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work well along with the smoothing Newton algorithm. In particular, the numerical

experiments show that the well known loss function widely used in engineering community

is the worst one among the constructed smoothing functions, which indicates that the

other proposed smoothing functions can be employed for solving engineering problems.

Keywords. Second-order cone, absolute value equations, smoothing Newton algorithm.

1 Introduction

Recently, the paper [36] investigates a family of smoothing functions along with a smoothing-

type algorithm to tackle the absolute value equation associated with second-order cone

(SOCAVE) and shows the efficiency of such approach. Motivated by this article, we

continue to ask two natural questions. (i) Whether there are other suitable smoothing

functions that can be employed for solving the SOCAVE? (ii) Is there a unified way to

construct smoothing functions for solving the SOCAVE? In this paper, we provide affir-

mative answers for these two queries. In order to smoothly convey the story of how we

figure out the answers, we begin with recalling where the SOCAVE comes from.

The standard absolute value equation (AVE) is in the form of

Ax+B|x| = b, (1)

where A ∈ IRn×n, B ∈ IRn×n, B 6= 0, and b ∈ IRn. Here |x| means the componentwise

absolute value of vector x ∈ IRn. When B = −I, where I is the identity matrix, the AVE

(1) reduces to the special form:

Ax− |x| = b.

It is known that the AVE (1) was first introduced by Rohn in [41], but was termed by

Mangasarian [34]. During the past decade, there has been many researchers paying atten-

tion to this equation, for example, Caccetta, Qu and Zhou [2], Hu and Huang [12], Jiang

and Zhang [20], Ketabchi and Moosaei [21], Mangasarian [26, 27, 28, 29, 30, 31, 32, 33],

Mangasarian and Meyer [34], Prokopyev [37], and Rohn [43].

We elaborate more about the developments of the AVE. Mangasarian and Meyer [34]

show that the AVE (1) is equivalent to the bilinear program, the generalized LCP (linear

complementarity problem), and to the standard LCP provided 1 is not an eigenvalue of

A. With these equivalent reformulations, they also show that the AVE (1) is NP-hard

in its general form and provide existence results. Prokopyev [37] further improves the

above equivalence which indicates that the AVE (1) can be equivalently recast as LCP

without any assumption on A and B, and also provides a relationship with mixed integer

programming. In general, if solvable, the AVE (1) can have either unique solution or
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multiple (e.g., exponentially many) solutions. Indeed, various sufficiency conditions on

solvability and non-solvability of the AVE (1) with unique and multiple solutions are

discussed in [34, 37, 42]. Some variants of the AVE, like the absolute value equation

associated with second-order cone and the absolute value programs, are investigated in

[14] and [46], respectively.

Recently, another type of absolute value equation, a natural extension of the standard

AVE (1), is considered [14, 35, 36]. More specifically the following absolute value equation

associated with second-order cones, abbreviated as SOCAVE, is studied:

Ax+B|x| = b, (2)

where A,B ∈ IRn×n and b ∈ IRn are the same as those in (1); |x| denotes the absolute

value of x coming from the square root of the Jordan product “◦” of x and x. What is

the difference between the standard AVE (1) and the SOCAVE (2)? Their mathematical

formats look the same. In fact, the main difference is that |x| in the standard AVE (1)

means the componentwise |xi| of each xi ∈ IR, i.e., |x| = (|x1|, |x2|, · · · , |xn|)T ∈ IRn;

however, |x| in the SOCAVE (2) denotes the vector satisfying
√
x2 :=

√
x ◦ x associated

with second-order cone under Jordan product. To understand its meaning, we need to

introduce the definition of second-order cone (SOC). The second-order cone in IRn (n ≥
1), also called the Lorentz cone, is defined as

Kn :=
{

(x1, x2) ∈ IR× IRn−1 | ‖x2‖ ≤ x1

}
,

where ‖ · ‖ denotes the Euclidean norm. If n = 1, then Kn is the set of nonnegative reals

IR+. In general, a general second-order cone K could be the Cartesian product of SOCs,

i.e.,

K := Kn1 × · · · × Knr .
For simplicity, we focus on the single SOC Kn because all the analysis can be carried

over to the setting of Cartesian product. The SOC is a special case of symmetric cones

and can be analyzed under Jordan product, see [8]. In particular, for any two vectors

x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1, the Jordan product of x and y

associated with Kn is defined as

x ◦ y :=

[
xTy

y1x2 + x1y2

]
.

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a

main source of complication in the analysis of optimization problems involved SOC, see

[4, 6, 9] and references therein for more details. The identity element under this Jordan

product is e = (1, 0, ..., 0)T ∈ IRn. With these definitions, x2 means the Jordan product

of x with itself, i.e., x2 := x ◦ x; and
√
x with x ∈ Kn denotes the unique vector such

that
√
x ◦
√
x = x. In other words, the vector |x| in the SOCAVE (2) is computed by

|x| :=
√
x ◦ x.
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As remarked in the literature, the significance of the AVE (1) arises from the fact that

the AVE is capable of formulating many optimization problems such as linear programs,

quadratic programs, bimatrix games, and so on. Likewise, the SOCAVE (2) plays a sim-

ilar role in various optimization problems involving second-order cones. There has been

many numerical methods proposed for solving the standard AVE (1) and the SOCAVE

(2). Please refer to [36] for a quick review. Basically, we follow the smoothing Newton

algorithm employed in [36] to deal with the SOCAVE (2). This kind of algorithm has

been a powerful tool for solving many other optimization problems, including symmetric

cone complementarity problems [11, 23, 24], the system of inequalities under the order

induced by symmetric cone [18, 25, 47], and so on. It is also employed for the standard

AVE (1) in [19, 44]. The new upshot of this paper lies on discovering more suitable

smoothing functions and exploring a unified way to construct smoothing functions. Of

course, the numerical performance among different smoothing functions are compared.

These are totally new to the literature and are the main contribution of this paper.

To close this section, we recall some basic concepts and background materials regard-

ing the second-order cone, which will be used in the subsequent analysis. More details

can be found in [4, 6, 8, 9, 14]. First, we recall the expression of the spectral decomposition

of x with respect to SOC. For x = (x1, x2) ∈ IR× IRn−1, the spectral decomposition of x

with respect to SOC is given by

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (3)

where λi(x) = x1 + (−1)i‖x2‖ for i = 1, 2 and

u(i)
x =

 1
2

(
1, (−1)i

xT2
‖x2‖

)T
if ‖x2‖ 6= 0,

1
2

(
1, (−1)iωT

)T
if ‖x2‖ = 0,

(4)

with ω ∈ IRn−1 being any vector satisfying ‖ω‖ = 1. The two scalars λ1(x) and λ2(x)

are called spectral values of x; while the two vectors u
(1)
x and u

(2)
x are called the spectral

vectors of x. Moreover, it is obvious that the spectral decomposition of x ∈ IRn is unique

if x2 6= 0. It is known that the spectral values and spectral vectors posses the following

properties:

(i) u
(1)
x ◦ u(2)

x = 0 and u
(i)
x ◦ u(i)

x = u
(i)
x for i = 1, 2;

(ii) ‖u(1)
x ‖2 = ‖u(2)

x ‖2 = 1
2

and ‖x‖2 = 1
2
(λ2

1(x) + λ2
2(x)).

