
Applied Numerical Mathematics 135 (2019) 206–227
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

Unified smoothing functions for absolute value equation

associated with second-order cone

Chieu Thanh Nguyen a, B. Saheya b,1, Yu-Lin Chang a, Jein-Shan Chen a,∗,2

a Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
b College of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2018
Received in revised form 12 July 2018
Accepted 30 August 2018
Available online 3 September 2018

Keywords:
Second-order cone
Absolute value equations
Smoothing Newton algorithm

In this paper, we explore a unified way to construct smoothing functions for solving the ab-
solute value equation associated with second-order cone (SOCAVE). Numerical comparisons
are presented, which illustrate what kinds of smoothing functions work well along with
the smoothing Newton algorithm. In particular, the numerical experiments show that the
well known loss function widely used in engineering community is the worst one among
the constructed smoothing functions, which indicates that the other proposed smoothing
functions can be employed for solving engineering problems.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Recently, the paper [36] investigates a family of smoothing functions along with a smoothing-type algorithm to tackle the
absolute value equation associated with second-order cone (SOCAVE) and shows the efficiency of such approach. Motivated
by this article, we continue to ask two natural questions. (i) Whether there are other suitable smoothing functions that can
be employed for solving the SOCAVE? (ii) Is there a unified way to construct smoothing functions for solving the SOCAVE?
In this paper, we provide affirmative answers for these two queries. In order to smoothly convey the story of how we figure
out the answers, we begin with recalling where the SOCAVE comes from.

The standard absolute value equation (AVE) is in the form of

Ax + B|x| = b, (1)

where A ∈ R
n×n , B ∈ R

n×n , B �= 0, and b ∈ R
n . Here |x| means the componentwise absolute value of vector x ∈ R

n . When
B = −I , where I is the identity matrix, the AVE (1) reduces to the special form:

Ax − |x| = b.

It is known that the AVE (1) was first introduced by Rohn in [40], but was termed by Mangasarian [34]. During the past
decade, there has been many researchers paying attention to this equation, for example, Caccetta, Qu and Zhou [1], Hu and

* Corresponding author.
E-mail addresses: thanhchieu90@gmail.com (C.T. Nguyen), saheya@imnu.edu.cn (B. Saheya), ylchang@math.ntnu.edu.tw (Y.-L. Chang),

jschen@math.ntnu.edu.tw (J.-S. Chen).
1 The author’s work is supported by Natural Science Foundation of Inner Mongolia (Award Number: 2017MS0125).
2 The author’s work is supported by Ministry of Science and Technology, Taiwan.
https://doi.org/10.1016/j.apnum.2018.08.019
0168-9274/© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:thanhchieu90@gmail.com
mailto:saheya@imnu.edu.cn
mailto:ylchang@math.ntnu.edu.tw
mailto:jschen@math.ntnu.edu.tw
https://doi.org/10.1016/j.apnum.2018.08.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2018.08.019&domain=pdf

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 207
Huang [12], Jiang and Zhang [19], Ketabchi and Moosaei [20], Mangasarian [26–33], Mangasarian and Meyer [34], Prokopyev
[37], and Rohn [42].

We elaborate more about the developments of the AVE. Mangasarian and Meyer [34] show that the AVE (1) is equivalent
to the bilinear program, the generalized LCP (linear complementarity problem), and to the standard LCP provided 1 is
not an eigenvalue of A. With these equivalent reformulations, they also show that the AVE (1) is NP-hard in its general
form and provide existence results. Prokopyev [37] further improves the above equivalence which indicates that the AVE
(1) can be equivalently recast as LCP without any assumption on A and B , and also provides a relationship with mixed
integer programming. In general, if solvable, the AVE (1) can have either unique solution or multiple (e.g., exponentially
many) solutions. Indeed, various sufficiency conditions on solvability and non-solvability of the AVE (1) with unique and
multiple solutions are discussed in [34,37,41]. Some variants of the AVE, like the absolute value equation associated with
second-order cone and the absolute value programs, are investigated in [14] and [45], respectively.

Recently, another type of absolute value equation, a natural extension of the standard AVE (1), is considered [14,35,
36]. More specifically the following absolute value equation associated with second-order cones, abbreviated as SOCAVE, is
studied:

Ax + B|x| = b, (2)

where A, B ∈ R
n×n and b ∈ R

n are the same as those in (1); |x| denotes the absolute value of x coming from the square
root of the Jordan product “◦” of x and x. What is the difference between the standard AVE (1) and the SOCAVE (2)?
Their mathematical formats look the same. In fact, the main difference is that |x| in the standard AVE (1) means the
componentwise |xi | of each xi ∈ R, i.e., |x| = (|x1|, |x2|, · · · , |xn|)T ∈ R

n; however, |x| in the SOCAVE (2) denotes the vector
satisfying

√
x2 := √

x ◦ x associated with second-order cone under Jordan product. To understand its meaning, we need to
introduce the definition of second-order cone (SOC). The second-order cone in Rn (n ≥ 1), also called the Lorentz cone, is
defined as

Kn := {
(x1, x2) ∈ R×R

n−1 | ‖x2‖ ≤ x1
}
,

where ‖ · ‖ denotes the Euclidean norm. If n = 1, then Kn is the set of nonnegative reals R+ . In general, a general second-
order cone K could be the Cartesian product of SOCs, i.e.,

K := Kn1 × · · · ×Knr .

For simplicity, we focus on the single SOC Kn because all the analysis can be carried over to the setting of Cartesian product.
The SOC is a special case of symmetric cones and can be analyzed under Jordan product, see [9]. In particular, for any two
vectors x = (x1, x2) ∈ R ×R

n−1 and y = (y1, y2) ∈R ×R
n−1, the Jordan product of x and y associated with Kn is defined as

x ◦ y :=
[

xT y
y1x2 + x1 y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a main source of complication in the
analysis of optimization problems involved SOC, see [5,6,10] and references therein for more details. The identity element
under this Jordan product is e = (1, 0, ..., 0)T ∈ R

n . With these definitions, x2 means the Jordan product of x with itself,
i.e., x2 := x ◦ x; and

√
x with x ∈ Kn denotes the unique vector such that

√
x ◦ √

x = x. In other words, the vector |x| in the
SOCAVE (2) is computed by

|x| := √
x ◦ x.

As remarked in the literature, the significance of the AVE (1) arises from the fact that the AVE is capable of formulating
many optimization problems such as linear programs, quadratic programs, bimatrix games, and so on. Likewise, the SOCAVE
(2) plays a similar role in various optimization problems involving second-order cones. There has been many numerical
methods proposed for solving the standard AVE (1) and the SOCAVE (2). Please refer to [36] for a quick review. Basically,
we follow the smoothing Newton algorithm employed in [36] to deal with the SOCAVE (2). This kind of algorithm has been
a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [21,23,
24], the system of inequalities under the order induced by symmetric cone [17,25,46], and so on. It is also employed for
the standard AVE (1) in [18,43]. The new upshot of this paper lies on discovering more suitable smoothing functions and
exploring a unified way to construct smoothing functions. Of course, the numerical performance among different smoothing
functions are compared. These are totally new to the literature and are the main contribution of this paper.

To close this section, we recall some basic concepts and background materials regarding the second-order cone, which
will be used in the subsequent analysis. More details can be found in [5,6,9,10,14]. First, we recall the expression of the
spectral decomposition of x with respect to SOC. For x = (x1, x2) ∈ R ×R

n−1, the spectral decomposition of x with respect to
SOC is given by

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (3)

208 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
where λi(x) = x1 + (−1)i‖x2‖ for i = 1, 2 and

u(i)
x =

⎧⎪⎨
⎪⎩

1
2

(
1, (−1)i xT

2‖x2‖
)T

if ‖x2‖ �= 0,

1
2

(
1, (−1)iωT

)T
if ‖x2‖ = 0,

(4)

with ω ∈ R
n−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1(x) and λ2(x) are called spectral values of x; while

the two vectors u(1)
x and u(2)

x are called the spectral vectors of x. Moreover, it is obvious that the spectral decomposition of
x ∈R

n is unique if x2 �= 0. It is known that the spectral values and spectral vectors posses the following properties:

(i) u(1)
x ◦ u(2)

x = 0 and u(i)
x ◦ u(i)

x = u(i)
x for i = 1, 2;

(ii) ‖u(1)
x ‖2 = ‖u(2)

x ‖2 = 1
2 and ‖x‖2 = 1

2 (λ2
1(x) + λ2

2(x)).

Next is the concept about the projection onto second-order cone. Let x+ denote the projection of x onto Kn , and x− be
the projection of −x onto the dual cone (Kn)∗ of Kn , where the dual cone (Kn)∗ is defined by (Kn)∗ := {y ∈R

n | 〈x, y〉 ≥ 0,

∀x ∈ Kn}. In fact, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn . Due to the special structure of Kn , the explicit formula of
projection of x = (x1, x2) ∈ R ×R

n−1 onto Kn is obtained in [5,6,8–10] as below:

x+ =
⎧⎨
⎩

x if x ∈ Kn,

0 if x ∈ −Kn,

u otherwise,

where u =
⎡
⎣ x1+‖x2‖

2(
x1+‖x2‖

2

)
x2‖x2‖

⎤
⎦ .

