 6.126294e—4 8 8.593337e—1 2.747643e—15 8.593337e—1
9 1.818880e—5 9 6.716963e—2 2.211445e—15 6.716963e—2
10 1.815863e—8 10 1.147488e—2 1.771333e—15 1.147488e—2
11 1.922856e—14 11 4.199352e—4 1.516066e—15 4.199352e—4
12 6.516191e—7 1.450563e—15 6.516191e—7
13 1.599536e—12 8.048233e—15 1.599514e—12

Table 2 The last ten iterations for the linear SOCP nb

Nonsmooth Newton method (9) Nonsmooth Newton method (75)

Iter ) Iter d, (25 Il Ax — b| op (K, yb)
52 6.303561e—7 66 8.151580e—5 2.861723e—15 8.151580e—5
53 8.390756e—6 67 1.643593e—5 3.172674e—15 1.643593e—5
54 2.759474e—6 68 7.686683e—4 9.392922e—16 7.686683e—4
55 1.677546e—4 69 1.510727e—3 1.259316e—15 1.510727e—3
56 8.744115e—7 70 1.195072e—7 9.559855e—16 1.195072e—7
57 2.331141e—7 71 3.457169e—6 1.226556e—15 3.457169e—6
58 6.007356e—8 72 1.090880e—8 7.028293e—16 1.090880e—8
59 1.545525e—8 73 3.070186e—9 8.435887e—16 3.070186e—9
60 4.005365¢—9 74 3.533215e—8 1.448009e—15 3.533215e—8
61 9.720731e—10 75 7.379139e—10 1.133837e—15 7.379139e—10

p = 0. In fact, such problem also exists for the penalized natural residual SOC com-
plementarity function in [7].

Table 1 reports the iterations of the nonsmooth methods (9) and (75) for
nb_L2_bessel. We see that the two methods exhibit nice quadratic convergence for
this example, and yield the result within 13 iterations. Table 2 lists the last ten iter-
ations of the two methods for problem nb. They are able to yield the desired results
for this example within 75 iterations. Table 3 indicates the two methods can not give
the result for nb_L1 within 150 iterations. We have checked that the solutions of the
three linear SOCPs do not satisfy strict complementarity. So, the numerical results
above illustrate that the two nonsmooth methods may have fast local convergence
even if the solutions do not satisfy strict complementarity. In addition, it is worth
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Table 3 Ten iterations for the linear SOCP nb_L1

Nonsmooth Newton method (9) Nonsmooth Newton method (75)

Iter ) Iter d, (25 Il Ax — b| ¢p (K, yK)

141 3.747671e—4 141 9.413686e—4 5.298547e—13 9.413686e—4
142 6.054937e—5 142 2.563409¢—4 4.846449e—13 2.563409¢—4
143 4.799793e—3 143 3.839093e—3 5.078459e—13 3.839093e—3
144 1.165414e—4 144 4.197280e—5 5.128850e—13 4.197280e—5
145 8.773496e—3 145 9.177876e—4 5.503794e—13 9.177876e—4
146 4.655379e—4 146 1.642809¢—5 4.810073e—13 1.642809¢—5
147 1.791503e—5 147 9.064763e—3 5.317255e—13 9.064763e—3
148 1.231654e—3 148 2.305888e—4 5.409102e—13 2.305888e—4
149 6.150899e—5 149 3.353775¢e—5 5.256408e—13 3.353775¢—5
150 8.041550e—5 150 2.470391e—4 4.526319e—13 2.470391e—4

to mention that the method (9) has a disadvantage of destroying the sparsity of the
problems, although it has a little better performance.

7 Conclusions

We have extended the penalized Fischer-Burmeister function [3] to the SOCCP. The
nonsmooth Newton method based on the penalized FB SOC function is shown to have
fast local convergence without strict complementarity of solutions, but, analogous to
the FB semismooth Newton method, their nondegeneracy is still necessary. We also
demonstrated that the penalized merit function W, has some but not all nice features
of its counterpart for the NCPs; for example, it is even not differentiable. This brings
a difficulty to the globalization of semismooth Newton methods based on ¢,,, which
will be left as our future research work.

Acknowledgements The authors would like to thank the anonymous referees for their helpful sugges-
tions on the improvements of this paper.

Appendix

The submatrices C;, C;, C3 and C4 in Theorem 4.1 are defined as follows:

. ci! cf? o al ooy octocy
1= ) 2=
C]Zl C122 C%l C%Z C§3 C%4 C225

@ Springer



The penalized Fischer-Burmeister SOC complementarity function 487

ci!
c3'
C3: = Cgl
cy!