Next is the concept about the projection onto second-order cone. Let x+ denote the

projection of x onto Kn, and x− be the projection of −x onto the dual cone (Kn)∗ of

Kn, where the dual cone (Kn)∗ is defined by (Kn)∗ := {y ∈ IRn | 〈x, y〉 ≥ 0, ∀x ∈ Kn}.
In fact, the dual cone of Kn is itself, i.e., (Kn)∗ = Kn. Due to the special structure of
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Kn, the explicit formula of projection of x = (x1, x2) ∈ IR× IRn−1 onto Kn is obtained in

[4, 6, 8, 9, 10] as below:

x+ =


x if x ∈ Kn,
0 if x ∈ −Kn,
u otherwise,

where u =

[
x1+‖x2‖

2(
x1+‖x2‖

2

)
x2
‖x2‖

]
.

Similarly, the expression of x− can be written out as

x− =


0 if x ∈ Kn,
−x if x ∈ −Kn,
w otherwise,

where w =

[
−x1−‖x2‖

2(
x1−‖x2‖

2

)
x2
‖x2‖

]
.

It is easy to verify that x = x+ + x− and

x+ = (λ1(x))+u
(1)
x + (λ2(x))+u

(2)
x x− = (−λ1(x))+u

(1)
x + (−λ2(x))+u

(2)
x ,

where (α)+ = max{0, α} for α ∈ IR. As for the expression of |x| associated with SOC.

There is an alternative way via the so-called SOC-function to obtain the expression of

|x|, which can be found in [3, 5]. In any case, it comes out that

|x| =
[
(λ1(x))+ + (−λ1(x))+

]
u(1)
x +

[
(λ2(x))+ + (−λ2(x))+

]
u(2)
x

=
∣∣λ1(x)

∣∣u(1)
x +

∣∣λ2(x)
∣∣u(2)
x .

2 Unified smoothing functions for SOCAVE

As mentioned in Section 1, we employ the smoothing Newton method for solving the

SOCAVE (2), which needs a smoothing function to work with. Indeed, a family of

smoothing functions was already considered in [36]. In this section, we look into what

kinds of smoothing functions can be employed to work with the smoothing Newton

algorithm for solving the SOCAVE (2).

Definition 2.1. A function φ : IR++ × IR→ IR is called a smoothing function of |t| if it

satisfies the following:

(i) φ is continuously differentiable at (µ, t) ∈ IR++ × IR;

(ii) lim
µ↓0

φ(µ, t) = |t| for any t ∈ IR.

Given a smoothing function φ, we further define a vector-valued function Φ : IR++ ×
IRn → IRn as

Φ(µ, x) = φ (µ, λ1(x))u(1)
x + φ (µ, λ2(x))u(2)

x (5)
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where µ ∈ IR++ is a parameter, λ1(x), λ2(x) are the spectral values of x, and u
(1)
x , u

(2)
x

are the spectral vectors of x. Consequently, Φ is also smooth on IR++ × IRn. Moreover,

it is easy to verify that

lim
µ→0+

Φ(µ, x) = |λ1(x)|u(1)
x + |λ2(x)|u(2)

x = |x|

which means each function Φ(µ, x) serves as a smoothing function of |x| associated with

SOC. With this observation, for the SOCAVE (2), we further define the function H(µ, x) :

IR++ × IRn → IR× IRn by

H(µ, x) =

[
µ

Ax+BΦ(µ, x)− b

]
, ∀µ ∈ IR++ and x ∈ IRn. (6)

Proposition 2.1. Suppose that x = (x1, x2) ∈ IR× IRn−1 has the spectral decomposition

as in (3)-(4). Let H : IR++ × IRn → IRn be defined as in (6). Then,

(a) H(µ, x) = 0 if and only if x solves the SOCAVE (2);

(b) H is continuously differentiable at (µ, x) ∈ IR++×IRn with the Jacobian matrix given

by

H ′(µ, x) =

[
1 0

B ∂Φ(µ,x)
∂µ

A+B ∂Φ(µ,x)
∂x

]
(7)

where

∂Φ(µ, x)

∂µ
=

∂φ(µ, λ1(x))

∂µ
u(1)
x +

∂φ(µ, λ2(x))

∂µ
u(2)
x ,

∂Φ(µ, x)

∂x
=


∂φ(µ,x1)
∂x1

I if x2 = 0,[
b c

xT2
‖x2‖

c x2
‖x2‖ aI + (b− a)

x2xT2
‖x2‖2

]
if x2 6= 0,

with

a =
φ(µ, λ2(x))− φ(µ, λ1(x))

λ2(x)− λ1(x)
,

b =
1

2

(
∂φ(µ, λ2(x))

∂x1

+
∂φ(µ, λ1(x))

∂x1

)
, (8)

c =
1

2

(
∂φ(µ, λ2(x))

∂x1

− ∂φ(µ, λ1(x))

∂x1

)
.

Proof. (a) First, we observe that

H(µ, x) = 0 ⇐⇒ µ = 0 and Ax+BΦ(µ, x)− b = 0

⇐⇒ Ax+B|x| − b = 0 and µ = 0.
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This indicates that x is a solution to the SOCAVE (2) if and only if (µ, x) is a solution

to H(µ, x) = 0.

(b) Since Φ(µ, x) is continuously differentiable on IR++ × IRn, it is clear that H(µ, x)

is continuously differentiable on IR++ × IRn. Thus, it remains to compute the Jacobian

matrix of H(µ, x). Note that

Φ(µ, x) = φ(µ, λ1(x))u(1)
x + φ(µ, λ2(x))u(2)

x ,

=


1

2

[
φ(µ, λ1(x)) + φ(µ, λ2(x))

−φ(µ, λ1(x))
xT2
‖x2‖ + φ(µ, λ2(x))

xT2
‖x2‖

]
if x2 6= 0,

1

2

[
φ(µ, λ1(x)) + φ(µ, λ2(x))

−φ(µ, λ1(x))ωT + φ(µ, λ2(x))ωT

]
if x2 = 0.

=
1

2




φ(µ, λ1(x)) + φ(µ, λ2(x)

(−φ(µ, λ1(x)) + φ(µ, λ2(x))) x̄2
‖x2‖

...

(−φ(µ, λ1(x)) + φ(µ, λ2(x))) x̄n
‖x2‖

 if x2 6= 0,


φ(µ, λ1(x)) + φ(µ, λ2(x))

0
...

0

 if x2 = 0.

where x2 := (x̄2, · · · , x̄n) ∈ IRn−1, ω = (ω2, · · · , ωn) ∈ IRn−1. From chain rule, it is trivial

that
∂Φ(µ, x)

∂µ
=
∂φ(µ, λ1(x))

∂µ
u(1)
x +

∂φ(µ, λ2(x))

∂µ
u(2)
x

In order to compute ∂Φ(µ,x)
∂x

, for simplicity, we denote

Φ(µ, x) :=
1

2


τ1(µ, x)

τ2(µ, x)
...

τn(µ, x)

 .
To proceed, we discuss two cases.

