Numerical Functional Analysis and Optimization, 31(4):387–413, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630563.2010.485334

TWO CLASSES OF MERIT FUNCTIONS FOR INFINITE-DIMENSIONAL SECOND ORDER COMPLIMENTARY PROBLEMS

Juhe Sun¹ and Jein-Shan Chen²

¹School of Science, Shenyang Aerospace University, Shenyang, China
 ²Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan

 \Box In this article, we extend two classes of merit functions for the second-order complementarity problem (SOCP) to infinite-dimensional SOCP. These two classes of merit functions include several popular merit functions, which are used in nonlinear complementarity problem, (NCP)/(SDCP) semidefinite complementarity problem, and SOCP, as special cases. We give conditions under which the infinite-dimensional SOCP has a unique solution and show that all these merit functions provide an error bound for infinite-dimensional SOCP and have bounded level sets. These results are very useful for designing solution methods for infinite-dimensional SOCP.

Keywords Error bound; Fixed point; Hilbert space; Level set; Merit functions; Second-order cone.

AMS Subject Classification 26B05; 90C33.

1. INTRODUCTION

Let \mathcal{H} be a Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle$, and write the norm induced by $\langle \cdot, \cdot \rangle$ as $\|\cdot\|$. The conic complementarity problem $CP(\mathcal{H}, F, G)$ in \mathcal{H} is, for any given closed convex cone $\mathcal{H} \subset \mathcal{H}$ and functions $F, G : \mathcal{H} \to \mathcal{H}$, to find points $x, y, \zeta \in \mathcal{H}$ such that

$$\langle x, y \rangle = 0, \quad x \in \mathcal{H}, \quad y \in \mathcal{H}^*,$$

 $x = F(\zeta), \quad y = G(\zeta),$

Received 16 November 2009; Accepted 10 April 2010.

Address correspondence to Jein-Shan Chen, Department of Mathematics, National Taiwan Normal University, 88, Sec. 4, Ting Chou Road, Taipei 11677, Taiwan; E-mail: jschen@ math.ntnu.edu.tw

where $\mathcal{H}^* := \{x \in \mathcal{H} \mid \langle x, y \rangle \geq 0, \forall y \in \mathcal{H}\}$ is the dual cone of \mathcal{H} . A closed convex cone $\mathcal{H} \subset \mathcal{H}$ is called *self-dual* if \mathcal{H} coincides with its dual cone \mathcal{H}^* , for example, the nonnegative orthant cone $\mathbb{R}^n_+ := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_j \geq 0, j = 1, 2, \ldots, n\}$ and the second-order cone (also called Lorentz cone) $\mathbb{K}^n := \{(x_1, x_2) \in \mathbb{R} \times \mathbb{R}^{n-1} \mid x_1 \geq \|x_2\|\}$. This article focuses on the conic complementarity problem associated with the infinite-dimensional second-order cone \mathbb{K} in \mathcal{H} (will be defined as in (10)) which is closed, convex, and self-dual (see Section 2 for details). Since \mathbb{K} is self-dual, the conic complementarity problem reduces to $CP(\mathbb{K}, F, G)$, which is to find $x, y, \zeta \in \mathcal{H}$ such that

$$\langle x, y \rangle = 0, \quad x \in \mathbb{K}, \quad y \in \mathbb{K},$$

 $x = F(\zeta), \quad y = G(\zeta).$ (1)

For finite-dimensional second-order cone optimization and complementarity problems, there have proposed various methods, including the interior point methods [1, 15, 18], the smoothing and semismooth Newton methods [3, 7, 10, 11, 13], and the merit function method [2, 4]. As far as we know, only very few of aforementioned methods are extended to infinite-dimensional SOCP case. More precisely, for infinite-dimensional second-order cone optimization and complementarity problems, some particular interior point method was employed in [8], and a merit function method was considered in [5] where its merit function is $\psi_{\text{FB}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ given by

$$\psi_{\rm FB}(x,y) := \frac{1}{2} \|\phi_{\rm FB}(x,y)\|^2, \tag{2}$$

which is induced by the Fischer–Burmeister (FB) function ϕ_{FB} : $\mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ defined as

$$\phi_{\rm FB}(x,y) := (x^2 + y^2)^{1/2} - (x+y). \tag{3}$$

Here, x^2 means $x \bullet x$, where \bullet will be introduced in Section 2. In this article, we also concern with the merit function method for (1). In other words, we aim to seek a smooth function $\Psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ such that, for any $x, y \in \mathcal{H}$,

$$\Psi(x, y) = 0 \iff x \in \mathbb{K}, \quad y \in \mathbb{K}, \quad \langle x, y \rangle = 0, \tag{4}$$

and then the problem $CP(\mathbb{K}, F, G)$ can be transformed into a smooth minimization problem:

$$\min_{\zeta \in \mathcal{H}} f(\zeta) := \Psi(F(\zeta), G(\zeta)).$$

Traditionally, such a f or Ψ is called a merit function associated with **K**.

The two classes of merit functions that we will investigate come intuitively from the finite-dimensional case where \mathcal{H} equals \mathbb{R}^n and is associated with the Lorentz cone \mathbb{K}^n , which was studied in [2]. The first class is

$$f_{\rm LT}(\zeta) := \psi_0\left(\langle F(\zeta), G(\zeta) \rangle\right) + \psi(F(\zeta), G(\zeta)),\tag{5}$$

where $\psi_0 : \mathbb{R} \to \mathbb{R}_+$ is any smooth function satisfying

$$\psi_0(t) = 0 \quad \forall t \le 0 \quad \text{and} \quad \psi'_0(t) > 0 \quad \forall t > 0,$$
 (6)

and $\psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ satisfies

 $\psi(x, y) = 0, \ \langle x, y \rangle \le 0 \iff (x, y) \in \mathbb{K} \times \mathbb{K}, \ \langle x, y \rangle = 0.$ (7)

The second class is

$$\widehat{f_{\mathrm{LT}}}(\zeta) := \psi_0^*(F(\zeta) \bullet G(\zeta)) + \psi(F(\zeta), G(\zeta)), \tag{8}$$

where $\psi_0^* : \mathcal{H} \to \mathbb{R}_+$ is given by

$$\psi_0^*(w) = \frac{1}{2} \|(w)_+\|^2 \tag{9}$$

and $\psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ satisfies (7). The function f_{LT} was originally proposed by Luo and Tseng for NCP case [12] and was extended to the SDCP case by Tseng [14], then to the SOCP case by Chen [2]. We explore the extension to the infinite-dimensional SOCPs as will be seen in Section 3. The second class of merit functions for SDCP case was recently studied by Goes and Oliveira [9] and a variant of \widehat{f}_{LT} was also studied by Chen [2] for SOCP case.

As mentioned, we will define and study these merit functions associated with \mathbb{K} in Hilbert space \mathcal{H} . Three examples of ψ will be studied in Section 3. In Section 4, we will show that, under certain conditions, the infinite-dimensional SOCP has a unique solution and both f_{LT} and \widehat{f}_{LT} provide global error bound, which plays an important role in analyzing the convergence rate of some iterative methods for solving $CP(\mathbb{K}, F, G)$. Besides, under the condition that F and G are jointly monotone and a strictly feasible solution exists, we will prove that both f_{LT} and \widehat{f}_{LT} have bounded level sets which will ensure that the sequence generated by a decent algorithm has at least an accumulation point. All these properties will make it possible to construct a decent algorithm for solving the equivalent unconstrained reformulation of $CP(\mathbb{K}, F, G)$. Moreover, we will show that both f_{LT} and \widehat{f}_{LT} are Fréchet differentiable and their derivatives have computable formulas.

Throughout this article, for any given Banach spaces \mathscr{X} and \mathscr{Y} , let $\mathscr{L}(\mathscr{X}, \mathscr{Y})$ denote the Banach space of all continuous linear mappings from \mathscr{X} into \mathscr{Y} . We simply write $\mathscr{L}(\mathscr{X}, \mathscr{Y}) = \mathscr{L}(\mathscr{X})$ and denote $GL(\mathscr{X})$ the set of all invertible mappings in $\mathscr{L}(\mathscr{X})$. The norm of any $l \in \mathscr{L}(\mathscr{X}, \mathscr{Y})$ is defined by $||l|| := \sup\{||l(x)|| | x \in \mathscr{X} \text{ and } ||x|| = 1\}$. In addition, for any self-adjoint linear operator l from $\mathscr{X} \to \mathscr{X}$, we write $l \succ 0$ (respectively, $l \succeq 0$) to mean that l is positive definite (respectively, positive semidefinite). For any $x \in \mathscr{H}$, $(x)_+$ denotes the orthogonal projection of x onto \mathbb{K} , whereas $(x)_-$ means the orthogonal projection of x onto $-\mathbb{K}$. A sequence of elements $\{x_n\} \subset \mathscr{H} \to x$ means $\lim_{n\to\infty} ||x_n - x|| = 0$. A sequence of operators $\{T_n\} \to T$ means $\lim_{n\to\infty} ||T_n - T|| = 0$.

2. PRELIMINARIES

In this section, we recall some background materials and preliminary results that will be used later. We begin with introducing the infinitedimensional second-order cone.

