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Preface

The second-order cone programs (SOCP) have been an attraction due to plenty of ap-
plications in engineering, data science, and finance. To deal with this special type of
optimization problems involving second-order cone (SOC). We believe that the following
items are crucial concepts: (i) spectral decomposition associated with SOC, (ii) analy-
sis of SOC functions, (iii) SOC-convexity and SOC-monotonicity. In this book, we go
through all these concepts and try to provide the readers a whole picture regarding SOC
functions and their applications.

As introduced in Chapter 1, the SOC functions are indeed vector-valued functions
associated with SOC, which are accompanied by Jordan product. However, unlike the
matrix multiplication, the Jordan product associated with SOC is not associative which
is the main source of difficulty when we do the analysis. Therefore, the ideas for proofs
are usually quite different from those for matrix-valued functions. In other words, al-
though SOC and positive semidefinite cone both belong to symmetric cones, the analysis
for them are different. In general, the arguments are more tedious and need subtle ar-
rangements in the SOC setting. This is due to the feature of SOC.

To deal with second-order cone programs (SOCPs) and second-order cone complemen-
tarity problems (SOCCPs), many methods rely on some SOC complementarity functions
or merit functions to reformulate the KKT optimality conditions as a nonsmooth (or
smoothing) system of equations or an unconstrained minimization problem. In fact,
such SOC complementarity or merit functions are connected to SOC functions. In other
words, the vector-valued functions associated with SOC are heavily used in the solutions
methods for SOCP and SOCCP. Therefore, further study on these functions will be help-
ful for developing and analyzing more solutions methods.

For SOCP, there are still many approaches without using SOC complementarity func-
tions. In this case, the concepts of SOC-convexity and SOC-monotonicity introduced in
Chapter 2 play a key to those solution methods. In Chapter 3, we present proximal-type
algorithms in which SOC-convexity and SOC-monotonicity are needed in designing so-
lution methods and proving convergence analysis.

In Chapter 4, we pay attention to some other types of applications of SOC-functions,
SOC-convexity, and SOC-monotonicity introduced in this monograph. These include
so-called SOC means, SOC weighted means, and a few SOC trace versions of Young,
Holder, Minkowski inequalities, and Powers-Stgrmer’s inequality. All these materials are
newly discovered and we believe that they will be helpful in convergence analysis of var-
ious optimizations involving SOC. Chapter 5 offers a direction for future investigation,
although it is not very consummate yet.
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Notations
e Throughout this book, an n-dimensional vector x = (x1, 29, -+ ,2,) € IR" means
a column vector, i.e.,
Zy
T2
Tr=
T
In other words, without ambiguity, we also write the column vector as x = (z1, 9, -+ , Zy).
e R} means {z = (x1,22,...,2,)|z; > 0, Vi = 1,2,...,n}, whereas IR}, denotes

{z = (z1,29,...,2,) |2; >0, Vi=1,2,... ,n}.
e (-,-) denotes the Euclidean inner product.
e T means transpose.
e B(x,0) denotes the neighborhood of x.
e [R™™ denotes the space of n x n real matrices.

e [ represents an identity matrix of suitable dimension.

e For any symmetric matrices A, B € IR"*", we write A = B (respectively, A = B)
to mean A — B is positive semidefinite (respectively, positive definite).

e S" denotes the space of n x n symmetric matrices; and S7 means the space of n xn
symmetric positive semidefinite matrices.

e || - | is the Euclidean norm.

e Given a set S, we denote S, int(S) and bd(S) by the closure, the interior and the
boundary of S, respectively.

e For a mapping f : R"” — IR, Vf(x) denotes the gradient of f at .

e C(J) denotes the family of functions which are defined on J C IR™ to IR and have
continuous ¢-th derivative.

e For any differentiable mapping F = (Fy, Fy,---,F,,) : R" — R™, VF(z) =
[VEi(z)---VF,(z)] is a n by m matrix which denotes the transpose Jacobian of
F at x.

e For any z,y € R", we write v =, y if v —y € K" and write z >, y if
r —y € int(K").



e For a real valued function f : J — IR, f’(¢t) and f”(t) denote the first derivative
and second-order derivative of f at the differentiable point ¢t € J, respectively.

e For a mapping F' : S C R" — IR™, 0F (x) denotes the subdifferential of F' at =,
while OpF'(x) denotes the B-subdifferential of F' at x.



