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We consider a class of derivative-free descent methods for solving the
second-order cone complementarity problem (SOCCP). The algorithm is
based on the Fischer–Burmeister (FB) unconstrained minimization
reformulation of the SOCCP, and utilizes a convex combination of the
negative partial gradients of the FB merit function  FB as the search
direction. We establish the global convergence results of the algorithm
under monotonicity and the uniform Jordan P-property, and show that
under strong monotonicity the merit function value sequence generated
converges at a linear rate to zero. Particularly, the rate of convergence is
dependent on the structure of second-order cones. Numerical comparisons
are also made with the limited BFGS method used by Chen and Tseng
(An unconstrained smooth minimization reformulation of the second-order
cone complementarity problem, Math. Program. 104(2005), pp. 293–327),
which confirm the theoretical results and the effectiveness of the algorithm.
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1. Introduction

We consider the conic complementarity problem of finding a vector � 2 IRn such that

� 2 K, Fð�Þ 2 K, h�,Fð�Þi ¼ 0, ð1Þ

where F : IRn ! IRn is a mapping assumed to be continuously differentiable

throughout this article, and K is the Cartesian product of second-order cones

(SOCs). In other words,

K ¼ K
n1 �K

n2 � � � � � K
nm , ð2Þ

where m, n1, . . . , nm� 1, n1þ � � �þ nm¼ n, and

K
ni :¼ ðx1, x2Þ 2 IR� IRni�1 j x1 � kx2k

� �
, ð3Þ
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with k�k denoting the Euclidean norm and K1 denoting the set of non-negative reals

IRþ. We will refer to (1)–(2) as the second-order cone complementarity problem

(SOCCP).
As a direct extension of the non-linear complementarity problem (NCP), the

SOCCP includes as a special case the Karush-Kuhn-Tucker (KKT) system of SOC

programming, which has a wide range of applications in engineering design, control,

finance, robust optimization and combinatorial optimization; see [1,18] and the

references therein. Now there have been various methods proposed for solving the

SOCCP, which include the merit function method [5], the smoothing Newton

methods [6,10,12], the semismooth Newton methods [16,20], and the interior-point

method [25]. We observe that the last three kinds of methods in each iteration involve

the solution of a linear system of equations, which makes them unsuitable for

handling large-scale SOCCPs. On the contrary, the merit function method [5], based

on the Fischer–Burmeister (FB) unconstrained minimization reformulation of the

SOCCP, requires much less computation work in each iteration and consequently

has a certain potential for solving large-scale SOCCPs.
The FB merit function associated with the cone Kn is given by

FB
ðx, yÞ :¼ 1

2 k�FB
ðx, yÞk2, ð4Þ

where �
FB

: IRn � IRn! IRn is the FB function associated with Kn, defined by

�
FB
ðx, yÞ :¼ ðx2 þ y2Þ1=2 � ðxþ yÞ ð5Þ

with x2¼x � x denoting the Jordan product of x and itself, x1/2 being a vector such

that (x1/2)2¼ x, and xþ y meaning the componentwise addition of vectors. The

functions  
FB

and �
FB

were studied in the papers [2,5,10,21], where  
FB

was shown in

[10] to satisfy

FB
ðx, yÞ ¼ 0 () x 2 Kn, y 2 Kn, hx, yi ¼ 0, ð6Þ

and its continuous differentiability was established by Chen and Tseng [5], and �
FB

was proved to be strongly semismooth in [21] and [2] via different ways. By

equivalence (6), clearly, the SOCCP can be reformulated as an unconstrained

minimization problem

min
�2IRn FB

ð�Þ :¼
Xm
i¼1

FB
ð�i,Fið�ÞÞ, ð7Þ

where �¼ (�1, . . . , �m), F(�)¼ (F1(�), . . . ,Fm (�)) with �i 2 IRni and Fi : IRn! IRni .
The merit function method in [5] was developed by applying the limited BFGS

method directly for the minimization reformulation (7). In this article, we propose

another merit function method based on the same reformulation, which can be

viewed as an extension of the method in [23] for the NCP. Different from the limited

BFGS method adopted by Chen and Tseng [5], our method does not exploit the

derivative of the mapping F, but utilizes some convex combination of the negative

partial gradients of  
FB
, i.e. the vector of the form ��rx FB � ð1� �Þry FB with

� 2 (0,1), as the search direction. Since the computation of the search direction and

the step size does not involve the Jacobian of F, our derivative-free algorithm
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requires less computation work and lower memory in each iteration than the existing
methods mentioned above. We show that the algorithm is globally convergent under
monotonicity and the uniform Jordan P-property of F, and particularly that the
merit function value sequence f 

FB
ð� kÞg generated converges at a linear rate to zero if

F is strongly monotone. But, unlike the NCP case, the rate of convergence depends
on the structure of K (Remark 5.1 (a)).

The literature on derivative-free methods for solving the NCP is vast; see, for
example, [11,15,17,19,24,23]. Nevertheless, to the best of our knowledge, there are no
papers to study derivative-free methods for the SOCCP except [3] where a different
unconstrained reformulation and a different descent direction were employed, and no
rate of convergence result was established. The main difficulty is to extend the growth
relation between the FB function and the natural residual function established in [22]
to the SOCCP case. In addition, numerical results were not reported for the above
derivative-free methods, so the practical performance of these methods cannot be
judged. In this article, we obtain the rate of convergence result for the proposed
derivative-free descent algorithm by using the favourable properties of the gradients of
the function  

FB
(Propositions 3.1 and 3.2), as well as compare the performance of the

algorithm with that of the limited BFGS method in [5], which indicates that our
method is comparable to the limited BFGS method for some test problems.

Throughout this article, IRn denotes the space of n-dimensional real column
vectors, and IRn1 � � � � � IRnm is identified with IRn1þ ��� þnm . Thus, ðx1, . . . , xmÞ 2
IRn1 � � � � � IRnm is viewed as a column vector in IRn1þ���þnm . The notation I means an
identity matrix of suitable dimension, and intðKn

Þ denotes the interior of Kn. For any
x, y in IRn, we write x �

Kn
y if x� y 2 Kn; and write x �

Kn
y if x�y2Kn. For a

differentiable mapping F : IRn! IRm,rFðxÞ 2 IRn�m denotes the transposed
Jacobian of F at x. For a symmetric matrix A, we write A � O (respectively,
A � O) to mean A is positive semidefinite (respectively, positive definite).
In addition, we use diag(�1, . . . , �n) to denote a diagonal matrix with �1, . . . , �n as
the diagonal elements.

2. Preliminaries

This section recalls some background materials that will be used in the subsequent
sections. It is known that Kn is a closed convex self-dual cone with non-empty
interior

intðKn
Þ :¼ x ¼ ðx1, x2Þ 2 IR� IRn�1 j x1 4 kx2k

� �
:

For any x ¼ ðx1, x2Þ, y ¼ ð y1, y2Þ 2 IR� IRn�1, we define their Jordan product [8] by

x � y :¼ ðhx, yi, y1x2 þ x1y2Þ: ð8Þ

The Jordan product, unlike scalar or matrix multiplication, is not associative, which
is a main source of complication in the analysis of SOCCP. The identity element
under this product is e :¼ ð1, 0, . . . , 0ÞT 2 IRn. Given a vector x ¼ ðx1,x2Þ 2
IR� IRn�1, let

Lx :¼
x1 xT2
x2 x1I

� �
,
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which can be viewed as a linear mapping from IRn to IRn with Lxy¼ x � y for any

y 2 IRn. It is easy to verify that Lx for x 2 intðKn
Þ is invertible with the inverse L�1x

given by

L�1x ¼
1

detðxÞ

x1 �xT2

�x2
detðxÞ

x1
Iþ

1

x1
x2x

T
2

24 35, ð9Þ

where detðxÞ :¼ x21 � kx2k
2 denotes the determinant of x.

We recall from [8,10] that each x ¼ ðx1, x2Þ 2 IR� IRn�1 admits a spectral

factorization associated with Kn in the form of x ¼ �1ðxÞ � u
ð1Þ
x þ �2ðxÞ � u

ð2Þ
x , where

�i(x) and uðiÞx for i¼ 1, 2 are the spectral values of x and the corresponding spectral

vectors, defined by

�iðxÞ :¼ x1 þ ð�1Þ
i
kx2k, uðiÞx :¼

1

2
1, ð�1Þi �x2
� �

, ð10Þ

with �x2 ¼
x2
kx2k

if x2 6¼ 0, and otherwise �x2 being any vector in IRn�1 satisfying

k �x2k ¼ 1. If x2 6¼ 0, the factorization is unique. The spectral factorization of x and the

matrix Lx have various interesting properties; see [10]. We list several ones that will

be used later.

LEMMA 2.1

(a) For any x 2 IRn, x2 ¼ ð�1ðxÞÞ
2
� uð1Þx þ ð�2ðxÞÞ

2
� uð2Þx 2 K

n:
(b) For any x 2 Kn, x1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
�1ðxÞ

p
� uð1Þx þ

ffiffiffiffiffiffiffiffiffiffiffi
�2ðxÞ

p
� uð2Þx 2 K

n.
(c) x �

Kn
0()�1ðxÞ � 0()Lx � O and x �

Kn
0() �1ðxÞ4 0()Lx � O.