Recall that the finite-dimensional second-order cone (also called Lorentz cone) is defined as $\mathbb{K}^n := \{(r, x') \in \mathbb{R} \times \mathbb{R}^{n-1} | r \ge ||x'||\}$. As discussed in [5], this Lorentz cone \mathbb{K}^n can be rewritten as

$$\mathbb{K}^{n} := \left\{ x \in \mathbb{R}^{n} \, | \, \langle x, e \rangle \ge \frac{1}{\sqrt{2}} \| x \| \right\} \quad \text{with } e = (1,0) \in \mathbb{R} \times \mathbb{R}^{n-1}.$$

Motivated by this, the following closed convex cone in the Hilbert space \mathcal{H} is considered:

$$K(e, r) := \{ x \in \mathcal{H} \mid \langle x, e \rangle \ge r \| x \| \},\$$

where $e \in \mathcal{H}$ with ||e|| = 1 and 0 < r < 1. Observe that K(e, r) is pointed, that is, $K(e, r) \cap (-K(e, r)) = \{0\}$. Moreover, by denoting

$$\langle e \rangle^{\perp} := \{ x \in \mathcal{H} \mid \langle x, e \rangle = 0 \},\$$

we may express the closed convex cone K(e, r) as

$$K(e,r) = \left\{ x' + \lambda e \in \mathcal{H} \mid x' \in \langle e \rangle^{\perp} \text{ and } \lambda \geq \frac{r}{\sqrt{1 - r^2}} \|x'\| \right\},\$$

when $\mathcal{H} = \mathbb{R}^n$ and $e = (1,0) \in \mathbb{R} \times \mathbb{R}^{n-1}$, $K\left(e, \frac{1}{\sqrt{2}}\right)$ coincides with \mathbb{K}^n . By this, we shall call $K\left(e, \frac{1}{\sqrt{2}}\right)$ the infinite-dimensional second-order cone (or infinite-dimensional Lorentz cone) in \mathcal{H} determined by *e*. In the rest of this article, we shall only consider any fixed unit vector $e \in \mathcal{H}$, and denote

$$\mathbb{K} := K\left(e, \frac{1}{\sqrt{2}}\right) \tag{10}$$

since two infinite-dimensional second-order cones $K(e_1, \frac{1}{\sqrt{2}})$ and $K(e_2, \frac{1}{\sqrt{2}})$ associated with different unit elements e_1 and e_2 in \mathcal{H} are isometric.

Unless specifically stated otherwise, we shall alternatively write any point $x \in \mathcal{H}$ as $x = x' + \lambda e$ with $x' \in \langle e \rangle^{\perp}$ and $\lambda = \langle x, e \rangle$. In addition, for any $x, y \in \mathcal{H}$, we shall write $x \succ_{\mathbb{K}} y$ (respectively, $x \succeq_{\mathbb{K}} y$) if $x - y \in int(\mathbb{K})$ (respectively, $x - y \in \mathbb{K}$). Now, we introduce the spectral decomposition for any element $x \in \mathcal{H}$. For any $x = x' + \lambda e \in \mathcal{H}$, we can decompose x as

$$x = \alpha_1(x)v_x^{(1)} + \alpha_2(x)v_x^{(2)},$$

where $\alpha_1(x)$, $\alpha_2(x)$, and $v_x^{(1)}$, $v_x^{(2)}$ are the spectral values and the associated spectral vectors of *x* with respect to **K**, given by

$$\begin{split} & \alpha_i(x) = (-1)^i \|x'\| + \lambda, \\ & v_x^{(i)} = \begin{cases} \frac{1}{2} \Big((-1)^i \frac{x'}{\|x'\|} + e \Big), & \text{if } x' \neq 0, \\ \\ & \frac{1}{2} ((-1)^i w + e), & \text{if } x' = 0, \end{cases} \end{split}$$

for i = 1, 2 with w being any vector in $\langle e \rangle^{\perp}$ satisfying ||w|| = 1. Its determinant and trace is defined as $det(x) := \alpha_1(x)\alpha_2(x)$ and $tr(x) := \alpha_1(x) + \alpha_2(x)$, respectively.

Next, we come to the Jordan product associated with the infinitedimensional Lorentz cone \mathbb{K} . For any $x = x' + \lambda e \in \mathcal{H}$ and $y = y' + \mu e \in \mathcal{H}$, we define the Jordan product of *x* and *y* by

$$x \bullet y := (\mu x' + \lambda y') + \langle x, y \rangle e.$$
(11)

Clearly, when $\mathcal{H} = \mathbb{R}^n$ and $e = (1, 0) \in \mathbb{R} \times \mathbb{R}^{n-1}$, this definition is the same as the one given by [6, chapter II]. From the definition (11) and direct computation, it is easy to verify that the following properties hold.

Property 2.1.

(a) x • y = y • x and x • e = x for all x, y ∈ H.
(b) (x + y) • z = x • z + y • z for all x, y, z ∈ H.

- (c) $\langle x, y \bullet z \rangle = \langle y, x \bullet z \rangle = \langle z, x \bullet y \rangle$ for all $x, y, z \in \mathcal{H}$.
- (d) For any $x = x' + \lambda e \in \mathcal{H}$, $x^2 = x \bullet x = 2\lambda x' + ||x||^2 e \in \mathbb{K}$ and $\langle x^2, e \rangle = ||x||^2$.
- (e) If $x = x' + \lambda e \in \mathbb{K}$, then there is a unique $x^{1/2} \in \mathbb{K}$ such that $(x^{1/2})^2 = (x^{1/2}) \bullet (x^{1/2}) = x$, where

$$x^{1/2} = \sqrt{\alpha_1(x)} v_x^{(1)} + \sqrt{\alpha_2(x)} v_x^{(2)} = \begin{cases} 0, & \text{if } x = 0\\ \frac{x'}{2\tau} + \tau e, & \text{otherwise} \end{cases}$$

with $\tau = \sqrt{\frac{\lambda + \sqrt{\lambda^2 - \|x'\|^2}}{2}}.$

(f) Every $x = x' + \lambda e \in \mathcal{H}$ with $\lambda^2 - ||x'||^2 \neq 0$ is invertible with respect to the Jordan product, i.e., there is a unique point $x^{-1} \in \mathcal{H}$ such that $x \bullet x^{-1} = e$, where

$$x^{-1} = \alpha_1(x)^{-1} v_x^{(1)} + \alpha_2(x)^{-1} v_x^{(2)} = \frac{-x' + \lambda e}{\det(x)} = \frac{-x' + \lambda e}{\lambda^2 - \|x'\|^2}$$

Moreover, $x \in int(\mathbb{K})$ if and only if $x^{-1} \in int(\mathbb{K})$.

Associated with every $x \in \mathcal{H}$, we define a linear mapping L_x from \mathcal{H} to \mathcal{H} by

$$L_x y := x \bullet y \quad \text{for any } y \in \mathcal{H}. \tag{12}$$

It is clear that $L_x \in \mathcal{L}(\mathcal{H})$ and this mapping possesses the following favorable properties.

Property 2.2 ([5, Lemma 2.2]). For any $x \in \mathcal{H}$, let $L_x \in \mathcal{L}(\mathcal{H})$ be defined as in (12). Then, we have

- (a) $x \succ_{\mathbb{K}} 0 \iff L_x \succ 0$ and $x \succeq_{\mathbb{K}} 0 \iff L_x \succeq 0$;
- (b) if $x = x' + \lambda e$ with $\lambda \neq 0$ and $|\lambda| \neq ||x'||$, then $L_x \in GL(\mathcal{H})$ with the inverse given by

$$L_x^{-1}y = \frac{1}{\lambda} \left(y' - \langle x^{-1}, y \rangle x' \right) + \langle x^{-1}, y \rangle e \quad \text{for any } y = y' + \mu e \in \mathcal{H}.$$

Property 2.3 ([5, Lemma 5.1]). Let \mathbb{K} be the infinite-dimensional Lorentz cone in \mathcal{H} given as in (10). For any $x, y \in \mathcal{H}$ and $z \succ_{\mathbb{K}} 0$, the following implications hold:

$$z^{2} \succ_{\mathbb{K}} x^{2} + y^{2} \Longrightarrow L_{z}^{2} - L_{y}^{2} - L_{x}^{2} \succ 0,$$
$$z^{2} \succ_{\mathbb{K}} x^{2} \Longrightarrow z \succ_{\mathcal{H}} x.$$

Moreover, the above implications remain true when " \succ " is replaced by " \succeq ".

The following describes some important relations when $x^2 + y^2$ lies on the boundary of **K**.

Property 2.4 ([5, Lemma 2.3]). For any $x = x' + \lambda e$, $y = y' + \mu e \in \mathcal{H}$ with $x^2 + y^2 \notin int(\mathbb{K})$, we have

$$\lambda^2 = \|x'\|^2, \quad \mu^2 = \|y'\|^2, \quad \lambda\mu = \langle x', y' \rangle, \quad \lambda y' = \mu x'.$$

Property 2.5. Let \mathcal{K} be any closed convex cone in \mathcal{H} . For each $x \in \mathcal{H}$, let $x_{\mathcal{H}}^+$ and x_{π}^{-} denote the minimum distance projection of x onto \mathcal{K} and $-\mathcal{K}^{*}$, respectively. The following results hold.

- (a) For any $x \in \mathcal{H}$, we have $x = x_{\mathcal{H}}^+ + x_{\mathcal{H}}^-$ and $||x||^2 = ||x_{\mathcal{H}}^+||^2 + ||x_{\mathcal{H}}^-||^2$.
- (b) For any $x \in \mathcal{H}$ and $y \in \mathcal{K}$, we have $\langle x, y \rangle \leq \langle x_{\mathcal{H}}^+, y \rangle$.
- (c) If \mathcal{R} is self-dual, then for any $x \in \mathcal{H}$ and $y \in \mathcal{R}$, we have $\|(x + y)^+_{\mathcal{R}}\| \ge \|x^+_{\mathcal{R}}\|$. (d) For any $x \in \mathcal{R}$ and $y \in \mathcal{H}$ with $x^2 y^2 \in \mathcal{R}$, we have $x y \in \mathcal{R}$.

Proof. These results are true for general closed convex cone whose proofs are the same as in [4, Lemma 5.1].

To close this section, we review some definitions that will be used in subsequent analysis.

Definition 2.1. Let $F, G : \mathcal{H} \to \mathcal{H}$ be single-valued mappings.