(i) For x2 6= 0, we compute

∂τ1(µ, x)

∂x1

=
∂φ(µ, λ1(x))

∂x1

+
∂φ(µ, λ2(x))

∂x1

=
∂φ(µ, λ1(x))

∂λ1(x)

∂λ1(x)

∂x1

+
∂φ(µ, λ2(x))

∂λ2(x)

∂λ2(x)

∂x1

=
∂φ(µ, λ1(x))

∂λ1(x)
+
∂φ(µ, λ2(x))

∂λ2(x)
:= 2b
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and

∂τ1(µ, x)

∂x̄i
=

∂φ(µ, λ1(x))

∂x̄i
+
∂φ(µ, λ2(x))

∂x̄i

=
∂φ(µ, λ1(x))

∂λ1(x)

∂λ1(x)

∂x̄i
+
∂φ(µ, λ2(x))

∂λ2(x)

∂λ2(x)

∂x̄i

= −∂φ(µ, λ1(x))

∂λ1(x)

x̄i
‖x2‖

+
∂φ(µ, λ2(x))

∂λ2(x)

x̄i
‖x2‖

=

(
∂φ(µ, λ2(x))

∂λ2(x)
− ∂φ(µ, λ1(x))

∂λ1(x)

)
x̄i
‖x2‖

=

(
∂φ(µ, λ2(x))

∂x1

− ∂φ(µ, λ1(x))

∂x1

)
x̄i
‖x2‖

:= 2c
x̄i
‖x2‖

, i = 2, · · · , n.

Moreover,

∂τi(µ, x)

∂x1

=

(
∂φ(µ, λ2(x))

∂x1

− ∂φ(µ, λ1(x))

∂x1

)
x̄i
‖x2‖

= 2c
x̄i
‖x2‖

, i = 2, · · · , n.

Similarly, we have

∂τ2(µ, x)

∂x̄2

=

(
∂φ(µ, λ2(x))

∂x̄2

− ∂φ(µ, λ1(x))

∂x̄2

)
x̄2

‖x2‖
+ (φ(µ, λ2(x))− φ(µ, λ1(x)))

∂
(

x̄2
‖x2‖

)
∂x̄2

= 2b
x̄2 · x̄2

‖x2‖2
+ (φ(µ, λ2(x))− φ(µ, λ1(x)))

(
1

‖x2‖
− x̄2 · x̄2

‖x2‖3

)
= 2a+ 2(b− a)

x̄2 · x̄2

‖x2‖2
,

where a means a :=
φ(µ, λ2(x))− φ(µ, λ1(x))

λ2(x)− λ1(x)
. In general, mimicking the same derivation

yields

∂τi(µ, x)

∂x̄j
=

{
2a+ 2(b− a) x̄i·x̄i

‖x2‖2 if i = j,

2(b− a)
x̄i·x̄j
‖x2‖2 if i 6= j.

To sum up, we obtain

∂Φ(µ, x)

∂x
=

[
b c

xT2
‖x2‖

c x2
‖x2‖ aI + (b− a)

x2xT2
‖x2‖2

]

which is the desired result.

(ii) For x2 = 0, it is clear to see

∂τ1(µ, x)

∂x1

= 2
∂φ(µ, x1)

∂x1

and
∂τ1(µ, x)

∂x̄i
= 0 for i = 2, · · · , n.
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Since τi(µ, x) = 0 for i = 2, · · · , n, it gives ∂τi(µ,x)
∂x1

= 0. Moreover,

∂τ2(µ, x)

∂x̄2

= lim
x̄2→0

τ2(µ, x1, x̄2, 0, · · · , 0)− τ2(µ, x1, 0, · · · , 0)

x̄2

= lim
x̄2→0

φ(µ, x1 + |x̄2|)− φ(µ, x1 − |x̄2|)
x̄2

x̄2

|x̄2|

= lim
x̄2→0

φ(µ, x1 + |x̄2|)− φ(µ, x1 − |x̄2|)
|x̄2|

= lim
x̄2→0

∂φ(µ, x1 + |x̄2|)
∂(|x̄2|)

− ∂φ(µ, x1 − |x̄2|)
∂(|x̄2|)

(as L′Hopital′s rule)

= lim
x̄2→0

∂φ(µ, x1 + |x̄2|)
∂(x1 + |x̄2|)

+
∂φ(µ, x1 − |x̄2|)
∂(x1 − |x̄2|)

= 2
∂φ(µ, x1)

∂x1

.

Thus, we obtain

∂τi(µ, x)

∂x̄j
=

{
2∂φ(µ,x1)

∂x1
if i = j,

0 if i 6= j.

which is equivalent to saying

∂Φ(µ, x)

∂x
=
∂φ(µ, x1)

∂x1

I.

From all the above, we conclude that

∂Φ(µ, x)

∂x
=


∂φ(µ,x1)
∂x1

I if x2 = 0,[
b c

xT2
‖x2‖

c x2
‖x2‖ aI + (b− a)

x2xT2
‖x2‖2

]
if x2 6= 0,

Thus, the proof is complete. 2

Now, we are ready to answer the question about what kind of smoothing functions

can be adopted in the smoothing type algorithm. Two technical lemmas are needed

towards the answer.

Lemma 2.1. Suppose that M,N ∈ IRn×n. Let σmin(M) denote the minimum singular

value of M , and σmax(N) denote the maximum singular value of N . Then, the following

hold.

(a) σmin(M) > σmax(N) if and only if σmin(MTM) > σmax(NTN).

(b) If σmin(MTM) > σmax(NTN), then MTM −NTN is positive definite.
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Proof. The proof is straightforward or can be found in usual textbook of matrix analysis,

so we omit it here. 2

Lemma 2.2. Let A, S ∈ IRn×n and A be symmetric. Suppose that the eigenvalues of

A and SST are arranged in non-increasing order. Then, for each k = 1, 2, · · · , n, there

exists a nonnegative real number θk such that

λmin(SST ) ≤ θk ≤ λmax(SST ) and λk(SAS
T ) = θkλk(A).

Proof. Please see [15, Corollary 4.5.11] for a proof. 2

We point out that the crucial key, which guarantees a smoothing function can be

employed in the smoothing type algorithm, is the nonsingularity of the Jacobian matrix

H ′(µ, x)) given in (7). As below, we provide under what condition the Jacobian matrix

H ′(µ, x)) is nonsingular.

Theorem 2.1. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let H be defined as in

(6). Suppose that φ : IR++× IR→ IR is a smoothing function of |t|. If −1 ≤ d
dt
φ(µ, t) ≤ 1

is satisfied, then the Jacobian matrix H ′(µ, x) is nonsingular for any µ > 0.

Proof. From the expression of H ′(µ, x) given as in (7), we know that H ′(µ, x) is non-

singular if and only if the matrix A + B ∂Φ(µ,x)
∂x

is nonsingular. Thus, it suffices to show

that the matrix A+B ∂Φ(µ,x)
∂x

is nonsingular under the conditions.

Suppose not, that is, there exists a vector 0 6= v ∈ IRn such that[
A+B

∂Φ(µ, x)

∂x

]
v = 0

which implies that

vTATAv = vT
[
∂Φ(µ, x)

∂x

]T
BTB

∂Φ(µ, x)

∂x
v. (9)

For convenience, we denote C := ∂Φ(µ,x)
∂x

. Then, it follows that vTATAv = vTCTBTBCv.

Applying Lemma 2.2, there exists a constant θ̂ such that

λmin(CTC) ≤ θ̂ ≤ λmax(CTC) and λmax(CTBTBC) = θ̂λmax(BTB).

Note that if we can prove that

0 ≤ λmin(CTC) ≤ λmax(CTC) ≤ 1,

we will have λmax(CTBTBC) ≤ λmax(BTB). Then, by the assumption that the minimum

singular value of A strictly exceeds the maximum singular value of B (i.e., σmin(A) >
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σmax(B)) and applying Lemma 2.1, we obtain vTATAv > vTCTBTBCv. This contradicts

the identity (9), which shows the Jacobian matrix H ′(µ, x) is nonsingular for µ > 0.