51
C3

cy? clocr ey ot oy
C322 C‘%I CEZ C4%3 C%l CA%AL
2l CG=|cit o P ot cp
cy ctocP ocP e ocp
c3? cG'octocy ot ocy

Here, we give the explicit expressions for the second row block submatrices of

C1—C4 (the other row block submatrices can be given in a similar way), where

E=F(@"G @)

C121 .

0" Eij0; G € T U diy. i € Ip)).
(4" Eija; G J € Tho U Jin)]:

[0/ Eij i € T3 U Iy, j € I3 U I3y,

[0/ Eij Q) i € T U Iy, j € I3 U I3 |
[0/ i 0, (i € T U Jig. i € T30 U T |
(/7 Eija; G € T3 U diy. j € I

(/" Eija) G € T U Jig. j € 5 U TG

QI Eyj0; (e 3 Uiy jen).

Q! Eijq) (i€ JyUJgg. j € JgoU JSB)] ;
[Q7Ey e dfuidy jediuiy].
07 EijQ; i, j € JFUIgp)].

07 £y, i € J3U I € 33y U Ii)].

=| 0] Eijq; i € I3 U Jgp. j € Jé)]y

O Eija) i € J§ U I3y € JFU T30 |

The block matrices Aj—A4, C2—C7 and B;—B7 in Theorem 4.2 have the following

form:
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11 12 13 14 15 16
Al Al Al Al A] Al
A21 A%Z A23 A24 A25 A26

31 32 33 34 35 36
Al Al Al Al Al Al

A= AN AR A as 85 gl |
AN AP AT AT AP AT
ASL AR AB A AP A%S
AL A2 AR ALY AR
A3t AR AP AP AP
Ay:i=| A3t A3 AP AP AP,
A‘z“ Azztz A‘2‘3 A‘2‘4 A%S
AL AP AP AT AP
A%l A%Z A2l A‘2‘2
alocr oy octocy
I A
)i ' ¢ty octocy ’
C;” C§2 C;B Cg“ Cgs
't oy ot ooy
cicf of ot cf
C311 C312 Ci] Ci2
c3' P it o
cs' ¢ cy' ¢
a3l ocy? cyl oc?
cst c§? ct c§?
ci' cd? Ce' C?
cs' ¢ cg' ¢
Cs:=|c3' c*|. Ce=|C¥ Cc|.
cit ¢ ct ¢
c'oc '
C7:= _C711 C7121| ;
;'
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11 12 13 14 15 16
B2 BZ BZ B2 B2 BZ
21 22 23 24 25 26
BZ BZ B2 BZ BZ B2
N 31 32 33 34 35 36
B,=|B3 B¥® BB B¥ B B,
41 42 43 44 45 46
BZ BZ B2 BZ BZ B2
51 52 53 54 55 56
B2 BZ BZ B2 B2 BZ
11 12 13 14 15 16
g (B B B By By" B
T\ B2 BB ¥ p¥ p¥)
11 12 13 14 15
By B, B,~ By B,” B,
YT \B2 B2 BB B® BB
11 12 13 14 15 16
Bs = (Bs Bs™ Bs Bs® Bs® Bs )
T 21 22 23 24 25 26 )7
BS BS BS B5 BS BS
11 12 13 14 15 11
' 21 22 23 24 2517 ' 21
B6 B6 BG BG B6 B7

12
B7

22
B7

) |

Here, we give the explicit expressions only for the second row block submatrices of
B>, A>, Cs5 and Cg, where E = F’(;*)(G’(;*))_l, and the expressions of other row

block submatrices can be given in a similar way:

B .= :Q,.TEU» (ieJPUJds je 1030)],

BY = :QiTE,-ij (ieJiUJip e J040>],

B3 = —Q,-TEiij (ielyUlgg.je 1070)]’

B} = I:QiTEiij (i€ JgUJgp, j €3V Joéo)]v

BX = [07TE;0; (iclpUlly e JBUJéouJ(}Q)],

B3 = -QiTEijq;' (i € Jg U Jgg. j € JpoU Jop U Jog U J()l()3)];
AR =[O By e BU Ry, e I3 VI U IR,

AP = :Q,-TEiij G.jelgu JOZB)]’

AP = [0 By 0; G e BB U Ry j € 1y Uiy UIp 0 1],
A% =0T Eijq; € J2U I j ngngouJ(}(?uJ(}g)],
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O Eijq) (i € I3 U I3g. j € T3 U T30 U I3 U sy U s U IS )]

OTE;Q; (e J3U 2y je Il )]

=
ol

=[0I E;0; (eield Uiy jelid]:
=070, i e 3V Iy jedd).
=

0T EijQ; (i €3 Uiy jes)).
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