(a) F is said to be η -strongly monotone if there exists a constant $\eta > 0$ satisfying

$$\langle F(x) - F(y), x - y \rangle \ge \eta ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$$

(b) F is said to be Lipschitz continuous with constant γ if

$$||F(x) - F(y)|| \le \gamma ||x - y||, \quad \forall x, y \in \mathcal{H}.$$

(c) F and G are said to be ρ -jointly strongly monotone if there exists a constant $\rho > 0$ satisfying

$$\langle F(x) - F(y), G(x) - G(y) \rangle \ge \rho ||x - y||^2, \quad \forall x, y \in \mathcal{H}.$$

We also recall the concept of *Fréchet differentiability*. For given Banach spaces \mathscr{X} and \mathscr{Y} , a mapping f from a nonempty open subset X of \mathscr{X} into \mathcal{Y} is said to be Fréchet differentiable at $x \in X$ if there exists $l_x \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - l_x h}{\|h\|} = 0,$$

and l_x is called the Fréchet differential of f at x, denoted by Df(x). When f is Fréchet differentiable at every point of X, we say that f is Fréchet differentiable on X. If f is Fréchet differentiable on a neighborhood $U \in X$ of a point $x_0 \in X$, and if, as a mapping from U into the Banach space $\mathscr{L}(\mathscr{X}, \mathscr{Y})$, the mapping $x \to Df(x)$ is continuous at x_0 , then f is said to be *continuously Fréchet differentiable* at x_0 . The mapping f is called continuously Fréchet differentiable on X if it is continuously Fréchet differentiable at every point of X.

3. TWO CLASSES OF MERIT FUNCTIONS

In this section, we elaborate more about the two classes of merit functions for (1). We are motivated by a class of merit functions proposed by Luo and Tseng [12] for the NCP case originally which was already extended to the SDP and SOCP by Tseng [14] and Chen [2], respectively. We introduce them as below. Let f_{LT} be given as (5), that is,

$$f_{\mathrm{LT}}(\zeta) := \psi_0(\langle F(\zeta), G(\zeta) \rangle) + \psi(F(\zeta), G(\zeta)),$$

where $\psi_0 : \mathbb{R} \to \mathbb{R}_+$ satisfies (6) and $\psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ satisfies (7). We notice that ψ_0 is differentiable and strictly increasing on $[0, \infty)$. Let Ψ_+ denote the collection of $\psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ satisfying (7) that are Fréchet differentiable and their derivatives satisfy the following conditions:

$$\begin{cases} \langle D_x \psi(x, y), D_y \psi(x, y) \rangle \ge 0, \ \forall (x, y) \in \mathcal{H} \times \mathcal{H}. \\ \langle x, D_x \psi(x, y) \rangle + \langle y, D_y \psi(x, y) \rangle \ge 0, \ \forall (x, y) \in \mathcal{H} \times \mathcal{H}. \end{cases}$$
(13)

We will give an example of ψ belonging to Ψ_+ in Proposition 3.1. Before that, we need the following three lemmas which will be used for proving Propositions 3.1 and 3.2.

Lemma 3.1.

- (a) For any $x \in \mathcal{H}$, $\langle x, (x)_{-} \rangle = ||(x)_{-}||^{2}$ and $\langle x, (x)_{+} \rangle = ||(x)_{+}||^{2}$
- (b) For any $x \in \mathcal{H}$ and $y \in \mathcal{H}$, we have

$$x \in \mathbb{K} \iff \langle x, y \rangle \ge 0, \quad \forall y \in \mathbb{K}.$$

 \Box

Proof. The results follow by Property 2.5 and self-duality of **K**.

Lemma 3.2 ([17]). For $x \neq 0 \in \mathcal{H}$, the following hold.

- (a) If g(x) = ||x||, we have $Dg(x)h = \frac{\langle x,h \rangle}{||x||}$.
- (b) If $g(x) = ||x||^2$, we have $Dg(x)h = 2\langle x, h \rangle$.
- (c) If $g(x) = \frac{x}{\|x\|}$, we have $Dg(x)h = \frac{h}{\|x\|} \frac{\langle x,h \rangle}{\|x\|^3}x$.

Proof. The results can be verified by direct computation, also see [17]. \Box

Lemma 3.3. Let ϕ_{FB} and ψ_{FB} be given as in (3) and (2), respectively. Then,

(a) $\phi_{FB}(x, y) = 0 \iff x \in \mathbb{K}, y \in \mathbb{K}, x \bullet y = 0 \iff x \in \mathbb{K}, y \in \mathbb{K}, \langle x, y \rangle = 0.$ (b) for any $x, y \in \mathcal{H}$, there holds

$$4\psi_{\rm FB}(x,y) \ge 2\|\phi_{\rm FB}(x,y)_+\|^2 \ge \|(-x)_+\|^2 + \|(-y)_+\|^2$$

Proof. (a) This is shown in [5, Lemma 3.1].

(b) The first inequality follows from Property 2.5(a). Since $(x^2 + y^2)^{1/2} - x \in \mathcal{H}$, by Property 2.5(c), we can deduce that $\|((x^2 + y^2)^{1/2} - x - y)_+\|^2 \ge \|(-y)_+\|^2$. Similarly, we can get $\|((x^2 + y^2)^{1/2} - x - y)_+\|^2 \ge \|(-x)_+\|^2$. Adding the above two inequalities yields the desired second inequality. This completes the proof.

Proposition 3.1. Let $\psi_1 : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ be given by

$$\psi_1(x,y) := \frac{1}{2} \left(\|(-x)_+\|^2 + \|(-y)_+\|^2 \right)$$
(14)

Then, the following results hold.

- (a) ψ_1 satisfies (7).
- (b) ψ_1 is convex and Fréchet differentiable at every $(x, y) \in \mathcal{H} \times \mathcal{H}$ with $D_x \psi_1(x, y) = (x)_-, D_y \psi_1(x, y) = (y)_-.$
- (c) For every $(x, y) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle D_x\psi_1(x,y), D_y\psi_1(x,y)\rangle \geq 0.$$

(d) For every $(x, y) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle x, D_x \psi_1(x, y) \rangle + \langle y, D_y \psi_1(x, y) \rangle = \| (x)_- \|^2 + \| (y)_- \|^2$$

(e) ψ_1 belongs to Ψ_+ .

Proof. The proofs are similar to those in [2, proposition 3.1], so we omit them. \Box

Next, we consider a further restriction on ψ . Let Ψ_{++} denote the collection of $\psi \in \Psi_+$ satisfying the following conditions:

$$\psi(x, y) = 0, \quad \forall (x, y) \in \mathcal{H} \times \mathcal{H} \quad \text{whenever } \langle D_x \psi(x, y), D_y \psi(x, y) \rangle = 0.$$
 (15)

Two examples of such ψ are given in next two propositions.

Proposition 3.2. Let $\psi_{FB}(x, y)$ be given by (2). Then, the following results hold.

- (a) ψ_{FB} satisfies (7).
- (b) ψ_{FB} is Fréchet differentiable at every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$. Moreover, $D_x \psi_{\text{FB}}(0, 0) = D_y \psi_{\text{FB}}(0, 0) = 0$. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \in \text{int}(\mathbb{K})$, then

$$\begin{aligned} D_x \psi_{\rm FB}(x,y) &= L_x L_{(x^2+y^2)^{1/2}}^{-1} \phi_{\rm FB}(x,y) - \phi_{\rm FB}(x,y), \\ D_y \psi_{\rm FB}(x,y) &= L_y L_{(x^2+y^2)^{1/2}}^{-1} \phi_{\rm FB}(x,y) - \phi_{\rm FB}(x,y). \end{aligned}$$

If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \notin int(\mathbb{K})$, then $\lambda^2 + \mu^2 \neq 0$ and

$$D_{x}\psi_{\rm FB}(x,y) = \left(\frac{\lambda}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{\rm FB}(x,y),$$
$$D_{y}\psi_{\rm FB}(x,y) = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{\rm FB}(x,y).$$

(c) For every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle D_x \psi_{\rm FB}(x, y), D_y \psi_{\rm FB}(x, y) \rangle \ge 0$$

and the equality holds whenever $\psi_{FB}(x, y) = 0$.

(d) For every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle x, D_x \psi_{\rm FB}(x, y) \rangle + \langle y, D_y \psi_{\rm FB}(x, y) \rangle = \| \phi_{\rm FB}(x, y) \|^2.$$

(e) ψ_{FB} belongs to Ψ_{++} .

Proof. See [5, Theorem 4.1] and [5, Lemma 5.2].

Proposition 3.2 tells us that ψ_{FB} defined as (2) belongs to Ψ_{++} , which yields a merit function $\psi_{\text{YF}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ given as

$$\psi_{\rm YF}(x,y) := \psi_0(\langle x,y\rangle) + \psi_{\rm FB}(x,y),$$

and studied by Yamashita and Fukushima [16].

Proposition 3.3. Let $\psi_2 : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ be given by

$$\psi_2(x,y) = \frac{1}{2} \|\phi_{\rm FB}(x,y)_+\|^2, \tag{16}$$

where $\phi_{\rm FB}$ is defined as (3). Then, the following results hold.

- (a) ψ_2 satisfies (7).
- (b) ψ_2 is Fréchet differentiable at every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$. Moreover, $D_x \psi_{FB}(0, 0) = D_y \psi_{FB}(0, 0) = 0$. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \in int(\mathbb{K})$, then

$$D_x \psi_2(x, y) = L_x L_{(x^2+y^2)^{1/2}}^{-1} \phi_{FB}(x, y)_+ - \phi_{FB}(x, y)_+,$$

$$D_y \psi_2(x, y) = L_y L_{(x^2+y^2)^{1/2}}^{-1} \phi_{FB}(x, y)_+ - \phi_{FB}(x, y)_+.$$

If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \notin int(\mathbb{K})$, then $\lambda^2 + \mu^2 \neq 0$ and

$$D_{x}\psi_{2}(x, y) = \left(\frac{\lambda}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x, y)_{+},$$
$$D_{y}\psi_{2}(x, y) = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x, y)_{+}.$$

(c) For every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle D_x \psi_2(x, y), D_y \psi_2(x, y) \rangle \ge 0$$

and the equality holds whenever $\psi_2(x, y) = 0$.

(d) For every $(x, y) = (x' + \lambda e, y' + \mu e) \in \mathcal{H} \times \mathcal{H}$, we have

$$\langle x, D_x \psi_2(x, y) \rangle + \langle y, D_y \psi_2(x, y) \rangle = \|\phi_{\mathrm{FB}}(x, y)_+\|^2.$$

(e) ψ_2 belongs to Ψ_{++} .