Thus, in light of the above discussion, it suffices to claim 0 ≤ λmin(CTC) ≤ λmax(CTC) ≤
1. To this end, we discuss two cases.

Case 1: For x2 = 0, we compute that C = ∂φ(µ,x1)
∂x1

I. Since −1 ≤ ∂φ(µ,x1)
∂x1

≤ 1, it is clear

that 0 ≤ λ(CTC) ≤ 1 for µ > 0. Then, the claim is done.

Case 2: For x2 6= 0, using the fact that the matrix MTM is always positive semidefinite

for any matrix M ∈ IRm×n, we see that the inequality λmin(CTC) ≥ 0 always holds. In

order to prove λmax(CTC) ≤ 1, we need to further argue that the matrix I − CTC is

positive semidefinite. First, we write out

I − CTC =

[
1− b2 − c2 −2bc

xT2
‖x2‖

−2bc x2
‖x2‖ (1− a2)I + (a2 − b2 − c2)

x2xT2
‖x2‖2

]
.

If −1 < ∂φ(µ,λi(x))
∂x1

< 1, then we obtain

b2 + c2 =
1

2

[(
∂φ(µ, λ1(x))

∂x1

)2

+

(
∂φ(µ, λ2(x))

∂x1

)2
]
< 1.

This indicates that 1− b2 − c2 > 0. By considering [1− b2 − c2] as an 1× 1 matrix, this

says [1 − b2 − c2] is positive definite. Hence, its Schur complement can be computed as

below:

(1− a2)I + (a2 − b2 − c2)
x2x

T
2

‖x2‖2
− 4b2c2

1− b2 − c2

x2x
T
2

‖x2‖2

= (1− a2)

(
I − x2x

T
2

‖x2‖2

)
+

(
1− b2 − c2 − 4b2c2

1− b2 − c2

)
x2x

T
2

‖x2‖2
. (10)

On the other hand, by the Mean Value Theorem, we have

φ(µ, λ2(x))− φ(µ, λ1(x)) =
∂φ(µ, ξ)

∂ξ
(λ2(x)− λ1(x)),

where ξ ∈ (λ1(x), λ2(x)). To proceed, we need to further discuss two subcases.

(1) When −1 < ∂φ(µ,ξ)
∂ξ

< 1, we know |φ(µ, λ2(x))− φ(µ, λ1(x))| < |λ2(x)− λ1(x)|. This

together with (8) implies that 1− a2 > 0 for any µ > 0. In addition, for any µ > 0,

we observe that

(1− b2 − c2)2 − 4b2c2

= (1− (b− c)2)(1− (b+ c)2)

=

[
1−

(
∂φ(µ, λ1(x))

∂x1

)2
]
·

[
1−

(
∂φ(µ, λ2(x))

∂x1

)2
]
> 0.

11



With all of these, we verify that the Schur complement of [1−b2−c2] given as in (10)

is a linear positive combination of the matrices
(
I − x2xT2

‖x2‖2

)
and

x2xT2
‖x2‖2 , which yields

that the Schur complement (10) of [1 − b2 − c2] is positive semidefinite. Hence,

the matrix I − CTC is also positive semidefinite, which is equivalent to saying

0 ≤ λmin(CTC) ≤ λmax(CTC) ≤ 1.

(2) When ∂φ(µ,ξ)
∂ξ

= ±1, we have

1− a2 = 0, and (1− b2 − c2)2 − 4b2c2 > 0.

Since the matrix
x2xT2
‖x2‖2 is positive semidefinite, the matrix I − CTC is positive

semidefinite. Hence, 0 ≤ λmin(CTC) ≤ λmax(CTC) ≤ 1.

If either

{
∂φ(µ,λ1(x))

∂x1
= ±1

∂φ(µ,λ2(x))
∂x1

= ±1
or

{
∂φ(µ,λ1(x))

∂x1
= ±1

∂φ(µ,λ2(x))
∂x1

= ∓1
, then we have b = ±1, c = 0 or

b = 0, c = ∓1, which yields b2 + c2 = 1. Again, two subcases are needed.

(1) When −1 < ∂φ(µ,ξ)
∂ξ

< 1, we have |φ(µ, λ2(x))− φ(µ, λ1(x))| < |λ2(x)− λ1(x)|. This

implies that 1− a2 > 0 for any µ > 0. Therefore

I − CTC =

[
0 0

0 (1− a2)
(
I − x2xT2

‖x2‖2

) ] ,
Since the matrix I − x2xT2

‖x2‖2 is positive semidefinite, the matrix I − CTC is positive

semidefinite. Hence, 0 ≤ λmin(CTC) ≤ λmax(CTC) ≤ 1.

(2) When ∂φ(µ,ξ)
∂ξ

= ±1, we have I − CTC = 0, which leads to λ(CTC) = 1.

From all the above, the proof is complete. 2

We point out that the condition σmin(A) > σmax(B) in Theorem 2.1 guarantees

the unique solution according to [35, Theorem 4.1]. From Theorem 2.1, we realize

that for a SOCAVE (2) with σmin(A) > σmax(B), any smoothing function of |t| with

−1 ≤ d
dt
φ(µ, t) ≤ 1 will be good for serving in the smoothing Newton algorithm when

solving the above SOCAVE. With this, it is easy to find or construct smoothing functions

of |t| satisfying the above condition. One popular approach is a smoothing approximation

via convolution for the absolute value function [1, 22, 38, 45], which is described as below.

First, we construct a smoothing approximation for the plus function (t)+ = max{0, t}.
Then, we consider the piecewise continuous function d(t) with finite number of pieces,

which is a density (kernel) function. In other words, it satisfies

d(t) ≥ 0 and

∫ +∞

−∞
d(t)dt = 1.
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With this d(t), we further define ŝ(t, µ) := 1
µ
d
(
t
µ

)
, where µ is a positive parameter. If∫ +∞

−∞ |t| d(t)dt < +∞, then a smoothing approximation for (t)+ is formed. In particular,

p̂(t, µ) =

∫ +∞

−∞
(t− s)+ŝ(s, µ)ds =

∫ t

−∞
(t− s)ŝ(s, µ)ds ≈ (t)+.

The following are four well-known smoothing functions for the plus function [1, 38]:

φ̂1(µ, t) = t+ µ ln
(

1 + e−
t
µ

)
. (11)

φ̂2(µ, t) =


t if t ≥ µ

2
,

1
2µ

(
t+ µ

2

)2
if − µ

2
< t < µ

2
,

0 if t ≤ −µ
2
.

(12)

φ̂3(µ, t) =

√
4µ2 + t2 + t

2
. (13)

φ̂4(µ, t) =


t− µ

2
if t > µ,

t2

2µ
if 0 ≤ t ≤ µ,

0 if t < 0.

(14)

where the corresponding kernel functions are

d1(t) =
e−x

(1 + e−x)2
.

d2(t) =

{
1 if − 1

2
≤ x ≤ 1

2
,

0 otherwise.

d3(t) =
2

(x2 + 4)
3
2

.

d4(t) =

{
1 if 0 ≤ x ≤ 1,

0 otherwise.

Next, in light of |t| = (t)+ + (−t)−, the smoothing function of |t| via convolution can be

written as

p̂(|t| , µ) = p̂(t, µ) + p̂(−t, µ) =

∫ +∞

−∞
|t− s| ŝ(s, µ)ds.