The following lemma is a representation of Problem 7 in [13 p. 468] for the real

symmetric matrix case. In view of its importance, we here include its proof.

LEMMA 2.2 Let B,C 2 IRn�n be symmetric matrices with B � O. Then B þ C � O if

and only if every eigenvalue of CB�1 is greater than �1.

Proof By Corollary 7.6.5 of [13], there exists a non-singular matrix D 2 IRn�n such

that DTCD¼ diag(�1, . . . , �n) and DTBD¼ I. Consequently,

CB�1 ¼ ðDTÞ
�1diagð�1, . . . , �nÞD

�1 ðDTÞ
�1D�1

	 
�1
¼ ðDTÞ

�1diagð�1, . . . , �nÞD
T:

This implies that CB�1 is similar to the diagonal matrix diag(�1, . . . , �n), and

therefore �1, . . . , �n are the eigenvalues of CB�1 including the multiplicities. On the

other hand,

Bþ C ¼ ðDTÞ
�1diagð1þ �1, . . . , 1þ �nÞD

�1,

which means that BþC�O if and only if �i4�1 for all i¼ 1, 2, . . . , n. Combining

the two sides, we then obtain the desired result. g

Next, we review the definitions of the monotonicity and the P-property of a

mapping.

Definition 2.1 The mapping F¼ (F1, . . . ,Fm) with Fi : IRn! IRni is said to

(a) be monotone if, for every �, � 2 IRn, h� � �, Fð�Þ � Fð�Þi � 0;
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(b) be strongly monotone if there exists a �4 0 such that, for every �, � 2 IRn,

h� � �, Fð�Þ � Fð�Þi � �k� � �k2;

(c) have the uniform Jordan P-property if there exists a 	4 0 such that, for
every � ¼ ð�1, . . . , �mÞ, � ¼ ð�1, . . . , �mÞ 2 IRn, there exists 
 2 {1,2, . . . ,m} such
that

�2 ð�
 � �
Þ � ðF
ð�Þ � F
ð�ÞÞ½ 	 � 	k� � �k2;

(d) have the uniform Cartesian P-property if there exists a 	4 0 such that, for

every � ¼ ð�1, . . . , �mÞ, � ¼ ð�1, . . . , �mÞ 2 IRn, there exist 
 2 {1,2, . . . ,m} such
that

h�
 � �
,F
ð�Þ � F
ð�Þi � 	k� � �k
2:

From Definition 2.1, clearly, the uniform Cartesian P-property implies the
uniform Jordan P-property, and if F is strongly monotone with modulus �4 0, then
F has the uniform Jordan P-property and the uniform Cartesian P-property with
modulus �/m. Also, when F is continuously differentiable, F is strongly monotone
with modulus �4 0 if and only if rF (�) is uniformly positive definite with modulus
�4 0, i.e.

dTrFð�Þd � �kd k2 for all �, d 2 IRn:

In addition, we see that the uniform Jordan P-property does not imply the
monotonicity.

Unless otherwise stated, in the subsequent three sections, we assume K ¼ Kn,

and all analysis can be carried over to the case where K has the Cartesian structure
as in (2).

3. Some properties of w
FB

and )
FB

In this section, we present some important properties for the gradient of  
FB

which
play a crucial role in analysing the convergence results of the descent algorithm
proposed in the next section. In addition, we establish the coerciveness of �

FB
under

two mild conditions. Throughout this section, for any x ¼ ðx1, x2Þ, y ¼
ð y1, y2Þ 2 IR� IRn�1, we write

w ¼ ðw1,w2Þ :¼ x2 þ y2 and z :¼ ðz1, z2Þ ¼ ðx
2 þ y2Þ1=2: ð11Þ

First, from Propositions 1 and 2 of [5], we know that the function  
FB

is
continuously differentiable everywhere and its gradient is given as in the following
lemma.

LEMMA 3.1 The function  FB in [4] is continuously differentiable everywhere.
Moreover, rx FBð0, 0Þ ¼ ry FBð0, 0Þ ¼ 0: If x2 þ y2 2 intðKn

Þ, then

rx FB
ðx, yÞ ¼

�
LxL

�1
z � I

�
�

FB
ðx, yÞ,

ry FB
ðx, yÞ ¼

�
LyL

�1
z � I

�
�

FB
ðx, yÞ:
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If x2 þ y2 =2 intðKn
Þ and (x,y) 6¼ (0,0), then x21 þ y21 6¼ 0 and

rx FB
ðx, yÞ ¼

x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q � 1

 !
�

FB
ðx, yÞ,

ry FB
ðx, yÞ ¼

y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q � 1

 !
�

FB
ðx, yÞ:

For the partial gradients rx FB
and ry FB

, from [5 Lemma 9] and [4,

Theorem 3.1], we readily obtain the following favourable properties whose proofs

will be omitted.

PROPOSITION 3.1 The gradients rx FB
and ry FB

of  
FB

have the following properties:

(a) hrx FB
ðx, yÞ,ry FB

ðx, yÞi � 0 for all x, y 2 IRn, and furthermore, the equality

holds if and only if  
FB
ðx, yÞ ¼ 0.

(b) For all x, y 2 IRn, rx FB
ðx, yÞ ¼ ry FB

ðx, yÞ ¼ 0 if and only if  
FB
ðx, yÞ ¼ 0.

(c) r FB is globally Lipschitz continuous, i.e. there exists a constant L4 0 such

that

krx FB
ðx, yÞ � rx FB

ð �x, �yÞk 
 Lkðx, yÞ � ð �x, �yÞk,

kry FB
ðx, yÞ � ry FB

ð �x, �yÞk 
 Lkðx, yÞ � ð �x, �yÞk:

for all ðx, yÞ, ð �x, �yÞ 2 IRn � IRn, where L is dependent on the dimension n.

Next we will establish another three important properties for the gradients rx FB

and ry FB
(Proposition 3.2) which are crucial to analyse the convergent results in

Sections 4 and 5. To the end, we need the following technical lemmas. The first one is

an extension of [5, Lemma 3], which will be used to give a tighter upper bound for

LxþyL
�1
z .

LEMMA 3.2 For any x ¼ ðx1, x2Þ, y ¼ ð y1, y2Þ 2 IR� IRn�1 such that w2 6¼ 0, we have

ðx1 þ y1Þ þ ð�1Þ
i
ðx2 þ y2Þ

T �w2

�� ��2
 ðx2 þ y2Þ þ ð�1Þ
i
ðx1 þ y1Þ �w2

�� ��2
 2�iðwÞ ð12Þ

for i¼ 1,2, where �w2 ¼ w2=kw2k.

Proof The first inequality can be easily obtained by expanding the square on both

sides and using the Cauchy–Schwartz inequality. We next show that the second

inequality holds when i¼ 1, which is equivalent to proving the following inequality:

ðx2 þ y2Þkw2k � ðx1 þ y1Þw2

�� ��2
 2�1ðwÞkw2k
2: ð13Þ

Let L and R denote the left-hand side and the right-hand side of (13),

respectively. Then, by plugging in w2¼ 2(x1x2þy1y2), it is easy to compute that

L ¼ kx2 þ y2k
2kw2k

2 þ ðx1 þ y1Þ
2
kw2k

2

� 4 x21kx2k
2 þ x1y1x

T
2 y2 þ x21x

T
2 y2 þ x1y1kx2k

2
	 


kw2k

� 4 y21k y2k
2 þ x1y1x

T
2 y2 þ y21x

T
2 y2 þ x1y1k y2k

2
	 


kw2k,

R ¼ 2ðx21 þ y21Þkw2k
2 þ 2ðkx2k

2 þ k y2k
2Þkw2k

2

� 4 2x21kx2k
2 þ 2y21k y2k

2 þ 4x1y1x
T
2 y2

	 

kw2k:
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Using the last two equalities, it then follows that

R� L ¼ ðx1 � y1Þ
2
kw2k

2 þ kx2 � y2k
2kw2k

2

� 4 x21kx2k
2 þ y21k y2k

2 þ 2x1y1x
T
2 y2

� �
kw2k

þ 4 x21x
T
2 y2 þ x1y1k y2k

2 þ y21x
T
2 y2 þ x1y1kx2k

2
� �

kw2k

¼ ðx1 � y1Þ
2
kw2k

2 þ kx2 � y2k
2kw2k

2 � 2ðx1 � y1Þðx2 � y2Þ
Tw2kw2k

¼ ðx1 � y1Þw2 � ðx2 � y2Þkw2k
�� ��2� 0:

This implies (13), and consequently the inequality (12) holds for i¼ 1. Using similar

arguments, we can prove that the inequality (12) holds for i¼ 2. g

LEMMA 3.3 For any x ¼ ðx1, x2Þ, y ¼ ð y1, y2Þ 2 IR� IRn�1 such that x2 þ y2 2

intðKn
Þ,

LxþyL
�1
z

�� ��
2

 2ð

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 2
ffiffiffi
2
p
Þ,

where kAk2 denotes the Frobenius norm (Euclidean norm) of the matrix A 2 IRn�n.

