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Abstract. In this paper, we extend two classes of merit functions for the second-order

complementarity problem (SOCCP) to infinite-dimensional SOCCP. These two classes of

merit functions include several popular merit functions, which are used in NCP (nonlinear

complementarity problem), SDCP (semidefinite complementarity problem), and SOCCP,

as special cases. We give conditions under which the infinite-dimensional SOCCP has

a unique solution and show that all these merit functions provide an error bound for

infinite-dimensional SOCCP and have bounded level sets. These results are very useful

for designing solution methods for infinite-dimensional SOCCP.
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1 Introduction

LetH be a Hilbert space endowed with an inner product 〈·, ·〉, and write the norm induced

by 〈·, ·〉 as ‖ · ‖. The conic complementarity problem CP (K, F,G) in H is, for any given
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closed convex cone K ⊂ H and functions F,G : H → H, to find points x, y, ζ ∈ H such

that
〈x, y〉 = 0, x ∈ K, y ∈ K∗,
x = F (ζ), y = G(ζ),

where K∗ := {x ∈ H| 〈x, y〉 ≥ 0,∀y ∈ K} is the dual cone of K. A closed convex

cone K ⊂ H is called self-dual if K coincides with its dual cone K∗, for example, the

nonnegative orthant cone Rn
+ := {(x1, · · · , xn) ∈ Rn| xj ≥ 0, j = 1, 2, . . . , n} and the

second-order cone (also called Lorentz cone) Kn := {(x1, x2) ∈ R × Rn−1| x1 ≥ ‖x2‖}.
This paper focuses on the conic complementarity problem associated with the infinite-

dimensional second-order cone K in H (will be defined as in (10)) which is closed, convex,

and self-dual (see Section 2 for details). Since K is self-dual, the conic complementarity

problem reduces to CP (K, F,G), which is to find x, y, ζ ∈ H such that

〈x, y〉 = 0, x ∈ K, y ∈ K,
x = F (ζ), y = G(ζ).

(1)

For finite-dimensional second-order cone optimization and complementarity problems,

there have proposed various methods, including the interior point methods [1, 15, 18],

the smoothing and semismooth Newton methods [3, 7, 10, 11, 13], and the merit function

method [2, 4]. As far as we know, only very few of aforementioned methods are extended

to infinite-dimensional SOCCP case. More precisely, for infinite-dimensional second-

order cone optimization and complementarity problems, some particular interior point

method was employed in [8], and a merit function method was considered in [5] where

its merit function is ψ
FB

: H×H → R+ given by

ψ
FB

(x, y) :=
1

2
‖φ

FB
(x, y)‖2, (2)

which is induced by the Fischer-Burmeister (FB) function φ
FB

: H×H → H defined as

φ
FB

(x, y) := (x2 + y2)1/2 − (x+ y). (3)

Here x2 means x • x, where • will be introduced in Section 2. In this paper, we also

concern with the merit function method for (1). In other words, we aim to seek a smooth

function Ψ : H×H → R+ such that, for any x, y ∈ H,

Ψ(x, y) = 0⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0, (4)

and then the problem CP (K, F,G) can be transformed into a smooth minimization

problem:

min
ζ∈H

f(ζ) := Ψ(F (ζ), G(ζ)).

Traditionally, such a f or Ψ is called a merit function associated with K.
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The two classes of merit functions that we will investigate come intuitively from the

finite-dimensional case where H equals Rn and is associated with the Lorentz cone Kn,

which was studied in [2]. The first class is

f
LT

(ζ) := ψ0 (〈F (ζ), G(ζ)〉) + ψ(F (ζ), G(ζ)), (5)

where ψ0 : R→ R+ is any smooth function satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ′0(t) > 0 ∀t > 0, (6)

and ψ : H×H → R+ satisfies

ψ(x, y) = 0, 〈x, y〉 ≤ 0⇐⇒ (x, y) ∈ K×K, 〈x, y〉 = 0. (7)

The second class is

f̂
LT

(ζ) := ψ∗0(F (ζ) •G(ζ)) + ψ(F (ζ), G(ζ)), (8)

where ψ∗0 : H → R+ is given by

ψ∗0(w) =
1

2
‖(w)+‖2 (9)

and ψ : H×H → R+ satisfies (7). The function f
LT

was originally proposed by Luo and

Tseng for NCP case [12] and was extended to the SDCP case by Tseng [14], then to the

SOCCP case by Chen [2]. We explore the extension to the infinite-dimensional SOCCPs

as will be seen in Sections 3. The second class of merit functions for SDCP case was

recently studied by Goes and Oliveira [9] and a variant of f̂
LT

was also studied by Chen

[2] for SOCCP case.

As mentioned, we will define and study these merit functions associated with K in

Hilbert space H. Three examples of ψ will be studied in Section 3. In Section 4, we

will show that, under certain conditions, the infinite-dimensional SOCCP has a unique

solution and both f
LT

and f̂
LT

provide global error bound, which plays an important role

in analyzing the convergence rate of some iterative methods for solving CP (K, F,G).

Besides, under the condition that F and G are jointly monotone and a strictly feasible

solution exists, we will prove that both f
LT

and f̂
LT

have bounded level sets which will

ensure that the sequence generated by a decent algorithm has at least an accumulation

point. All these properties will make it possible to construct a decent algorithm for solving

the equivalent unconstrained reformulation of CP (K, F,G). Moreover, we will show

that both f
LT

and f̂
LT

are Fréchet differentiable and their derivatives have computable

formulas.

Throughout this paper, for any given Banach spaces X and Y , let L(X ,Y) denote

the Banach space of all continuous linear mappings from X into Y . We simply write

L(X ,Y) = L(X ) and denote GL(X ) the set of all invertible mappings in L(X ). The
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norm of any l ∈ L(X ,Y) is defined by ‖l‖ := sup{‖l(x)‖ | x ∈ X and ‖x‖ = 1}. In

addition, for any self-adjoint linear operator l from X → X , we write l � 0 (respectively,

l � 0) to mean that l is positive definite (respectively, positive semidefinite). For any

x ∈ H, (x)+ denotes the orthogonal projection of x onto K, whereas (x)− means the

orthogonal projection of x onto −K. A sequence of elements {xn} ⊂ H → x means

limn→∞ ‖xn − x‖ = 0. A sequence of operators {Tn} → T means limn→∞ ‖Tn − T‖ = 0.

2 Preliminaries

In this section, we recall some background materials and preliminary results that will be

used later. We begin with introducing the infinite-dimensional second-order cone.

Recall that the finite-dimensional second-order cone (also called Lorentz cone) is

defined as Kn := {(r, x′) ∈ R × Rn−1| r ≥ ‖x′‖}. As discussed in [5], this Lorentz cone

Kn can be rewritten as

Kn :=

{
x ∈ Rn

∣∣ 〈x, e〉 ≥ 1√
2
‖x‖
}

with e = (1, 0) ∈ R× Rn−1.

Motivated by this, the following closed convex cone in the Hilbert space H is considered:

K(e, r) := {x ∈ H | 〈x, e〉 ≥ r‖x‖},

where e ∈ H with ‖e‖ = 1 and 0 < r < 1. Observe that K(e, r) is pointed, that is,

K(e, r) ∩ (−K(e, r)) = {0}. Moreover, by denoting

〈e〉⊥ := {x ∈ H | 〈x, e〉 = 0},

we may express the closed convex cone K(e, r) as

K(e, r) =

{
x′ + λe ∈ H

∣∣ x′ ∈ 〈e〉⊥ and λ ≥ r√
1− r2

‖x′‖
}
.