Similarly, the expression of x− can be written out as

x− =
⎧⎨
⎩

0 if x ∈ Kn,

−x if x ∈ −Kn,

w otherwise,

where w =
⎡
⎣ − x1−‖x2‖

2(
x1−‖x2‖

2

)
x2‖x2‖

⎤
⎦ .

It is easy to verify that x = x+ + x− and

x+ = (λ1(x))+u(1)
x + (λ2(x))+u(2)

x x− = (−λ1(x))+u(1)
x + (−λ2(x))+u(2)

x ,

where (α)+ = max{0, α} for α ∈ R. As for the expression of |x| associated with SOC. There is an alternative way via the
so-called SOC-function to obtain the expression of |x|, which can be found in [2,3]. In any case, it comes out that

|x| = [
(λ1(x))+ + (−λ1(x))+

]
u(1)

x + [
(λ2(x))+ + (−λ2(x))+

]
u(2)

x

= ∣∣λ1(x)
∣∣u(1)

x + ∣∣λ2(x)
∣∣u(2)

x .

2. Unified smoothing functions for SOCAVE

As mentioned in Section 1, we employ the smoothing Newton method for solving the SOCAVE (2), which needs a smooth-
ing function to work with. Indeed, a family of smoothing functions was already considered in [36]. In this section, we look
into what kinds of smoothing functions can be employed to work with the smoothing Newton algorithm for solving the
SOCAVE (2).

Definition 2.1. A function φ :R++ ×R →R is called a smoothing function of |t| if it satisfies the following:

(i) φ is continuously differentiable at (μ, t) ∈ R++ ×R;
(ii) lim

μ↓0
φ(μ, t) = |t| for any t ∈ R.

Given a smoothing function φ, we further define a vector-valued function � : R++ ×R
n → R

n as

�(μ, x) = φ (μ,λ1(x)) u(1)
x + φ (μ,λ2(x)) u(2)

x (5)

where μ ∈ R++ is a parameter, λ1(x), λ2(x) are the spectral values of x, and u(1)
x , u(2)

x are the spectral vectors of x. Conse-
quently, � is also smooth on R++ ×R

n . Moreover, it is easy to verify that

lim+ �(μ, x) = |λ1(x)| u(1)
x + |λ2(x)| u(2)

x = |x|

μ→0

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 209
which means each function �(μ, x) serves as a smoothing function of |x| associated with SOC. With this observation, for
the SOCAVE (2), we further define the function H(μ, x) : R++ ×R

n →R ×R
n by

H(μ, x) =
[

μ
Ax + B�(μ, x) − b

]
, ∀μ ∈R++ and x ∈R

n. (6)

Proposition 2.1. Suppose that x = (x1, x2) ∈ R × R
n−1 has the spectral decomposition as in (3)–(4). Let H : R++ × R

n → R
n be

defined as in (6). Then,

(a) H(μ, x) = 0 if and only if x solves the SOCAVE (2);
(b) H is continuously differentiable at (μ, x) ∈R++ ×R

n with the Jacobian matrix given by

H ′(μ, x) =
[

1 0
B ∂�(μ,x)

∂μ A + B ∂�(μ,x)
∂x

]
(7)

where

∂�(μ, x)

∂μ
= ∂φ(μ,λ1(x))

∂μ
u(1)

x + ∂φ(μ,λ2(x))

∂μ
u(2)

x ,

∂�(μ, x)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

∂φ(μ,x1)
∂x1

I if x2 = 0,⎡
⎣ b c

xT
2‖x2‖

c x2‖x2‖ aI + (b − a)
x2xT

2
‖x2‖2

⎤
⎦ if x2 �= 0,

with

a = φ(μ,λ2(x)) − φ(μ,λ1(x))

λ2(x) − λ1(x)
,

b = 1

2

(
∂φ(μ,λ2(x))

∂x1
+ ∂φ(μ,λ1(x))

∂x1

)
, (8)

c = 1

2

(
∂φ(μ,λ2(x))

∂x1
− ∂φ(μ,λ1(x))

∂x1

)
.

Proof. (a) First, we observe that

H(μ, x) = 0 ⇐⇒ μ = 0 and Ax + B�(μ, x) − b = 0

⇐⇒ Ax + B|x| − b = 0 and μ = 0.

This indicates that x is a solution to the SOCAVE (2) if and only if (μ, x) is a solution to H(μ, x) = 0.
(b) Since �(μ, x) is continuously differentiable on R++ × R

n , it is clear that H(μ, x) is continuously differentiable on
R++ ×R

n . Thus, it remains to compute the Jacobian matrix of H(μ, x). Note that

�(μ, x) = φ(μ,λ1(x))u(1)
x + φ(μ,λ2(x))u(2)

x

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

[
φ(μ,λ1(x)) + φ(μ,λ2(x))

−φ(μ,λ1(x))
xT

2‖x2‖ + φ(μ,λ2(x))
xT

2‖x2‖

]
if x2 �= 0,

1

2

[
φ(μ,λ1(x)) + φ(μ,λ2(x))

−φ(μ,λ1(x))ωT + φ(μ,λ2(x))ωT

]
if x2 = 0

= 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

φ(μ,λ1(x)) + φ(μ,λ2(x)
(−φ(μ,λ1(x)) + φ(μ,λ2(x))) x̄2‖x2‖

...

(−φ(μ,λ1(x)) + φ(μ,λ2(x))) x̄n‖x2‖

⎤
⎥⎥⎥⎥⎦ if x2 �= 0,

⎡
⎢⎢⎢⎣

φ(μ,λ1(x)) + φ(μ,λ2(x))
0
...

0

⎤
⎥⎥⎥⎦ if x2 = 0,

210 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
where x2 := (x̄2, · · · , ̄xn) ∈R
n−1, ω = (ω2, · · · , ωn) ∈R

n−1. From chain rule, it is trivial that

∂�(μ, x)

∂μ
= ∂φ(μ,λ1(x))

∂μ
u(1)

x + ∂φ(μ,λ2(x))

∂μ
u(2)

x

In order to compute ∂�(μ,x)
∂x , for simplicity, we denote

�(μ, x) := 1

2

⎡
⎢⎢⎢⎣

τ1(μ, x)
τ2(μ, x)

...

τn(μ, x)

⎤
⎥⎥⎥⎦ .

To proceed, we discuss two cases.
(i) For x2 �= 0, we compute

∂τ1(μ, x)

∂x1
= ∂φ(μ,λ1(x))

∂x1
+ ∂φ(μ,λ2(x))

∂x1

= ∂φ(μ,λ1(x))

∂λ1(x)

∂λ1(x)

∂x1
+ ∂φ(μ,λ2(x))

∂λ2(x)

∂λ2(x)

∂x1

= ∂φ(μ,λ1(x))

∂λ1(x)
+ ∂φ(μ,λ2(x))

∂λ2(x)
:= 2b

and
∂τ1(μ, x)

∂ x̄i
= ∂φ(μ,λ1(x))

∂ x̄i
+ ∂φ(μ,λ2(x))

∂ x̄i

= ∂φ(μ,λ1(x))

∂λ1(x)

∂λ1(x)

∂ x̄i
+ ∂φ(μ,λ2(x))

∂λ2(x)

∂λ2(x)

∂ x̄i

= −∂φ(μ,λ1(x))

∂λ1(x)

x̄i

‖x2‖ + ∂φ(μ,λ2(x))

∂λ2(x)

x̄i

‖x2‖
=

(
∂φ(μ,λ2(x))

∂λ2(x)
− ∂φ(μ,λ1(x))

∂λ1(x)

)
x̄i

‖x2‖
=

(
∂φ(μ,λ2(x))

∂x1
− ∂φ(μ,λ1(x))

∂x1

)
x̄i

‖x2‖ := 2c
x̄i

‖x2‖ , i = 2, · · · ,n.

Moreover,

∂τi(μ, x)

∂x1
=

(
∂φ(μ,λ2(x))

∂x1
− ∂φ(μ,λ1(x))

∂x1

)
x̄i

‖x2‖ = 2c
x̄i

‖x2‖ , i = 2, · · · ,n.

Similarly, we have

∂τ2(μ, x)

∂ x̄2
=

(
∂φ(μ,λ2(x))

∂ x̄2
− ∂φ(μ,λ1(x))

∂ x̄2

)
x̄2

‖x2‖ + (φ(μ,λ2(x)) − φ(μ,λ1(x)))
∂
(

x̄2‖x2‖
)

∂ x̄2

= 2b
x̄2 · x̄2

‖x2‖2
+ (φ(μ,λ2(x)) − φ(μ,λ1(x)))

(
1

‖x2‖ − x̄2 · x̄2

‖x2‖3

)

= 2a + 2(b − a)
x̄2 · x̄2

‖x2‖2
,

where a means a := φ(μ,λ2(x)) − φ(μ,λ1(x))

λ2(x) − λ1(x)
. In general, mimicking the same derivation yields

∂τi(μ, x)

∂ x̄ j
=

{
2a + 2(b − a)

x̄i ·x̄i
‖x2‖2 if i = j,

2(b − a)
x̄i ·x̄ j

‖x2‖2 if i �= j.

To sum up, we obtain

∂�(μ, x)

∂x
=

⎡
⎣ b c

xT
2‖x2‖

c x2‖x2‖ aI + (b − a)
x2xT

2
‖x2‖2

⎤
⎦

which is the desired result.