Proof. (a) Suppose $\psi_2(x, y) = 0$ and $\langle x, y \rangle \leq 0$. Let $z := -\phi_{FB}(x, y)$. Then $(-z)_+ = \phi_{FB}(x, y)_+ = 0$ which says $z \in \mathbb{K}$. Since $x + y = (x^2 + y^2)^{1/2} + z$, squaring both sides and simplifying yield

$$2x \bullet y = 2((x^2 + y^2)^{1/2} \bullet z) + z^2.$$

Now, taking trace of both sides and using the fact $tr(x \bullet y) = 2\langle x, y \rangle$, we obtain

$$4\langle x, y \rangle = 4\langle (x^2 + y^2)^{1/2}, z \rangle + 2\|z\|^2.$$
(17)

Since $(x^2 + y^2)^{1/2} \in \mathbb{K}$ and $z \in \mathbb{K}$, we know $\langle (x^2 + y^2)^{1/2}, z \rangle \ge 0$ by Lemma 3.1(b). Thus, the right-hand of (17) is nonnegative, which together with $\langle x, y \rangle \le 0$ implies $\langle x, y \rangle = 0$. Therefore, with this, Equation (17) says z = 0, which is equivalent to $\phi_{FB}(x, y) = 0$. Then by Lemma 3.3, we have $x, y \in \mathbb{K}$. Conversely, if $x, y \in \mathbb{K}$ and $\langle x, y \rangle = 0$, then again Lemma 3.3 yields $\phi_{FB}(x, y) = 0$. Thus, $\psi_2(x, y) = 0$ and $\langle x, y \rangle \le 0$. (b) For the proof of part (b), we need to discuss three cases.

Case 1. If (x, y) = (0, 0), then for any $h = h' + \overline{\lambda}e$, $k = k' + \overline{\mu}e \in \mathcal{H}$, let $\mu_1 \leq \mu_2$ be the spectral values and let $v^{(1)}, v^{(2)}$ be the corresponding spectral vectors of $h^2 + k^2$. Hence, by Property 2.1(e), we have

$$\begin{split} \|(h^2 + k^2)^{1/2} - h - k\| &= \left\|\sqrt{\mu_1}v^{(1)} + \sqrt{\mu_2}v^{(2)} - h - k\right\| \\ &\leq \sqrt{\mu_1}\|v^{(1)}\| + \sqrt{\mu_2}\|v^{(2)}\| + \|h\| + \|k\| \\ &= \left(\sqrt{\mu_1} + \sqrt{\mu_2}\right)/\sqrt{2} + \|h\| + \|k\|. \end{split}$$

Also

$$\mu_{1} \leq \mu_{2} = \|h\|^{2} + \|k\|^{2} + 2\|\bar{\lambda}h' + \bar{\mu}k'\|$$

$$\leq \|h\|^{2} + \|k\|^{2} + 2|\bar{\lambda}|\|h'\| + 2|\bar{\mu}|\|k'\|$$

$$\leq 2(\|h\|^{2} + \|k\|^{2}).$$

Combining the above two inequalities yields

$$\begin{split} \psi_{2}(h,k) - \psi_{2}(0,0) &= \frac{1}{2} \|\phi_{\mathrm{FB}}(h,k)_{+}\|^{2} \\ &\leq \|\phi_{\mathrm{FB}}(h,k)\|^{2} \\ &= \|(h^{2} + k^{2})^{1/2} - h - k\|^{2} \\ &\leq \left((\sqrt{\mu_{1}} + \sqrt{\mu_{2}})/\sqrt{2} + \|h\| + \|k\|\right)^{2} \\ &\leq \left(2\sqrt{2\|h\|^{2} + 2\|k\|^{2}}/\sqrt{2} + \|h\| + \|k\|\right)^{2} \\ &= O(\|h\|^{2} + \|k\|^{2}), \end{split}$$

where the first inequality is from Lemma 3.3. This shows that ψ_2 is differentiable at (0,0) with

$$D_x\psi_2(0,0) = D_y\psi_2(0,0) = 0.$$

Case 2. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \in int(\mathbb{K})$, let *z* be factored as $z = \alpha_1(z)u_z^{(1)} + \alpha_2(z)u_z^{(2)}$ for any $z \in \mathcal{H}$. Now, let $g : \mathcal{H} \to \mathcal{H}$ be defined as

$$g(z) := \frac{1}{2}((z)_{+})^{2} = \hat{g}(\alpha_{1}(z))u_{z}^{(1)} + \hat{g}(\alpha_{2}(z))u_{z}^{(2)},$$

where $\hat{g} : \mathbb{R} \to \mathbb{R}$ is given by $\hat{g}(\alpha) := \frac{1}{2}(\max(0, \alpha))^2$. From the continuous differentiability of \hat{g} and [17], the vector-valued function g is continuously Fréchet differentiable. Hence, the first component $g_1(z) = \frac{1}{2} ||(z)_+||^2$ of g(z)

is continuously Fréchet differentiable as well. By an easy computation, we have $Dg_1(z) = (z)_+$. Since $\psi_2(x, y) = g_1(\phi_{FB}(x, y))$ and ϕ_{FB} is Fréchet differentiable at $(x, y) \neq (0, 0)$ with $x^2 + y^2 \in int(\mathbb{K})$ (see [5]). Hence, the chain rule yields

$$D_x\psi_2(x,y) = D_x\phi_{FB}(x,y)Dg_1(\phi_{FB}(x,y)) = L_xL_{(x^2+y^2)^{1/2}}^{-1}\phi_{FB}(x,y)_+ - \phi_{FB}(x,y)_+,$$

$$D_y\psi_2(x,y) = D_y\phi_{FB}(x,y)Dg_1(\phi_{FB}(x,y)) = L_yL_{(x^2+y^2)^{1/2}}^{-1}\phi_{FB}(x,y)_+ - \phi_{FB}(x,y)_+.$$

Case 3. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \notin int(\mathbb{K})$, by direct computation, we know $||x||^2 + ||y||^2 = 2||\lambda x' + \mu y'||$ under this case. Since $(x, y) \neq (0, 0)$, this also implies $\lambda x' + \mu y' \neq 0$. We notice that we cannot apply the chain rule as in Case 2 because $\phi_{\rm FB}$ is no longer differentiable in this case. By the spectral factorization, we observe that

$$\phi_{\rm FB}(x,y)_{+} = \phi_{\rm FB}(x,y) \Longleftrightarrow \phi_{\rm FB}(x,y) \in \mathbb{K}$$

$$\phi_{\rm FB}(x,y)_{+} = 0 \Longleftrightarrow \phi_{\rm FB}(x,y) \in -\mathbb{K}$$

$$\phi_{\rm FB}(x,y)_{+} = \alpha_{2} u^{(2)} \Longleftrightarrow \phi_{\rm FB}(x,y) \notin \mathbb{K} \cup -\mathbb{K},$$
(18)

where α_2 is the bigger spectral value of $\phi_{FB}(x, y)$ and $u^{(2)}$ is the corresponding spectral vector. Indeed, by applying Property 2.4, we can simplify $\phi_{\rm FB}$ as

$$\phi_{\rm FB}(x,y) = \frac{\lambda x' + \mu y'}{\sqrt{\lambda^2 + \mu^2}} - (x' + y') + \left(\sqrt{\lambda^2 + \mu^2} - (\lambda + \mu)\right)e.$$
(19)

Therefore, α_2 and $u^{(2)}$ are given as below:

$$\alpha_{2} = \sqrt{\lambda^{2} + \mu^{2}} - (\lambda + \mu) + ||w_{2}||, \qquad (20)$$
$$u^{(2)} = \frac{1}{2} \left(\frac{w_{2}}{||w_{2}||} + e \right),$$

where $w_2 = \frac{\lambda x' + \mu y'}{\sqrt{\lambda^2 + \mu^2}} - (x' + y')$. To prove the differentiability of ψ_2 under this case, we shall discuss the following three subcases according to the above observation (18).

(i) If $\phi_{FB}(x, y) \notin \mathbb{K} \cup -\mathbb{K}$ then $\phi_{FB}(x, y)_+ = \alpha_2 u^{(2)}$, where α_2 and $u^{(2)}$ are given as in (20). From the fact that $||u^{(2)}|| = 1/\sqrt{2}$, we obtain

$$\begin{split} \psi_2(x,y) &= \frac{1}{2} \|\phi_{\rm FB}(x,y)_+\|^2 = \frac{1}{4} \alpha_2^2 \\ &= \frac{1}{4} \bigg[\Big(\sqrt{\lambda^2 + \mu^2} - (\lambda + \mu) \Big)^2 \\ &+ 2 \Big(\sqrt{\lambda^2 + \mu^2} - (\lambda + \mu) \Big) \|w_2\| + \|w_2\|^2 \bigg]. \end{split}$$

Since $(x, y) \neq (0, 0)$ in this case, ψ_2 is Fréchet differentiable clearly. For all $h \in \mathcal{H}$, we have

$$\begin{split} [D_x w_2]h &= \left(\frac{1}{\sqrt{\lambda^2 + \mu^2}} - \frac{\lambda^2}{(\lambda^2 + \mu^2)\sqrt{\lambda^2 + \mu^2}}\right) \langle h, e \rangle x' \\ &+ \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \left(h - \langle h, e \rangle e\right) - \frac{\lambda \mu y'}{(\lambda^2 + \mu^2)\sqrt{\lambda^2 + \mu^2}} \langle h, e \rangle \\ &= \frac{1}{\left(\sqrt{\lambda^2 + \mu^2}\right)^3} \left((\lambda^2 + \mu^2)x' - \lambda^2 x' - \lambda \mu y'\right) \langle h, e \rangle \\ &+ \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}}\right) \left(h - \langle h, e \rangle e\right) \\ &= \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \left(h - \langle h, e \rangle e\right), \end{split}$$

where the last equality holds by Property 2.4. Using the product rule and chain rule for differentiation gives

$$\begin{split} [D_x \psi_2(x, y)]h &= \frac{1}{2} \alpha_2 [D_x \alpha_2]h \\ &= \frac{1}{2} \alpha_2 \left[\left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \langle h, e \rangle + \frac{\langle w_2, [D_x w_2]h \rangle}{\|w_2\|} \right] \\ &= \frac{1}{2} \alpha_2 \left[\left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \langle h, e \rangle \right. \\ &+ \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \frac{\langle w_2, h \rangle - \langle w_2, e \rangle \langle h, e \rangle}{\|w_2\|} \right] \\ &= \frac{1}{2} \alpha_2 \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \left\langle \frac{w_2}{\|w_2\|} + e, h \right\rangle. \end{split}$$