When H = Rn and e = (1, 0) ∈ R× Rn−1, K(e, 1√
2
) coincides with Kn. By this, we shall

call K(e, 1√
2
) the infinite-dimensional second-order cone (or infinite-dimensional Lorentz

cone) in H determined by e. In the rest of this paper, we shall only consider any fixed

unit vector e ∈ H, and denote

K := K

(
e,

1√
2

)
(10)

since two infinite-dimensional second-order cones K(e1,
1√
2
) and K(e2,

1√
2
) associated

with different unit elements e1 and e2 in H are isometric.

Unless specifically stated otherwise, we shall alternatively write any point x ∈ H as

x = x′ + λe with x′ ∈ 〈e〉⊥ and λ = 〈x, e〉. In addition, for any x, y ∈ H, we shall write
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x �K y (respectively, x �K y) if x − y ∈ int(K) (respectively, x − y ∈ K). Now, we

introduce the spectral decomposition for any element x ∈ H. For any x = x′ + λe ∈ H,

we can decompose x as

x = α1(x)v(1)x + α2(x)v(2)x ,

where α1(x), α2(x) and v
(1)
x , v

(2)
x are the spectral values and the associated spectral

vectors of x with respect to K, given by

αi(x) = (−1)i‖x′‖+ λ,

v
(i)
x =

 1
2

(
(−1)i

x′

‖x′‖
+ e

)
, if x′ 6= 0,

1
2
((−1)iw + e), if x′ = 0,

for i = 1, 2 with w being any vector in 〈e〉⊥ satisfying ‖w‖ = 1. Its determinant and

trace is defined as det(x) := α1(x)α2(x) and tr(x) := α1(x) + α2(x), respectively.

Next, we come to the Jordan product associated with the infinite-dimensional Lorentz

cone K. For any x = x′ + λe ∈ H and y = y′ + µe ∈ H, we define the Jordan product of

x and y by

x • y := (µx′ + λy′) + 〈x, y〉e. (11)

Clearly, when H = Rn and e = (1, 0) ∈ R× Rn−1, this definition is the same as the one

given by [6, Chapter II]. From the definition (11) and direct computation, it is easy to

verify that the following properties hold.

Property 2.1 (a) x • y = y • x and x • e = x for all x, y ∈ H.

(b) (x+ y) • z = x • z + y • z for all x, y, z ∈ H.

(c) 〈x, y • z〉 = 〈y, x • z〉 = 〈z, x • y〉 for all x, y, z ∈ H.

(d) For any x = x′ + λe ∈ H, x2 = x • x = 2λx′ + ‖x‖2e ∈ K and 〈x2, e〉 = ‖x‖2.

(e) If x = x′+λe ∈ K, then there is a unique x1/2 ∈ K such that (x1/2)2 = (x1/2)•(x1/2) =

x, where

x1/2 =
√
α1(x) v(1)x +

√
α2(x) v(2)x =

 0, if x = 0
x′

2τ
+ τe, otherwise

with τ =

√
λ+
√
λ2−‖x′‖2
2

.

(f) Every x = x′ + λe ∈ H with λ2 − ‖x′‖2 6= 0 is invertible with respect to the Jordan

product, i.e., there is a unique point x−1 ∈ H such that x • x−1 = e, where

x−1 = α1(x)−1v(1)x + α2(x)−1v(2)x =
−x′ + λe

det(x)
=
−x′ + λe

λ2 − ‖x′‖2
.

Moreover, x ∈ int(K) if and only if x−1 ∈ int(K).
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Associated with every x ∈ H, we define a linear mapping Lx from H to H by

Lxy := x • y for any y ∈ H. (12)

It is clear that Lx ∈ L(H) and this mapping possesses the following favorable properties.

Property 2.2 [5, Lemma 2.2] For any x ∈ H, let Lx ∈ L(H) be defined as in (12).

Then, we have

(a) x �K 0⇐⇒ Lx � 0 and x �K 0⇐⇒ Lx � 0;

(b) if x = x′ + λe with λ 6= 0 and |λ| 6= ‖x′‖, then Lx ∈ GL(H) with the inverse given

by

L−1x y =
1

λ

(
y′ − 〈x−1, y〉x′

)
+ 〈x−1, y〉e for any y = y′ + µe ∈ H.

Property 2.3 [5, Lemma 5.1] Let K be the infinite-dimensional Lorentz cone in H given

as in (10). For any x, y ∈ H and z �K 0, the following implications hold:

z2 �K x2 + y2 =⇒ L2
z − L2

y − L2
x � 0,

z2 �K x2 =⇒ z �K x.

Moreover, the above implications remain true when “ � ” is replaced by “ � ”.

The following describes some important relations when x2 + y2 lies on the boundary

of K.

Property 2.4 [5, Lemma 2.3] For any x = x′+λe, y = y′+µe ∈ H with x2+y2 /∈ int(K),

we have

λ2 = ‖x′‖2, µ2 = ‖y′‖2, λµ = 〈x′, y′〉, λy′ = µx′.

Property 2.5 Let K be any closed convex cone in H. For each x ∈ H, let x+K and

x−K denote the minimum distance projection of x onto K and −K∗, respectively. The

following results hold.

(a) For any x ∈ H, we have x = x+K + x−K and ‖x‖2 = ‖x+K‖2 + ‖x−K‖2.

(b) For any x ∈ H and y ∈ K, we have 〈x, y〉 ≤ 〈x+K, y〉.

(c) If K is self-dual, then for any x ∈ H and y ∈ K, we have ‖(x+ y)+K‖ ≥ ‖x
+
K‖.

(d) For any x ∈ K and y ∈ H with x2 − y2 ∈ K, we have x− y ∈ K.
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Proof. These results are true for general closed convex cone whose proofs are the same

as in [4, Lemma 5.1]. 2

To close this section, we review some definitions that will be used in subsequent

analysis.

Definition 2.1 Let F,G : H → H be single-valued mappings.

(a) F is said to be η-strongly monotone if there exists a constant η > 0 satisfying

〈F (x)− F (y), x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ H.

(b) F is said to be Lipschitz continuous with constant γ if

‖F (x)− F (y)‖ ≤ γ‖x− y‖, ∀x, y ∈ H.

(c) F and G are said to be ρ-jointly strongly monotone if there exists a constant ρ > 0

satisfying

〈F (x)− F (y), G(x)−G(y)〉 ≥ ρ‖x− y‖2, ∀x, y ∈ H.

We also recall the concept of Fréchet differentiability. For given Banach spaces X
and Y , a mapping f from a nonempty open subset X of X into Y is said to be Fréchet

differentiable at x ∈ X if there exists lx ∈ L(X ,Y) such that

lim
h→0

f(x+ h)− f(x)− lxh
‖h‖

= 0,

and lx is called the Fréchet differential of f at x, denoted by Df(x). When f is Fréchet

differentiable at every point of X, we say that f is Fréchet differentiable on X. If f is

Fréchet differentiable on a neighborhood U ∈ X of a point x0 ∈ X, and if, as a mapping

from U into the Banach space L(X ,Y), the mapping x → Df(x) is continuous at x0,

then f is said to be continuously Fréchet differentiable at x0. The mapping f is called

continuously Fréchet differentiable on X if it is continuously Fréchet differentiable at

every point of X.