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 211
(ii) For x2 = 0, it is clear to see

∂τ1(μ, x)

∂x1
= 2

∂φ(μ, x1)

∂x1
and

∂τ1(μ, x)

∂ x̄i
= 0 for i = 2, · · · ,n.

Since τi(μ, x) = 0 for i = 2, · · · , n, it gives ∂τi(μ,x)
∂x1

= 0. Moreover,

∂τ2(μ, x)

∂ x̄2
= lim

x̄2→0

τ2(μ, x1, x̄2,0, · · · ,0) − τ2(μ, x1,0, · · · ,0)

x̄2

= lim
x̄2→0

φ(μ, x1 + |x̄2|) − φ(μ, x1 − |x̄2|)
x̄2

x̄2

|x̄2|
= lim

x̄2→0

φ(μ, x1 + |x̄2|) − φ(μ, x1 − |x̄2|)
|x̄2|

= lim
x̄2→0

∂φ(μ, x1 + |x̄2|)
∂(|x̄2|) − ∂φ(μ, x1 − |x̄2|)

∂(|x̄2|) (as L’Hopital’s rule)

= lim
x̄2→0

∂φ(μ, x1 + |x̄2|)
∂(x1 + |x̄2|) + ∂φ(μ, x1 − |x̄2|)

∂(x1 − |x̄2|)
= 2

∂φ(μ, x1)

∂x1
.

Thus, we obtain

∂τi(μ, x)

∂ x̄ j
=

{
2 ∂φ(μ,x1)

∂x1
if i = j,

0 if i �= j,

which is equivalent to saying

∂�(μ, x)

∂x
= ∂φ(μ, x1)

∂x1
I.

From all the above, we conclude that

∂�(μ, x)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

∂φ(μ,x1)
∂x1

I if x2 = 0,⎡
⎣ b c

xT
2‖x2‖

c x2‖x2‖ aI + (b − a)
x2xT

2
‖x2‖2

⎤
⎦ if x2 �= 0.

Thus, the proof is complete. �
Now, we are ready to answer the question about what kind of smoothing functions can be adopted in the smoothing

type algorithm. Two technical lemmas are needed towards the answer.

Lemma 2.1. Suppose that M, N ∈ R
n×n. Let σmin(M) denote the minimum singular value of M, and σmax(N) denote the maximum

singular value of N. Then, the following hold.

(a) σmin(M) > σmax(N) if and only if σmin(MT M) > σmax(N T N).
(b) If σmin(MT M) > σmax(N T N), then MT M − N T N is positive definite.

Proof. The proof is straightforward or can be found in usual textbook of matrix analysis, so we omit it here. �
Lemma 2.2. Let A, S ∈ R

n×n and A be symmetric. Suppose that the eigenvalues of A and S S T are arranged in non-increasing order.
Then, for each k = 1, 2, · · · , n, there exists a nonnegative real number θk such that

λmin(S S T) ≤ θk ≤ λmax(S S T) and λk(S A S T) = θkλk(A).

Proof. Please see [11, Corollary 4.5.11] for a proof. �
We point out that the crucial key, which guarantees a smoothing function can be employed in the smoothing type

algorithm, is the nonsingularity of the Jacobian matrix H ′(μ, x)) given in (7). As below, we provide under what condition
the Jacobian matrix H ′(μ, x)) is nonsingular.

212 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
Theorem 2.1. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let H be defined as in (6). Suppose that φ : R++ × R → R is a
smoothing function of |t|. If −1 ≤ d

dt φ(μ, t) ≤ 1 is satisfied, then the Jacobian matrix H ′(μ, x) is nonsingular for any μ > 0.

Proof. From the expression of H ′(μ, x) given as in (7), we know that H ′(μ, x) is nonsingular if and only if the matrix
A + B ∂�(μ,x)

∂x is nonsingular. Thus, it suffices to show that the matrix A + B ∂�(μ,x)
∂x is nonsingular under the conditions.

Suppose not, that is, there exists a vector 0 �= v ∈R
n such that[

A + B
∂�(μ, x)

∂x

]
v = 0

which implies that

v T AT Av = v T
[

∂�(μ, x)

∂x

]T

BT B
∂�(μ, x)

∂x
v. (9)

For convenience, we denote C := ∂�(μ,x)
∂x . Then, it follows that v T AT Av = v T C T BT BC v . Applying Lemma 2.2, there exists a

constant θ̂ such that

λmin(C T C) ≤ θ̂ ≤ λmax(C T C) and λmax(C T BT BC) = θ̂λmax(BT B).

Note that if we can prove that

0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1,

we will have λmax(C T BT BC) ≤ λmax(BT B). Then, by the assumption that the minimum singular value of A strictly exceeds
the maximum singular value of B (i.e., σmin(A) > σmax(B)) and applying Lemma 2.1, we obtain v T AT Av > v T C T BT BC v .
This contradicts the identity (9), which shows the Jacobian matrix H ′(μ, x) is nonsingular for μ > 0.

Thus, in light of the above discussion, it suffices to claim 0 ≤ λmin(C T C) ≤ λmax(C T C) ≤ 1. To this end, we discuss two
cases.

Case 1: For x2 = 0, we compute that C = ∂φ(μ,x1)
∂x1

I . Since −1 ≤ ∂φ(μ,x1)
∂x1

≤ 1, it is clear that 0 ≤ λ(C T C) ≤ 1 for μ > 0. Then,
the claim is done.

Case 2: For x2 �= 0, using the fact that the matrix MT M is always positive semidefinite for any matrix M ∈ R
m×n , we see

that the inequality λmin(C T C) ≥ 0 always holds. In order to prove λmax(C T C) ≤ 1, we need to further argue that the matrix
I − C T C is positive semidefinite. First, we write out

I − C T C =
⎡
⎣ 1 − b2 − c2 −2bc

xT
2‖x2‖

−2bc x2‖x2‖ (1 − a2)I + (a2 − b2 − c2)
x2xT

2
‖x2‖2

⎤
⎦ .

If −1 < ∂φ(μ,λi(x))
∂x1

< 1, then we obtain

b2 + c2 = 1

2

[(
∂φ(μ,λ1(x))

∂x1

)2

+
(

∂φ(μ,λ2(x))

∂x1

)2
]

< 1.

This indicates that 1 − b2 − c2 > 0. By considering [1 − b2 − c2] as an 1 × 1 matrix, this says [1 − b2 − c2] is positive definite.
Hence, its Schur complement can be computed as below:

(1 − a2)I + (a2 − b2 − c2)
x2xT

2

‖x2‖2
− 4b2c2

1 − b2 − c2

x2xT
2

‖x2‖2

= (1 − a2)

(
I − x2xT

2

‖x2‖2

)
+

(
1 − b2 − c2 − 4b2c2

1 − b2 − c2

)
x2xT

2

‖x2‖2
. (10)

On the other hand, by the Mean Value Theorem, we have

φ(μ,λ2(x)) − φ(μ,λ1(x)) = ∂φ(μ, ξ)

∂ξ
(λ2(x) − λ1(x)),

where ξ ∈ (λ1(x), λ2(x)). To proceed, we need to further discuss two subcases.

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 213
(1) When −1 < ∂φ(μ,ξ)
∂ξ

< 1, we know |φ(μ, λ2(x)) − φ(μ, λ1(x))| < |λ2(x) − λ1(x)|. This together with (8) implies that
1 − a2 > 0 for any μ > 0. In addition, for any μ > 0, we observe that

(1 − b2 − c2)2 − 4b2c2

= (1 − (b − c)2)(1 − (b + c)2)

=
[

1 −
(

∂φ(μ,λ1(x))

∂x1

)2
]

·
[

1 −
(

∂φ(μ,λ2(x))

∂x1

)2
]

> 0.

With all of these, we verify that the Schur complement of [1 − b2 − c2] given as in (10) is a linear positive combina-

tion of the matrices
(

I − x2xT
2

‖x2‖2

)
and x2xT

2
‖x2‖2 , which yields that the Schur complement (10) of [1 − b2 − c2] is positive

semidefinite. Hence, the matrix I − C T C is also positive semidefinite, which is equivalent to saying 0 ≤ λmin(C T C) ≤
λmax(C T C)≤ 1.

(2) When ∂φ(μ,ξ)
∂ξ

= ±1, we have

1 − a2 = 0, and (1 − b2 − c2)2 − 4b2c2 > 0.

Since the matrix x2xT
2

‖x2‖2 is positive semidefinite, the matrix I − C T C is positive semidefinite. Hence, 0 ≤ λmin(C T C) ≤
λmax(C T C) ≤ 1.

If either

{
∂φ(μ,λ1(x))

∂x1
= ±1

∂φ(μ,λ2(x))
∂x1

= ±1
or

{
∂φ(μ,λ1(x))

∂x1
= ±1

∂φ(μ,λ2(x))
∂x1

= ∓1
, then we have b = ±1, c = 0 or b = 0, c = ∓1, which yields b2 +c2 = 1.

Again, two subcases are needed.

(1) When −1 < ∂φ(μ,ξ)
∂ξ

< 1, we have |φ(μ, λ2(x)) − φ(μ, λ1(x))| < |λ2(x) − λ1(x)|. This implies that 1 − a2 > 0 for any
μ > 0. Therefore

I − C T C =
⎡
⎣ 0 0

0 (1 − a2)

(
I − x2xT

2
‖x2‖2

) ⎤
⎦ .