Analogous to (11)-(14), we achieve the following smoothing functions for |t|:

φ1(µ, t) = µ
[
ln
(

1 + e−
t
µ

)
+ ln

(
1 + e

t
µ

)]
. (15)

φ2(µ, t) =


t if t ≥ µ

2
,

t2

µ
+ µ

4
if − µ

2
< t < µ

2
,

−t if t ≤ −µ
2
.

(16)

φ3(µ, t) =
√

4µ2 + t2. (17)

φ4(µ, t) =

{
t2

2µ
if |t| ≤ µ,

|t| − µ
2

if |t| > µ.
(18)
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If we take a Epanechnikov kernel function

K(t) =

{
3
4
(1− t2) if |t| ≤ 1,

0 if otherwise,

then we obtain the following smoothing function for |t|:

φ5(µ, t) =


t if t > µ,

− t4

8µ3
+ 3t2

4µ
+ 3µ

8
if − µ ≤ t ≤ µ,

−t if t < µ.

(19)

Moreover, taking a Gaussian kernel function K(t) = 1√
2π
e−

t2

2 for all t ∈ IR yields

ŝ(t, µ) :=
1

µ
K

(
t

µ

)
=

1√
2πµ2

e
− t2

2µ2 ,

and it leads to the smoothing function [45] for |t|:

φ6(µ, t) = terf

(
t√
2µ

)
+

√
2

π
µe
− t2

2µ2 , (20)

where the error function is defined by

erf(t) =
2√
π

∫ t

0

e−u2

du ∀t ∈ IR.

In summary, we have constructed six smoothing functions from the above discussions.

Can all the above functions serve as smoothing functions for solving SOCAVE? The an-

swer is affirmative because it is not hard to verify that each φi possesses −1 ≤ d
dt
φi(µ, t) ≤

1. Thus, these six functions will be adopted for our numerical implementations. Accord-

ingly, we need to define Φi(µ, x) and Hi(µ, x) based on each φi. For subsequent needs, we

only present the expression of each Jacobian matrix H ′i(µ, x) without detailed derivations.

Based on each φi, let Φi : IR× IRn → IRn for i = 1, 2, · · · , 6 be similarly defined as in

(5), i.e

Φi(µ, x) = φi (µ, λ1(x))u(1)
x + φi (µ, λ2(x))u(2)

x (21)

and Hi : IR× IRn → IRn for i = 1, 2, · · · , 6 be similarly defined as in (6), i.e

Hi(µ, x) =

[
µ

Ax+BΦi(µ, x)− b

]
, ∀µ ∈ IR++ and x ∈ IRn. (22)

Then, each Hi is continuously differentiable on IR++×IRn with the Jacobian matrix given

by

H ′i(µ, x) =

[
1 0

B ∂Φi(µ,x)
∂µ

A+B ∂Φi(µ,x)
∂x

]
(23)

for all (µ, x) ∈ IR++× IRn with x = (x1, x2) ∈ IR× IRn−1. Moreover, the differentation of

each Φi is expressed as below.
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(1) The Jacobian of Φ1 is characterized as below.

∂Φ1(µ, x)

∂µ

=
∂φ1(µ, λ1(x))

∂µ
u(1)
x +

∂φ1(µ, λ2(x))

∂µ
u(2)
x

=

[
φ1(µ, λ1(x))

µ
+
λ1(x)

µ
· 1− e

λ1(x)
µ

1 + e
λ1(x)
µ

]
u(1)
x +

[
φ1(µ, λ2(x))

µ
+
λ2(x)

µ
· 1− e

λ2(x)
µ

1 + e
λ2(x)
µ

]
u(2)
x .

∂Φ1(µ, x)

∂x
=


e
x1
µ −1

e
x1
µ +1

I if x2 = 0,[
b1 c1

xT2
‖x2‖

c1
x2
‖x2‖ a1I + (b1 − a1)

x2xT2
‖x2‖2

]
if x2 6= 0,

with

a1 =
φ1(µ, λ2(x))− φ1(µ, λ1(x))

λ2(x)− λ1(x)
,

b1 =
1

2

(
e
λ1(x)
µ − 1

e
λ1(x)
µ + 1

+
e
λ2(x)
µ − 1

e
λ2(x)
µ + 1

)
,

c1 =
1

2

(
1− e

λ1(x)
µ

e
λ1(x)
µ + 1

+
e
λ2(x)
µ − 1

e
λ2(x)
µ + 1

)
.

(2) The Jacobian of Φ2 is characterized as below.

∂Φ2(µ, x)

∂µ
=
∂φ2(µ, λ1(x))

∂µ
u(1)
x +

∂φ2(µ, λ2(x))

∂µ
u(2)
x

with

∂φ2(µ, λi(x))

∂µ
=


0 if λi(x) ≥ µ

2
,

−
(
λi(x)
µ

)2

+ 1
4

if − µ
2
< λi(x) < µ

2
,

0 if λi(x) ≤ −µ
2
.

∂Φ2(µ, x)

∂x
=


dI if x2 = 0,[

b2 c2
xT2
‖x2‖

c2
x2
‖x2‖ a2I + (b2 − a2)

x2xT2
‖x2‖2

]
if x2 6= 0,
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with

a2 =
φ2(µ, λ2(x))− φ2(µ, λ1(x))

λ2(x)− λ1(x)
,

b2 =



0 if λ2(x) ≥ µ
2
> −µ

2
≥ λ1(x),

1 if λ2(x) > λ1(x) ≥ µ
2
,

λ1(x)
µ

+ 1
2

if λ2(x) ≥ µ
2
> λ1(x) > −µ

2
,

λ1(x)+λ2(x)
µ

if µ
2
> λ2(x) > λ1(x) > −µ

2
,

λ2(x)
µ
− 1

2
if µ

2
> λ2(x) > −µ

2
≥ λ1(x),

−1 if λ1(x) < λ2(x) ≤ −µ
2
,

c2 =



1 if λ2(x) ≥ µ
2
> −µ

2
≥ λ1(x),

0 if λ2(x) > λ1(x) ≥ µ
2
,

1
2
− λ1(x)

µ
if λ2(x) ≥ µ

2
> λ1(x) > −µ

2
,

λ2(x)−λ1(x)
µ

if µ
2
> λ2(x) > λ1(x) > −µ

2
,

λ2(x)
µ

+ 1
2

if µ
2
> λ2(x) > −µ

2
≥ λ1(x),

0 if λ1(x) < λ2(x) ≤ −µ
2
,

d =


1 if x1 ≥ µ

2
,

2x1
µ

if − µ
2
< x1 <

µ
2
,

−1 if x1 ≤ −µ
2
.

(3) The Jacobian of Φ3 is characterized as below.

∂Φ3(µ, x)

∂µ
=

4µ√
4µ2 + λ2

1(x)
u(1)
x +

4µ√
4µ2 + λ2

2(x)
u(2)
x

∂Φ3(µ, x)

∂x
=


x1√

4µ2+x21
I if x2 = 0,[

b3 c3
xT2
‖x2‖

c3
x2
‖x2‖ a1I + (b1 − a1)

x2xT2
‖x2‖2

]
if x2 6= 0,

with

a3 =
φ3(µ, λ2(x))− φ3(µ, λ1(x))

λ2(x)− λ1(x)
,

b3 =
1

2

(
λ1(x)√

4µ2 + λ2
1(x)

+
λ2(x)√

4µ2 + λ2
2(x)

)
,

c3 =
1

2

(
−λ1(x)√

4µ2 + λ2
1(x)

+
λ2(x)√

4µ2 + λ2
2(x)

)
.

(4) The Jacobian of Φ4 is characterized as below.