Chapter 1

SOC Functions

During the past two decades, there have been active research for second-order cone pro-
grams (SOCPs) and second-order cone complementarity problems (SOCCPs). Various
methods had been proposed which include the interior-point methods [1, 103, 110, 124,
146], the smoothing Newton methods [52, 64, 72], the semismooth Newton methods
(87, 121], and the merit function methods [44, 49]. All of these methods are proposed
by using some SOC complementarity function or merit function to reformulate the KK'T
optimality conditions as a nonsmooth (or smoothing) system of equations or an uncon-
strained minimization problem. In fact, such SOC complementarity functions or merit
functions are closely connected to so-called SOC functions. In other words, studying
SOC functions is crucial to dealing with SOCP and SOCCP, which is the main target of
this chapter.

1.1 On the second-order cone
The second-order cone (SOC) in IR™, also called Lorentz cone, is defined by
K" ={(z1,25) € R x R"'|[|zo]| < 21}, (1.1)

where || - || denotes the Euclidean norm. If n = 1, let ™ denote the set of nonnegative
reals R,. For n = 2 and n = 3, the pictures of K™ are depicted in Figure 1.1(a) and
Figure 1.1(b), respectively. It is known that K™ is a pointed closed convex cone so that a
partial ordering can be deduced. More specifically, for any z,y in IR", we write z =, y if
r—y € K" and write >, yif z —y € int(K"). In other words, we have z >, 0 if and
only if x € K"; whereas = >, 0 if and only if z € int(K™). The relation =, is a partial
ordering, but not a linear ordering in K", i.e., there exist z,y € K" such that neither
T =, ynory =, x. Tosee this, for n =2, let x = (1,1) € K? and y = (1,0) € K~
Then, we have z —y = (0,1) ¢ K* and y —z = (0, —1) ¢ K.
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Figure 1.1: The graphs of SOC

The second-order cone has received much attention in optimization, particularly in the
context of applications and solutions methods for second-order cone program (SOCP) [1,
48,49, 103, 116, 117, 119] and second-order cone complementarity problem (SOCCP), [43,
44, 46, 49, 64, 72, 118]. For those solutions methods, there needs spectral decomposition
associated with SOC whose basic concept is described below. For any z = (z1,29) €
IR x IR" !,  can be decomposed as

= M (x)ul) + No(2)u®, (1.2)

where A(z), Aa(x) and uM, ul? are the spectral values and the associated spectral
vectors of x given by

Ai(z) = @1+ (=1) 2], (1.3)
1 _1\e T2 .

ugcz) — 2 <17( 1) H$2H> ) if T2 7é 07 (14)
2 (1, (-1)'w), if x9=0,

for i = 1,2 with w being any vector in IR"™! satisfying ||w]|| = 1. If x5 # 0, the decom-
position is unique.

For any o = (71, 15) € RxIR" ' and y = (y1,12) € R x R, we define their Jordan
product as
zoy = ((x,y), 1172 + T12) € R x R"". (1.5)

The Jordan product is not associative. For example, for n = 3, let x = (1,—1,1) and

y=z=(1,0,1), then we have (zoy)oz = (4,—1,4) #xo(yoz) = (4,—2,4). However,
it is power associative, i.e., z o (zox) = (x ox) oz, for all z € IR". Thus, without fear
of ambiguity, we may write 2™ for the product of m copies of z and 2" = 2™ o 2™ for
all positive integers m and n. The vector e = (1,0, ...,0) is the unique identity element
for the Jordan product, and we define 2° = e for convenience. In addition, K" is not
closed under Jordan product. For example, z = (v/2,1,1) € K3, y = (v/2,1,-1) € K3,
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but z oy = (2,2v/2,0) ¢ K?. We point out that lacking associative property of Jordan
product and closedness of SOC are the main sources of difficulty when dealing with SOC.
We write 22 to denote x o x and write x + y to mean the usual componentwise addition
of vectors. Then, “o,+” together with e = (1,0,...,0) € IR" have the following basic
properties (see [62, 64]):

(1) eox =z, for all x € IR™.
(2) zoy=youx, forall z,y € R".
(3) zo(z?oy) =x%0(zoy), for all x,y € R™.
(4)

4) (x+y)oz=xzoz+yoz forall z,y, z € R™
For each x = (1, 72) € IR x R"™!, the determinant and the trace of x are defined by
det(z) = 22 — ||2o?, tr(x) = 2.