Since the matrix I − x2xT
2

‖x2‖2 is positive semidefinite, the matrix I − C T C is positive semidefinite. Hence, 0 ≤ λmin(C T C) ≤
λmax(C T C) ≤ 1.

(2) When ∂φ(μ,ξ)
∂ξ

= ±1, we have I − C T C = 0, which leads to λ(C T C) = 1.

From all the above, the proof is complete. �
We point out that the condition σmin(A) > σmax(B) in Theorem 2.1 guarantees the unique solution according to [35,

Theorem 4.1]. From Theorem 2.1, we realize that for a SOCAVE (2) with σmin(A) > σmax(B), any smoothing function of
|t| with −1 ≤ d

dt φ(μ, t) ≤ 1 will be good for serving in the smoothing Newton algorithm when solving the above SO-
CAVE. With this, it is easy to find or construct smoothing functions of |t| satisfying the above condition. One popular
approach is a smoothing approximation via convolution for the absolute value function [4,22,38,44], which is described as
below.

First, we construct a smoothing approximation for the plus function (t)+ = max{0, t}. Then, we consider the piecewise
continuous function d(t) with finite number of pieces, which is a density (kernel) function. In other words, it satisfies

d(t) ≥ 0 and

+∞∫
−∞

d(t)dt = 1.

With this d(t), we further define ŝ(t, μ) := 1
μd

(
t
μ

)
, where μ is a positive parameter. If

∫ +∞
−∞ |t|d(t)dt < +∞, then a smooth-

ing approximation for (t)+ is formed. In particular,

p̂(t,μ) =
+∞∫

−∞
(t − s)+ ŝ(s,μ)ds =

t∫
−∞

(t − s)ŝ(s,μ)ds ≈ (t)+.

The following are four well-known smoothing functions for the plus function [4,38]:

214 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
φ̂1(μ, t) = t + μ ln
(

1 + e− t
μ

)
, (11)

φ̂2(μ, t) =
⎧⎨
⎩

t if t ≥ μ
2 ,

1
2μ

(
t + μ

2

)2 if − μ
2 < t <

μ
2 ,

0 if t ≤ −μ
2 ,

(12)

φ̂3(μ, t) =
√

4μ2 + t2 + t

2
, (13)

φ̂4(μ, t) =
⎧⎨
⎩

t − μ
2 if t > μ,

t2

2μ if 0 ≤ t ≤ μ,

0 if t < 0,

(14)

where the corresponding kernel functions are

d1(t) = e−x

(1 + e−x)2
,

d2(t) =
{

1 if − 1
2 ≤ x ≤ 1

2 ,

0 otherwise,

d3(t) = 2

(x2 + 4)
3
2

,

d4(t) =
{

1 if 0 ≤ x ≤ 1,

0 otherwise.

Next, in light of |t| = (t)+ + (−t)− , the smoothing function of |t| via convolution can be written as

p̂(|t| ,μ) = p̂(t,μ) + p̂(−t,μ) =
+∞∫

−∞
|t − s| ŝ(s,μ)ds.

Analogous to (11)–(14), we achieve the following smoothing functions for |t|:

φ1(μ, t) = μ
[

ln
(

1 + e− t
μ

)
+ ln

(
1 + e

t
μ

)]
, (15)

φ2(μ, t) =

⎧⎪⎨
⎪⎩

t if t ≥ μ
2 ,

t2

μ + μ
4 if − μ

2 < t <
μ
2 ,

−t if t ≤ −μ
2 ,

(16)

φ3(μ, t) =
√

4μ2 + t2, (17)

φ4(μ, t) =
{

t2

2μ if |t| ≤ μ,

|t| − μ
2 if |t| > μ.

(18)

If we take a Epanechnikov kernel function

K (t) =
{

3
4 (1 − t2) if |t| ≤ 1,

0 otherwise,

then we obtain the following smoothing function for |t|:

φ5(μ, t) =

⎧⎪⎨
⎪⎩

t if t > μ,

− t4

8μ3 + 3t2

4μ + 3μ
8 if − μ ≤ t ≤ μ,

−t if t < μ.

(19)

Moreover, taking a Gaussian kernel function K (t) = 1√
2π

e− t2
2 for all t ∈R yields

ŝ(t,μ) := 1

μ
K

(
t

μ

)
= 1√

2πμ2
e
− t2

2μ2 ,

and it leads to the smoothing function [44] for |t|:

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 215
φ6(μ, t) = terf

(
t√
2μ

)
+

√
2

π
μe

− t2

2μ2 , (20)

where the error function is defined by

erf(t) = 2√
π

t∫
0

e−u2
du ∀t ∈R.

In summary, we have constructed six smoothing functions from the above discussions. Can all the above functions serve as
smoothing functions for solving SOCAVE? The answer is affirmative because it is not hard to verify that each φi possesses
−1 ≤ d

dt φi(μ, t) ≤ 1. Thus, these six functions will be adopted for our numerical implementations. Accordingly, we need
to define �i(μ, x) and Hi(μ, x) based on each φi . For subsequent needs, we only present the expression of each Jacobian
matrix H ′

i(μ, x) without detailed derivations.
Based on each φi , let �i : R ×R

n → R
n for i = 1, 2, · · · , 6 be similarly defined as in (5), i.e.

�i(μ, x) = φi (μ,λ1(x)) u(1)
x + φi (μ,λ2(x)) u(2)

x (21)

and Hi : R ×R
n → R

n for i = 1, 2, · · · , 6 be similarly defined as in (6), i.e.

Hi(μ, x) =
[

μ
Ax + B�i(μ, x) − b

]
, ∀μ ∈R++ and x ∈ R

n. (22)

Then, each Hi is continuously differentiable on R++ ×R
n with the Jacobian matrix given by

H ′
i(μ, x) =

[
1 0

B ∂�i(μ,x)
∂μ A + B ∂�i(μ,x)

∂x

]
(23)

for all (μ, x) ∈ R++ ×R
n with x = (x1, x2) ∈R ×R

n−1. Moreover, the differentiation of each �i is expressed as below.

(1) The Jacobian of �1 is characterized as below.

∂�1(μ, x)

∂μ

= ∂φ1(μ,λ1(x))

∂μ
u(1)

x + ∂φ1(μ,λ2(x))

∂μ
u(2)

x

=
⎡
⎣ φ1(μ,λ1(x))

μ
+ λ1(x)

μ
· 1 − e

λ1(x)
μ

1 + e
λ1(x)

μ

⎤
⎦u(1)

x +
⎡
⎣ φ1(μ,λ2(x))

μ
+ λ2(x)

μ
· 1 − e

λ2(x)
μ

1 + e
λ2(x)

μ

⎤
⎦u(2)

x ,

∂�1(μ, x)

∂x
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
x1
μ −1

e
x1
μ +1

I if x2 = 0,⎡
⎣ b1 c1

xT
2‖x2‖

c1
x2‖x2‖ a1 I + (b1 − a1)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a1 = φ1(μ,λ2(x)) − φ1(μ,λ1(x))

λ2(x) − λ1(x)
,

b1 = 1

2

⎛
⎝e

λ1(x)
μ − 1

e
λ1(x)

μ + 1
+ e

λ2(x)
μ − 1

e
λ2(x)

μ + 1

⎞
⎠ ,

c1 = 1

2

⎛
⎝1 − e

λ1(x)
μ

e
λ1(x)

μ + 1
+ e

λ2(x)
μ − 1

e
λ2(x)

μ + 1

⎞
⎠ .

(2) The Jacobian of �2 is characterized as below.

∂�2(μ, x)

∂μ
= ∂φ2(μ,λ1(x))

∂μ
u(1)

x + ∂φ2(μ,λ2(x))

∂μ
u(2)

x

with

216 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
∂φ2(μ,λi(x))

∂μ
=

⎧⎪⎨
⎪⎩

0 if λi(x) ≥ μ
2 ,

−
(

λi(x)
μ

)2 + 1
4 if − μ

2 < λi(x) <
μ
2 ,

0 if λi(x) ≤ −μ
2 ,

∂�2(μ, x)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

dI if x2 = 0,⎡
⎣ b2 c2

xT
2‖x2‖

c2
x2‖x2‖ a2 I + (b2 − a2)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a2 = φ2(μ,λ2(x)) − φ2(μ,λ1(x))

λ2(x) − λ1(x)
,

b2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if λ2(x) ≥ μ
2 > −μ

2 ≥ λ1(x),
1 if λ2(x) > λ1(x) ≥ μ

2 ,
λ1(x)

μ + 1
2 if λ2(x) ≥ μ

2 > λ1(x) > −μ
2 ,

λ1(x)+λ2(x)
μ if μ

2 > λ2(x) > λ1(x) > −μ
2 ,

λ2(x)
μ − 1

2 if μ
2 > λ2(x) > −μ

2 ≥ λ1(x),

−1 if λ1(x) < λ2(x) ≤ −μ
2 ,

c2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if λ2(x) ≥ μ
2 > −μ

2 ≥ λ1(x),
0 if λ2(x) > λ1(x) ≥ μ

2 ,
1
2 − λ1(x)

μ if λ2(x) ≥ μ
2 > λ1(x) > −μ

2 ,
λ2(x)−λ1(x)

μ if μ
2 > λ2(x) > λ1(x) > −μ

2 ,
λ2(x)

μ + 1
2 if μ

2 > λ2(x) > −μ
2 ≥ λ1(x),

0 if λ1(x) < λ2(x) ≤ −μ
2 ,

d =
⎧⎨
⎩

1 if x1 ≥ μ
2 ,

2x1
μ if − μ

2 < x1 <
μ
2 ,

−1 if x1 ≤ −μ
2 .