∂Φ4(µ, x)

∂µ
=
∂φ4(µ, λ1(x))

∂µ
u(1)
x +

∂φ4(µ, λ2(x))

∂µ
u(2)
x
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with

∂φ4(µ, λi(x))

∂µ
=


−1

2
if λi(x) > µ,

−1
2

(
λi(x)
µ

)2

if − µ ≤ λi(x) ≤ µ,

−1
2

if λi(x) < −µ.

∂Φ4(µ, x)

∂x
=


eI if x2 = 0,[

b4 c4
xT2
‖x2‖

c4
x2
‖x2‖ a4I + (b4 − a4)

x2xT2
‖x2‖2

]
if x2 6= 0,

with

a4 =
φ4(µ, λ2(x))− φ4(µ, λ1(x))

λ2(x)− λ1(x)
,

b4 =



0 if λ2(x) > µ > −µ > λ1(x),

1 if λ2(x) > λ1(x) > µ,
λ1(x)

2µ
+ 1

2
if λ2(x) > µ ≥ λ1(x) ≥ −µ,

λ1(x)+λ2(x)
2µ

if µ ≥ λ2(x) > λ1(x) ≥ −µ,
λ2(x)

2µ
− 1

2
if µ ≥ λ2(x) ≥ −µ > λ1(x),

−1 if λ1(x) < λ2(x) < −µ.

c4 =



1 if λ2(x) > µ > −µ > λ1(x),

0 if λ2(x) > λ1(x) > µ,
1
2
− λ1(x)

2µ
if λ2(x) > µ ≥ λ1(x) ≥ −µ,

λ2(x)−λ1(x)
2µ

if µ ≥ λ2(x) > λ1(x) ≥ −µ,
λ2(x)

2µ
+ 1

2
if µ ≥ λ2(x) ≥ −µ > λ1(x),

0 if λ1(x) < λ2(x) < −µ,

e =


1 if x1 > µ,
x1
µ

if − µ ≤ x1 ≤ µ,

−1 if x1 < −µ.

(5) The Jacobian of Φ5 is characterized as below.

∂Φ5(µ, x)

∂µ
=
∂φ5(µ, λ1(x))

∂µ
u(1)
x +

∂φ5(µ, λ2(x))

∂µ
u(2)
x

with

∂φ5(µ, λi(x))

∂µ
=


0 if λi(x) > µ,

3
8

((
λi(x)
µ

)2

− 1

)2

if − µ ≤ λi(x) ≤ µ,

0 if λi(x) < −µ.

∂Φ5(µ, x)

∂x
=


eI if x2 = 0,[

b5 c5
xT2
‖x2‖

c5
x2
‖x2‖ a5I + (b5 − a5)

x2xT2
‖x2‖2

]
if x2 6= 0,
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with

a5 =
φ5(µ, λ2(x))− φ5(µ, λ1(x))

λ2(x)− λ1(x)
,

b5 =



0 if λ2(x) > µ > −µ > λ1(x),

1 if λ2(x) > λ1(x) > µ,

−1
4

(
λ1(x)
µ

)3

+ 3
4
λ1(x)
µ

+ 1
2

if λ2(x) > µ ≥ λ1(x) ≥ −µ,

−1
4

λ31(x)+λ32(x)

µ3
+ 3

4
λ1(x)+λ2(x)

µ
if µ ≥ λ2(x) > λ1(x) ≥ −µ,

−1
4

(
λ2(x)
µ

)3

+ 3
4
λ2(x)
µ
− 1

2
if µ ≥ λ2(x) ≥ −µ > λ1(x),

−1 if λ1(x) < λ2(x) < −µ.

c5 =



1 if λ2(x) > µ > −µ > λ1(x),

0 if λ2(x) > λ1(x) > µ,

1
2

+ 1
4

(
λ1(x)
µ

)3

− 3
4
λ1(x)
µ

if λ2(x) > µ ≥ λ1(x) ≥ −µ,

−1
4

λ32(x)−λ31(x)

µ3
+ 3

4
λ2(x)+λ1(x)

µ
if µ ≥ λ2(x) > λ1(x) ≥ −µ,

−1
4

(
λ2(x)
µ

)3

+ 3
4
λ2(x)
µ

+ 1
2

if µ ≥ λ2(x) ≥ −µ > λ1(x),

0 if λ1(x) < λ2(x) < −µ,

e =


1 if x1 > µ,

−1
2

(
x1
µ

)3

+ 3
2
x1
µ

if − µ ≤ x1 ≤ µ,

−1 if x1 < −µ.

(6) The Jacobian of Φ6 is characterized as below.

∂Φ6(µ, x)

∂µ
=

√
2

π
e
−λ

2
1(x)

2µ2 u(1)
x +

√
2

π
e
−λ

2
2(x)

2µ2 u(2)
x

∂Φ6(µ, x)

∂x
=


erf
(

x1√
2µ

)
I if x2 = 0,[

b6 c6
xT2
‖x2‖

c6
x2
‖x2‖ a6I + (b6 − a6)

x2xT2
‖x2‖2

]
if x2 6= 0,

with

a6 =
φ6(µ, λ2(x))− φ6(µ, λ1(x))

λ2(x)− λ1(x)
,

b6 =
1

2

(
erf

(
λ1(x)√

2µ

)
+ erf

(
λ2(x)√

2µ

))
,

c6 =
1

2

(
erf

(
λ2(x)√

2µ

)
− erf

(
λ1(x)√

2µ

))
.
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3 Smoothing Newton method

In this section, we study the smoothing Newton algorithm based on the smoothing func-

tion Φi(µ, x) for i ∈ {1, 2, . . . , 6} to solve the SOCAVE (2), and show its convergence

properties. First, we present the generic framework of the smoothing Newton algorithm.

Algorithm 3.1. (A Smoothing Newton Algorithm)

Step 0 Choose δ ∈ (0, 1), σ ∈ (0, 1), and µ0 ∈ IR++, x0 ∈ IRn. Set z0 := (µ0, x
0),

e := (1, 0) ∈ IR × IRn−1. Choose β > 1 satisfying min{1, ‖Hi(z
0)‖2} ≤ βµ0. Set

k := 0.

Step 1 If ‖Hi(z
k)‖ = 0, stop. Otherwise, set τk := min{1, ‖Hi(z

k)‖}.

Step 2 Compute 4zk = (4µk,4xk) ∈ IR× IRn by

Hi(z
k) +H ′i(z

k)4zk =
1

β
τ 2
k e, (24)

where H ′i(z
k) denotes the Jacobian matrix of Hi(z

k) at (µk, x
k) given by (7).

Step 3 Let αk be the maximum of the values 1, δ, δ2, · · · such that

‖Hi(z
k + αk4zk)‖ ≤

[
1− σ(1− 1

β
)αk

]
‖Hi(z

k)‖. (25)

Step 4 Set zk+1 := zk + αk4zk and k := k + 1. Go to Step 1.

Theorem 2.1 indicates the Newton equation (24) in Algorithm 3.1 is solvable. It

paves a way to show that the linear search (25) in Algorithm 3.1 is well-defined which

is presented in Theorem 3.1 as below. More specifically, from [17, Lemma 3.1], we know

that there exists an ᾱ ∈ (0, 1] such that (25) holds for any α ∈ (0, ᾱ]. This indicates that

taking α = max{1, δ, δ2, . . . }, where δ ∈ (0, 1) in step 3, leads to (25) being well-defined.

Indeed, the detailed arguments are very similar to those in [16, 18, 36], we only state it

here and omit its proof.