In view of the definition of spectral values (1.3), it is clear that the determinant, the
trace and the Euclidean norm of = can all be represented in terms of A\;(z) and A\y(x):

(M(2)” + Aa(2)?) .

| =

det(z) = M\ (2)Xo(2), tr(z) = Ai(z) + Xo(2), |z|* =
As below, we elaborate more about the determinant and trace by showing some
properties.
Proposition 1.1. For any x >, 0 and y =, 0, the following results hold.
(a) If v =, y, then det(z) > det(y) and tr(x) > tr(y).
(b) Ifx =, y, then N\i(x) > Ni(y) fori=1,2.
Proof. (a) From definition, we know that

det(z) =

w3 — |2, tr(x) = 24,
det(y) = y? — |lyal*, tr(y) = 2y;.

Since v —y = (1 — Y1, 22 — Y2) = n 0, we have ||z2 — yo|| < 21 —y;. Thus, z1 > y;, and
then tr(z) > tr(y). Besides, using the assumption on z and y gives

21— 2 ez —yoll > | llzall = [yl |, (1.6)
which is equivalent to 1 — [[z2|| > y1 — [[ya2]| > 0 and zy + [|72]| > y1 + [|y2|| > 0. Hence,

det(z) = 27 — |22 = (21 + [|l22l) (@1 = z2l) = (1 + ll2) (w1 — well) = det(y).
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(b) From definition of spectral values, we know that

A(z) = 21 — [|22]], Ao(z) = 21 + [|22| and A (y) = y1 — [[92ll, A2(y) = v + [|n2]]-

Then, by the inequality (1.6) in the proof of part(a), the results follow immediately. O

We point out that there may have other simpler ways to prove Proposition 1.1. The
approach here is straightforward and intuitive by checking definitions. The converse of
Proposition 1.1 does not hold, a counterexample occurs when taking x = (5,3) € K? and
y = (3,—1) € K% In fact, if (z1,22) € IR x IR""! serves as a counterexample for K",
then (z1,79,0,...,0) € R x IR"™! is automatically a counterexample for K™ whenever
m > n. Moreover, for any x >, y, there always have X\;(z) > \;(y) and tr(z) > tr(y)
for i = 1,2. There is no need to restrict >, 0 and y >, 0 as in Proposition 1.1.

Proposition 1.2. Let x =, 0, y =, 0 and e = (1,0,--- ,0). Then, the following hold.
(a) det(z +y) > det(z) + det(y).

(b) det(zoy) < det(x)det(y).

(c) det (az + (1 — a)y) > a®det(z) + (1 — a)?*det(y) for all 0 < a < 1.

(d) (det(e+2))"? > 1+ det(z)V2,

(e) det(e+z+y) < det(e+ z)det(e + y).

Proof. (a) For any = =, 0 and y >,, 0, we know |[zo| < 21 and |lyo|| < y1, which
implies
[{z2, y2)| < 2]l [[42]] < 2101,

Hence, we obtain

det(z +5) = (21 +y1)? — || + 1

= (2 = ll2al®) + (07 = loal®) +2(210n — (w2, 12))
> (o1 = llz2l®) + (o1 — llgell?)
= det(z) + det(y).

(b) Applying the Cauchy inequality gives

det(roy) = (,9)* — |21ys + yra®

(2191 + (@2,92))" = (@3 llyall? + 22151 (w2, yo) + v |22
23yt + (22, y2)% — 23]l — yi |l ?

2292 + sl P lyell? — 22 lyell® — y2 ]2

= (21 = [l2l*) (s — llwell®)

det(z) det(y).

IN



1.1. ON THE SECOND-ORDER CONE )

(c) For any « =, 0 and y =, 0, it is clear that ax >,, 0 and (1 — )y =, 0 for every
0 < o < 1. In addition, we observe that det(ax) = o? det(x). Hence,

det (az + (1 — a)y) > det(az) + det((1 — a)y) = a” det(z) + (1 — a)* det(y),

where the inequality is from part(a).