It then follows that

$$D_x \psi_2(x, y) = \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \alpha_2 u^{(2)} = \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \phi_{FB}(x, y)_+.$$
 (21)

Similarly, we can obtain that

$$D_{y}\psi_{2}(x,y) = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{\text{FB}}(x,y)_{+}$$

(ii) If $\phi_{FB}(x, y) \in \mathbb{K}$ then $\phi_{FB}(x, y)_+ = \phi_{FB}(x, y)$, and hence, $\psi_2(x, y) = \frac{1}{2} \|\phi_{FB}(x, y)_+\|^2 = \frac{1}{2} \|\phi_{FB}(x, y)\|^2$. Thus, by Proposition 3.1, we know that the derivative of ψ_2 under this subcase is as below:

$$D_{x}\psi_{2}(x,y) = \left(\frac{\lambda}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y) = \left(\frac{\lambda}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y)_{+},$$

$$D_{y}\psi_{2}(x,y) = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y) = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y)_{+}.$$

(22)

If there is (x', y') such that $\phi_{FB}(x', y') \notin \mathbb{K} \cup -\mathbb{K}$ and $\phi_{FB}(x', y') \rightarrow \phi_{FB}(x, y) \in \mathbb{K}$ (the neighborhood of point belonging to this subcase). From (21) and (22), it can be seen that

$$D_x\psi_2(x',y') \rightarrow D_x\psi_2(x,y), \quad D_y\psi_2(x',y') \rightarrow D_y\psi_2(x,y).$$

Thus, ψ_2 is differentiable under this subcase.

(iii) If $\phi_{FB}(x, y) \in -\mathbb{K}$ then $\phi_{FB}(x, y)_+ = 0$. Thus, $\psi_2(x, y) = \frac{1}{2} \|\phi_{FB}(x, y)_+\|^2 = 0$ and it is clear that its derivative under this subcase is

$$D_{x}\psi_{2}(x,y) = 0 = \left(\frac{\lambda}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y)_{+},$$

$$D_{y}\psi_{2}(x,y) = 0 = \left(\frac{\mu}{\sqrt{\lambda^{2} + \mu^{2}}} - 1\right)\phi_{FB}(x,y)_{+}.$$
 (23)

Again, if there is (x', y') such that $\phi_{FB}(x', y') \notin \mathbb{K} \cup -\mathbb{K}$ and $\phi_{FB}(x', y') \rightarrow \phi_{FB}(x, y) \in \mathbb{K}$ (the neighborhood of point belonging to this subcase). From (21) and (23), it can be seen that

$$D_x\psi_2(x',y') \rightarrow D_x\psi_2(x,y), \quad D_y\psi_2(x',y') \rightarrow D_y\psi_2(x,y).$$

Thus, ψ_2 is differentiable under this subcase. From the above, we complete the proof of this case and therefore the argument for part (b) is done.

(c) We wish to show that $\langle D_x \psi_2(x, y), D_y \psi_2(x, y) \rangle \ge 0$ and the equality holds if and only if $\psi_2(x, y) = 0$. We follow the three cases as above.

Case 1. If (x, y) = (0, 0), by part (b), we know $D_x \psi_2(x, y) = D_y \psi_2(x, y) = 0$. Therefore, the desired equality holds.

Case 2. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \in int\mathbb{K}$, by part (b), we have

$$\langle D_x \psi_2(x, y), D_y \psi_2(x, y) \rangle = \langle (L_x L_z^{-1} - I)(\phi_{FB})_+, (L_y L_z^{-1} - I)(\phi_{FB})_+ \rangle$$

= $\langle (L_x - L_z) L_z^{-1}(\phi_{FB})_+, (L_y - L_z) L_z^{-1}(\phi_{FB})_+ \rangle$
= $\langle (L_y - L_z) (L_x - L_z) L_z^{-1}(\phi_{FB})_+, L_z^{-1}(\phi_{FB})_+ \rangle,$ (24)

where $z = \sqrt{x^2 + y^2}$ and $I \in \mathcal{L}(\mathcal{H})$ is an identity mapping. From elementary calculation, we obtain that

$$(L_z - L_x)(L_z - L_y) + (L_z - L_y)(L_z - L_x) = (L_z - L_x - L_y)^2 + (L_z^2 - L_x^2 - L_y^2).$$

Since $z \in \mathbb{K}$ and $z^2 = x^2 + y^2$, Property 2.3 implies $L_z^2 - L_x^2 - L_y^2 \succeq 0$. Then, (24) yields

$$\begin{aligned} \langle D_x \psi_2(x, y), D_y \psi_2(x, y) \rangle &\geq \frac{1}{2} \| (L_z - L_x - L_y) L_z^{-1}(\phi_{\text{FB}})_+ \|^2 \\ &= \frac{1}{2} \| L_{\phi_{\text{FB}}} L_z^{-1}(\phi_{\text{FB}})_+ \|^2, \end{aligned}$$

where the equality uses $L_z - L_x - L_y = L_{z-x-y} = L_{\phi_{FB}}$. If the equality holds, then the above relation yields $\|L_{\phi_{FB}}L_z^{-1}(\phi_{FB})_+\|^2 = 0$ and, by Property 2.1(d),

$$L_{\phi_{\rm FB}}L_z^{-1}(\phi_{\rm FB})_+ = \phi_{\rm FB} \bullet (L_z^{-1}(\phi_{\rm FB})_+) = (L_z^{-1}(\phi_{\rm FB})_+) \bullet \phi_{\rm FB} = 0.$$

Since $z = \sqrt{x^2 + y^2} \in int(\mathbb{K})$ so that $L_z^{-1} > 0$ (see Property 2.1(d)), multiplying L_z^{-1} both side gives $\phi_{\text{FB}} \bullet (\phi_{\text{FB}})_+ = 0$. From definition of Jordan product and Lemma 3.1(a), it implies $(\phi_{\text{FB}})_+ = 0$ and hence $\psi_2 = 0$. Conversely, if $(\phi_{\text{FB}})_+ = 0$, then it is clear that $\langle D_x \psi_2(x, y), D_y \psi_2(x, y) \rangle = 0$.

Case 3. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \notin int(\mathbb{K})$, by part (b), we have

$$\langle D_x \psi_2(x,y), D_y \psi_2(x,y) \rangle = \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \left(\frac{\mu}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \|\phi_{\text{FB}}(x,y)_+\|^2 \ge 0.$$

If the equality holds, then either $\phi_{FB}(x, y)_+ = 0$ or $\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} = 1$ or $\frac{\mu}{\sqrt{\lambda^2 + \mu^2}} = 1$. In the second case, we have $\mu = 0$ and $\lambda \ge 0$, so that Property 2.4 yields y' = 0 and $\lambda = ||x'||$. In the third case, we have $\lambda = 0$ and $\mu \ge 0$, so that Property 2.4 yields x' = 0 and $\mu = ||y'||$. Thus, in these cases, we have $x \bullet y = 0, x \in \mathbb{K}, y \in \mathbb{K}$. Then, by (7), $\psi_2(x, y) = 0$.

(d) Again, we need to discuss the three cases as below.

Case 1. If (x, y) = (0, 0), by part (b), we know $D_x \psi_2(x, y) = D_x \psi_2(x, y) = 0$. Therefore, the desired equality holds.

Case 2. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \in int(\mathbb{K})$, by part (b), we have

$$D_x \psi_2(x, y) = (L_x L_z^{-1} - I) \phi_{FB}(x, y)_+,$$

$$D_y \psi_2(x, y) = (L_y L_z^{-1} - I) \phi_{FB}(x, y)_+,$$

where we let $z = \sqrt{x^2 + y^2}$. Thus,

$$\begin{aligned} \langle x, D_x \psi_2(x, y) \rangle &+ \langle y, D_y \psi_2(x, y) \rangle \\ &= \langle x, (L_x L_z^{-1} - I) \phi_{FB}(x, y)_+ \rangle + \langle y, (L_y L_z^{-1} - I) \phi_{FB}(x, y)_+ \rangle \\ &= \langle (L_x L_z^{-1} - I) x, \phi_{FB}(x, y)_+ \rangle + \langle (L_y L_z^{-1} - I) y, \phi_{FB}(x, y)_+ \rangle \\ &= \langle L_z^{-1} L_x x + L_z^{-1} L_y y - x - y, \phi_{FB}(x, y)_+ \rangle \\ &= \langle L_z^{-1} (x^2 + y^2) - x - y, \phi_{FB}(x, y)_+ \rangle \\ &= \langle L_z^{-1} z^2 - x - y, \phi_{FB}(x, y)_+ \rangle \\ &= \langle z - x - y, \phi_{FB}(x, y)_+ \rangle \\ &= \| \phi_{FB}(x, y)_+ \|^2, \end{aligned}$$

where the next-to-last equality follows from $L_z z = z^2$, so that $L_z^{-1} z^2 = z$ and the last equality is from Lemma 3.1(a).

Case 3. If $(x, y) \neq (0, 0)$ and $x^2 + y^2 \notin int(\mathbb{K})$, by part (b), we have

$$D_x \psi_2(x, y) = \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \phi_{FB}(x, y)_+,$$
$$D_y \psi_2(x, y) = \left(\frac{\mu}{\sqrt{\lambda^2 + \mu^2}} - 1\right) \phi_{FB}(x, y)_+.$$

Thus,

$$\langle x, D_x \psi_2(x, y) \rangle + \langle y, D_y \psi_2(x, y) \rangle$$

$$= \left(\frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \langle x, \phi_{FB}(x, y)_+ \rangle + \left(\frac{\mu}{\sqrt{\lambda^2 + \mu^2}} - 1 \right) \langle y, \phi_{FB}(x, y)_+ \rangle$$

$$= \left(\frac{\lambda x + \mu y}{\sqrt{\lambda^2 + \mu^2}} - x - y, \phi_{FB}(x, y)_+ \right)$$

$$= \langle \phi_{\rm FB}(x, y), \phi_{\rm FB}(x, y)_+ \rangle$$
$$= \| \phi_{\rm FB}(x, y)_+ \|^2,$$

where the next-to-last equality uses (19) and the last equality is from Lemma 3.1(a) again.