3 Two classes of merit functions

In this section, we elaborate more about the two classes of merit functions for (1). We

are motivated by a class of merit functions proposed by Luo and Tseng [12] for the NCP

case originally which was already extended to the SDP and SOCCP by Tseng [14] and

Chen [2], respectively. We introduce them as below. Let f
LT

be given as (5), i.e.,

f
LT

(ζ) := ψ0(〈F (ζ), G(ζ)〉) + ψ(F (ζ), G(ζ)),
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where ψ0 : R → R+ satisfies (6) and ψ : H × H → R+ satisfies (7). We notice that

ψ0 is differentiable and strictly increasing on [0,∞). Let Ψ+ denote the collection of

ψ : H × H → R+ satisfying (7) that are Fréchet differentiable and their derivatives

satisfy the following conditions:{
〈Dxψ(x, y), Dyψ(x, y)〉 ≥ 0, ∀(x, y) ∈ H ×H.
〈x,Dxψ(x, y)〉+ 〈y,Dyψ(x, y)〉 ≥ 0, ∀(x, y) ∈ H ×H. (13)

We will give an example of ψ belonging to Ψ+ in Proposition 3.1. Before that, we

need the following three lemmas which will be used for proving Proposition 3.1 and

Proposition 3.2.

Lemma 3.1 (a) For any x ∈ H, 〈x, (x)−〉 = ‖(x)−‖2 and 〈x, (x)+〉 = ‖(x)+‖2

(b) For any x ∈ H and y ∈ H, we have

x ∈ K⇐⇒ 〈x, y〉 ≥ 0, ∀y ∈ K.

Proof. The results follow by Property 2.5 and self-duality of K. 2

Lemma 3.2 [17] For x 6= 0 ∈ H, the following hold.

(a) If g(x) = ‖x‖, we have Dg(x)h =
〈x, h〉
‖x‖

.

(b) If g(x) = ‖x‖2, we have Dg(x)h = 2〈x, h〉.

(c) If g(x) =
x

‖x‖
, we have Dg(x)h =

h

‖x‖
− 〈x, h〉
‖x‖3

x.

Proof. The results can be verified by direct computation, also see [17]. 2

Lemma 3.3 Let φ
FB

and ψ
FB

be given as in (3) and (2), respectively. Then,

(a) φ
FB

(x, y) = 0⇐⇒ x ∈ K, y ∈ K, x • y = 0⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0.

(b) for any x, y ∈ H, there holds

4ψ
FB

(x, y) ≥ 2‖φ
FB

(x, y)+‖2 ≥ ‖(−x)+‖2 + ‖(−y)+‖2.
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Proof. (a) This is shown in [5, Lemma 3.1].

(b) The first inequality follows from Property 2.5(a). Since (x2 + y2)1/2 − x ∈ K, by

Property 2.5(c), we can deduce that ‖((x2 + y2)1/2 − x − y)+‖2 ≥ ‖(−y)+‖2. Similarly,

we can get ‖((x2 + y2)1/2 − x − y)+‖2 ≥ ‖(−x)+‖2. Adding the above two inequalities

yields the desired second inequality. This completes the proof. 2

Proposition 3.1 Let ψ1 : H×H → R+ be given by

ψ1(x, y) :=
1

2

(
‖(−x)+‖2 + ‖(−y)+‖2

)
(14)

Then, the following results hold.

(a) ψ1 satisfies (7).

(b) ψ1 is convex and Fréchet differentiable at every (x, y) ∈ H × H with Dxψ1(x, y) =

(x)−, Dyψ1(x, y) = (y)−.

(c) For every (x, y) ∈ H ×H, we have

〈Dxψ1(x, y), Dyψ1(x, y)〉 ≥ 0.

(d) For every (x, y) ∈ H ×H, we have

〈x,Dxψ1(x, y)〉+ 〈y,Dyψ1(x, y)〉 = ‖(x)−‖2 + ‖(y)−‖2.

(e) ψ1 belongs to Ψ+.

Proof. The proofs are similar to those in [2, Proposition 3.1], so we omit them. 2

Next, we consider a further restriction on ψ. Let Ψ++ denote the collection of ψ ∈ Ψ+

satisfying the following conditions:

ψ(x, y) = 0, ∀(x, y) ∈ H ×H whenever 〈Dxψ(x, y), Dyψ(x, y)〉 = 0. (15)

Two examples of such ψ are given in next two propositions.

Proposition 3.2 Let ψ
FB

(x, y) be given by (2). Then, the following results hold.

(a) ψ
FB

satisfies (7).
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(b) ψ
FB

is Fréchet differentiable at every (x, y) = (x′+ λe, y′+ µe) ∈ H×H. Moreover,

DxψFB
(0, 0) = DyψFB

(0, 0) = 0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(K), then

DxψFB
(x, y) = LxL

−1
(x2+y2)1/2

φ
FB

(x, y)− φ
FB

(x, y),

DyψFB
(x, y) = LyL

−1
(x2+y2)1/2

φ
FB

(x, y)− φ
FB

(x, y).

If (x, y) 6= (0, 0) and x2 + y2 /∈ int(K), then λ2 + µ2 6= 0 and

DxψFB
(x, y) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y),

DyψFB
(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)).

(c) For every (x, y) = (x′ + λe, y′ + µe) ∈ H ×H, we have

〈DxψFB
(x, y), DyψFB

(x, y)〉 ≥ 0

and the equality holds whenever ψ
FB

(x, y) = 0.

(d) For every (x, y) = (x′ + λe, y′ + µe) ∈ H ×H, we have

〈x,DxψFB
(x, y)〉+ 〈y,DyψFB

(x, y)〉 = ‖φ
FB

(x, y)‖2.

(e) ψ
FB

belongs to Ψ++.

Proof. See [5, Theorem 4.1] and [5, Lemma 5.2]. 2

Proposition 3.2 tells us that ψ
FB

defined as (2) belongs to Ψ++ which yields a merit

function ψ
YF

: H×H → R+ given as

ψ
YF

(x, y) := ψ0(〈x, y〉) + ψ
FB

(x, y),

and studied by Yamashita and Fukushima [16].

Proposition 3.3 Let ψ2 : H×H → R+ be given by

ψ2(x, y) =
1

2
‖φ

FB
(x, y)+‖2, (16)

where φ
FB

is defined as (3). Then, the following results hold.

(a) ψ2 satisfies (7).

10



(b) ψ2 is Fréchet differentiable at every (x, y) = (x′ + λe, y′ + µe) ∈ H ×H. Moreover,

DxψFB
(0, 0) = DyψFB

(0, 0) = 0. If (x, y) 6= (0, 0) and x2 + y2 ∈ int(K), then

Dxψ2(x, y) = LxL
−1
(x2+y2)1/2

φ
FB

(x, y)+ − φFB
(x, y)+,

Dyψ2(x, y) = LyL
−1
(x2+y2)1/2

φ
FB

(x, y)+ − φFB
(x, y)+.

If (x, y) 6= (0, 0) and x2 + y2 /∈ int(K), then λ2 + µ2 6= 0 and

Dxψ2(x, y) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+,

Dyψ2(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+.