Proof Let �1, �2 be the spectral values of w. Then, by the definition of z, we have

z1 ¼

ffiffiffiffiffi
�2
p
þ

ffiffiffiffiffi
�1
p

2
, z2 ¼

ffiffiffiffiffi
�2
p
�

ffiffiffiffiffi
�1
p

2
�w2 ð14Þ

with �w2 ¼
w2

kw2k
if w2 6¼ 0, and otherwise �w2 being any vector in IRn�1 satisfying

k �w2k ¼ 1.
If w2¼ 0, then �1¼ �2¼w1¼kxk

2
þ kyk2. From formula (9), it follows that

LxþyL
�1
z ¼

1ffiffiffiffiffiffi
w1
p Lxþy ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxk2 þ k yk2

p Lxþy:

Consequently,

LxþyL
�1
z

�� ��2
2
¼

nðx1 þ y1Þ
2
þ 2kx2 þ y2k

2

kxk2 þ k yk2

 2n,

which immediately implies the desired result.
If w2 6¼ 0, then by applying formula (9), it is not difficult to compute that

LxþyL
�1
z ¼

ðx1þ y1Þz1�ðx2þ y2Þ
Tz2ffiffiffiffiffi

�1
p ffiffiffiffiffi

�2
p �

ðx1þ y1Þz
T
2ffiffiffiffiffi

�1
p ffiffiffiffiffi

�2
p þ

ðx2þ y2Þ
T

z1
þ
ðx2þ y2Þ

Tz2z
T
2

z1
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p

ðx2þ y2Þz1�ðx1þ y1Þz2ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p �

ðx2þ y2Þz
T
2ffiffiffiffiffi

�1
p ffiffiffiffiffi

�2
p þ

ðx1þ y1ÞI

z1
þ
ðx1þ y1Þz2z

T
2

z1
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p

26664
37775

:¼
b1ðx,yÞ b2ðx,yÞ

T

c2ðx,yÞ B2ðx,yÞ

" #
:
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Substituting the expressions of z1, z2 in (14) into the entries of the above matrix,

we get

b1ðx, yÞ ¼
ðx1 þ y1Þ þ ðx2 þ y2Þ

T �w2

2
ffiffiffiffiffi
�2
p þ

ðx1 þ y1Þ � ðx2 þ y2Þ
T �w2

2
ffiffiffiffiffi
�1
p ,

c2ðx, yÞ ¼
ðx2 þ y2Þ þ ðx1 þ y1Þ �w2

2
ffiffiffiffiffi
�2
p þ

ðx2 þ y2Þ � ðx1 þ y1Þ �w2

2
ffiffiffiffiffi
�1
p ,

b2ðx, yÞ ¼
�1½ðx1 þ y1Þ þ ðx2 þ y2Þ

T �w2	 �w2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

�
�2½ðx1 þ y1Þ � ðx2 þ y2Þ

T �w2	 �w2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

þ
2ðx2 þ y2Þ � ðx2 þ y2Þ

T �w2 �w2ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p ,

B2ðx, yÞ ¼
�1½ðx2 þ y2Þ þ ðx1 þ y1Þ �w2	 �w

T
2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ
�
�2½ðx2 þ y2Þ � ðx1 þ y1Þ �w2	 �w

T
2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

þ
ðx1 þ y1Þffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p ð2I� �w2 �wT

2 Þ:

Now, using Lemma 3.2, we can verify that the following inequalities hold:

ðx1 þ y1Þ þ ðx2 þ y2Þ
T �w2

2
ffiffiffiffiffi
�2
p

�����
����� 
 ðx2 þ y2Þ þ ðx1 þ y1Þ �w2

2
ffiffiffiffiffi
�2
p

���� ���� 
 1ffiffiffi
2
p ,

ðx1 þ y1Þ � ðx2 þ y2Þ
T �w2

2
ffiffiffiffiffi
�1
p

�����
����� 
 ðx2 þ y2Þ � ðx1 þ y1Þ �w2

2
ffiffiffiffiffi
�1
p

���� ���� 
 1ffiffiffi
2
p ,

and

�1½ðx1 þ y1Þ þ ðx2 þ y2Þ
T �w2	 �w2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

�
�2½ðx1 þ y1Þ � ðx2 þ y2Þ

T �w2	 �w2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

�����
����� 
 ffiffiffi

2
p

,

�1½ðx2 þ y2Þ þ ðx1 þ y1Þ �w2	 �w
T
2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ
�
�2½ðx2 þ y2Þ � ðx1 þ y1Þ �w2	 �w

T
2

2
ffiffiffiffiffi
�1
p ffiffiffiffiffi

�2
p
ð
ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p
Þ

���� ����
2



ffiffiffi
2
p
:

This together with jx1 þ y1j 

ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p

and kx2 þ y2k 

ffiffiffiffiffi
�1
p
þ

ffiffiffiffiffi
�2
p

implies that

jb1ðx, yÞj 
 kc2ðx, yÞk 

ffiffiffi
2
p

, kb2ðx, yÞk 

ffiffiffi
2
p
þ 3, kB2ðx, yÞk2 
 2

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 1þ
ffiffiffi
2
p
:

Consequently, LxþyL
�1
z

�� ��
2

 2

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 4
ffiffiffi
2
p

. The proof is thus completed. g

It should be pointed out that using Lemmas 3–4 of [5] we may also get a upper

bound for kLxþyL
�1
z k2, but such a upper bound is not tighter than the one given here.

By using Lemma 3.3, we can further obtain the following result. Its proof is simple,

however, as will be shown below, this result is a key to establish Proposition 3.2 (b).

LEMMA 3.4 For any given x, y 2 IRn such that x2 þ y2 2 intðKn
Þ, let A :¼

L2z�ðxþyÞL
�1
z and pAðtÞ ¼ tn þ a1ðx, yÞt

n�1 þ � � � þ an�1ðx, yÞtþ anðx, yÞ be its charac-

teristic polynomial. Then, there exists a constant c1(n)4 1 dependent on n such that

kAn�1 þ a1ðx, yÞA
n�2 þ � � � þ an�1ðx, yÞAk2 
 c1ðnÞ: ð15Þ
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Proof For any given x, y 2 IRn such that x2 þ y2 2 intðKn
Þ, since A ¼ 2I� LxþyL

�1
z ,

applying Lemma 3.3 yields

kAk2 
 2ð
ffiffiffi
n
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 2
ffiffiffi
2
p
Þ: ð16Þ

Let c2ðnÞ :¼ 2ð
ffiffiffi
n
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 2
ffiffiffi
2
p
Þ. Then, from the inequality (3.1.11) of [14],

we have

j�iðAÞj 
 c2ðnÞ, i ¼ 1, 2, . . . , n,

where �1(A), . . . , �n(A) are the eigenvalues of A including multiplicities. Since ak(x,y)

is the sum of all n
k

� �
k-fold products of distinct items from �1(A), . . . , �n(A), i.e.

akðx, yÞ ¼
X

1
 i1 5 ���5 ik
 n

Yk
j¼1

�ijðAÞ, k ¼ 1, 2, . . . , n,

there exists a positive constant c3(n) only dependent on the dimension n such that

jakðx, yÞj 
 c3ðnÞ, k ¼ 1, 2, . . . , n: ð17Þ

Combining Equations (16) and (17), we immediately obtain (15) with

c1ðnÞ :¼ max 1, c2ðnÞ
n�1
þ c3ðnÞc2ðnÞ

n�2
þ � � � þ c3ðnÞc2ðnÞ

� �
,

and consequently the desired result follows. g

Now we are in a position to present the three crucial properties of rx FB
and

ry FB
.

PROPOSITION 3.2 The gradients rx FB
and ry FB

of  
FB

have the following properties:

(a) krx FB
ðx, yÞ þ ry FB

ðx, yÞk 
 2ð
ffiffiffi
n
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 2
ffiffiffi
2
p
Þk�

FB
ðx, yÞk for all

x, y 2 IRn;
(b) rx FB

ðx, yÞ þ ry FB
ðx, yÞ

�� �� � ð3�2 ffiffi2p Þn2nc1ðnÞ
k�

FB
ðx, yÞk for all x, y 2 IRn, where

c1ðnÞ is the constant from Lemma 3.4.
(c) krx FB

ðx, yÞ þ ry FB
ðx, yÞk ¼ 0 if and only if x 2 K, y 2 K, hx, yi ¼ 0.

Proof (a) We prove the result by the following three cases:

Case 1 (x,y)¼ (0,0). In this case, the result is clear by Lemma 3.1 and �FB (0,0)¼ 0.

Case 2 x2 þ y2 2 intðKn
Þ. Using Lemmas 3.1 and 3.3, it follows that

rx FB
ðx, yÞ þ ry FB

ðx, yÞ
�� �� ¼ ð2I� LxþyL

�1
z Þ�FB

ðx, yÞ
�� ��

 k2I� LxþyL

�1
z k2k�FB

ðx, yÞk


 2ð
ffiffiffi
n
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

þ 2
ffiffiffi
2
p
Þk�

FB
ðx, yÞk: ð18Þ

Case 3 x2 þ y2 =2 intðKn
Þ and (x,y) 6¼ (0, 0). From Lemma 3.1 we have that

rx FB
ðx, yÞ þ ry FB

ðx, yÞ
�� �� ¼ x1 þ y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ y21

q � 2

 !
�

FB
ðx, yÞ

������
������

¼ 2�
x1 þ y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q
 !

k�
FB
ðx, yÞk


 k�
FB
ðx, yÞk, ð19Þ
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where the second equality is due to ðx1 þ y1Þ
2

 2ðx21 þ y21Þ, and the inequality is sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ y21

q

 x1 þ y1 by the non-negativity of x1, y1.