(3) The Jacobian of �3 is characterized as below.

∂�3(μ, x)

∂μ
= 4μ√

4μ2 + λ2
1(x)

u(1)
x + 4μ√

4μ2 + λ2
2(x)

u(2)
x

∂�3(μ, x)

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1√
4μ2+x2

1

I if x2 = 0,⎡
⎣ b3 c3

xT
2‖x2‖

c3
x2‖x2‖ a1 I + (b1 − a1)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a3 = φ3(μ,λ2(x)) − φ3(μ,λ1(x))

λ2(x) − λ1(x)
,

b3 = 1

2

⎛
⎜⎝ λ1(x)√

4μ2 + λ2
1(x)

+ λ2(x)√
4μ2 + λ2

2(x)

⎞
⎟⎠ ,

c3 = 1

2

⎛
⎜⎝ −λ1(x)√

4μ2 + λ2
1(x)

+ λ2(x)√
4μ2 + λ2

2(x)

⎞
⎟⎠ .

(4) The Jacobian of �4 is characterized as below.

∂�4(μ, x)

∂μ
= ∂φ4(μ,λ1(x))

∂μ
u(1)

x + ∂φ4(μ,λ2(x))

∂μ
u(2)

x

with

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 217
∂φ4(μ,λi(x))

∂μ
=

⎧⎪⎨
⎪⎩

− 1
2 if λi(x) > μ,

− 1
2

(
λi(x)
μ

)2
if − μ ≤ λi(x) ≤ μ,

− 1
2 if λi(x) < −μ,

∂�4(μ, x)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

eI if x2 = 0,⎡
⎣ b4 c4

xT
2‖x2‖

c4
x2‖x2‖ a4 I + (b4 − a4)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a4 = φ4(μ,λ2(x)) − φ4(μ,λ1(x))

λ2(x) − λ1(x)
,

b4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if λ2(x) > μ > −μ > λ1(x),
1 if λ2(x) > λ1(x) > μ,
λ1(x)

2μ + 1
2 if λ2(x) > μ ≥ λ1(x) ≥ −μ,

λ1(x)+λ2(x)
2μ if μ ≥ λ2(x) > λ1(x) ≥ −μ,

λ2(x)
2μ − 1

2 if μ ≥ λ2(x) ≥ −μ > λ1(x),
−1 if λ1(x) < λ2(x) < −μ,

c4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if λ2(x) > μ > −μ > λ1(x),
0 if λ2(x) > λ1(x) > μ,
1
2 − λ1(x)

2μ if λ2(x) > μ ≥ λ1(x) ≥ −μ,
λ2(x)−λ1(x)

2μ if μ ≥ λ2(x) > λ1(x) ≥ −μ,
λ2(x)

2μ + 1
2 if μ ≥ λ2(x) ≥ −μ > λ1(x),

0 if λ1(x) < λ2(x) < −μ,

e =
⎧⎨
⎩

1 if x1 > μ,
x1
μ if − μ ≤ x1 ≤ μ,

−1 if x1 < −μ.

(5) The Jacobian of �5 is characterized as below.

∂�5(μ, x)

∂μ
= ∂φ5(μ,λ1(x))

∂μ
u(1)

x + ∂φ5(μ,λ2(x))

∂μ
u(2)

x

with

∂φ5(μ,λi(x))

∂μ
=

⎧⎪⎪⎨
⎪⎪⎩

0 if λi(x) > μ,

3
8

((
λi(x)
μ

)2 − 1

)2

if − μ ≤ λi(x) ≤ μ,

0 if λi(x) < −μ,

∂�5(μ, x)

∂x
=

⎧⎪⎪⎨
⎪⎪⎩

eI if x2 = 0,⎡
⎣ b5 c5

xT
2‖x2‖

c5
x2‖x2‖ a5 I + (b5 − a5)

x2xT
2

‖x2‖2

⎤
⎦ if x2 �= 0,

with

a5 = φ5(μ,λ2(x)) − φ5(μ,λ1(x))

λ2(x) − λ1(x)
,

b5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if λ2(x) > μ > −μ > λ1(x),
1 if λ2(x) > λ1(x) > μ,

− 1
4

(
λ1(x)

μ

)3 + 3
4

λ1(x)
μ + 1

2 if λ2(x) > μ ≥ λ1(x) ≥ −μ,

− 1
4

λ3
1(x)+λ3

2(x)
μ3 + 3

4
λ1(x)+λ2(x)

μ if μ ≥ λ2(x) > λ1(x) ≥ −μ,

− 1
4

(
λ2(x)

μ

)3 + 3
4

λ2(x)
μ − 1

2 if μ ≥ λ2(x) ≥ −μ > λ1(x),

−1 if λ (x) < λ (x) < −μ,
1 2

218 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
c5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if λ2(x) > μ > −μ > λ1(x),
0 if λ2(x) > λ1(x) > μ,

1
2 + 1

4

(
λ1(x)

μ

)3 − 3
4

λ1(x)
μ if λ2(x) > μ ≥ λ1(x) ≥ −μ,

− 1
4

λ3
2(x)−λ3

1(x)
μ3 + 3

4
λ2(x)+λ1(x)

μ if μ ≥ λ2(x) > λ1(x) ≥ −μ,

− 1
4

(
λ2(x)

μ

)3 + 3
4

λ2(x)
μ + 1

2 if μ ≥ λ2(x) ≥ −μ > λ1(x),

0 if λ1(x) < λ2(x) < −μ,

e =

⎧⎪⎨
⎪⎩

1 if x1 > μ,

− 1
2

(
x1
μ

)3 + 3
2

x1
μ if − μ ≤ x1 ≤ μ,

−1 if x1 < −μ.

(6) The Jacobian of �6 is characterized as below.

∂�6(μ, x)

∂μ
=

√
2

π
e
− λ2

1(x)

2μ2 u(1)
x +

√
2

π
e
− λ2

2(x)

2μ2 u(2)
x

∂�6(μ, x)

∂x
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

erf
(

x1√
2μ

)
I if x2 = 0,⎡

⎣ b6 c6
xT

2‖x2‖
c6

x2‖x2‖ a6 I + (b6 − a6)
x2xT

2
‖x2‖2

⎤
⎦ if x2 �= 0,

with

a6 = φ6(μ,λ2(x)) − φ6(μ,λ1(x))

λ2(x) − λ1(x)
,

b6 = 1

2

(
erf

(
λ1(x)√

2μ

)
+ erf

(
λ2(x)√

2μ

))
,

c6 = 1

2

(
erf

(
λ2(x)√

2μ

)
− erf

(
λ1(x)√

2μ

))
.

3. Smoothing Newton method

In this section, we study the smoothing Newton algorithm based on the smoothing function �i(μ, x) for i ∈ {1, 2, . . . , 6}
to solve the SOCAVE (2), and show its convergence properties. First, we present the generic framework of the smoothing
Newton algorithm.

Algorithm 3.1 (A smoothing Newton algorithm).

Step 0 Choose δ ∈ (0, 1), σ ∈ (0,1), and μ0 ∈ R++ , x0 ∈ R
n . Set z0 := (μ0, x0), e := (1, 0) ∈ R × R

n−1. Choose β > 1
satisfying min{1, ‖Hi(z0)‖2} ≤ βμ0. Set k := 0.

Step 1 If ‖Hi(zk)‖ = 0, stop. Otherwise, set τk := min{1, ‖Hi(zk)‖}.
Step 2 Compute �zk = (�μk, �xk) ∈R ×R

n by

Hi(zk) + H ′
i(zk)�zk = 1

β
τ 2

k e, (24)

where H ′
i(zk) denotes the Jacobian matrix of Hi(zk) at (μk, xk) given by (7).

Step 3 Let αk be the maximum of the values 1, δ, δ2, · · · such that

‖Hi(zk + αk�zk)‖ ≤
[

1 − σ(1 − 1

β
)αk

]
‖Hi(zk)‖. (25)

Step 4 Set zk+1 := zk + αk�zk and k := k + 1. Go to Step 1.

Theorem 2.1 indicates the Newton equation (24) in Algorithm 3.1 is solvable. It paves a way to show that the lin-
ear search (25) in Algorithm 3.1 is well-defined which is presented in Theorem 3.1 as below. More specifically, from [16,
Lemma 3.1], we know that there exists an ᾱ ∈ (0, 1] such that (25) holds for any α ∈ (0, ᾱ]. This indicates that taking

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 219
α = max{1, δ, δ2, . . . }, where δ ∈ (0, 1) in step 3, leads to (25) being well-defined. Indeed, the detailed arguments are very
similar to those in [15,17,36], we only state it here and omit its proof.

Theorem 3.1. Consider a SOCAVE (2) with σmin(A) > σmax(B). Then, for �z ∈ R × R
n given by (24), the linear search (25) is well-

defined.

Next, we discuss the convergence of Algorithm 3.1. To this end, we need the following results whose arguments are also
similar to the ones in [17, Remark 2.1]. In particular, for Theorem 3.2(d), we provide a proof in light of the structure of each
φi so that the readers can look into the analytic difference among them.