(c) For every (x, y) = (x′ + λe, y′ + µe) ∈ H ×H, we have

〈Dxψ2(x, y), Dyψ2(x, y)〉 ≥ 0

and the equality holds whenever ψ2(x, y) = 0.

(d) For every (x, y) = (x′ + λe, y′ + µe) ∈ H ×H, we have

〈x,Dxψ2(x, y)〉+ 〈y,Dyψ2(x, y)〉 = ‖φ
FB

(x, y)+‖2.

(e) ψ2 belongs to Ψ++.

Proof. (a) Suppose ψ2(x, y) = 0 and 〈x, y〉 ≤ 0. Let z := −φ
FB

(x, y). Then (−z)+ =

φ
FB

(x, y)+ = 0 which says z ∈ K. Since x+ y = (x2 + y2)1/2 + z, squaring both sides and

simplifying yield

2x • y = 2((x2 + y2)1/2 • z) + z2.

Now, taking trace of both sides and using the fact tr(x • y) = 2〈x, y〉, we obtain

4〈x, y〉 = 4〈(x2 + y2)1/2, z〉+ 2‖z‖2. (17)

Since (x2 + y2)1/2 ∈ K and z ∈ K, then we know 〈(x2 + y2)1/2, z〉 ≥ 0 by Lemma

3.1(b). Thus the right-hand of (17) is nonnegative, which together with 〈x, y〉 ≤ 0

implies 〈x, y〉 = 0. Therefore, with this, the equation (17) says z = 0 which is equivalent

to φ
FB

(x, y) = 0. Then by Lemma 3.3, we have x, y ∈ K. Conversely, if x, y ∈ K and

〈x, y〉 = 0, then again Lemma 3.3 yields φ
FB

(x, y) = 0. Thus, ψ2(x, y) = 0 and 〈x, y〉 ≤ 0.

(b) For the proof of part (b), we need to discuss three cases.
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Case 1: If (x, y) = (0, 0), then for any h = h′ + λ̄e, k = k′ + µ̄e ∈ H, let µ1 ≤ µ2 be the

spectral values and let v(1), v(2) be the corresponding spectral vectors of h2 + k2. Hence,

by Property 2.1(e), we have

‖(h2 + k2)1/2 − h− k‖ = ‖√µ1v
(1) +

√
µ2v

(2) − h− k‖
≤ √

µ1‖v(1)‖+
√
µ2‖v(2)‖+ ‖h‖+ ‖k‖

= (
√
µ1 +

√
µ2)/
√

2 + ‖h‖+ ‖k‖.

Also

µ1 ≤ µ2 = ‖h‖2 + ‖k‖2 + 2‖λ̄h′ + µ̄k′‖
≤ ‖h‖2 + ‖k‖2 + 2|λ̄|‖h′‖+ 2|µ̄|‖k′‖
≤ 2(‖h‖2 + ‖k‖2).

Combining the above two inequalities yields

ψ2(h, k)− ψ2(0, 0) =
1

2
‖φ

FB
(h, k)+‖2

≤ ‖φ
FB

(h, k)‖2

= ‖(h2 + k2)1/2 − h− k‖2

≤ ((
√
µ1 +

√
µ2)/
√

2 + ‖h‖+ ‖k‖)2

≤ (2
√

2‖h‖2 + 2‖k‖2/
√

2 + ‖h‖+ ‖k‖)2

= O(‖h‖2 + ‖k‖2),

where the first inequality is from Lemma 3.3. This shows that ψ2 is differentiable at

(0, 0) with

Dxψ2(0, 0) = Dyψ2(0, 0) = 0.

Case 2: If (x, y) 6= (0, 0) and x2+y2 ∈ int(K), let z be factored as z = α1(z)u
(1)
z +α2(z)u

(2)
z

for any z ∈ H. Now, let g : H → H be defined as

g(z) :=
1

2
((z)+)2 = ĝ(α1(z))u(1)z + ĝ(α2(z))u(2)z ,

where ĝ : R→ R is given by ĝ(α) :=
1

2
(max(0, α))2. From the continuous differentiability

of ĝ and [17], the vector-valued function g is continuously Fréchet differentiable. Hence,

the first component g1(z) =
1

2
‖(z)+‖2 of g(z) is continuously Fréchet differentiable as

well. By an easy computation, we have Dg1(z) = (z)+. Since ψ2(x, y) = g1(φFB
(x, y))

and φ
FB

is Fréchet differentiable at (x, y) 6= (0, 0) with x2 + y2 ∈ int(K) (see [5]). Hence,

the chain rule yields

Dxψ2(x, y) = DxφFB
(x, y)Dg1(φFB

(x, y)) = LxL
−1
(x2+y2)1/2

φ
FB

(x, y)+ − φFB
(x, y)+,

12



Dyψ2(x, y) = DyφFB
(x, y)Dg1(φFB

(x, y)) = LyL
−1
(x2+y2)1/2

φ
FB

(x, y)+ − φFB
(x, y)+.

Case 3: If (x, y) 6= (0, 0) and x2 + y2 /∈ int(K), by direct computation, we know ‖x‖2 +

‖y‖2 = 2‖λx′+µy′‖ under this case. Since (x, y) 6= (0, 0), this also implies λx′+µy′ 6= 0.

We notice that we can not apply the chain rule as in Case 2 because φ
FB

is no longer

differentiable in this case. By the spectral factorization, we observe that

φ
FB

(x, y)+ = φ
FB

(x, y) ⇐⇒ φ
FB

(x, y) ∈ K
φ

FB
(x, y)+ = 0 ⇐⇒ φ

FB
(x, y) ∈ −K

φ
FB

(x, y)+ = α2u
(2) ⇐⇒ φ

FB
(x, y) /∈ K ∪ −K,

(18)

where α2 is the bigger spectral value of φ
FB

(x, y) and u(2) is the corresponding spectral

vector. Indeed, by applying Property 2.4, we can simplify φ
FB

as

φ
FB

(x, y) =
λx′ + µy′√
λ2 + µ2

− (x′ + y′) +
(√

λ2 + µ2 − (λ+ µ)
)
e. (19)

Therefore, α2 and u(2) are given as below:

α2 =
√
λ2 + µ2 − (λ+ µ) + ‖w2‖,

u(2) =
1

2

(
w2

‖w2‖
+ e

)
,

(20)

where w2 =
λx′ + µy′√
λ2 + µ2

− (x′ + y′).

To prove the differentiability of ψ2 under this case, we shall discuss the following three

subcases according to the above observation (18).

(i) If φ
FB

(x, y) /∈ K ∪ −K then φ
FB

(x, y)+ = α2u
(2), where α2 and u(2) are given as in

(20). From the fact that ‖u(2)‖ = 1/
√

2, we obtain

ψ2(x, y) =
1

2
‖φ

FB
(x, y)+‖2 =

1

4
α2
2

=
1

4

[
(
√
λ2 + µ2 − (λ+ µ))2

+2
(√

λ2 + µ2 − (λ+ µ)
)
‖w2‖+ ‖w2‖2

]
.