(b) Similar to part (a), we also proceed the proof by the three cases.

Case 1 (x,y)¼ (0,0). The result is clear by Lemma 3.1 and �FB(0,0)¼ 0.

Case 2 x2 þ y2 2 intðKn
Þ. In this case, from Lemma 3.1 it follows that

rx FB
ðx, yÞ þ ry FB

ðx, yÞ
�� �� ¼ L2z�ðxþyÞL

�1
z �FB

ðx, yÞ
�� ��:

Notice that z �
Kn

0 and 4z2 � ðxþ yÞ2 ¼ 2z2 þ ðx� yÞ2z �
Kn

0. From [10,

Proposition 3.4] we have 2z� ðxþ yÞ �
Kn

0, which by Lemma 2.1 (c) implies

L2z�(xþy) � O. Consequently,

rx FB
ðx, yÞ þ ry FB

ðx, yÞ
�� �� ¼ k�

FB
ðx, yÞk

L2z�ðxþyÞL�1z

� ��1��� ���
2

¼
k�

FB
ðx, yÞk

LzL
�1
2z�ðxþyÞ

��� ���
2

: ð20Þ

We next prove that all eigenvalues of LzL
�1
2z�ðxþyÞ are bounded. Since

L2z�(xþy)�O and L2z�(xþy)þLz�O, setting B¼L2z�(xþy), C¼Lz and apply-

ing Lemma 2.2 then yields that every eigenvalue of CB�1 is greater than –1, i.e.

�i LzL
�1
2z�ðxþyÞ


 �
4 � 1, i ¼ 1, 2, . . . , n: ð21Þ

On the other hand, since z �
Kn

0 and 2z2 � ðxþ yÞ2 ¼ ðx� yÞ2x �
Kn
0, we have

from [10, Proposition 3.4] that
ffiffiffi
2
p

z� ðxþ yÞx �
Kn

y
ffiffiffi
2
p

z� jxþ yjx �
Kn
0.

Consequently,

½2z� ðxþ yÞ	 � 3=2�
ffiffiffi
2
p
 �

z ¼ ð1=2Þzþ
ffiffiffi
2
p

z� ðxþ yÞ �
Kn

0:

This in turn implies L2z�ðxþyÞ � L
ð3=2�

ffiffi
2
p
Þz � O. Setting B ¼ L2z�ðxþyÞ,C ¼

�L
ð3=2�

ffiffi
2
p
Þz and applying Lemma 2.2 again, we have

�i �Lð3=2�
ffiffi
2
p
ÞzL
�1
2z�ðxþyÞ


 �
4 � 1, i ¼ 1, 2, . . . , n,

and therefore,

�i LzL
�1
2z�ðxþyÞ


 �
5

2

3� 2
ffiffiffi
2
p , i ¼ 1, 2, . . . , n: ð22Þ

Combining (21) and (22) shows that all eigenvalues of LzL
�1
2z�ðxþyÞ are bounded

and

�i LzL
�1
2z�ðxþyÞ


 ���� ���5 2

3� 2
ffiffiffi
2
p , i ¼ 1, 2, . . . , n: ð23Þ

Now let A ¼ L2z�ðxþyÞL
�1
z and pA(t) be the characteristic polynomial of A defined

as in Lemma 3.4. Then, using the fact that pA(A)¼ 0, we obtain

An�1 þ a1ðx, yÞA
n�2 þ � � � þ an�1ðx, yÞ þ anðx, yÞA

�1 ¼ 0,
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which in turn implies that

A�1 ¼ �
1

anðx, yÞ
An�1 þ a1ðx, yÞA

n�2 þ � � � þ an�1ðx, yÞ
	 


¼ �
1

�1ðAÞ � � � �nðAÞ
An�1 þ a1ðx, yÞA

n�2 þ � � � þ an�1ðx, yÞ
	 


¼ ��1ðA
�1Þ � � � �nðA

�1Þ An�1 þ a1ðx, yÞA
n�2 þ � � � þ an�1ðx, yÞ

	 

: ð24Þ

Note that A�1 is precisely LzL
�1
2z�ðxþyÞ. Hence, from (23) to (24) and Lemma 3.4,

we have

kLzL
�1
2z�ðxþyÞk2 ¼ kA

�1k2 

2

3� 2
ffiffiffi
2
p

� �n

c1ðnÞ:

This together with (20) yields the desired result.

Case 3 ðx, yÞ =2 intðKn
Þ and (x,y) 6¼ (0,0). Using (19) and jx1 þ y1j 


ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ y21

q
,

rx FB
ðx, yÞ þ ry FB

ðx, yÞ
�� �� � ð2� ffiffiffi

2
p
Þk�

FB
ðx, yÞk:

Noting that 2�
ffiffiffi
2
p
�
ð3�2

ffiffi
2
p
Þ
n

2nc1ðnÞ
since c1(n)41, the desired result follows.

(c) This is direct by using parts (a)–(b) and the equivalence (6). g

In what follows, we establish the coerciveness of the function �FB under somemild

assumptions of F. For this purpose, we assume that K is given by (2), and

corresponding to the Cartesian structure of K, write �¼ (�1, . . . , �m) and F¼

(F1, . . . ,Fm) with �i 2 IRni and Fi : IRn! IRni . The following lemma and assumptions

will be needed.

LEMMA 3.5 [20 Lemma 5.2] Let �FB be defined by (5). For any sequence

fðxk, ykÞg � IRn � IRn, let � k
1 
 �

k
2 and � k

1 
 �
k
2 denote the spectral values of xk

and yk, respectively.

(a) If f� k
1 g ! �1 or f� k

1 g ! �1, then {k�FB(x
k, yk)k}!1.

(b) If f� k
1 g and f� k

1 g are bounded below, but f� k
2 g, f�

k
2 g ! þ1 and

xk

kxkk
�

yk

k ykk

n o
6! 0, then fk�FBðx

k, ykÞkg ! 1.

ASSUMPTION 3.1 For any sequence f� kg � IRn satisfying limk!1 k�
kk ¼ 1, if there

exists 
 2 {1, . . . ,m} such that the sequences f�1ð�
k

 Þg, f�1ðF
ð�

kÞÞg are bounded below,

but f�2ð�
k

 Þg, f�2ðF
ð�

kÞÞg ! 1, then there holds that

� k

k� k
 k
�

F
ð�
kÞ

kF
ð� kÞk
6! 0 as k!1: ð25Þ

ASSUMPTION 3.2 There exist �4 0 and r 2 (0,1] such that the mapping F satisfies

kFð�Þk 
 kFð0Þk þ �k�kr for any � 2 IRn:

PROPOSITION 3.3 Let �FB be given by (7) and F¼ (F1, . . . ,Fm) with Fi : IRn! IRni .

Then, the function �FB is coercive under one of the following conditions:

(a) F has the uniform Jordan P-property and Assumption 3.1 holds;
(b) F has the uniform Jordan P-property and Assumption 3.2 holds.
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Proof The proof is by contradiction. Assume that a sequence {� k} exists such that
limk!1 k�

k
k¼1 and the sequence {�FB(�

k)} is bounded. Corresponding to
the structure of K, for each k we write � k ¼ ð� k1 , . . . , � kmÞ with �

k
i 2 IRni . Define the

index set

J :¼ i 2 f1, 2, . . . ,mg j f� ki g is unbounded
� �

:

Clearly, J 6¼ ; since {� k} is unbounded. Let {�k} be a bounded sequence with
� k ¼ ð� k1 , . . . , � kmÞ and �

k
i 2 IRni for i¼ 1, 2, . . . ,m, where � ki for each k is defined as

follows:

� ki ¼
0 if i 2 J,

� ki otherwise:

�
(a) From the uniform Jordan P-property of F, there exists 	4 0 such that

	k� k � � kk2 
 max
i¼1,...,m

�2 ð�
k
i � �

k
i Þ � ðFið�

kÞ � Fið�
kÞÞ

	 

¼ max

i2J
�2 �

k
i � ðFið�

kÞ � Fið�
kÞÞ

	 

¼ �2 �

k

 � ðF
ð�

kÞ � F
ð�
kÞÞ

	 


 k� k
 � ðF
ð�

kÞ � F
ð�
kÞÞk



ffiffiffi
2
p
k� k
 kkF
ð�

kÞ � F
ð�
kÞk, ð26Þ

where 
 is one of the indices for which the maximum is attained and which we have,
without loss of generality, assumed to be independent of k, and the last inequality is
easily shown by (8). Since 
2 J, we assume without loss of generality that
fk� k
 kg ! 1. Since k� k � � kk2 � k� k
 � �

k

 k

2 ¼ k� k
 k
2, dividing the both sides of

(26) by k� k
 k then yields

	k� k
 k 

ffiffiffi
2
p
kF
ð�

kÞ � F
ð�
kÞk 


ffiffiffi
2
p
kF
ð�

kÞk þ kF
ð�
kÞk

� �
:

This, together with the boundedness of {F
(�
k)}, implies fkF
ð�

kÞkg ! 1. Thus,

fk� k
 kg ! 1 and fkF
ð�
kÞkg ! 1: ð27Þ

Now if f�1ð�
k

 Þg ! �1 or f�1ðF
ð�

kÞÞg ! �1, then using Lemma 3.5 (a) readily
yields fk�

FB
ð� k
 ,F
ð�

kÞÞkg ! 1 and hence {�FB(�
k)}!1, which gives a contradic-

tion to the boundedness of {�FB (�k)}. Otherwise, from (27) we have f�2ð�
k

 Þg ! 1

and {�2(F
(�
k))}!1. By the given assumption, condition (25) holds. Then, {� k}

satisfies Lemma 3.5 (b), which in turn implies {�FB(�
k)}!1. This is clearly

impossible.
(b) From the above discussions, Equations (26)–(27) still hold for this case.