Theorem 3.1. Consider a SOCAVE (2) with σmin(A) > σmax(B). Then, for 4z ∈
IR× IRn given by (24), the linear search (25) is well-defined.

Next, we discuss the convergence of Algorithm 3.1. To this end, we need the following

results whose arguments are also similar to the ones in [18, Remark 2.1]. In particular,

for Theorem 3.2(d), we provide a proof in light of the structure of each φi so that the

readers can look into the analytic difference among them.
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Theorem 3.2. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let Hi be defined

as in (22). Suppose that the sequence {zk} is generated by Algorithm 3.1. Then, the

following results hold.

(a) The sequences {‖Hi(z
k)‖} and {τk} are monotonically non-increasing.

(b) βµk ≥ τ 2
k for all k.

(c) The sequence {µk} is monotonically non-increasing and µk > 0 for all k.

(d) The sequence {zk} is bounded.

Proof. (a) From definition of the line search in (25) and τk := min{1, ‖Hi(z
k)‖}, it is

clear that {‖Hi(z
k)‖} and {τk} are monotonically non-increasing.

(b) We prove this conclusion by induction. First, by Algorithm 3.1, it is clear that

τ 2
0 ≤ βµ0 with τ0, β and µ0 chosen in Algorithm 3.1. Secondly, we suppose that τ 2

k ≤ βµk
for some k. Then, for k + 1, we have

µk+1 −
τ 2
k+1

β
= µk + αk4µk −

τ 2
k+1

β

= (1− αk)µk + αk
τ 2
k

β
−
τ 2
k+1

β

≥ (1− αk)
τ 2
k

β
+ αk

τ 2
k

β
−
τ 2
k+1

β
≥ 0,

where the second equality holds due to the Newton equation (24), and the second in-

equality holds due to part (a). Hence, it follows that βµk ≥ τ 2
k for all k.

(c) From the iterative scheme zk+1 = zk + αk∆z
k, we know µk+1 = µk + αk4µk. By the

Newton equations (24) and the line search as in (25) again, it follows that

µk+1 = (1− αk)µk + αk
τ 2
k

β
≥ (1− αk)

τ 2
k

β
+ αk

τ 2
k

β
> 0

for all k. On the other hand, we have

µk+1 = (1− αk)µk + αk
τ 2
k

β
≤ (1− αk)µk + αkµk ≤ µk,

where the first inequality holds due to part (b). Hence, the sequence {µk} is monotoni-

cally non-increasing and µk > 0 for all k.
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(d) From part (a), we know the sequence {‖Hi(z
k)‖} is bounded, which means there is

a constant C such that ‖Hi(z
k)‖ ≤ C. Thus,

C ≥ ‖Hi(z
k)‖

≥
∥∥Axk +BΦi(µk, x

k)− b
∥∥

≥
∥∥Axk∥∥− ∥∥BΦi(µk, x

k)
∥∥− ‖b‖

=
√

(xk)TATAxk −
√

[Φi(µk, xk)]TBTBΦi(µk, xk)− ‖b‖
≥

√
λmin(ATA)‖xk‖ −

√
λmax(BTB)‖Φi(µk, xk)‖2 − ‖b‖

=
√
λmin(ATA)

∥∥xk∥∥−√λmax(BTB)
∥∥∥φi(µk, λ1(xk))u

(1)
x + φi(µk, λ2(xk))u

(2)
x

∥∥∥2

− ‖b‖

=
√
λmin(ATA)

∥∥xk∥∥−√λmax(BTB)
[
φ2
i (µk, λ1(xk))‖u(1)

x ‖2 + φ2
i (µk, λ2(xk))‖u(2)

x ‖2
]
− ‖b‖

=
√
λmin(ATA)

∥∥xk∥∥−√λmax(BTB)
1

2
[φ2
i (µk, λ1(xk)) + φ2

i (µk, λ2(xk))]− ‖b‖.

On the other hand, for i = 1, 2, 3, 4, 5, we see that

φ2
i (µk, λ1(xk)) + φ2

i (µk, λ2(xk)) =
2∑
j=1

fi(µ, λj(x
k)) + λ2

1(xk) + λ2
2(xk).

(i) For i = 1, we have f1(µ, λj(x
k)) = 4µ2

k ln(e
λj(x

k)

µk + 1) ln(e
−
λj(x

k)

µk + 1). It is known that

the function g(t) = 4 ln(et + 1) ln(e−t + 1) is bounded for all t ∈ IR. It follows that there

exists N1 such that
∣∣∣∑2

j=1 f1(µ, λj(x
k))
∣∣∣ ≤ µ2

kN1.

(ii) For i = 2, 4, 5, it is easy to verify that there exist Ni such that
∣∣∣∑2

j=1 fi(µ, λj(x
k))
∣∣∣ ≤

µ2
kNi.

For i = 3, we have
∑2

j=1 fi(µ, λj(x
k)) = 8µ2

k := µ2
kN3, which yields

φ2
i (µk, λ1(xk)) + φ2

i (µk, λ2(xk)) ≤ µ2
k Ni + λ2

1(xk) + λ2
2(xk)

= 2

(
µ2
k

Ni

2
+ ‖xk‖2

)
≤ 2

(
µk

√
Ni

2
+ ‖xk‖

)2

.

This together with ‖Hi(z
k)‖ ≤ C implies that

‖xk‖ ≤
C + 2

√
λmax(BTB)µk

√
Ni

2
+ ‖b‖√

λmin(ATA)−
√
λmax(BTB)
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holds for all k. Thus, the sequence {xk} is bounded.

(iv) For i = 6, we know that |erf(t)| ≤ 1 and 0 < e
− t2

2µ2 ≤ 1. Thus, it leads to

φ2
6(µk, λ1(xk)) + φ2

6(µk, λ2(xk))

≤

(
λ1(xk) +

√
2

π
µk

)2

+

(
λ2(xk) +

√
2

π
µk

)2

≤ 2

(
µk

√
2

π
+ ‖xk‖

)2

where the last inequality is due to |λ1(xk)|+ |λ2(xk)| ≤ 2‖xk‖. Then, it follow that

‖xk‖ ≤
C + 2

√
λmax(BTB)µk

√
2
π

+ ‖b‖√
λmin(ATA)−

√
λmax(BTB)

holds for all k. Thus, the sequence {xk} is bounded.

From all the above, the proof is complete. 2

Now, we shall show that any sequence {zk} is generated by Algorithm 3.1 convergent

to a solution to the SOCAVE (2). In the next theorem we demonstrate that under our

assumptions. The proof is essentially similar to a result [13, 36, Theorem 4.1]. Hence,

we omit the detailed proof and only present the convergence result.

Theorem 3.3. Consider a SOCAVE (2) with σmin(A) > σmax(B). Suppose that {zk} is

generated by Algorithm 3.1. Then, any accumulation point of {zk} is a solution to the

SOCAVE (2).

Algorithm 3.1 possesses the local quadratic convergence rate. In fact, we can achieve

it by similar arguments as those in [36, 40, Theorem 8].

Theorem 3.4. Consider a SOCAVE (2) with σmin(A) > σmax(B). Let Hi be defined

as in (6) and z? be the unique solution to SOCAVE (2). Suppose that all V ∈ ∂Hi(z
?)

are nonsingular. Then, the whole sequence {zk} converges to z?, and ‖zk+1 − z?‖ =

O(‖zk − z?‖2).