Since (x, y) 6= (0, 0) in this case, ψ2 is Fréchet differentiable clearly. For all h ∈ H, we

13



have

[Dxw2]h

=

(
1√

λ2 + µ2
− λ2

(λ2 + µ2)
√
λ2 + µ2

)
〈h, e〉x′ +

(
λ√

λ2 + µ2
− 1

)(
h− 〈h, e〉e

)
− λµy′

(λ2 + µ2)
√
λ2 + µ2

〈h, e〉

=
1(√

λ2 + µ2
)3((λ2 + µ2)x′ − λ2x′ − λµy′

)
〈h, e〉+

(
λ√

λ2 + µ2

)(
h− 〈h, e〉e

)

=

(
λ√

λ2 + µ2
− 1

)(
h− 〈h, e〉e

)
,

where the last equality holds by Property 2.4. Using the product rule and chain rule for

differentiation gives

[Dxψ2(x, y)]h =
1

2
α2[Dxα2]h

=
1

2
α2

[(
λ√

λ2 + µ2
− 1

)
〈h, e〉+

〈w2, [Dxw2]h〉
‖w2‖

]

=
1

2
α2

[(
λ√

λ2 + µ2
− 1

)
〈h, e〉+

(
λ√

λ2 + µ2
− 1

)
〈w2, h〉 − 〈w2, e〉〈h, e〉

‖w2‖

]

=
1

2
α2

(
λ√

λ2 + µ2
− 1

)〈
w2

‖w2‖
+ e, h

〉
.

It then follows that

Dxψ2(x, y) =

(
λ√

λ2 + µ2
− 1

)
α2u

(2) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+. (21)

Similarly, we can obtain that

Dyψ2(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+.

(ii) If φ
FB

(x, y) ∈ K then φ
FB

(x, y)+ = φ
FB

(x, y), and hence ψ2(x, y) = 1
2
‖φ

FB
(x, y)+‖2 =

1
2
‖φ

FB
(x, y)‖2. Thus, by Proposition 3.1, we know that the derivative of ψ2 under this

subcase is as below:

Dxψ2(x, y) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+,

Dyψ2(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+.

(22)
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If there is (x′, y′) such that φ
FB

(x′, y′) /∈ K ∪ −K and φ
FB

(x′, y′) → φ
FB

(x, y) ∈ K (the

neighborhood of point belonging to this subcase). From (21) and (22), it can be seen

that

Dxψ2(x
′, y′)→ Dxψ2(x, y), Dyψ2(x

′, y′)→ Dyψ2(x, y).

Thus, ψ2 is differentiable under this subcase.

(iii) If φ
FB

(x, y) ∈ −K then φ
FB

(x, y)+ = 0. Thus, ψ2(x, y) = 1
2
‖φ

FB
(x, y)+‖2 = 0 and it

is clear that its derivative under this subcase is

Dxψ2(x, y) = 0 =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+,

Dyψ2(x, y) = 0 =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+.

(23)

Again, if there is (x′, y′) such that φ
FB

(x′, y′) /∈ K ∪ −K and φ
FB

(x′, y′)→ φ
FB

(x, y) ∈ K
(the neighborhood of point belonging to this subcase). From (21) and (23), it can be

seen that

Dxψ2(x
′, y′)→ Dxψ2(x, y), Dyψ2(x

′, y′)→ Dyψ2(x, y).

Thus, ψ2 is differentiable under this subcase. From the above, we complete the proof of

this case and therefore the argument for part (b) is done.

(c) We wish to show that 〈Dxψ2(x, y), Dyψ2(x, y)〉 ≥ 0 and the equality holds if and only

if ψ2(x, y) = 0. We follow the three cases as above.

Case 1: If (x, y) = (0, 0), by part (b), we know Dxψ2(x, y) = Dyψ2(x, y) = 0. Therefore,

the desired equality holds.

Case 2: If (x, y) 6= (0, 0) and x2 + y2 ∈ intK, by part (b), we have

〈Dxψ2(x, y), Dyψ2(x, y)〉
= 〈(LxL−1z − I)(φ

FB
)+, (LyL

−1
z − I)(φ

FB
)+〉

= 〈(Lx − Lz)L−1z (φ
FB

)+, (Ly − Lz)L−1z (φ
FB

)+〉
= 〈(Ly − Lz)(Lx − Lz)L−1z (φ

FB
)+, L

−1
z (φ

FB
)+〉,

(24)

where z =
√
x2 + y2 and I ∈ L(H) is an identity mapping. From elementary calculation,

we obtain that

(Lz − Lx)(Lz − Ly)+(Lz − Ly)(Lz − Lx) = (Lz − Lx − Ly)2+(L2
z − L2

x − L2
y).

Since z ∈ K and z2 = x2 + y2, Property 2.3 implies L2
z − L2

x − L2
y � 0. Then (24) yields

〈Dxψ2(x, y), Dyψ2(x, y)〉 ≥ 1

2
‖(Lz − Lx − Ly)L−1z (φ

FB
)+‖2

=
1

2
‖Lφ

FB
L−1z (φ

FB
)+‖2,
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where the equality uses Lz − Lx − Ly = Lz−x−y = Lφ
FB

. If the equality holds, then the

above relation yields ‖Lφ
FB
L−1z (φ

FB
)+‖2 = 0 and, by Property 2.1(d),

Lφ
FB
L−1z (φ

FB
)+ = φ

FB
• (L−1z (φ

FB
)+) = (L−1z (φ

FB
)+) • φ

FB
= 0.

Since z =
√
x2 + y2 ∈ int(K) so that L−1z � 0 (see Property 2.1(d)), multiplying L−1z

both side gives φ
FB
• (φ

FB
)+ = 0. From definition of Jordan product and Lemma 3.1(a),

it implies (φ
FB

)+ = 0 and hence ψ2 = 0. Conversely, if (φ
FB

)+ = 0, then it is clear that

〈Dxψ2(x, y), Dyψ2(x, y)〉 = 0.

Case 3: If (x, y) 6= (0, 0) and x2 + y2 /∈ int(K), by part (b), we have

〈Dxψ2(x, y), Dyψ2(x, y)〉 =

(
λ√

λ2 + µ2
− 1

)(
µ√

λ2 + µ2
− 1

)
‖φ

FB
(x, y)+‖2 ≥ 0.

If the equality holds, then either φ
FB

(x, y)+ = 0 or λ√
λ2+µ2

= 1 or µ√
λ2+µ2

= 1. In the

second case, we have µ = 0 and λ ≥ 0, so that Property 2.4 yields y′ = 0 and λ = ‖x′‖. In

the third case, we have λ = 0 and µ ≥ 0, so that Property 2.4 yields x′ = 0 and µ = ‖y′‖.
Thus, in these cases, we have x • y = 0, x ∈ K, y ∈ K. Then, by (7), ψ2(x, y) = 0.

(d) Again, we need to discuss the three cases as below.

Case 1: If (x, y) = (0, 0), by part (b), we know Dxψ2(x, y) = Dxψ2(x, y) = 0. Therefore,

the desired equality holds.