(d) For any « =,, 0, we know det(z) = A;(z)A2(x) > 0, where \;(x) are the spectral
values of . Hence,

det(e +2) = (1 4+ M (2))(1 + No(z (1+\/)\1 Palz ) (1 + det(z)2)?.

Then, taking square root on both sides yields the desired result.

(e) Again, For any =z =, 0 and y >, 0, we have the following inequalities
—llz2ll 20, v —llwall 20, [(22,82)| < Nl g2l < 2191 (1.7)

Moreover, we know det(e+x+y) = (1+x1+y;)? —||z2t12||* , det(e+z) = (1+z1)? —||z2||?
and det(e + y) = (1 4+ y1)? — ||y2/|*>. Hence,

det(e + x) det(e + y) — det(e + x + y)
= (421 = [lz2)*) (T +31)° = llg2ll?) = (A + 20 +31)° = |22 + v2[°)
= 2z + 2(22, y) + 20197 + 22701 — 201 || wa])? — 224 |||

+atyt — yilleal” = 2?llyal” + llza)? |yl
= 2(zn + (2, 92)) + 221 (45 — [|v2l?) + 201 (25 — ||22]?)

+ (a7 — Jo2l?) (45 — lly=l?)

> 0,

where we multiply out all the expansions to obtain the second equality and the last
inequality holds by (1.7). O

Proposition 1.2(c) can be extended to a more general case:
det (az + By) > o det(z) + °det(y) Va >0, 3> 0.

Note that together with Cauchy-Schwartz inequality and properties of determinant, one
may achieve other way to verify Proposition 1.2. Again, the approach here is only one
choice of proof which is straightforward and intuitive. There are more inequalities about
determinant, see Proposition 1.8 and Proposition 2.32, which are established by using
the concept of SOC-convexity that will be introduced in Chapter 2. Next, we move to
the inequalities about trace.

Proposition 1.3. For any x,y € IR", we have
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(a) tr(z +vy) = tr(z) + tr(y) and tr(az) = atr(x) for any o € R. In other words, tr(-)
1s a linear function on IR™.

(b) Ai(@)Aa(y) + Mi(y)Ae(z) < tr(zoy) < Mi(@)Ai(y) + Aa(2)A2(y)-

Proof. Part(a) is trivial and it remains to verify part(b). Using the fact that tr(zoy) =
2(x,y), we obtain

AL(T)A2(y) + Ar(y) Aa(z)

(21 = [lz2[) (g1 + Nly2ll) + (21 + [[z2[)) (92 = [lg2]])
2(z1y1 — 2llly2l])

< 2(x1yr + (22, ¥2))
= tr(zxoy)
< 2(myr + (|lz2llly2l])

(z1 = [[z2]) (1 = llyall) + (21 + llz2l]) (v1 + [l92])
= M(@)M(y) + Xa(z)Xa(y),

which completes the proof. [

In general, det(x o y) # det(x)det(y) unless xo = ays. A vector z = (z1,x2) €
IR x IR"! is said to be invertible if det(x) # 0. If x is invertible, then there exists a
unique y = (y1,y2) € R x IR"™! satisfying z oy = y o x = e. We call this y the inverse
of x and denote it by 7. In fact, we have
1
-1
= " — = ——t —x).
TS ) = gy (e )
Therefore, x € int(K") if and only if z7! € int(K"). Moreover, if x € int(K"), then
7% = (%) = (z71)* is also well-defined. For any z € K", it is known that there
exists a unique vector in K™ denoted by z'/? (also denoted by /x sometimes) such that
(2Y/2)? = 21/2 0 21/2 = 2. Indeed,

i) 1
/2 = (8, %> ,  Where s= \/5 <$1 + \/x% - ||$2||2>

In the above formula, the term 2% is defined to be the zero vector if s = 0 (and hence

2s
29 =0),ie,2=0.