(e) This is an immediate consequence of (a) through (d). \Box

Proposition 3.4. Let $f_{LT} : \mathcal{H} \to \mathbb{R}_+$ be given as (5) with ψ_0 satisfying (6) and ψ satisfying (7). Then, the following results hold.

- (a) For all $\zeta \in \mathcal{H}$, we have $f_{LT}(\zeta) \ge 0$ and $f_{LT}(\zeta) = 0$ if and only if ζ solves the infinite-dimensional SOCP (1).
- (b) Let $D\psi_0(\langle F(\zeta), G(\zeta) \rangle) = D_t\psi_0(t)$ with $t = \langle F(\zeta), G(\zeta) \rangle$. If ψ_0, ψ and F, G are Fréchet differentiable, then so is f_{LT} and

$$Df_{\rm LT}(\zeta) = D\psi_0(\langle F(\zeta), G(\zeta) \rangle)[(DF(\zeta))^T G(\zeta) + (DG(\zeta))^T F(\zeta)] + (DF(\zeta))^T D_x \psi(F(\zeta), G(\zeta)) + (DG(\zeta))^T D_y \psi(F(\zeta), G(\zeta)).$$

(c) Assume F, G are are Fréchet differentiable mappings on ℋ and ψ belongs to Ψ₊ (respectively, Ψ₊₊). Then, for every ζ ∈ ℋ where DF(ζ)[DG(ζ)]⁻¹ is positive definite (respectively, positive semidefinite), either (i) f_{LT}(ζ) = 0 or (ii) f_{LT}(ζ) ≠ 0 with ⟨d(ζ), Df_{LT}(ζ)⟩ < 0, where</p>

$$d(\zeta) := -(DG(\zeta)^{-1})[D\psi_0(\langle F(\zeta), G(\zeta) \rangle)G(\zeta) + D_x\psi(F(\zeta), G(\zeta))].$$

Proof. (a) This consequence follows from (5), (6), and (7).

(b) Fix any $\zeta \in \mathcal{H}$. From Theorem 4.2 in [5] and the Fréchet differentiability of F and G, it follows that $f_{LT} : \mathcal{H} \to \mathbb{R}_+$ is Fréchet differentiable on \mathcal{H} . By the chain rule of differential, we have, for any $v \in \mathcal{H}$,

$$Df_{LT}(\zeta)v = D\psi_0(\langle F(\zeta), G(\zeta) \rangle)[\langle DF(\zeta)v, G(\zeta) \rangle + \langle DG(\zeta)v, F(\zeta) \rangle] + \langle D_x\psi(F(\zeta), G(\zeta)), DF(\zeta)v \rangle + \langle D_y\psi(F(\zeta), G(\zeta)), DG(\zeta)v \rangle,$$

which means

$$Df_{\rm LT}(\zeta) = D\psi_0(\langle F(\zeta), G(\zeta) \rangle)[(DF(\zeta))^T G(\zeta) + (DG(\zeta))^T F(\zeta)] + (DF(\zeta))^T D_x \psi(F(\zeta), G(\zeta)) + (DG(\zeta))^T D_y \psi(F(\zeta), G(\zeta)).$$

(c) First, we consider the case of $\psi \in \Psi_{++}$ and fix $\zeta \in \mathcal{H}$, where $DF(\zeta)[DG(\zeta)]^{-1}$ is positive semi-definite. Let $\alpha := D\psi_0(\langle F(\zeta), G(\zeta) \rangle)$ and drop the argument (ζ) for simplicity. Then

$$\begin{split} \langle d, Df_{\text{LT}} \rangle &= \langle -(DG)^{-1} (\alpha G + D_x \psi(F, G)), (DF)^T (\alpha G + D_x \psi(F, G)) \\ &+ (DG)^T (\alpha F + D_y \psi(F, G)) \rangle \\ &= -\langle \alpha G + D_x \psi(F, G), ((DG)^{-1})^T (DF)^T (\alpha G + D_x \psi(F, G)) \rangle \\ &- \langle \alpha G + D_x \psi(F, G), \alpha F + D_y \psi(F, G) \rangle \\ &\leq -\langle \alpha G + D_x \psi(F, G), \alpha F + D_y \psi(F, G) \rangle \\ &= -\alpha^2 \langle G, F \rangle - \alpha (\langle F, D_x \psi(F, G) \rangle) + \langle G, D_y \psi(F, G) \rangle) \\ &- \langle D_x \psi(F, G), D_y \psi(F, G) \rangle \\ &\leq -\alpha^2 \langle G, F \rangle - \langle D_x \psi(F, G), D_y \psi(F, G) \rangle, \end{split}$$

where the first inequality holds since $DF(DG)^{-1}$ is positive semidefinite and the inequality follows from $\alpha \ge 0$ and Equation (13). Now, we observe that $tD\psi_0(t) > 0$ if and only if t > 0 since ψ_0 is strictly increasing on $[0, \infty)$. Therefore, the first term on the right-hand side is nonpositive and equals zero if $\langle F, G \rangle \le 0$. In addition, by Equations (13) and (15), the second term on the right-hand side is nonpositive and equals zero if $\psi(F, G) = 0$. Thus, we have $\langle d, Df_{LT}(\zeta) \rangle \le 0$ and the equality hold only when $\langle F(\zeta), G(\zeta) \rangle \le 0$ and $\psi(F(\zeta), G(\zeta)) = 0$, in which Equation (7) implies ζ satisfies (1), that is, $f_{LT}(\zeta) = 0$.

Similar argument can be applied for the case of $\psi \in \Psi_+$ and $DF(DG)^{-1}$ being positive definite.

Next, we further consider another class of merit functions given as (8), that is,

$$\widehat{f_{\mathrm{LT}}}(\zeta) := \psi_0^*(F(\zeta) \bullet G(\zeta)) + \psi(F(\zeta), G(\zeta)),$$

where $\psi_0^* : \mathcal{H} \to \mathbb{R}_+$ is given as (9) and $\psi : \mathcal{H} \times \mathcal{H} \to \mathbb{R}_+$ satisfies (7). We notice that ψ_0^* possesses the following property:

$$\psi_0^*(w) = 0 \iff w \preceq_{\mathbb{K}} 0$$

which is a similar feature to (6) in some sense.

By imitating the steps for proving Proposition 3.4 and using the following Lemma 3.4 proved in SOC case by Chen [2], we obtain Proposition 3.5, which is a result analogous to Proposition 3.4. We omit its proof.

Lemma 3.4. The function $\psi_0^*(x \bullet y) := \frac{1}{2} ||(x \bullet y)_+||^2$ is differentiable for all $(x, y) \in \mathcal{H} \times \mathcal{H}$. Moreover, $D_x \psi_0^*(x \bullet y) = L_y(x \bullet y)_+$, and $D_y \psi_0^*(x \bullet y) = L_x(x \bullet y)_+$. **Proof.** For any $z \in \mathcal{H}$, we can factor z as $z = \alpha_1(z)u^{(1)} + \alpha_2(z)u^{(2)}$. Now, let $g : \mathcal{H} \to \mathcal{H}$ be defined as

$$g(z) := \frac{1}{2}((z)_{+})^{2} = \hat{g}(\alpha_{1}(z))u^{(1)} + \hat{g}(\alpha_{2}(z))u^{(2)},$$

where $\hat{g} : \mathbb{R} \to \mathbb{R}$ is given by $\hat{g}(\alpha) := \frac{1}{2}(\max(0, \alpha))^2$. From the continuous differentiability of \hat{g} and [17], the vector-valued function g is continuously Fréchet differentiable. Hence, the first component $g_1(z) = \frac{1}{2} ||(z)_+||^2$ of g(z) is continuously Fréchet differentiable as well. By an easy computation, we have $Dg_1(z) = (z)_+$. Now, let

$$z(x, y) := x \bullet y = (\lambda y' + \mu x') + \langle x, y \rangle e,$$

then we have $\psi_0^*(x \bullet y) = g_1(z(x, y))$. Fix $x = x' + \lambda e \in \mathcal{H}$, $y = y' + \mu e \in \mathcal{H}$ and $h = h' + le \in \mathcal{H}$, then we have

$$[D_x z(x, y)]h = \langle h, e \rangle y' + \mu (h - \langle h, e \rangle e) + \langle h, y \rangle e$$

= $ly' + \mu h' + \langle h, y \rangle e$
= $y \bullet h$
= $L_y h$.

Similarly, we can obtain $[D_y z(x, y)]h = L_x h$. Hence, applying the chain rule, the desired result follows.

Proposition 3.5. Let $\widehat{f_{LT}} : \mathcal{H} \to \mathbb{R}_+$ be given as (8) with ψ_0^* satisfying (9) and ψ satisfying (7). Then, the following results hold.

- (a) For all $\zeta \in \mathcal{H}$, we have $\widehat{f_{LT}}(\zeta) \ge 0$ and $\widehat{f_{LT}}(\zeta) = 0$ if and only if ζ solves the infinite-dimensional SOCP (1).
- (b) If ψ_0^*, ψ and F, G are Fréchet differentiable, then so is $\widehat{f_{LT}}$ and

$$D\widehat{f}_{LT}(\zeta) = [(DF(\zeta))^T L_{G(\zeta)} + (DG(\zeta))^T L_{F(\zeta)}](F(\zeta) \bullet G(\zeta))_+ + (DF(\zeta))^T D_x \psi(F(\zeta), G(\zeta)) + (DG(\zeta))^T D_y \psi(F(\zeta), G(\zeta)).$$

4. SOLUTION EXISTENCE, ERROR BOUND, AND BOUNDED LEVEL SETS

In this section, using the above merit functions f_{LT} and \widehat{f}_{LT} , we obtain error bounds for the solution of infinite-dimensional SOCP (1). Meanwhile, we study the existence and uniqueness for the solution of $CP(\mathbb{K}, F, G)$. To reach our results, we need some lemmas as below.