Case 2: If (x, y) 6= (0, 0) and x2 + y2 ∈ int(K), by part (b), we have

Dxψ2(x, y) = (LxL
−1
z − I)φ

FB
(x, y)+,

Dyψ2(x, y) = (LyL
−1
z − I)φ

FB
(x, y)+,

where we let z =
√
x2 + y2. Thus,

〈x,Dxψ2(x, y)〉+ 〈y,Dyψ2(x, y)〉
= 〈x, (LxL−1z − I)φ

FB
(x, y)+〉+ 〈y, (LyL−1z − I)φ

FB
(x, y)+〉

= 〈(LxL−1z − I)x, φ
FB

(x, y)+〉+ 〈(LyL−1z − I)y, φ
FB

(x, y)+〉
= 〈L−1z Lxx+ L−1z Lyy − x− y, φFB

(x, y)+〉
= 〈L−1z (x2 + y2)− x− y, φ

FB
(x, y)+〉

= 〈L−1z z2 − x− y, φ
FB

(x, y)+〉
= 〈z − x− y, φ

FB
(x, y)+〉

= ‖φ
FB

(x, y)+‖2,

where the next-to-last equality follows from Lzz = z2, so that L−1z z2 = z and the last

equality is from Lemma 3.1(a).
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Case 3: If (x, y) 6= (0, 0) and x2 + y2 /∈ int(K), by part (b), we have

Dxψ2(x, y) =

(
λ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+,

Dyψ2(x, y) =

(
µ√

λ2 + µ2
− 1

)
φ

FB
(x, y)+.

Thus,

〈x,Dxψ2(x, y)〉+ 〈y,Dyψ2(x, y)〉

=

(
λ√

λ2 + µ2
− 1

)
〈x, φ

FB
(x, y)+〉+

(
µ√

λ2 + µ2
− 1

)
〈y, φ

FB
(x, y)+〉

=

〈
λx+ µy√
λ2 + µ2

− x− y, φ
FB

(x, y)+

〉
= 〈φ

FB
(x, y), φ

FB
(x, y)+〉

= ‖φ
FB

(x, y)+‖2,

where the next-to-last equality uses (19) and the last equality is from Lemma 3.1(a)

again.

(e) This is an immediate consequence of (a) through (d). 2

Proposition 3.4 Let f
LT

: H → R+ be given as (5) with ψ0 satisfying (6) and ψ satis-

fying (7). Then, the following results hold.

(a) For all ζ ∈ H, we have f
LT

(ζ) ≥ 0 and f
LT

(ζ) = 0 if and only if ζ solves the

infinite-dimensional SOCCP (1).

(b) Let Dψ0(〈F (ζ), G(ζ)〉) = Dtψ0(t) with t = 〈F (ζ), G(ζ)〉. If ψ0, ψ and F,G are

Fréchet differentiable, then so is f
LT

and

Df
LT

(ζ) = Dψ0(〈F (ζ), G(ζ)〉)[(DF (ζ))TG(ζ) + (DG(ζ))TF (ζ)]

+(DF (ζ))TDxψ(F (ζ), G(ζ)) + (DG(ζ))TDyψ(F (ζ), G(ζ)).

(c) Assume F,G are are Fréchet differentiable mappings on H and ψ belongs to Ψ+

(respectively, Ψ++). Then, for every ζ ∈ H where DF (ζ)[DG(ζ)]−1 is positive

definite (respectively, positive semi-definite), either (i) f
LT

(ζ) = 0 or (ii) f
LT

(ζ) 6= 0

with 〈d(ζ), Df
LT

(ζ)〉 < 0, where

d(ζ) := −(DG(ζ)−1)[Dψ0(〈F (ζ), G(ζ)〉)G(ζ) +Dxψ(F (ζ), G(ζ))].
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Proof. (a) This consequence follows from (5), (6) and (7).

(b) Fix any ζ ∈ H. From Theorem 4.2 in [5] and the Fréchet differentiability of F and

G, it follows that f
LT

: H → R+ is Fréchet differentiable on H. By the chain rule of

differential, we have, for any v ∈ H,

Df
LT

(ζ)v = Dψ0(〈F (ζ), G(ζ)〉)[〈DF (ζ)v,G(ζ)〉+ 〈DG(ζ)v, F (ζ)〉]
+〈Dxψ(F (ζ), G(ζ)), DF (ζ)v〉+ 〈Dyψ(F (ζ), G(ζ)), DG(ζ)v〉,

which means

Df
LT

(ζ) = Dψ0(〈F (ζ), G(ζ)〉)[(DF (ζ))TG(ζ) + (DG(ζ))TF (ζ)]

+(DF (ζ))TDxψ(F (ζ), G(ζ)) + (DG(ζ))TDyψ(F (ζ), G(ζ)).

(c) First, we consider the case of ψ ∈ Ψ++ and fix ζ ∈ H, where DF (ζ)[DG(ζ)]−1

is positive semi-definite. Let α := Dψ0(〈F (ζ), G(ζ)〉) and drop the argument (ζ) for

simplicity. Then

〈d,Df
LT
〉 = 〈−(DG)−1(αG+Dxψ(F,G)), (DF )T (αG+Dxψ(F,G))

+(DG)T (αF +Dyψ(F,G))〉
= −〈αG+Dxψ(F,G), ((DG)−1)T (DF )T (αG+Dxψ(F,G))〉
−〈αG+Dxψ(F,G), αF +Dyψ(F,G)〉

≤ −〈αG+Dxψ(F,G), αF +Dyψ(F,G)〉
= −α2〈G,F 〉 − α(〈F,Dxψ(F,G)〉) + 〈G,Dyψ(F,G)〉)
−〈Dxψ(F,G), Dyψ(F,G)〉

≤ −α2〈G,F 〉 − 〈Dxψ(F,G), Dyψ(F,G)〉,

where the first inequality holds since DF (DG)−1 is positive semi-definite and the in-

equality follows from α ≥ 0 and equation (13). Now, we observe that tDψ0(t) > 0 if

and only if t > 0 since ψ0 is strictly increasing on [0,∞). Therefore, the first term on

the right-hand side is non-positive and equals zero if 〈F,G〉 ≤ 0. In addition, by equa-

tions (13) and (15), the second term on the right-hand side is non-positive and equals

zero if ψ(F,G) = 0. Thus, we have 〈d,Df
LT

(ζ)〉 ≤ 0 and the equality hold only when

〈F (ζ), G(ζ)〉 ≤ 0 and ψ(F (ζ), G(ζ)) = 0, in which equation (7) implies ζ satisfies (1),

i.e., f
LT

(ζ) = 0.

Similar argument can be applied for the case of ψ ∈ Ψ+ and DF (DG)−1 being positive

definite. 2

Next, we further consider another class of merit functions given as (8), i.e.,

f̂
LT

(ζ) := ψ∗0(F (ζ) •G(ζ)) + ψ(F (ζ), G(ζ)),
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where ψ∗0 : H → R+ is given as (9) and ψ : H×H → R+ satisfies (7). We notice that ψ∗0
possesses the following property:

ψ∗0(w) = 0⇐⇒ w �K 0

which is a similar feature to (6) in some sense.

By imitating the steps for proving Proposition 3.4 and using the following Lemma

3.4 which has been proved in SOC case by Chen [2], we obtain Proposition 3.5 which is

a result analogous to Proposition 3.4. We omit its proof.

Lemma 3.4 The function ψ∗0(x•y) :=
1

2
‖(x•y)+‖2 is differentiable for all (x, y) ∈ H×H.

Moreover, Dxψ
∗
0(x • y) = Ly(x • y)+, and Dyψ

∗
0(x • y) = Lx(x • y)+.