4 Numerical Results

In this section, we report some numerical results via five numerical examples to evaluate

the efficiency of Algorithm 3.1. First, In our experiments, we set parameters as

µ0 = 0.1, x0 = rand(n, 1), δ = 0.5, σ = 10−5 and β = max(1, 1.01 ∗ τ 2
0 /µ).

22



We stop the iterations when ‖H(zk)‖ ≤ 10−6 or the number of iterations exceeds 100. All

the experiments are done on a PC with Intel(R) CPU of 2.40GHz and RAM of 4.00GHz,

and all the programming codes are written in Matlab and run in Matlab environment.

For each problem, we implement the smoothing Newton Algorithm 3.1 with six differ-

ent smoothing functions φ1(µ, t), φ2(µ, t), φ3(µ, t), φ4(µ, t), φ5(µ, t), φ6(µ, t), respectively.

Each problem is randomly generated 50 times and the average results are listed in Tables,

where n denotes the size of problem, itn denotes the average number of iterations, time

denotes the average value of the CPU time in seconds and fails means the number of

failures.

Secondly, in order to compare the performance of smoothing function φi(µ, t), for

i = 1, 2, 3, 4, 5, 6 in the smoothing Newton Algorithm 3.1, we adopt the performance

profile which is introduced in [7] as a means. In other words, we regard Algorithm 3.1

corresponding to a smoothing function φi(µ, t), for i = 1, 2, 3, 4, 5, 6 as a solver, and

assume that there are ns solvers and np test problems from the test set P which is

generated randomly. We are interested in using the iteration number and computing

time as performance measure for Algorithm 3.1 with different φi(µ, t). For each problem

p and solver s, let

fp,s = iteration number(or computing time) required to solve problem p by solver s.

We employ the performance ratio

rp,s :=
fp,s

min{fp,s : s ∈ S}
,

where S is the four solvers set. We assume that a parameter rp,s ≤ rM for all p, s are

chosen, and rp,s = rM if and only if solver s does not solve problem p. In order to obtain

an overall assessment for each solver, we define

ρs(τ) :=
1

np
size{p ∈ P : rp,s ≤ τ},

which is called the performance profile of the number of iteration for solver s. Then,

ρs(τ) is the probability for solver s ∈ S that a performance ratio fp,s is within a factor

τ ∈ IR of the best possible ratio. The performance profiles of each problem are depicted

in Figures 1-10.

Problem 4.1. Consider the SOCAVE (2) which is generated in the following way: first

choose two random matrices B,C ∈ IRn×n from a uniformly distribution on [−10, 10]

for every element. We compute the maximal singular value σ1 of B and the minimal

singular value σ2 of C, and let σ := min{1, σ2/σ1}. Next, we divide C by σ multiplied

by a random number in the interval [0, 1], and the resulting matrix is denoted as A.
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Accordingly, the minimum singular values of A exceeds the maximal singular value of

B. We choose randomly b ∈ IRn on [0, 1] for every element. By Algorithm 3.1 in this

paper, the resulting SOCAVE (2) is solvable. The initial point is chosen in the range

[0, 1] entry-wisely. Note that a similar way to construct the problem was given in [14].
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Figure 1: Performance profile of iteration numbers of Problem 4.1.
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Figure 2: Performance profile of computing time of Problem 4.1.

Table 1 and Figures 1-2 show that function φ1(µ, t) performs worst, whereas the dif-

ference among other functions is very slight. Figure 1 demonstrates the performance

profile of iteration numbers for Problem 4.1. The subplot in Figure 1 is the zoomed plot

for upper-left part of the Figure 1. Figure 2 shows the performance profile of computing

time for Problem 4.1. The subplot in Figure 2 is the zoomed plot for lower-left part of

Figure 2. From this figure, we can see that the performance of of function φ1(µ, t) is also

the worst one.
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Problem 4.2. Consider the SOCAVE (2) which is generated in the following way:

choose two random matrices C,D ∈ IRn×n from a uniformly distribution on [−10, 10]

for every element, and compute their singular value decompositions C := U1S1V
T

1 and

D := U2S2V
T

2 with diagonal matrices S1 and S2; unitary matrices U1, V1, U2 and V2.

Then, we choose randomly b, c ∈ IRn on [0, 10] for every element. Next, we take a ∈ IRn

by setting ai = ci + 10 for all i ∈ {1, . . . , n}, so that a ≥ b. Set A := U1Diag(a)V T
1

and B := U2Diag(b)V T
2 , where Diag(x) denotes a diagonal matrix with its i-th diagonal

element being xi. The gap between the minimal singular value of A and the maximal

singular value of B is limited and can be very small. We choose randomly b ∈ IRn in

[0, 10]. The initial point is chosen in the range [0, 1] entry-wisely.
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Figure 3: Performance profile of iteration numbers of Problem 4.2.
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Figure 4: Performance profile of computing time of Problem 4.2.

For Problem 4.2, as depicted in Figures 3-4 and Table 2, all the smoothing functions

φi(µ, t) for i = 1, 2, 3, 4, 5, 6 perform very well, no any discrepancy.
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Problem 4.3. Consider the SOCAVE (2) which is generated in the following way: choose

two random matrices A,B ∈ IRn×n from a uniformly distribution on [−10, 10] for every

element. In order to ensure that the SOCAVE (2) is solvable, we update the matrix A

by the following: let [USV ] = svd(A). If min{S(i, i)} = 0 for i = 0, 1, · · · , n, we make

A = U(S + 0.01E)V , and then A = λmax(BTB)+0.01
λmin(ATA)

A. We choose randomly b ∈ IRn on

[0, 10] for every element. The initial point is chosen in the range [0, 1] entry-wisely.
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Figure 5: Performance profile of iteration numbers of Problem 4.3.
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Figure 6: Performance profile of computing time of Problem 4.3.

For Problem 4.3, from the Table 3 and Figures 5-6, we see that φ1(µ, t) is obviously in-

ferior to other functions. Moreover, in terms of the computing time, the function φ4(µ, t)

is the best one, followed by φ3(µ, t). In summary, the function φ1(µ, t) is still the worst

performer.

Problem 4.4. We consider the SOCAVE (2) which is generated the same as Problem

4.1. But, here the SOC is given by K := Kn1 × · · · × Knr , where n1 = · · · = nr = n
r
.
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Figure 7: Performance profile of iteration numbers of Problem 4.4.
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Figure 8: Performance profile of computing time of Problem 4.4.

Figures 7-8 show the performance profiles of Problem 4.4. Indeed, the performance

profiles are similar to those for Problem 4.1 (only the cone structure is different). Again,

the function φ1(µ, t) is still the worst performer and there is no significant difference

among other five smoothing functions.

Problem 4.5. We consider the SOCAVE (2) which is generated the same as Problem

4.3. But, here the SOC is given by K := Kn1 × · · · × Knr , where n1 = · · · = nr = n
r
.

Figures 9-10 show the performance profiles of Problem 4.5. They verify the poor

performance of function φ1(µ, t) one more time.

In summary, the function φ1(µ, t) is not a good choice to work with the smoothing

Newton algorithm. Note that φ1(µ, t) is related to loss function and widely used in

engineering like machine learning. However, for the SOCAVE, the numerical performance

of function φ1(µ, t) is always the worst one. This is a very interesting phenomenon and
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Figure 9: Performance profile of iteration numbers of Problem 4.5.
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Figure 10: Performance profile of computing time of Problem 4.5.

discovery. In other words, we may try to replace it by other smoothing functions for

some appropriate algorithms towards real engineering problems. This will be our future

investigations.
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