Theorem 3.2. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let Hi be defined as in (22). Suppose that the sequence {zk} is generated
by Algorithm 3.1. Then, the following results hold.

(a) The sequences {‖Hi(zk)‖} and {τk} are monotonically non-increasing.
(b) βμk ≥ τ 2

k for all k.

(c) The sequence {μk} is monotonically non-increasing and μk > 0 for all k.
(d) The sequence {zk} is bounded.

Proof. (a) From definition of the line search in (25) and τk := min{1, ‖Hi(zk)‖}, it is clear that {‖Hi(zk)‖} and {τk} are
monotonically non-increasing.

(b) We prove this conclusion by induction. First, by Algorithm 3.1, it is clear that τ 2
0 ≤ βμ0 with τ0, β and μ0 chosen in

Algorithm 3.1. Secondly, we suppose that τ 2
k ≤ βμk for some k. Then, for k + 1, we have

μk+1 − τ 2
k+1

β
= μk + αk�μk − τ 2

k+1

β

= (1 − αk)μk + αk
τ 2

k

β
− τ 2

k+1

β

≥ (1 − αk)
τ 2

k

β
+ αk

τ 2
k

β
− τ 2

k+1

β

≥ 0,

where the second equality holds due to the Newton equation (24), and the second inequality holds due to part (a). Hence,
it follows that βμk ≥ τ 2

k for all k.
(c) From the iterative scheme zk+1 = zk + αk�zk , we know μk+1 = μk + αk�μk . By the Newton equations (24) and the

line search as in (25) again, it follows that

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≥ (1 − αk)

τ 2
k

β
+ αk

τ 2
k

β
> 0

for all k. On the other hand, we have

μk+1 = (1 − αk)μk + αk
τ 2

k

β
≤ (1 − αk)μk + αkμk ≤ μk,

where the first inequality holds due to part (b). Hence, the sequence {μk} is monotonically non-increasing and μk > 0 for
all k.

(d) From part (a), we know the sequence {‖Hi(zk)‖} is bounded, which means there is a constant C such that ‖Hi(zk)‖
≤ C . Thus,

C ≥ ‖Hi(zk)‖
≥

∥∥∥Axk + B�i(μk, xk) − b
∥∥∥

≥
∥∥∥Axk

∥∥∥−
∥∥∥B�i(μk, xk)

∥∥∥− ‖b‖

=
√

(xk)T AT Axk −
√

[�i(μk, xk)]T BT B�i(μk, xk) − ‖b‖
≥

√
λmin(AT A)‖xk‖ −

√
λmax(BT B)‖�i(μk, xk)‖2 − ‖b‖

=
√

λmin(AT A)

∥∥∥xk
∥∥∥−

√
λmax(BT B)

∥∥∥φi(μk, λ1(xk))u(1)
x + φi(μk, λ2(xk))u(2)

x

∥∥∥2 − ‖b‖

220 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
=
√

λmin(AT A)

∥∥∥xk
∥∥∥−

√
λmax(BT B)

[
φ2

i (μk, λ1(xk))‖u(1)
x ‖2 + φ2

i (μk, λ2(xk))‖u(2)
x ‖2

]
− ‖b‖

=
√

λmin(AT A)

∥∥∥xk
∥∥∥−

√
λmax(BT B)

1

2

[
φ2

i (μk, λ1(xk)) + φ2
i (μk, λ2(xk))

]− ‖b‖.
On the other hand, for i = 1, 2, 3, 4, 5, we see that

φ2
i (μk, λ1(xk)) + φ2

i (μk, λ2(xk)) =
2∑

j=1

f i(μ,λ j(xk)) + λ2
1(xk) + λ2

2(xk).

(i) For i = 1, we have f1(μ, λ j(xk)) = 4μ2
k ln(e

λ j (xk)

μk + 1) ln(e
− λ j (xk)

μk + 1). It is known that the function g(t) = 4 ln(et

+ 1) ln(e−t + 1) is bounded for all t ∈ R. It follows that there exists N1 such that
∣∣∣∑2

j=1 f1(μ,λ j(xk))

∣∣∣ ≤ μ2
k N1.

(ii) For i = 2, 4, 5, it is easy to verify that there exist Ni such that
∣∣∣∑2

j=1 f i(μ,λ j(xk))

∣∣∣ ≤ μ2
k Ni .

For i = 3, we have
∑2

j=1 f i(μ, λ j(xk)) = 8μ2
k := μ2

k N3, which yields

φ2
i (μk, λ1(xk)) + φ2

i (μk, λ2(xk)) ≤ μ2
k Ni + λ2

1(xk) + λ2
2(xk)

= 2

(
μ2

k
Ni

2
+ ‖xk‖2

)

≤ 2

(
μk

√
Ni

2
+ ‖xk‖

)2

.

This together with ‖Hi(zk)‖ ≤ C implies that

‖xk‖ ≤
C + 2

√
λmax(BT B)μk

√
Ni
2 + ‖b‖√

λmin(AT A) −√
λmax(BT B)

holds for all k. Thus, the sequence {xk} is bounded.

(iv) For i = 6, we know that |erf(t)| ≤ 1 and 0 < e
− t2

2μ2 ≤ 1. Thus, it leads to

φ2
6(μk, λ1(xk)) + φ2

6(μk, λ2(xk))

≤
(

λ1(xk) +
√

2

π
μk

)2

+
(

λ2(xk) +
√

2

π
μk

)2

≤ 2

(
μk

√
2

π
+ ‖xk‖

)2

where the last inequality is due to |λ1(xk)| + |λ2(xk)| ≤ 2‖xk‖. Then, it follows that

‖xk‖ ≤
C + 2

√
λmax(BT B)μk

√
2
π + ‖b‖√

λmin(AT A) −√
λmax(BT B)

holds for all k. Thus, the sequence {xk} is bounded.
From all the above, the proof is complete. �
Now, we shall show that any sequence {zk} is generated by Algorithm 3.1 convergent to a solution to the SOCAVE (2).

In the next theorem we demonstrate that under our assumptions. The proof is essentially similar to a result [13,36, Theo-
rem 4.1]. Hence, we omit the detailed proof and only present the convergence result.

Theorem 3.3. Consider a SOCAVE (2) with σmin(A) > σmax(B). Suppose that {zk} is generated by Algorithm 3.1. Then, any accumula-
tion point of {zk} is a solution to the SOCAVE (2).

Algorithm 3.1 possesses the local quadratic convergence rate. In fact, we can achieve it by similar arguments as those in
[36,39, Theorem 8].

Theorem 3.4. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let Hi be defined as in (6) and z� be the unique solution to SOCAVE (2).
Suppose that all V ∈ ∂ Hi(z�) are nonsingular. Then, the whole sequence {zk} converges to z� , and ‖zk+1 − z�‖ = O (‖zk − z�‖2).

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 221
4. Numerical results

In this section, we report some numerical results via five numerical examples to evaluate the efficiency of Algorithm 3.1.
First, in our experiments, we set parameters as

μ0 = 0.1, x0 = rand(n,1), δ = 0.5, σ = 10−5 and β = max(1,1.01 ∗ τ 2
0 /μ).

We stop the iterations when ‖H(zk)‖ ≤ 10−6 or the number of iterations exceeds 100. All the experiments are done on a
PC with Intel(R) CPU of 2.40 GHz and RAM of 4.00 GHz, and all the programming codes are written in Matlab and run in
Matlab environment.

For each problem, we implement the smoothing Newton Algorithm 3.1 with six different smoothing functions φ1(μ, t),
φ2(μ, t), φ3(μ, t), φ4(μ, t), φ5(μ, t), φ6(μ, t), respectively. Each problem is randomly generated 50 times and the average
results are listed in Tables, where n denotes the size of problem, itn denotes the average number of iterations, time denotes
the average value of the CPU time in seconds and fails means the number of failures.

Secondly, in order to compare the performance of smoothing function φi(μ, t), for i = 1, 2, 3, 4, 5, 6 in the smoothing
Newton Algorithm 3.1, we adopt the performance profile which is introduced in [7] as a means. In other words, we regard
Algorithm 3.1 corresponding to a smoothing function φi(μ, t), for i = 1, 2, 3, 4, 5, 6 as a solver, and assume that there are
ns solvers and np test problems from the test set P which is generated randomly. We are interested in using the iteration
number and computing time as performance measure for Algorithm 3.1 with different φi(μ, t). For each problem p and
solver s, let

f p,s = iteration number (or computing time) required to solve problem p by solver s.

We employ the performance ratio

rp,s := f p,s

min{ f p,s : s ∈ S} ,

where S is the four solvers set. We assume that a parameter rp,s ≤ rM for all p, s are chosen, and rp,s = rM if and only if
solver s does not solve problem p. In order to obtain an overall assessment for each solver, we define

ρs(τ) := 1

np
size{p ∈ P : rp,s ≤ τ },

which is called the performance profile of the number of iteration for solver s. Then, ρs(τ) is the probability for solver s ∈ S
that a performance ratio f p,s is within a factor τ ∈ R of the best possible ratio. The performance profiles of each problem
are depicted in Figs. 1–10.