Lemma 4.1. Let $x = x' + \lambda e \in \mathcal{H}$ and $y = y' + \mu e \in \mathcal{H}$. Then, we have

$$\langle x, y \rangle \le \sqrt{2} \| (x \bullet y)_+ \|. \tag{25}$$

Proof. First, we observe the fact that

$$\begin{aligned} x \in \mathbb{K} &\iff (x)_{+} = x, \\ x \in -\mathbb{K} &\iff (x)_{+} = 0, \\ x \notin \mathbb{K} \cup -\mathbb{K} &\iff (x)_{+} = \alpha_{2} u^{(2)}, \end{aligned}$$

where α_2 is the bigger spectral value of x with the corresponding spectral vector $u^{(2)}$ defined as in Section 2. Hence, we have three cases.

Case 1. If $x \bullet y \in \mathbb{K}$, then $(x \bullet y)_+ = x \bullet y$. By definition of Jordan product of x and y as (11), that is, $x \bullet y := (\mu x' + \lambda y') + \langle x, y \rangle e$. It is clear that $||(x \bullet y)_+|| \ge \langle x, y \rangle$ and, hence, (25) holds.

Case 2. If $x \bullet y \in -\mathbb{K}$, then $(x \bullet y)_+ = 0$. Since $x \bullet y \in -\mathbb{K}$, by definition of Jordan product again, we have $\langle x, y \rangle \leq 0$. Hence, it is true that $\sqrt{2} \| (x \bullet y)_+ \| \geq \langle x, y \rangle$.

Case 3. If $x \bullet y \notin \mathbb{K} \cup -\mathbb{K}$, then $(x \bullet y)_+ = \alpha_2 u^{(2)}$, where

$$\alpha_2 = \langle x, y \rangle + \|\mu x' + \lambda y'\|,$$
$$u^{(2)} = \frac{1}{2} \left(\frac{\mu x' + \lambda y'}{\|\mu x' + \lambda y'\|} + e \right).$$

If $\langle x, y \rangle \leq 0$, then (25) is trivial. Thus, we can assume $\langle x, y \rangle > 0$. In fact, the desired inequality (25) follows from the below.

$$\|(x \bullet y)_+\|^2 = \frac{1}{2}\alpha_2^2$$

= $\frac{1}{2}(\langle x, y \rangle^2 + 2\langle x, y \rangle \|\mu x' + \lambda y'\| + \|\mu x' + \lambda y'\|^2)$
\ge $\frac{1}{2}\langle x, y \rangle^2.$

Then, we complete the proof.

Lemma 4.2. Let ψ_{FB} , ψ_1 , ψ_2 be given as (2), (14), (16), respectively. Then, ψ_{FB} , ψ_1 , and ψ_2 satisfy the following inequality.

$$\psi_{\diamond}(x,y) \ge \alpha(\|(-x)_+\|^2 + \|(-x)_+\|^2), \quad \forall (x,y) \in \mathcal{H} \times \mathcal{H},$$

for some positive constant α and $\diamond \in \{FB, 1, 2\}$.

407

Proof. For ψ_1 , it is clear by definition (14) with $\alpha = \frac{1}{2}$. For ψ_{FB} and ψ_2 , the inequality is still true due to Lemma 3.3.

By the definition of ψ_0^* given as (9), we can obtain the following lemma easily.

Lemma 4.3. Let ψ_0^* be given as (9). Then, ψ_0^* satisfies

$$\psi_0^*(\omega) \ge \beta \|(\omega)_+\|^2, \quad \forall \omega \in \mathcal{H},$$

for some positive constant β .

Proposition 4.1. Let F and G are Lipschitz continuous with constants γ and δ , respectively. Suppose that F is η -strongly monotone and F and G are ρ -jointly strongly monotone mapping from \mathcal{H} to \mathcal{H} . Let f_{LT} be given by (5) with ψ satisfying (7). If there exists a constant τ such that

$$\left|\tau - \frac{\rho}{\delta^2}\right| \le \frac{\sqrt{\rho^2 - \delta^2(\gamma^2 - \sigma^2)}}{\delta^2}, \quad \rho > \delta\sqrt{\gamma^2 - \sigma^2}, \tag{26}$$

where $\sigma = 1 - \sqrt{1 - 2\eta + \gamma^2}$. Then, the infinite-dimensional conic complementarity problem $CP(\mathbb{K}, F, G)$ given as in (1) has a unique solution ζ^* and there exists a scalar $\kappa > 0$ such that

$$\kappa \|\zeta - \zeta^*\|^2 \le \max\{1, \langle F(\zeta), G(\zeta) \rangle\} + \|(-F(\zeta))_+\| + \|(-G(\zeta))_+\|, \quad \forall \zeta \in \mathcal{H}.$$

Moreover,

$$\kappa \|\zeta - \zeta^*\|^2 \le \psi_0^{-1}(f_{\mathrm{LT}}(\zeta)) + \frac{\sqrt{2}}{\sqrt{\alpha}} f_{\mathrm{LT}}(\zeta)^{1/2}, \quad \forall \zeta \in \mathcal{H},$$

where α is a positive constant.

Proof. It is not hard to verify that ζ is a solution to (1) if and only if, for any constant $\tau > 0$, the following equation hold:

$$F(\zeta) - P_{\mathbb{K}}(F(\zeta) - \tau G(\zeta)) = 0,$$

where $P_{\mathbb{K}}$ is the projection of \mathcal{H} onto \mathbb{K} , that is,

$$\zeta - F(\zeta) + P_{\mathbb{K}}(F(\zeta) - \tau G(\zeta)) = \zeta,$$

Based on this, we define the mapping \mathcal{F} as

$$\mathcal{F}(x) = x - F(x) + P_{\mathbb{K}}(F(x) - \tau G(x)), \quad \forall x \in \mathcal{H}.$$
(27)

From the above discussion, ζ satisfies (1) if and only if ζ is a fixed point of \mathcal{F} . For any $x, y \in \mathcal{H}$, we have that

$$\begin{split} \|\mathscr{F}(x) - \mathscr{F}(y)\| \\ &= \|x - y - (F(x) - G(x)) + (P_{\mathbb{K}}(F(x) - \tau G(x)) - P_{\mathbb{K}}(F(y) - \tau G(y)))\| \\ &\leq \|x - y - (F(x) - G(x))\| + \|F(x) - F(y) - \tau (G(x) - G(y))\| \\ &\leq \left(\sqrt{1 - 2\eta + \gamma^2} + \sqrt{\gamma^2 - 2\tau\rho + \tau^2\delta^2}\right) \|x - y\|. \end{split}$$

From (26), it follows that $\sqrt{1 - 2\eta + \gamma^2} + \sqrt{\gamma^2 - 2\tau\rho + \tau^2\delta^2} < 1$, and hence, the mapping defined by (27) has a unique fixed point belonging to \mathcal{H} , which is the solution of (1). Using Property 2.5 and Lemma 4.2, we can complete the rest of the proof. The arguments are similar to those in [2, Proposition 4.1], and so are omitted here.

We would like to point out that, if the mapping F is Lipschitz continuous with constant γ and strongly monotone with constant η , then

$$\|\|x-y\|^2 \le \langle F(x) - F(y), x-y \rangle \le \gamma \|x-y\|^2, \quad \forall x, y \in \mathcal{H}$$

which implies that $\eta \leq \gamma$ and

$$1 - 2\eta + \gamma^2 \ge (1 - \gamma)^2 \ge 0.$$
(28)

Furthermore, if *G* and *F* are jointly strongly monotone with constant ρ and *G* is Lipschitz continuous with constant δ , then we can get $\rho \leq \gamma \delta$ and

$$\gamma^2 - 2\rho + \delta^2 \ge (\gamma - \delta)^2 \ge 0. \tag{29}$$

Inequalities (28) and (29) ensure that the set where (26) to be held is nonempty.

Similarly, we have the following Proposition 4.2 which is an extension of [2, Proposition 4.2].

Proposition 4.2. Let F and G are Lipschitz continuous with constants γ and δ , respectively. Suppose that F is η -strongly monotone and F and G are ρ -jointly strongly monotone mapping from \mathcal{H} to \mathcal{H} . Let \widehat{f}_{LT} be given by (8) with ψ satisfying (7). If there exists a constant τ such that

$$\left|\tau - \frac{\rho}{\delta^2}\right| \leq \frac{\sqrt{\rho^2 - \delta^2(\gamma^2 - \sigma^2)}}{\delta^2}, \quad \rho > \delta\sqrt{\gamma^2 - \sigma^2},$$

where $\sigma = 1 - \sqrt{1 - 2\eta + \gamma^2}$. Then, the infinite-dimensional conic complementarity problem $CP(\mathbb{K}, F, G)$ given as in (1) has a unique solution ζ^* and there exists a scalar $\kappa > 0$ such that

$$\kappa \|\zeta - \zeta^*\|^2 \le \|(F(\zeta) \bullet G(\zeta))_+\| + \|(-F(\zeta))_+\| + \|(-G(\zeta))_+\|, \quad \forall \zeta \in \mathcal{H}.$$

Moreover,

$$\kappa \|\zeta - \zeta^*\|^2 \le \left(rac{1}{\sqrt{eta}} + rac{\sqrt{2}}{\sqrt{lpha}}
ight) \widehat{f_{\mathrm{LT}}}(\zeta)^{1/2}, \quad \forall \zeta \in \mathscr{H},$$

where α and β are positive constants.

Now, we give conditions under which f_{LT} , \hat{f}_{LT} have bounded level sets. We need the next lemma which is key to proving the properties of bounded level sets.