Proof. For any z ∈ H, we can factor z as z = α1(z)u(1) +α2(z)u(2). Now, let g : H → H
be defined as

g(z) :=
1

2
((z)+)2 = ĝ(α1(z))u(1) + ĝ(α2(z))u(2),

where ĝ : R→ R is given by ĝ(α) :=
1

2
(max(0, α))2. From the continuous differentiability

of ĝ and [17], the vector-valued function g is continuously Fréchet differentiable. Hence,

the first component g1(z) =
1

2
‖(z)+‖2 of g(z) is continuously Fréchet differentiable as

well. By an easy computation, we have Dg1(z) = (z)+. Now, let

z(x, y) := x • y = (λy′ + µx′) + 〈x, y〉e,

then we have ψ∗0(x • y) = g1(z(x, y)). Fix x = x′ + λe ∈ H, y = y′ + µe ∈ H and

h = h′ + le ∈ H, then we have

[Dxz(x, y)]h = 〈h, e〉y′ + µ(h− 〈h, e〉e) + 〈h, y〉e
= ly′ + µh′ + 〈h, y〉e
= y • h
= Lyh.

Similarly, we can obtain [Dyz(x, y)]h = Lxh. Hence, applying the chain rule, the desired

result follows. 2

Proposition 3.5 Let f̂
LT

: H → R+ be given as (8) with ψ∗0 satisfying (9) and ψ satis-

fying (7). Then, the following results hold.

(a) For all ζ ∈ H, we have f̂
LT

(ζ) ≥ 0 and f̂
LT

(ζ) = 0 if and only if ζ solves the

infinite-dimensional SOCCP (1).
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(b) If ψ∗0, ψ and F,G are Fréchet differentiable, then so is f̂
LT

and

Df̂
LT

(ζ) = [(DF (ζ))TLG(ζ) + (DG(ζ))TLF (ζ)](F (ζ) •G(ζ))+

+(DF (ζ))TDxψ(F (ζ), G(ζ)) + (DG(ζ))TDyψ(F (ζ), G(ζ)).

4 Solution existence, error bound, and bounded level

sets

In this section, using the above merit functions f
LT

and f̂
LT

, we obtain error bounds for

the solution of infinite-dimensional SOCCP (1). Meanwhile, we study the existence and

uniqueness for the solution of CP (K, F,G). To reach our results, we need some lemmas

as below.

Lemma 4.1 Let x = x′ + λe ∈ H and y = y′ + µe ∈ H. Then, we have

〈x, y〉 ≤
√

2‖(x • y)+‖. (25)

Proof. First, we observe the fact that

x ∈ K ⇐⇒ (x)+ = x,

x ∈ −K ⇐⇒ (x)+ = 0,

x /∈ K ∪ −K ⇐⇒ (x)+ = α2u
(2),

where α2 is the bigger spectral value of x with the corresponding spectral vector u(2)

defined as in section 2. Hence, we have three cases.

Case 1: If x • y ∈ K, then (x • y)+ = x • y. By definition of Jordan product of x and y

as (11), i.e., x • y := (µx′ + λy′) + 〈x, y〉e. It is clear that ‖(x • y)+‖ ≥ 〈x, y〉 and hence

(25) holds.

Case 2: If x • y ∈ −K, then (x • y)+ = 0. Since x • y ∈ −K, by definition of Jordan

product again, we have 〈x, y〉 ≤ 0. Hence, it is true that
√

2‖(x • y)+‖ ≥ 〈x, y〉.

Case 3: If x • y /∈ K ∪ −K, then (x • y)+ = α2u
(2), where

α2 = 〈x, y〉+ ‖µx′ + λy′‖,

u(2) =
1

2

(
µx′ + λy′

‖µx′ + λy′‖
+ e

)
.
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If 〈x, y〉 ≤ 0, then (25) is trivial. Thus, we can assume 〈x, y〉 > 0. In fact, the desired

inequality (25) follows from the below.

‖(x • y)+‖2 =
1

2
α2
2

=
1

2
(〈x, y〉2 + 2〈x, y〉‖µx′ + λy′‖+ ‖µx′ + λy′‖2)

≥ 1

2
〈x, y〉2.

Then, we complete the proof. 2

Lemma 4.2 Let ψ
FB
, ψ1, ψ2 be given as (2), (14), (16), respectively. Then, ψ

FB
, ψ1,

and ψ2 satisfy the following inequality.

ψ�(x, y) ≥ α(‖(−x)+‖2 + ‖(−x)+‖2), ∀(x, y) ∈ H ×H,

for some positive constant α and � ∈ {FB, 1, 2}.

Proof. For ψ1, it is clear by definition (14) with α = 1
2
. For ψ

FB
and ψ2, the inequality

is still true due to Lemma 3.3. 2

By the definition of ψ∗0 given as (9), we can obtain the following lemma easily.

Lemma 4.3 Let ψ∗0 be given as (9). Then, ψ∗0 satisfies

ψ∗0(ω) ≥ β‖(ω)+‖2, ∀ω ∈ H,

for some positive constant β.

Proposition 4.1 Let F and G are Lipschitz continuous with constants γ and δ, re-

spectively. Suppose that F is η-strongly monotone and F and G are ρ-jointly strongly

monotone mapping from H to H. Let f
LT

be given by (5) with ψ satisfying (7). If there

exists a constant τ such that∣∣∣τ − ρ

δ2

∣∣∣ ≤ √ρ2 − δ2(γ2 − σ2)

δ2
, ρ > δ

√
γ2 − σ2, (26)

where σ = 1−
√

1− 2η + γ2. Then, the infinite-dimensional conic complementarity prob-

lem CP (K, F,G) given as in (1) has a unique solution ζ∗ and there exists a scalar κ > 0

such that

κ‖ζ − ζ∗‖2 ≤ max{1, 〈F (ζ), G(ζ)〉}+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖, ∀ζ ∈ H.

Moreover,

κ‖ζ − ζ∗‖2 ≤ ψ−10 (f
LT

(ζ)) +

√
2√
α
f
LT

(ζ)1/2, ∀ζ ∈ H,

where α is a positive constant.
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Proof. It is not hard to verify that ζ is a solution to (1) if and only if, for any constant

τ > 0, the following equation hold:

F (ζ)− PK(F (ζ)− τG(ζ)) = 0,

where PK is the projection of H onto K, that is,

ζ − F (ζ) + PK(F (ζ)− τG(ζ)) = ζ,

Based on this, we define the mapping F as

F(x) = x− F (x) + PK(F (x)− τG(x)), ∀x ∈ H. (27)

From the above discussion, ζ satisfies (1) if and only if ζ is a fixed point of F . For any

x, y ∈ H, we have that

‖F(x)−F(y)‖
= ‖x− y − (F (x)−G(x)) + (PK(F (x)− τG(x))− PK(F (y)− τG(y)))‖
≤ ‖x− y − (F (x)−G(x))‖+ ‖F (x)− F (y)− τ(G(x)−G(y))‖

≤
(√

1− 2η + γ2 +
√
γ2 − 2τρ+ τ 2δ2

)
‖x− y‖.

From (26), it follows that
√

1− 2η + γ2+
√
γ2 − 2τρ+ τ 2δ2 < 1, and hence the mapping

defined by (27) has a unique fixed point belonging to H, which is the solution of (1).