If f�1ð�
k

 Þg ! �1 or {�2(F
(�

k))}!�1, then from part (a) it is impossible.
Otherwise, from (27) we have f�2ð�

k

 Þg ! 1 and {�2(F
(�

k))}!1. We next show
that

� k

k� k
 k
�

F
ð�
kÞ

kF
ð� kÞk
6! 0 as k!1. If not, by the continuity of �2(�) and Equation (27),

lim
k!1

�2 �
k

 � ðF
ð�

kÞ � F
ð�
kÞÞ

	 

k� k
 kkF
ð�

kÞk

 lim

k!1
�2

� k

k� k
 k
�

F
ð�
kÞ

kF
ð� kÞk

� �
þ lim

k!1
�2
�� k
 � F
ð�

kÞ

k� k
 kkF
ð�
kÞk

� �
¼ 0, ð28Þ
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where the inequality is easily shown by (8) and the equality is due to the boundedness
of {F(�k)}. On the other hand, from Assumption 3.2, there exist �4 0 and r2 (0,1]
such that kF
ð�

kÞk 
 kFð� kÞk 
 kFð0Þk þ �k� kkr for each k, and hence,

lim
k!1

	k� k � � kk2

k� k
 kkF
ð�
kÞk
� lim

k!1

	k� k � � kk2

k� kkðkFð0Þk þ �k� kkrÞ
�
	

�
4 0:

This together with the first inequality of (26) yields a contradiction to (28). Thus,
we verify that the sequences f� k
 g and fF
ð�

kÞg satisfy the conditions of Lemma 3.5 (b).
Consequently, we have {�FB (� k)}!1. This is clearly impossible. g

Since the uniform Cartesian P-property implies the uniform Jordan P-property,
the condition of Proposition 3.3 (a) is weaker than that of Proposition 5.2 in [20].
We also see that Assumption 3.2 is weaker than the Lipschitz continuity of F. WhenK
reduces to the non-negative orthant cone IRn

þ and the Jordan product ‘�’ becomes the
component wise product of the vectors, since Assumption 3.1 automatically holds and
the uniform Jordan P-property of F is equivalent to saying that F is a uniform
P-function, we readily recover the result of [7, Theorem 4.2] from Proposition 3.3 (a).

4. A descent method and global convergence

In this section, we propose a derivative-free descent algorithm based on the
minimization reformulation (7). The algorithm will make use of the vector of the
following form:

d ð�,�Þ :¼ ��rx FB
ð�,Fð�ÞÞ � ð1� �Þry FB

ð�,Fð�ÞÞ ð29Þ

as the search direction, where �2 [0,1) is a parameter. Note that d(�,�) for any
�2 [0,1) may not be a descent direction of �FB at �. But, the following lemma states
that, when F is monotone, there always exists ��ð�Þ 2 ð0, 1	 such that d(�, �) for any
� 2 ½0, ��ð�ÞÞ is a descent direction. The idea for constructing such a direction is
borrowed from [23].

LEMMA 4.1 Suppose that F is monotone. If � is not a solution of the SOCCP, then
there exists ��ð�Þ 2 ð0, 1	 such that r�FB(�)

Td(�,�)5 0 for all � 2 ½0, ��ð�ÞÞ.

Proof Since F is continuously differentiable, the function �FB(�) is also
continuously differentiable by Lemma 3.1. Using the chain rule, the gradient of
�FB at � is

r�
FB
ð�Þ ¼ rx FB

ð�,Fð�ÞÞ þ rFð�Þry FB
ð�,Fð�ÞÞ: ð30Þ

This together with the definition of d(�, �) yields that

r�
FB
ð�ÞTd ð�,�Þ ¼ ��krx FB

ð�,Fð�ÞÞk2 � � rx FB
ð�,Fð�ÞÞ,rFð�Þry FB

ð�,Fð�ÞÞ
� �

� ð1� �Þ rx FB
ð�,Fð�ÞÞ,ry FB

ð�,Fð�ÞÞ
� �

� ð1� �Þ ry FB
ð�,Fð�ÞÞ,rFð�Þry FB

ð�,Fð�ÞÞ
� �

: ð31Þ

Let

qð�Þ :¼ �krx FB
ð�,Fð�ÞÞk2 � rx FB

ð�,Fð�ÞÞ,rFð�Þry FB
ð�,Fð�ÞÞ

� �
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and

pð�Þ :¼ � rx FB
ð�,Fð�ÞÞ,ry FB

ð�,Fð�ÞÞ
� �

� ry FB
ð�,Fð�ÞÞ,rFð�Þry FB

ð�,Fð�ÞÞ
� �

:

Then, (31) can be rewritten as

r�
FB
ð�ÞTd ð�,�Þ ¼ ð1� �Þ pð�Þ þ �qð�Þ:

Note that the first term of p(�) is negative by Proposition 3.1 (a) since � is not a
solution of the SOCCP, whereas the second term is non-positive since F is monotone.

Therefore, we have p(�)5 0. Let ��ð�Þ be defined as follows:

��ð�Þ :¼

�pð�Þ

qð�Þ � pð�Þ
if qð�Þ4 pð�Þ and

�pð�Þ

qð�Þ � pð�Þ

 1;

1 otherwise:

8<:
We see that for all � 2 ½0, ��ð�ÞÞ, the search direction d(�, �) defined by (29) satisfies

the descent condition r�FB(�)
Td(�,�)5 0. The proof is thus completed. g

Lemma 4.1 motivates us to propose the following descent algorithm with d(�, �).

Algorithm 4.1

Step 0. Choose �0 2 IRn, � � 0, � 2 ð0, 1=2Þ and 
, � 2 (0,1) with 
4�. Set k:¼ 0.

Step 1. If �FB(�
k)
 �, then stop and � k is an approximate solution of the SOCCP.

Step 2. Let lk be the smallest non-negative integer l satisfying

�
FB
ð� k þ 
 ld ð� k,�lÞÞ ��

FB
ð� kÞ


 ��
2lkrx FB
ð� k,Fð� kÞÞ þ ry FB

ð� k,Fð� kÞÞk2, ð32Þ

where d(�, �) is defined as in (29), and set

dkð�lk Þ :¼ d ð� k,�lkÞ and �kþ1 :¼ � k þ 
 lkd kð�lk Þ:

Step 3. Let k:¼ kþ1, and then go to Step 1.

Algorithm 4.1 is similar to the one proposed in [23] for the NCP with a

regularized FB merit function. Since there is no need to compute the gradient of �FB

and the Jacobian of F(�), Algorithm 4.1 is suitable for large-scale problems, as well as

applications where the Jacobians of F(�) are not available or are costly to compute. In

addition, the stepsize and the search direction are adjusted during the backtracking

search of Armijo-type, which may be regarded as a kind of curvilinear search.
In what follows, we analyse the global convergence of Algorithm 4.1. Without

loss of generality, we assume that �¼ 0. We first show that under the monotonicity of

F every accumulation point of the sequence {� k} is a solution of the SOCCP.

THEOREM 4.1 Suppose that F is monotone. Then, Algorithm 4.1 is well-defined for

any initial point �0. Furthermore, if �* is an accumulation point of the sequence {� k}
generated by Algorithm 4.1, then �* is a solution of the SOCCP.