Lemma 4.4. Let ψ_{FB} , ψ_1 and ψ_2 be given by (2), (14), and (16), respectively. For any $\{(x^k, y^k)\}_{k=1}^{\infty} \in \mathcal{H} \times \mathcal{H}$. Let $\alpha_1(x)^k \leq \alpha_2(x)^k$ and $\alpha_1(y)^k \leq \alpha_2(y)^k$ denote the spectral values of x^k and y^k , respectively. Then, the following results hold.

- (a) If $\alpha_1(x)^k \to -\infty$ or $\alpha_1(y)^k \to -\infty$, then $\psi_{\diamond}(x^k, y^k) \to \infty$, for $\diamond \in \{\text{FB}, 1, 2\}$.
- (b) Suppose that $\{\alpha_1(x)^k\}$ and $\{\alpha_1(y)^k\}$ are bounded below. If $\alpha_2(x)^k \to \infty$ or $\alpha_2(y)^k \to \infty$, then $\langle x, x^k \rangle + \langle y, y^k \rangle \to \infty$, for any $x, y \in int(\mathbb{K})$.

Proof. (a) For ψ_1 , the proof follows by the fact that

$$2\|(-x^{k})_{+}\|^{2} = 2\|(-\alpha_{1}(x)^{k}v_{x}^{(1)^{k}} - \alpha_{2}(x)^{k}v_{x}^{(2)^{k}})_{+}\|^{2}$$

$$= 2\|(-\alpha_{1}(x)^{k})_{+}v_{x}^{(1)^{k}} - (\alpha_{2}(x)^{k})_{+}v_{x}^{(2)^{k}}\|^{2}$$

$$= (-\alpha_{1}(x)^{k})_{+}^{2} + (-\alpha_{2}(x)^{k})_{+}^{2}$$

$$= \sum_{i=1}^{2} \left(\max\{0, -\alpha_{i}(x)^{k}\}\right)^{2}.$$

Similarly, we have $2\|(-y^k)_+\|^2 = \sum_{i=1}^2 (\max\{0, -\alpha_i(y)^k\})^2$. For ψ_{FB} and ψ_2 , using the same fact plus Lemma 3.3 leads to the desired result.

(b) For any $x = x' + \lambda e$, $y = y' + \mu e \in \mathcal{H}$ with $||x'|| \le \lambda$, $||y'|| \le \mu$. Using the spectral decomposition

$$x^{k} = \frac{\alpha_{2}(x)^{k} - \alpha_{1}(x)^{k}}{2}w^{k} + \frac{\alpha_{2}(x)^{k} + \alpha_{1}(x)^{k}}{2}e \quad \text{with } \|w^{k}\| = 1,$$

we have

$$\langle x, x^k \rangle = \frac{\alpha_2(x)^k - \alpha_1(x)^k}{2} \langle x', w^k \rangle + \frac{\alpha_2(x)^k + \alpha_1(x)^k}{2} \lambda$$

$$= \frac{\alpha_1(x)^k}{2} \left(\lambda - \langle x', w^k \rangle \right) + \frac{\alpha_2(x)^k}{2} \left(\lambda + \langle x', w^k \rangle \right).$$

$$(30)$$

Since $||w^k|| = 1$, we have $\lambda - \langle x', w^k \rangle \ge \lambda - ||x'|| > 0$ and $\lambda + \langle x', w^k \rangle \ge \lambda - ||x'|| > 0$. In addition, $\{\alpha_1(x)^k\}$ is bounded below, the first term on the right-hand side of (30) is bounded below. If $\{\alpha_2(x)^k\} \to \infty$, then the second term on the right-hand side of (30) tends to infinity. Hence, $\langle x, x^k \rangle \to \infty$. A similar argument shows that $\langle y, y^k \rangle$ is bounded below. Thus, $\langle x, x^k \rangle + \langle y, y^k \rangle \to \infty$. Symmetrically, the desired results also holds if $\{\alpha_2(y)^k\} \to \infty$.

Using the above Lemma 4.4 and the same arguments in Proposition 4.3 and Proposition 4.4 in [2], we have the following Propositions 4.3 and 4.4.

Proposition 4.3. Let f_{LT} be given by (5) with ψ satisfying the condition of Lemma 4.4(a). Suppose that F, G are Fréchet differentiable, jointly monotone mappings from \mathcal{H} to \mathcal{H} satisfying

$$\lim_{\|\zeta\|\to\infty} \left(\|F(\zeta)\| + \|G(\zeta)\| \right) = \infty.$$

Suppose also that the infinite-dimensional SOCP is strictly feasible, i.e., there exists $\bar{\zeta} \in \mathcal{H}$ such that $F(\bar{\zeta}), G(\bar{\zeta}) \in int(\mathbb{K})$. Then, the level set

$$\mathscr{L}(\mathbf{v}) := \{\zeta \in \mathscr{H} \mid f_{\mathrm{LT}}(\zeta) \le \mathbf{v}\}$$

is bounded for all $v \ge 0$.

Proposition 4.4. Let $\widehat{f_{LT}}$ be given by (8) with ψ satisfying the condition of Lemma 4.4(a). Suppose that F, G are Fréchet differentiable, jointly monotone mappings from \mathcal{H} to \mathcal{H} satisfying

$$\lim_{\|\zeta\|\to\infty} \left(\|F(\zeta)\| + \|G(\zeta)\| \right) = \infty.$$

Suppose also that the infinite-dimensional SOCP is strictly feasible, i.e., there exists $\bar{\zeta} \in \mathcal{H}$ such that $F(\bar{\zeta}), G(\bar{\zeta}) \in int(\mathbb{K})$. Then, the level set

$$\mathscr{L}(\mathbf{v}) := \left\{ \zeta \in \mathscr{H} \, | \, \widehat{f_{\mathrm{LT}}}(\zeta) \le \mathbf{v} \right\}$$

is bounded for all $v \ge 0$.

5. CONCLUSIONS

In this article, we extend two classes of merit functions f_{LT} and \hat{f}_{LT} to infinite-dimensional SOCP. We show analogous properties as in finitedimensional cases. In particular, under the condition that F and G are jointly monotone and a strictly feasible solution exists, we prove that the infinite-dimensional SOCP has a unique solution and both f_{LT} and \hat{f}_{LT} have bounded level sets which will ensure that the sequence generated by a decent algorithm has at least an accumulation point. All these will make it possible to construct a decent algorithm for solving the equivalent unconstrained reformulation of the infinite-dimensional SOCP. In addition, we show that both f_{LT} and \hat{f}_{LT} are Fréchet differentiable and their derivatives have computable formulas. All the aforementioned features are significant reasons for studying these merit functions.

An interesting follow-up to this article is to establish the semismoothness of all merit functions studied here and in [5], which will provide a background brick for analysis of semismooth methods for infinite-dimensional SOCP. Another direction is to explore other conditions under which $CP(\mathbb{K}, F, G)$ has a unique solution. We leave them as future research topics.

ACKNOWLEDGMENT

J. Sun is also affiliated with Department of Mathematics of National Taiwan Normal University.

J.-S. Chen is a Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The author's work is supported by National Science Council of Taiwan.

REFERENCES

- E.D. Andersen, C. Roos, and T. Terlaky (2003). On implementing a primal-dual interior-point method for conic quadratic optimization. *Mathematical Programming* 95:249–277.
- J.-S. Chen (2006). Two classes of merit functions for the second-order cone complementarity problem. *Mathematical Methods of Operations Research* 64:495–519.
- X.-D. Chen, D. Sun, and J. Sun (2003). Complementarity functions and numerical experiments for second-order cone complementarity problem. *Computational Optimization and Applications* 25:39–56.
- J.-S. Chen and P. Tseng (2005). An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. *Mathematical Programming* 104:293–327.
- 5. Y. Chiang, S.-H. Pan, and J.-S. Chen (2009). A merit function method for infinite-dimensional SOCPs. Submitted.
- 6. J. Faraut and A. Kor'anyi (1994). *Analysis on Symmetric Cones.* Oxford Mathematical Monographs Oxford University Press, New York.
- M. Fukushima, Z.-Q. Luo, and P. Tseng (2002). Smoothing functions for second-order cone complementarity problem. SIAM Joural on Optimization 12:436–460.
- L. Faybusovich and T. Tsuchiya (2003). Primal-dual algorithms and infinite-dimensional Jordan algebras of finite rank. *Mathematical Programming* 97:471–493.

- 9. R.M. Goes and P.R. Oliveira (2002). A new class of merit functions for the semidefinite complementarity problem. *Annals of the Brazilian Workshop on Continuous Optimization* 1–18.
- S. Hayashi, N. Yamashita, and M. Fukushima (2005). A combined smoothing and regularization method for monotone second-order complementarity problems. *SIAM Joural on Optimization* 15:593–615.
- C. Kanzow, I. Ferenczi, and M. Fukushima (2009). On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity. *SIAM Journal on Optimization* 20:297–320.
- Z.-Q. Luo and P. Tseng (1997). A new class of merit functions for the nonlinear complementarity problem. In: *Complementarity and Variational Problem: State of the Art* (M. C. Ferris and J. S. Pang, eds.), SIAM, Philadelphia, pp. 204–225.
- S.-H. Pan and J.-S. Chen (2009). A damped Guass–Newton method for the second-order cone complementarity problem. *Applied Mathematics and Optimization* 59:293–318.
- 14. P. Tseng (1998). Merit function for semidefinite complementarity problems. *Mathematical Programming* 83:159–185.
- 15. T. Tsuchiya (1999). A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. *Optimization Methods and Software* 11:141–182.
- K. Yamada and M. Fukushima (1999). A new merit function and a decent method for semidefinite complementarity problems. In: *Reformulation-Nonsmooth, Piecewise Smooth, Semismooth* and Smoothing Methods. (M. Fukushima and L. Qi, eds.), Kluwer Academic Publishers, Boston, pp. 405–420.
- 17. C.-Y. Yang, Y.-L. Chang, and J.-S. Chen (2009). Analysis of nonsmooth vector-valued functions associated with infinite-dimensional second-order cones. Submitted.
- 18. A. Yoshise (2006). Interior point trajectories and a homogenous model for nonlinear complementarity problems over symmetric cones. *SIAM Joural on Optimization* 17:1129–1153.