Using Property 2.5 and Lemma 4.2, we can complete the rest of the proof. The arguments

are similar to those in [2, Proposition 4.1], so we omit them. 2

We would like to point out that, if the mapping F is Lipschitz continuous with

constant γ and strongly monotone with constant η, then

η‖x− y‖2 ≤ 〈F (x)− F (y), x− y〉 ≤ γ‖x− y‖2, ∀x, y ∈ H

which implies that η ≤ γ and

1− 2η + γ2 ≥ (1− γ)2 ≥ 0. (28)

Furthermore, if G and F are jointly strongly monotone with constant ρ and G is Lipschitz

continuous with constant δ, then we can get ρ ≤ γδ and

γ2 − 2ρ+ δ2 ≥ (γ − δ)2 ≥ 0. (29)

Inequalities (28) and (29) ensure that the set where (26) to be held is nonempty.

Similarly, we have the following Proposition 4.2 which is an extension of [2, Proposi-

tion 4.2].
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Proposition 4.2 Let F and G are Lipschitz continuous with constants γ and δ, re-

spectively. Suppose that F is η-strongly monotone and F and G are ρ-jointly strongly

monotone mapping from H to H. Let f̂
LT

be given by (8) with ψ satisfying (7). If there

exists a constant τ such that∣∣∣τ − ρ

δ2

∣∣∣ ≤ √ρ2 − δ2(γ2 − σ2)

δ2
, ρ > δ

√
γ2 − σ2,

where σ = 1 −
√

1− 2η + γ2. Then, the infinite-dimensional conic complementarity

problem CP (K, F,G) given as in (1) has a unique solution ζ∗ and there exists a scalar

κ > 0 such that

κ‖ζ − ζ∗‖2 ≤ ‖(F (ζ) •G(ζ))+‖+ ‖(−F (ζ))+‖+ ‖(−G(ζ))+‖, ∀ζ ∈ H.

Moreover,

κ‖ζ − ζ∗‖2 ≤

(
1√
β

+

√
2√
α

)
f̂
LT

(ζ)1/2, ∀ζ ∈ H,

where α and β are positive constants.

Now, we give conditions under which f
LT
, f̂

LT
have bounded level sets. We need the

next lemma which is key to proving the properties of bounded level sets.

Lemma 4.4 Let ψ
FB
, ψ1 and ψ2 be given by (2), (14) and (16), respectively. For any

{(xk, yk)}∞k=1 ∈ H × H. Let α1(x)k ≤ α2(x)k and α1(y)k ≤ α2(y)k denote the spectral

values of xk and yk, respectively. Then, the following results hold.

(a) If α1(x)k → −∞ or α1(y)k → −∞, then ψ�(x
k, yk)→∞, for � ∈ {FB, 1, 2}.

(b) Suppose that {α1(x)k} and {α1(y)k} are bounded below. If α2(x)k →∞ or α2(y)k →
∞, then 〈x, xk〉+ 〈y, yk〉 → ∞, for any x, y ∈ int(K).

Proof. (a) For ψ1, the proof follows by the fact that

2‖(−xk)+‖2 = 2‖(−α1(x)kv(1)x

k − α2(x)kv(2)x

k
)+‖2

= 2‖(−α1(x)k)+v
(1)
x

k − (α2(x)k)+v
(2)
x

k‖2

= (−α1(x)k)2+ + (−α2(x)k)2+

=
2∑
i=1

(
max{0,−αi(x)k}

)2
.

Similarly, we have 2‖(−yk)+‖2 =
∑2

i=1(max{0,−αi(y)k})2. For ψ
FB

and ψ2, using the

same fact plus Lemma 3.3 leads to the desired result.
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(b) For any x = x′ + λe, y = y′ + µe ∈ H with ‖x′‖ ≤ λ, ‖y′‖ ≤ µ. Using the spectral

decomposition

xk =
α2(x)k − α1(x)k

2
wk +

α2(x)k + α1(x)k

2
e with ‖wk‖ = 1,

we have

〈x, xk〉 =
α2(x)k − α1(x)k

2
〈x′, wk〉+

α2(x)k + α1(x)k

2
λ

=
α1(x)k

2

(
λ− 〈x′, wk〉

)
+
α2(x)k

2

(
λ+ 〈x′, wk〉

)
.

(30)

Since ‖wk‖ = 1, we have λ − 〈x′, wk〉 ≥ λ − ‖x′‖ > 0 and λ + 〈x′, wk〉 ≥ λ − ‖x′‖ > 0.

In addition, {α1(x)k} is bounded below, the first term on the right-hand side of (30) is

bounded below. If {α2(x)k} → ∞, then the second term on the right-hand side of (30)

tends to infinity. Hence 〈x, xk〉 → ∞. A similar argument shows that 〈y, yk〉 is bounded

below. Thus, 〈x, xk〉 + 〈y, yk〉 → ∞. Symmetrically, the desired results also holds if

{α2(y)k} → ∞. 2

Using the above Lemma 4.4 and the same arguments in Proposition 4.3 and Propo-

sition 4.4 in [2], we have the following Proposition 4.3 and Proposition 4.4.

Proposition 4.3 Let f
LT

be given by (5) with ψ satisfying the condition of Lemma

4.4(a). Suppose that F,G are Fréchet differentiable, jointly monotone mappings from

H to H satisfying

lim
‖ζ‖→∞

(
‖F (ζ)‖+ ‖G(ζ)‖

)
=∞.

Suppose also that the infinite-dimensional SOCCP is strictly feasible, i.e., there exists

ζ̄ ∈ H such that F (ζ̄), G(ζ̄) ∈ int(K). Then, the level set

L(ν) :=

{
ζ ∈ H

∣∣∣∣ fLT
(ζ) ≤ ν

}
is bounded for all ν ≥ 0.

Proposition 4.4 Let f̂
LT

be given by (8) with ψ satisfying the condition of Lemma

4.4(a). Suppose that F,G are Fréchet differentiable, jointly monotone mappings from

H to H satisfying

lim
‖ζ‖→∞

(
‖F (ζ)‖+ ‖G(ζ)‖

)
=∞.

Suppose also that the infinite-dimensional SOCCP is strictly feasible, i.e., there exists

ζ̄ ∈ H such that F (ζ̄), G(ζ̄) ∈ int(K). Then, the level set

L(ν) :=

{
ζ ∈ H

∣∣∣∣ f̂LT
(ζ) ≤ ν

}
is bounded for all ν ≥ 0.
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5 Conclusions

In this paper, we extend two classes of merit functions f
LT

and f̂
LT

to infinite-dimensional

SOCCP. We show analogous properties as in finite-dimensional cases. In particular, un-

der the condition that F and G are jointly monotone and a strictly feasible solution

exists, we prove that the infinite-dimensional SOCCP has a unique solution and both

f
LT

and f̂
LT

have bounded level sets which will ensure that the sequence generated by a

decent algorithm has at least an accumulation point. All these will make it possible to

construct a decent algorithm for solving the equivalent unconstrained reformulation of

the infinite-dimensional SOCCP. In addition, we show that both f
LT

and f̂
LT

are Fréchet

differentiable and their derivatives have computable formulas. All the aforementioned

features are significant reasons for studying these merit functions.

An interesting issue after this paper is to establish the semismoothness of all merit

functions studied here and in [5], which will provide a background brick for analysis of

semismooth methods for infinite-dimensional SOCCP. Another direction is to explore

other conditions under which CP (K, F,G) has a unique solution. We leave them as

future research topics.
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