Problem 4.1. Consider the SOCAVE (2) which is generated in the following way: first choose two random matrices B, C ∈
R

n×n from a uniform distribution on [−10, 10] for every element. We compute the maximal singular value σ1 of B and
the minimal singular value σ2 of C , and let σ := min{1, σ2/σ1}. Next, we divide C by σ multiplied by a random number
in the interval [0, 1], and the resulting matrix is denoted as A. Accordingly, the minimum singular values of A exceeds
the maximal singular value of B . We choose randomly b ∈ R

n on [0, 1] for every element. By Algorithm 3.1 in this paper,
the resulting SOCAVE (2) is solvable. The initial point is chosen in the range [0, 1] entry-wisely. Note that a similar way to
construct the problem was given in [14].

Table 1 and Figs. 1–2 show that function φ1(μ, t) performs worst, whereas the difference among other functions is very
slight. Fig. 1 demonstrates the performance profile of iteration numbers for Problem 4.1. The subplot in Fig. 1 is the zoomed
plot for upper-left part of the Fig. 1. Fig. 2 shows the performance profile of computing time for Problem 4.1. The subplot in
Fig. 2 is the zoomed plot for lower-left part of Fig. 2. From this figure, we can see that the performance of function φ1(μ, t)
is also the worst one.

Problem 4.2. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices C, D ∈ R
n×n

from a uniform distribution on [−10, 10] for every element, and compute their singular value decompositions C := U1 S1 V T
1

and D := U2 S2 V T
2 with diagonal matrices S1 and S2; unitary matrices U1, V 1, U2 and V 2. Then, we choose randomly

b, c ∈ R
n on [0, 10] for every element. Next, we take a ∈ R

n by setting ai = ci + 10 for all i ∈ {1, . . . , n}, so that a ≥ b. Set
A := U1Diag(a)V T

1 and B := U2Diag(b)V T
2 , where Diag(x) denotes a diagonal matrix with its i-th diagonal element being xi .

The gap between the minimal singular value of A and the maximal singular value of B is limited and can be very small.
We choose randomly b ∈ R

n in [0, 10]. The initial point is chosen in the range [0, 1] entry-wisely.

For Problem 4.2, as depicted in Figs. 3–4 and Table 2, all the smoothing functions φi(μ, t) for i = 1, 2, 3, 4, 5, 6 perform
very well, without any discrepancy.

222 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
Table 1
Numerical results for Problem 4.1.

n φ1 φ2 φ3 φ4 φ5 φ6

itn time fails itn time fails itn time fails itn time fails itn time fails itn time fails

200 3.000 0.018 0 3.000 0.018 0 3.000 0.019 0 3.000 0.017 0 3.000 0.017 0 3.00 0.019 0
300 3.000 0.036 3 3.000 0.037 0 2.980 0.036 0 2.980 0.037 0 3.000 0.034 0 3.00 0.033 0
400 3.000 0.077 1 3.000 0.072 1 3.000 0.075 1 3.000 0.076 1 3.000 0.079 1 3.00 0.081 1
500 3.000 0.120 4 3.000 0.123 1 3.000 0.124 1 3.000 0.128 1 3.000 0.126 1 3.00 0.121 1
600 3.000 0.180 3 3.000 0.194 1 3.000 0.189 1 3.000 0.197 1 3.000 0.193 1 3.00 0.183 1
700 3.000 0.264 7 3.060 0.269 1 3.061 0.273 1 3.061 0.255 1 3.061 0.277 1 3.061 0.271 1
800 3.000 0.369 2 3.000 0.380 0 3.000 0.377 0 3.000 0.371 0 3.000 0.360 0 3.00 0.379 0
900 3.000 0.496 5 3.020 0.511 1 3.020 0.494 1 3.020 0.484 1 3.020 0.489 1 3.020 0.510 1

1000 3.000 0.643 5 3.080 0.681 1 3.041 0.644 1 3.122 0.678 1 3.082 0.665 1 3.082 0.687 1
1200 3.000 1.010 7 3.000 1.009 3 3.000 0.995 3 3.000 1.000 3 3.000 1.019 3 3.000 1.018 3
1500 3.000 1.726 13 3.570 2.097 4 3.205 1.795 6 3.500 2.003 4 3.565 2.080 4 3.565 2.102 4
2000 3.000 3.474 19 3.330 3.997 8 3.049 3.548 9 3.429 4.150 8 3.333 4.009 8 3.333 3.937 8

Fig. 1. Performance profile of iteration numbers of Problem 4.1. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

Fig. 2. Performance profile of computing time of Problem 4.1.

Problem 4.3. Consider the SOCAVE (2) which is generated in the following way: choose two random matrices A, B ∈ R
n×n

from a uniform distribution on [−10, 10] for every element. In order to ensure that the SOCAVE (2) is solvable, we update
the matrix A by the following: let [U S V] = svd(A). If min{S(i, i)} = 0 for i = 0, 1, · · · , n, we make A = U (S + 0.01E)V , and

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 223
Table 2
Numerical results for Problem 4.2.

n φ1 φ2 φ3 φ4 φ5 φ6

itn time fails itn time fails itn time fails itn time fails itn time fails itn time fails

200 4.560 0.027 0 4.560 0.024 0 4.560 0.027 0 4.560 0.024 0 4.560 0.026 0 4.560 0.027 0
300 4.660 0.057 0 4.660 0.053 0 4.660 0.056 0 4.660 0.055 0 4.660 0.054 0 4.660 0.058 0
400 4.780 0.129 0 4.780 0.129 0 4.780 0.134 0 4.780 0.135 0 4.780 0.129 0 4.780 0.134 0
500 4.800 0.210 0 4.800 0.213 0 4.800 0.222 0 4.800 0.221 0 4.800 0.217 0 4.800 0.206 0
600 4.820 0.316 0 4.820 0.319 0 4.820 0.338 0 4.820 0.339 0 4.820 0.334 0 4.820 0.317 0
700 4.900 0.470 0 4.900 0.471 0 4.900 0.495 0 4.900 0.485 0 4.900 0.483 0 4.900 0.454 0
800 4.980 0.693 0 4.980 0.677 0 4.980 0.708 0 4.980 0.707 0 4.980 0.687 0 4.980 0.650 0
900 4.980 0.919 0 4.980 0.899 0 4.980 0.947 0 4.980 0.917 0 4.980 0.912 0 4.980 0.867 0

1000 4.980 1.200 0 4.980 1.174 0 4.980 1.186 0 4.980 1.207 0 4.980 1.207 0 4.980 1.130 0
1200 4.960 1.922 0 4.960 1.856 0 4.960 1.837 0 4.960 1.852 0 4.960 1.894 0 4.960 1.765 0
1500 5.000 3.284 0 5.000 3.219 0 5.000 3.146 0 5.000 3.220 0 5.000 3.204 0 5.000 3.117 0
2000 5.000 6.914 0 5.000 6.609 0 5.000 6.783 0 5.000 6.767 0 5.000 6.712 0 5.000 6.649 0

Fig. 3. Performance profile of iteration numbers of Problem 4.2.

Fig. 4. Performance profile of computing time of Problem 4.2.

then A = λmax(BT B)+0.01
λmin(AT A)

A. We choose randomly b ∈ R
n on [0, 10] for every element. The initial point is chosen in the range

[0, 1] entry-wisely.

For Problem 4.3, from the Table 3 and Figs. 5–6, we see that φ1(μ, t) is obviously inferior to other functions. Moreover, in
terms of the computing time, the function φ4(μ, t) is the best one, followed by φ3(μ, t). In summary, the function φ1(μ, t)
is still the worst performer.

Problem 4.4. We consider the SOCAVE (2) which is generated the same as Problem 4.1. But, here the SOC is given by
K :=Kn1 × · · · ×Knr , where n1 = · · · = nr = n

r .

Figs. 7–8 show the performance profiles of Problem 4.4. Indeed, the performance profiles are similar to those for Prob-
lem 4.1 (only the cone structure is different). Again, the function φ1(μ, t) is still the worst performer and there is no
significant difference among other five smoothing functions.

224 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
Table 3
Numerical results for Problem 4.3.

n φ1 φ2 φ3 φ4 φ5 φ6

itn time fails itn time fails itn time fails itn time fails itn time fails itn time fails

200 3.000 0.020 0 3.000 0.018 0 3.000 0.019 0 3.000 0.017 0 3.000 0.018 0 3.000 0.020 0
300 2.980 0.036 0 2.980 0.035 0 2.980 0.031 0 2.980 0.033 0 2.980 0.032 0 2.980 0.033 0
400 3.000 0.086 1 2.980 0.082 0 2.980 0.075 0 2.980 0.075 0 2.980 0.076 0 2.980 0.071 0
500 2.980 0.132 0 2.980 0.126 0 2.980 0.118 0 2.980 0.115 0 2.980 0.125 0 2.980 0.124 0
600 2.920 0.198 0 2.920 0.205 0 2.920 0.183 0 2.920 0.174 0 2.920 0.192 0 2.920 0.190 0
700 2.959 0.291 1 2.940 0.287 0 2.940 0.259 0 2.940 0.252 0 2.940 0.274 0 2.940 0.269 0
800 2.980 0.408 1 2.960 0.425 0 2.960 0.378 0 2.960 0.355 0 2.960 0.394 0 2.960 0.392 0
900 3.000 0.564 1 2.980 0.557 0 2.980 0.503 0 2.980 0.479 0 2.980 0.517 0 2.980 0.529 0

1000 2.956 0.697 5 2.880 0.676 0 2.880 0.636 0 2.880 0.602 0 2.880 0.646 0 2.880 0.651 0
1200 3.000 1.095 2 2.980 1.085 0 2.980 1.015 0 2.980 0.975 0 2.980 1.035 0 2.980 1.045 0
1500 2.977 1.927 6 2.900 1.728 0 2.900 1.655 0 2.900 1.627 0 2.900 1.664 0 2.900 1.676 0
2000 3.000 3.755 12 2.960 3.631 0 2.960 3.477 0 2.960 3.430 0 2.960 3.468 0 2.960 3.460 0

Fig. 5. Performance profile of iteration numbers of Problem 4.3.