Proof The proofs are similar to those of [23, Theorem 4.1]. We first show that,

whenever � k is not a solution, there exists a non-negative integer lk in Step 3 of
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Algorithm 4.1 such that (32) holds. Suppose not, then for any positive integer l, we

have

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� kÞ4 � �
2lkrx�

FB
ð� k,Fð� kÞÞ þ ry�FB

ð� k,Fð� kÞÞk2:

Dividing the above inequality by 
l and passing to the limit l! 1, we get

lim
l!1

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� kÞ


 l
� 0: ð33Þ

On the other hand, using the mean-value theorem, it follows that

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� k þ 
 ld ð� k, 0ÞÞ

¼ 
 lr�
FB
� k þ 
 ld ð� k, 0Þ þ t
 l ðd ð� k,�l Þ � d ð� k, 0ÞÞ
� �T

d ð� k,�l Þ � d ð� k, 0Þ
� �

¼ 
 l�lr�
FB
� k þ 
 ld ð� k, 0Þ þ t
 l�lhð� kÞ
� �T

hð� kÞ,

where t is a constant such that t2 (0, 1) and hð� kÞ :¼ ry FB
ð� k,Fð� kÞÞ�

rx FB
ð� k,Fð� kÞÞ. From this and the continuity of r�FB, we immediately obtain

lim
l!1

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� k þ 
 ld ð� k, 0ÞÞ


 l
¼ 0:

Consequently,

lim
l!1

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� kÞ


 l

¼ lim
l!1

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� k þ 
 ld ð� k, 0ÞÞ


 l

þ lim
l!1

�
FB
ð� k þ 
 ld ð� k, 0ÞÞ ��

FB
ð� kÞ


 l

¼ r�
FB
ð� kÞTd ð� k, 0Þ: ð34Þ

Combining (34) with (33) then yieldsr�FB (� k)Td(� k,0)� 0. This gives a

contradiction, since, by Lemma 4.1, d(� k,0) must be a descent direction of �FB at

� k if � k is not a solution of the SOCCP. Thus, Algorithm 4.1 is well defined.
Next, we prove that any accumulation point �* of {� k} is a solution of the

SOCCP. Let {� k}k2K} be a subsequence converging to �*. From the definition of

d(�,�), we see that d(�,�) is continuous, which implies that dkð�lkÞ ¼ d ð� k,�lk Þ ! d �

as k(2 K )!1. Since �FB (� k) decreases at each iteration, the right-hand side of (32)

tends to 0. We next proceed the discussions by two cases: {lk}k2K is bounded and

{lk}k2K is unbounded.
Case 1 {lk}k2K is bounded. In this case, f
 lkgk2K does not approach 0. Consequently,

krx FB
ð��,Fð��ÞÞ þ ry FB

ð��,Fð��ÞÞk2 ¼ 0:

From Proposition 3.2 (c), it then follows that �* is a solution of the SOCCP.
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Case 2 {lk}k2K is unbounded. Without loss of generality, assume that {lk}k2K!1.

Now we have f
 lkgk2K ! 0. In addition, from Step 3 of Algorithm 4.1, it follows that

�
FB
ð� k þ 
 lk�1dkð�lk�1ÞÞ ��

FB
ð� kÞ4 � �
2ðlk�1Þkrx FB

ð� k,Fð� kÞÞ

þ ry FB
ð� k,Fð� kÞÞk2

for all k2K. Dividing the above inequality by 
 lk�1 and passing to the limit

k (2 K )!1 then yields

lim
k!1

�
FB
ð� k þ 
 lk�1dkð�lk�1ÞÞ ��

FB
ð� kÞ


 lk�1
� 0: ð35Þ

On the other hand, by the mean-value theorem, there exists a b
 k 2 ½0, 
 lk�1	 such
that

�
FB
ð� k þ 
 lk�1dkð�lk�1ÞÞ ��

FB
ð� kÞ


 lk�1
¼ r�

FB
ð� k þb
 kdkð�lk�1ÞÞTdkð�lk�1Þ:

Since f
 lk�1g ! 0 as k(2 K )!1, we have b
 k ! 0, which in turn implies

lim
k!1

b
 kdkð�lk�1Þ ¼ 0:

Combining the last two equations then yields that

lim
k!1

�
FB
ð� k þ 
 lk�1dkð�lk�1ÞÞ ��

FB
ð� kÞ


 lk�1
¼ r�

FB
ð��ÞTd�: ð36Þ

Now, from (35) and (36), we get r�FB(�*)
Td*� 0. Noting that d*¼

�ry FB(�*,F(�*)) and r�
FB
ð��Þ ¼ rx�

FB
ð��,Fð��ÞÞ þ rFð��Þry FB

ð��,Fð��ÞÞ, we

then have that

0 
 r�
FB
ð��ÞTd� ¼ � rx FB

ð��,Fð��ÞÞ,ry FB
ð��,Fð��ÞÞ

� �
� ry FB

ð��,Fð��ÞÞ,rFð��Þry FB
ð��,Fð��ÞÞ

� �

 0,

where the last inequality is by Proposition 3.1 (a) and the monotonicity of F. Thus,

rx FB
ð��,Fð��ÞÞ,ry FB

ð��,Fð��ÞÞ
� �

¼ 0:

From Proposition 3.1 (a), it then follows that �* is a solution of the SOCCP. g

Theorem 4.1 together with Proposition 3.3 leads to the following result.

THEOREM 4.2 If F is monotone, has the uniform Jordan P-property and satisfies

Assumption 3.1 (or Assumption 3.2, then the sequence {� k} generated by Algorithm 4.1

at least has one accumulation point and any accumulation point is a solution of the

SOCCP.

Since strong monotonicity implies monotonicity and uniform Jordan P-property,

Theorem 4.2 also holds if F is strongly monotone and satisfies Assumptions 3.1

or 3.2.
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5. Linear convergence rate

In this section, we show that the merit function value sequence {�FB(�
k)} generated

by Algorithm 4.1 converges linearly to the solution of the SOCCP if F is strongly

monotone by using similar analysis techniques to those of [23]. We still assume that

�¼ 0 in this section. The following technical lemma will be needed.

LEMMA 5.1 Let S be any given bounded set. Suppose that F is strongly monotone with

modulus �50. Then, for any �2 S, there exists an integer �l4 0 such that for all l � �l,

r�
FB
ð�ÞTd ð�,�l Þ 
 �

�l

2
krx FB

ð�,Fð�ÞÞ þ ry FB
ð�,Fð�ÞÞk2:

Proof Since r F is continuous, there exists a constant #4 0 such that

krFð�Þk 
 # for all � 2 S: ð37Þ

Now, from Equation (31) and Proposition 3.1 (a), it follows that

r�
FB
ð�ÞTd ð�,�lÞ


 ��lkrx FB
ð�,Fð�ÞÞk2 � �l rx FB

ð�,Fð�ÞÞ,rFð�Þry FB
ð�,Fð�ÞÞ

� �
� ð1� �lÞ ry FB

ð�,Fð�ÞÞ,rFð�Þry FB
ð�,Fð�ÞÞ

� �

 ��lkrx FB

ð�,Fð�ÞÞk2 � ð1� �lÞ�kry FB
ð�,Fð�ÞÞk2

þ �l#krx FB
ð�,Fð�ÞÞkkry FB

ð�,Fð�ÞÞk

¼ �
1

2
�l krx FB

ð�,Fð�ÞÞk þ kry FB
ð�,Fð�ÞÞk

� �2
�
1

2
�lkrx FB

ð�,Fð�ÞÞk2 �
2ð1� �lÞ�� �l

2
kry FB

ð�,Fð�ÞÞk2

þ �lð#þ 1Þkrx FB
ð�,Fð�ÞÞkkry FB

ð�,Fð�ÞÞk for all � 2 S, ð38Þ

where the second inequality is by (37) and the strong monotonicity of F. If

�l 

�

2�þ 1
,

then the inequality (38) can be rewritten as

r�
FB
ð�ÞTd ð�,�lÞ


 �
1

2
�l krx FB

ð�,Fð�ÞÞk þ kry FB
ð�,Fð�ÞÞk

� �2
�

ffiffiffiffi
�l

2

r ���rx FB
ð�,Fð�ÞÞ

���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �lÞ�� �l

2

r ���ry FB
ð�,Fð�ÞÞ

��� !2

þ �lð#þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��l � ð2�þ 1Þ�2l

p
 �
krx FB

ð�,Fð�ÞÞkkry FB
ð�,Fð�ÞÞk: ð39Þ

Suppose that �lð#þ 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��l � ð2�þ 1Þ�2l

p

 0, i:e:

�l 

2�

ð#þ 1Þ2 þ ð2�þ 1Þ
:
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Then, from Equation (39) and the Cauchy–Schwartz inequality, we obtain that

r�
FB
ð�ÞTd ð�,�lÞ 
 � 1

2�
l krx FB

ð�,Fð�ÞÞk þ kry FB
ð�,Fð�ÞÞk

� �2

 � 1

2�
l rx FB

ð�,Fð�ÞÞ þ ry FB
ð�,Fð�ÞÞ

�� ��2: ð40Þ

Summing up the above discussions, whenever

�l 
 min
2�

2�þ 1
,

2�

ð#þ 1Þ2 þ ð2�þ 1Þ

� �
¼

2�

ð#þ 1Þ2 þ ð2�þ 1Þ
,

or

l � �l :¼ log�
2�

ð#þ 1Þ2 þ ð2�þ 1Þ

� �
, ð41Þ

we have that (40) holds. Thus, the proof is completed. g

Let �0 be any starting point of Algorithm 4.1. By Proposition 3.3, if F is strongly

monotone and Assumption 3.1 (or Assumption 3.2) holds, then the level set

Lð�
FB
,�

FB
ð�0ÞÞ :¼ � 2 IRn j �

FB
ð�Þ 
 �

FB
ð�0Þ

� �
is bounded. By the continuity of rF and r FB, it further follows that the quantity

dmax :¼ sup kd ð�,�Þk j � 2 Lð�
FB
,�

FB
ð�0ÞÞ

� �
is finite for any � 2 [0,1]. Consequently, the following set

Bð�0Þ :¼ Lð�
FB
,�

FB
ð�0ÞÞ þ

n
d 2 IRn j kd k 
 dmax

o
is also bounded. We are now ready to state and prove the linear convergence result.

THEOREM 5.1 Suppose that F is strongly monotone with modulus �4 0 and satisfies

Assumption 3.1 (or Assumption 3.2). Let �0 2 IRn be the starting point of Algorithm 4.1.