Fig. 6. Performance profile of computing time of Problem 4.3.

Problem 4.5. We consider the SOCAVE (2) which is generated the same as Problem 4.3. But, here the SOC is given by
K :=Kn1 × · · · ×Knr , where n1 = · · · = nr = n

r .

Figs. 9–10 show the performance profiles of Problem 4.5. They verify the poor performance of function φ1(μ, t) one
more time.

In summary, the function φ1(μ, t) is not a good choice to work with the smoothing Newton algorithm. Note that φ1(μ, t)
is related to loss function and widely used in engineering like machine learning. However, for the SOCAVE, the numerical
performance of function φ1(μ, t) is always the worst one. This is a very interesting phenomenon and discovery. In other
words, we may try to replace it by other smoothing functions for some appropriate algorithms towards real engineering
problems. This will be our future investigations.

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 225
Fig. 7. Performance profile of iteration numbers of Problem 4.4.

Fig. 8. Performance profile of computing time of Problem 4.4.

Fig. 9. Performance profile of iteration numbers of Problem 4.5.

226 C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227
Fig. 10. Performance profile of computing time of Problem 4.5.

References

[1] L. Caccetta, B. Qu, G.-L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011) 45–58.
[2] J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization 55 (2006) 363–385.
[3] J.-S. Chen, X. Chen, P. Tseng, Analysis of nonsmooth vector-valued functions associated with second-order cones, Math. Program. 101 (2004) 95–117.
[4] C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim. Appl. 5 (1996) 97–138.
[5] J.-S. Chen, S.-H. Pan, A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs, Pac. J. Optim. 8 (2012) 33–74.
[6] J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of second-order cone complementarity problem, Math. Program. 104 (2005)

293–327.
[7] E.D. Dolan, J.J. More, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.
[8] F. Facchinei, J. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
[9] U. Faraut, A. Koranyi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, New York, 1994.

[10] M. Fukushima, Z.-Q. Luo, P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM J. Optim. 12 (2002) 436–460.
[11] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[12] S.-L. Hu, Z.-H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010) 417–424.
[13] S.-L. Hu, Z.-H. Huang, P. Wang, A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problems, Optim. Methods Softw.

24 (2009) 447–460.
[14] S.-L. Hu, Z.-H. Huang, Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math.

235 (2011) 1490–1501.
[15] Z.-H. Huang, Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithms, Math. Methods

Oper. Res. 61 (2005) 41–55.
[16] Z.-H. Huang, J. Han, Z. Chen, A predictor–corrector smoothing Newton algorithm, based on a new smoothing function, for solving the nonlinear

complementarity problem with a P0 function, J. Optim. Theory Appl. 117 (2003) 39–68.
[17] Z.-H. Huang, Y. Zhang, W. Wu, A smoothing-type algorithm for solving system of inequalities, J. Comput. Appl. Math. 220 (2008) 355–363.
[18] X.-Q. Jiang, A smoothing Newton method for solving absolute value equations, Adv. Mater. Res. 765–767 (2013) 703–708.
[19] X.-Q. Jiang, Y. Zhang, A smoothing-type algorithm for absolute value equations, J. Ind. Manag. Optim. 9 (2013) 789–798.
[20] S. Ketabchi, H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory Appl. 154 (2012) 1080–1087.
[21] L.-C. Kong, J. Sun, N.-H. Xiu, A regularized smoothing Newton method for symmetric cone complementarity problems, SIAM J. Optim. 19 (2008)

1028–1047.
[22] J. Kreimer, R.Y. Rubinstein, Nondifferentiable optimization via smooth approximation: general analytical approach, Ann. Oper. Res. 39 (1992) 97–119.
[23] X.-H. Liu, W.-Z. Gu, Smoothing Newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity

problems over symmetric cones, J. Ind. Manag. Optim. 6 (2010) 363–380.
[24] N. Lu, Z.-H. Huang, Convergence of a non-interior continuation algorithm for the monotone SCCP, Acta Math. Appl. Sin. Engl. Ser. 26 (2010) 543–556.
[25] N. Lu, Y. Zhang, A smoothing-type algorithm for solving inequalities under the order induced by a symmetric cone, J. Inequal. Appl. 2011 (2011).
[26] O.L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36 (2007) 43–53.
[27] O.L. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett. 1 (2007) 3–5.
[28] O.L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009) 101–108.
[29] O.L. Mangasarian, Knapsack feasibility as an absolute value equation solvable by successive linear programming, Optim. Lett. 3 (2009) 161–170.
[30] O.L. Mangasarian, Primal–dual bilinear programming solution of the absolute value equation, Optim. Lett. 6 (2012) 1527–1533.
[31] O.L. Mangasarian, Absolute value equation solution via dual complementarity, Optim. Lett. 7 (2013) 625–630.
[32] O.L. Mangasarian, Linear complementarity as absolute value equation solution, Optim. Lett. 8 (2014) 1529–1534.
[33] O.L. Mangasarian, Absolute value equation solution via linear programming, J. Optim. Theory Appl. 161 (2014) 870–876.
[34] O.L. Mangasarian, R.R. Meyer, Absolute value equation, Linear Algebra Appl. 419 (2006) 359–367.
[35] X.-H. Miao, W.-M. Hsu, J.-S. Chen, The solvabilities of three optimization problems associated with second-order cone, 2017, submitted for publication.
[36] X.-H. Miao, J.-T. Yang, B. Saheya, J.-S. Chen, A smoothing Newton method for absolute value equation associated with second-order cone, Appl. Numer.

Math. 120 (October 2017) 82–96.
[37] O.A. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009) 363–372.
[38] L. Qi, D. Sun, Smoothing functions and smoothing Newton method for complementarity and variational inequality problems, J. Optim. Theory Appl.

113 (2002) 121–147.
[39] L. Qi, D. Sun, G.L. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality

problems, Math. Program. 87 (2000) 1–35.
[40] J. Rohn, A theorem of the alternative for the equation Ax + B|x| = b, Linear Multilinear Algebra 52 (2004) 421–426.
[41] J. Rohn, Solvability of systems of interval linear equations and inequalities, in: M. Fiedler, J. Nedoma, J. Ramik, J. Rohn, K. Zimmermann (Eds.), Linear

Optimization Problems with Inexact Data, Springer, 2006, pp. 35–77.
[42] J. Rohn, An algorithm for solving the absolute value equation, Electron. J. Linear Algebra 18 (2009) 589–599.

http://refhub.elsevier.com/S0168-9274(18)30195-8/bib43515A3131s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4368656E30362D4F5054s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4343543034s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib434D3936s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib43503132s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib43543035s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib43543035s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib444D3032s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib46503033s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib464B3934s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib464C543032s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib484A3835s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib48483130s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4848573039s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4848573039s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib48485A3131s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib48485A3131s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib483035s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib483035s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4848433033s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4848433033s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib485A573038s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4A69613133s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4A5A3133s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4B4D3132s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4B53583038s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4B53583038s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4B523932s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4C473130s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4C473130s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4C483130s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4C5A3131s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E30372D31s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E30372D32s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E30392D31s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E30392D32s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E3132s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E3133s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E31342D31s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D616E31342D32s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D4D3036s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D5953433137s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib4D5953433137s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib50726F3039s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib51443032s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib51443032s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib51535A3030s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib51535A3030s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib526F683034s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib526F683036s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib526F683036s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib526F683039s1

C.T. Nguyen et al. / Applied Numerical Mathematics 135 (2019) 206–227 227
[43] B. Saheya, C.-H. Yu, J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, J. Appl. Math. Comput. 56 (2018)
131–149.

[44] S. Voronin, G. Ozkaya, D. Yoshida, Convolution based smooth approximations to the absolute value function with application to non-smooth regular-
ization, arXiv:1408 .6795v2 [math .NA], July 2015.

[45] S. Yamanaka, M. Fukushima, A branch and bound method for the absolute value programs, Optimization 63 (2014) 305–319.
[46] J.G. Zhu, H.W. Liu, X.L. Li, A regularized smoothing-type algorithm for solving a system of inequalities with a P0-function, J. Comput. Appl. Math. 233

(2010) 2611–2619.

http://refhub.elsevier.com/S0168-9274(18)30195-8/bib5359433137s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib5359433137s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib564F593135s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib564F593135s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib59463134s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib5A4C4C3130s1
http://refhub.elsevier.com/S0168-9274(18)30195-8/bib5A4C4C3130s1

	Uniﬁed smoothing functions for absolute value equation associated with second-order cone
	1 Introduction
	2 Uniﬁed smoothing functions for SOCAVE
	3 Smoothing Newton method
	4 Numerical results
	References