If rF is Lipschitz continuous on the set Bð�0Þ, then the sequence {�FB(�
k)} converges

Q-linearly to zero.

Proof Since rF(�) is Lipschitz continuous on Bð�0Þ and F is continuous, by

Proposition 3.1 (c) it is easily shown that r�FB(�) is Lipschitz continuous on this

bounded set. In particular, there exists a positive constant L1(n) dependent on n such

that

kr�
FB
ð�Þ � r�

FB
ð�Þk 
 L1ðnÞk� � �k 8�, � 2 Bð�

0Þ: ð42Þ
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From the construction of Algorithm 4.1, the sequence {�FB(�
k)} is non-increasing,

and hence f� kg � Lð�FB,�FBð�
0ÞÞ. This implies that � k, � k þ td ð� k,�l Þ 2 Bð�0Þ for

any t2 [0,1]. From the mean-value theorem, it follows that

�
FB
ð� k þ td ð� k,�l ÞÞ ��

FB
ð� kÞ

¼

Z t

0

r�
FB
ð� k þ sd ð� k,�l ÞÞTd ð� k,�l Þds

¼ tr�
FB
ð� kÞTd ð� k,�l Þ

þ

Z t

0

r�
FB
ð� k þ sd ð� k,�l ÞÞ � r�

FB
ð� kÞ

� �T
d ð� k,�l Þds


 tr�
FB
ð� kÞTd ð� k,�l Þ þ L1ðnÞ

Z t

0

skd ð� k,�l Þk2ds

¼ t r�
FB
ð� kÞTd ð� k,�l Þ þ

1

2
L1ðnÞtkd ð�

k,�l Þk2
� �

, ð43Þ

where the inequality is by the Cauchy–Schwartz inequality and (42). Note that

kd ð� k,�l Þk2 ¼ k�lrx FB
ð� k,Fð� kÞÞ þ ð1� �l Þry FB

ð� k,Fð� kÞÞk2

¼ �2lkrx FB
ð� k,Fð� kÞÞk2 þ ð1� �l Þ2kry FB

ð� k,Fð� kÞÞk2

þ 2�l ð1� �l Þhrx FB
ð� k,Fð� kÞÞ,ry FB

ð� k,Fð� kÞÞi


 krx FB
ð� k,Fð� kÞÞk2 þ kry FB

ð� k,Fð� kÞÞk2

2 rx FB
ð� k,Fð� kÞÞ,ry FB

ð� k,Fð� kÞÞ
� �

¼ rx FB
ð� k,Fð� kÞÞ þ ry FB

ð� k,Fð� kÞÞ
�� ��2, ð44Þ

where the inequality is due to �l 2 (0,1] and Proposition 3.1 (a). Let �l be defined as in

(41). Then, from equations (43) to (44) and Lemma 5.1, we have for all l � �l,

�
FB
ð� k þ 
 ld ð� k,�l ÞÞ ��

FB
ð� kÞ


 
 l �
�l

2
þ
L1ðnÞ


l

2

� �
rx FB

ð� k,Fð� kÞÞ þ ry FB
ð� k,Fð� kÞÞ

�� ��2
¼ �


 l

2
�l � L1ðnÞ


l
� �

rx FB
ð� k,Fð� kÞÞ þ ry FB

ð� k,Fð� kÞÞ
�� ��2: ð45Þ

This implies that (32) is satisfied whenever �
1

2

 l ð�l � L1ðnÞ


l Þ 
 ��ð
 l Þ2 or




�

� �l



1

2� þ L1ðnÞ
:

Consequently, the condition in (32) is satisfied for all l � l̂, where l̂ is defined as

l̂ :¼ max �l, log�


ð2� þ L1ðnÞÞ

l mn o
: ð46Þ
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Observing that l̂ does not depend on k, we have lk 
 l̂ for all k since lk is the
smallest non-negative integer l satisfying (32). From (32) and Proposition 3.2 (b), it
follows that

�
FB
ð�kþ1Þ ��

FB
ð� kÞ 
 ��
2lk rx FB

ð� k,Fð� kÞÞ þ ry FB
ð� k,Fð� kÞÞ

�� ��2

 ��
2l̂ rx FB

ð� k,Fð� kÞÞ þ ry FB
ð� k,Fð� kÞÞ

�� ��2

 ��
2l̂

ð3� 2
ffiffiffi
2
p
Þ
2n

ð2nc1ðnÞÞ
2

2�
FB
ð� kÞ,

where c1(n)41 is the constant from Lemma 3.4. From this, we immediately obtain

0 
 �
FB
ð�kþ1Þ 
 1� �
2l̂

2ð3� 2
ffiffiffi
2
p
Þ
2n

ð2nc1ðnÞÞ
2

" #
�

FB
ð� kÞ: ð47Þ

Notice that �
2l̂ 2 ð0, 1Þ and
ffiffiffi
2
p
ð3� 2

ffiffiffi
2
p
Þ
n 5 2nc1ðnÞ, and consequently

05 1� �
2l̂
2ð3� 2

ffiffiffi
2
p
Þ
2n

ð2nc1ðnÞÞ
2

5 1:

Thus, (47) shows that the sequence {�FB(�
k)} converges Q-linearly to zero. g

Remark 5.1

(a) From (47), we observe that the convergence rate of Algorithm 4.1 is related
to the dimension n when K ¼ Kn. By this, when K has the Cartesian structure
as (2), it is not hard to verify that the convergence rate of Algorithm 4.1
depends on the value of

min
1
i
m

3� 2
ffiffiffi
2
p

2

 !2ni
1

c1ðniÞ

� �2

8<:
9=;,

where c1(ni) is determined as in Lemma 3.4 and only related to ni. This means
that the convergence rate of Algorithm 4.1 depends on the structure of K.

(b) From (46) and (47), we know that for the same test problems, Algorithm 4.1
will have better rate of convergence results if 
 is larger and the ratio of �/
 is
smaller.

6. Numerical experiments

In this section, we apply Algorithm 4.1 for solving the SOCCP and compare its
numerical performance with that of the limited Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method used by Chen and Tseng [5]. Since the corresponding test
instances cannot be found in the literature, we consider the case where F(�)¼M�þ b
with the matrix M 2 IRn�n and b 2 IRn generated randomly.

In the experiments, the matrix M was generated by the following procedure:
choose the positive semidefinite matrices Mi 2 IRni�ni for i¼ 1, 2, . . . ,m, and then let
M be the block diagonal matrix with M1, . . . ,Mm as block diagonals, i.e.
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M¼ diag(M1, . . . ,Mm). The positive semidefinite matrixMi for i¼ 1, 2, . . . ,m was set

to be Mi ¼ NiN
T
i , where Ni 2 IRni�ni was a square matrix whose non-zero elements

were chosen randomly from a normal distribution with mean �1 and variance 4.

We can verify that the matrix M generated by such way is positive semidefinite, and

furthermore, it cannot be positive definite by controlling the non-zero density of Ni

such that every block matrix Mi has at least zero eigenvalues. During the tests, the

non-zero density of Ni for i¼ 1, 2, . . . ,m was chosen as 1%. This means that the

corresponding F is monotone but does not necessarily have the uniform Jordan

P-property. The vector b was obtained by letting b¼�Mw, where

w ¼ ðw1, . . . ,wmÞ 2 K with wi 2 K
ni generated in the following way: let the elements

of wi be chosen randomly from a normal distribution with mean �1 and variance 4,

and then set wi1¼kwi2k where wi1 is the first element of wi and wi2 is a vector

composed of the rest ni�1 components of wi. In this way, the affine SOCCP was

guaranteed to have a solution �*¼w. To construct SOCs of various types, we chose

ni and m such that n1¼ n2¼ � � �¼ nm. All experiments were done with a PC

of 2.8GHz CPU and 512MB memory. The computer codes were all written in

Matlab 6.5.
We first used Algorithm 4.1 with �¼ 0.9, 
¼ 0.8 and �¼ 0.9, 
¼ 0.1,

respectively, to solve a test problem generated as above with n¼ 1000 and

m¼ 100. The parameters � and � in Algorithm 4.1 were chosen as: �¼ 10�8 and

�¼ 10�4. The starting point �0 is set to be ð ��ni , . . . , ��nmÞ, where ��ni ¼ ð10,!i=k!ikÞ

for i¼ 1, 2, . . . ,m with !i 2 IRni�1 generated randomly by Matlab’s rand.m. The

Figures 1 and 2 below plot the corresponding convergence of {�FB(�
k)} versus the

iteration number. From the two figures, when �¼ 0.9 and 
 ¼ 0.8, �FB(�
k) has a

faster decrease once its value is less than 10�2. This implies that Algorithm 4.1 with a

0 1000 2000 3000 4000 5000 6000 7000
10–10

10–8

10
–6

10
–4

10
–2

10
0

10
2

10
4

Iterations

M
er

it 
F

un
c.

 v
al

ue
s

Merit Func. values vs. Iterations

Figure 1. Convergence behaviour of {�FB(�
k)} with �¼ 0.9 and 
¼ 0.8.
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larger 
 and a smaller ratio �/
 indeed has a better rate of convergence, which

coincides with the analysis in Remark 5.1 (b).
To test how the performance of Algorithm 4.1 varies with the structure of K, we

used Algorithm 4.1 to solve two groups of test problems generated as above with

n¼ 1000 and m¼ 100 and m¼ 20, respectively, and compared its numerical

performance with that of the L-BFGS method used by Chen and Tseng [5]. The

parameters in Algorithm 4.1 were set as:

� ¼ 10�8, � ¼ 0:5, 
 ¼ 0:4, � ¼ 10�4:

We started Algorithm 4.1 from the initial point �0 ¼ ð ��ni , . . . , ��nm Þ, where
��ni ¼ ð10, !i

k!ik
Þ for i¼ 1, 2, . . . ,m with !i 2 IRni�1 generated randomly by Matlab’s

rand.m. The two methods were terminated whenever �FB(�
k)
 � or the number of

iteration is over 105.
The numerical results were summarized in Tables 1 and 2, in which �FB(�*)

denotes the merit function value at the final iteration, NF indicates the number of

function evaluations of  FB, Iter reports the number of iteration required in order to

satisfy the termination condition, Gap means the value of j�TF(�)j at the final

iteration and Time denotes the CPU time in second for solving each problem. From

Tables 1 and 2, we see that Algorithm 4.1 and the L-BFGS method in [5] require

fewer function evaluations and iterations for those problems with m¼ 100, and

moreover the L-BFGS method has better numerical performance, but for those

problems with m¼ 20, Algorithm 4.1 is superior to the L-BFGS method in terms of

the number of iterations and the CPU time. We also find that the matrix M in those

problems with m¼ 20 has more non-zero entries and fewer zero eigenvalues.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 104
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Figure 2. Convergence behavior of {�FB(�
k)} with �¼ 0.9 and 
¼ 0.1.
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7. Conclusions

We have extended the derivative-free descent method in [23] to solve the SOCCP,
based on the FB unconstrained minimization reformulation (7) and the descent

direction given by a convex combination of negative partial gradients �rx  FB and
�ry  FB. We showed that for the strongly monotone case, the sequence { FB(�

k)}
generated converges globally to zero at a linear rate, and analysed that the rate of
convergence depends on the structure of K. Numerical comparisons indicated that

the derivative-free descent algorithm is comparable to that of the limited BFGS
method used by Chen and Tseng [5] for some affine SOCCPs.

We want to point out that the arguments and the convergence results in Sections 4
and 5 are parallel to those for the NCP discussed in [23], but our analysis relies on the
important properties of the gradient of�FB, instead of the growth relation between the

FB merit function and the natural residual merit function. We did not establish the
result that �FB provides a global error bound for the SOCCP. This is possible to
achieve for some other merit functions, but is always hard to obtain for �FB.
Nonetheless, from Theorem 5.1, if the function �FB is able to provide a global error

Table 2. Numerical results for the affine monotone SOCCPs with m¼ 20 SOCs.

Algorithm 4.1 L-BFGS Method

Problem �FB(�
*) NF Iter Gap Time �FB(�

*) NF Iter Gap Time

1 9.99e–9 85240 25457 3.19e–4 840.7 9.99e–9 48339 48291 3.22e–4 990.5
2 9.99e–9 216544 50741 2.23e–4 2073.4 1.40e–6 100160 100000 2.78e–3 2088.1
3 9.99e–9 67285 20743 4.99e–4 667.4 9.99e–9 97133 97044 4.35e–4 2038.8
4 9.99e–9 91968 21835 3.49e–4 884.9 9.99e–9 43620 43538 2.07e–4 858.6
5 9.99e–9 196049 53584 2.51e–4 1913.7 1.26e–6 100071 100000 1.63e–3 2067.1
6 9.99e–9 205716 59262 3.21e–4 2024.1 7.61e–7 100089 100000 2.73e–3 2039.6
7 9.99e–9 127062 33457 3.42e–4 1254.7 7.07e–7 100072 100000 3.53e–3 2085.8
8 9.99e–9 123650 36698 4.10e–4 1238.5 1.16e–6 100051 100000 4.09e–3 2031.8
9 9.99e–9 59916 18344 1.19e–4 578.7 2.37e–8 100088 100000 3.91e–5 1973.5
10 9.99e–9 233878 64759 3.13e–4 2347.3 1.53e–6 100082 100000 3.99e–3 2071.3

Table 1. Numerical results for the affine monotone SOCCPs with 100 SOCs.

Algorithm 4.1 L-BFGS Method

Problem �FB(�
*) NF Iter Gap Time �FB(�

*) NF Iter Gap Time

1 9.98e–9 5744 5031 3.79e–4 123.9 9.27e–9 256 246 9.80e–4 8.23
2 9.88e–9 6897 5788 4.76e–4 145.8 9.12e–9 232 197 1.59e–4 7.00
3 9.96e–9 9068 6687 2.19e–4 184.4 9.50e–9 397 385 2.41e–4 12.71
4 9.86e–9 6359 5310 3.09e–4 137.9 9.95e–9 636 615 1.64e–4 19.89
5 9.57e–9 6637 5812 3.97e–4 145.8 9.97e–9 452 380 3.81e–4 13.40
6 9.99e–9 19195 11143 1.64e–4 359.1 9.54e–9 745 730 2.62e–4 25.02
7 9.99e–9 23359 9283 1.72e–4 405.2 9.54e–9 1192 1157 8.97e–5 37.64
8 9.77e–9 4443 4033 3.04e–4 97.93 9.94e–9 205 194 9.94e–5 6.59
9 9.82e–9 5809 5162 5.07e–4 126.9 9.61e–9 191 159 1.44e–4 5.50
10 9.99e–9 11448 7517 5.32e–5 226.1 7.89e–9 1069 999 1.47e–4 32.98

Optimization 1195



bound for the solution of the SOCCP under the strong monotonicity of F, then we can
expect that the sequence {� k} itself will converge R-linearly to the unique solution of
the SOCCP. Such an issue deserves further investigation in the future.

In addition, in view of Proposition 3.1 (a)–(b), it is not difficult to obtain the
global convergence of the proposed derivative-free method for the case where F is
non-smooth by using the similar arguments as in [9] for the NCP. However, unlike
the NCP case, if  FB is replaced by the penalized FB merit function  �ðx, yÞ ¼
1
2 k��FB

ðx, yÞ � ð1� �ÞðxÞþ � ð yÞþk
2, where � 2 (0,1) is a fixed parameter and (x)þ

means the Euclidean projection onto K, we cannot expect Algorithm 4.1 and the
corresponding convergence results since  � is not continuously differentiable
everywhere.
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[8] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical

Monographs, Oxford University Press, New York, 1994.
[9] A. Fischer, V. Jeyakumar, and D.T. Luc, Solution point characterizations and convergence

analysis of a descent algorithm for nonsmooth continuous complementarity problems,

J. Optimiz. Theory Appl. 110 (2001), pp. 493–513.
[10] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-order cone

complementarity problems, SIAM J. Optimiz. 12 (2002), pp. 436–460.
[11] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems,

Comput. Optimiz. Appl. 5 (1996), pp. 155–173.
[12] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and regularization

method for monotone second-order cone complementarity problems, SIAM J. Optimiz. 15

(2005), pp. 593–615.
[13] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,

1986.

1196 S. Pan and J.-S. Chen



[14] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, 1991.

[15] H. Jiang, Unconstrained minimization approaches to nonlinear complementarity problems,
J. Global Optimiz. 9 (1996), pp. 169–181.

[16] C. Kanzow, I. Ferenczi, and M. Fukushima, Semismooth Newton methods for linear and
nonlinear second-order cone programs, Tech. Rep., Department of Applied Mathematics
and Physics, Kyoto University, 2006.

[17] C. Kanzow, Y. Yamashita, and M. Fukushima, New NCP functions and their properties,
J. Optimiz. Theory Appl. 97 (1997), pp. 115–135.

[18] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, Application of second-order cone

programming, Linear Algebra Appl. 284 (1998), pp. 193–228.
[19] O.L. Mangasarian and M.V. Solodov, A linearly convergent derivative-free descent method

for strongly monotone complementarity problems, Comput. Optimiz. Appl. 64 (1999),

pp. 5–16.
[20] S.-H. Pan, and J.-S. Chen, A damped Guass–Newton method for the second-order cone

complementarity problem, Appl. Math. Optimiz. 59 (2009), pp. 293–318.
[21] D. Sun and J. Sun, Strong semismoothness of Fischer–Burmeister SDC and SOC function,

Math. Program. 103 (2005), pp. 575–581.
[22] P. Tseng, Growth behaviour of a class of merit functions for the nonlinear complementarity

problem, J. Optimiz. Theory Appl. 89 (1996), pp. 17–37.

[23] K. Yamada, N. Yamashita, and M. Fukushima, A new derivative-free descent method for
the nonlinear complementarity problems, in Nonlinear Optimization and Related Topics,
G.D. Pillo and F. Giannessi, eds., Kluwer Academic Publishers, Netherlands, 2000,

pp. 463–487.
[24] N. Yamashita and M. Fukushima, On stationary points of the implicit Lagrangian for

nonlinear complementarity problems, J.Optimiz. Theory Appl. 84 (1995), pp. 653–663.
[25] A. Yoshise, Interior point trajectories and a homogenous model for nonlinear complemen-

tarity problems over symmetric cones, SIAM J. Optimiz. 17 (2006), pp. 1129–1153.

Optimization 1197