For any z € R", we always have 2? € K" (i.e., 2% =, 0). Hence, there exists a unique
vector (z2)Y2 € K™ denoted by |z|. It is easy to verify that |z| =,, 0 and 2% = |z|? for
any € IR™. It is also known that |z| =, . For any € IR", we define [z]; to be the
projection point of x onto K", which is the same definition as in IR’}. In other words,
[z]; is the optimal solution of the parametric SOCP:

a]4 = argmin]le — yl| |y € K"}
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Here the norm is in Euclidean norm since Jordan product does not induce a norm. Like-
wise, [z]_ means the projection point of x onto —K", which implies [z]_ = —[—z],. It is
well known that [z], = (2 + |z]) and [z]_ = S(z — |z]), see Property 1.2(f).

The spectral decomposition along with the Jordan algebra associated with SOC entails
some basic properties as below. We omit the proofs since they can be found in [62, 64].

Property 1.1. For any v = (x1,15) € IR x R with the spectral values \(x), Xo(z)

and spectral vectors ut”, u$? given as in (1.3)-(1.4), we have

(a) ug) and ug) are orthogonal under Jordan product and have length \%, i.€.,

uMoul =0, Ju| = [lul| =

Sl

(b) ug}) and ug) are idempotent under Jordan product, i.e.,

ug) o ug(f) = ugf), 1 =1,2.

(c) M(x), Xa(z) are nonnegative (positive) if and only if x € K" (x € int(K")), i.e.,

Ai(r) >0fori=1,2 < z+_ 0.
Ai(z) >0fori=1,2 < x>, 0.

Kxn

Although the converse of Proposition 1.1(b) does not hold as mentioned earlier, Prop-
erty 1.1(c) is useful in verifying whether a point x belongs to ™ or not.

Property 1.2. For any v = (11, 22) € IR x R"™! with the spectral values M\i(x), Xo(x)
and spectral vectors ul”, ul? given as in (1.8)-(1.4), we have

(a) 22 = M (2)2ul) + Ao(2)2u®) and 27 = A\ @)l + 251 (z)ul?.

(b) Ifz € K", then 212 = /A (z) ul” + /alz) ul?.

(©) lal = (@) |us” + Do) |us.

() [o]s = @) us? + Po(@)]sul? and (2] = (@) -ul + o)) -ul?.
(e) |zl = [a]y + [—a]s = [a]4 — [2]-.

(f) [2]s = 3z +[o]) and [2]- = L — |z]).

Property 1.3. Let © = (z1,72) € R X R"™ and y = (y1,y2) € R x R"™'. Then, the
following hold.
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(a) Any x € IR™ satisfies || = .. .

(b) For any x,y =, 0, if v =, vy, then 2¥/2 =, y!/2.

(c) For any z,y € R", if 2* =, y?, then |x| =, |y|.

(d) For any x € R™, x =, 0 if and only if (x,y) > 0 for ally =, 0.
(e) Foranyx =, 0 andy € R", if 2* =, y*, thenx =, y.

Note that for any x,y =, 0, if x >, y, one can also conclude that 27 <, y~'.

However, the arguments are not trivial by direct verifications. We present it by other
approach, see Proposition 2.3(a).

Property 1.4. For any x = (x1,15) € IR x R with spectral values \(x), Xo(z) and
any y = (y1,y2) € R x R with spectral values A1 (y), Xo(y), we have

Xi(z) = M) < V2||z—yl, i=1,2
Proof. First, we compute that

[A1(z) = Ai(y)]

|21 = [lzall = 91 + [lel]

< oy — ]+ w2l = vl
<z — | + ||z — v

1/2
< V2 (Jor =P + ||z — va]?)

V2|lz —yl.

where the second inequality uses ||xs|| < ||ze —ya2||+ ||y2|| and ||y2|| < ||x2 —yo|| +||z2]|; the
last inequality uses the relation between the 1-norm and the 2-norm. A similar argument
applies to |Ao(z) — A2(y)|. O

In fact, Property 1.1-1.3 are parallel results analogous to those associated with positive
semidefinite cone S, see [75]. Even though both K" and &% belong to the family of
symmetric cones [62] and share similar properties, as we will see, the ideas and techniques
for proving these results are quite different. One reason is that the Jordan product is not
associative as mentioned earlier.

1.2 SOC function and SOC trace function

In this section, we introduce two types of functions, SOC function and SOC trace func-
tion, which are very useful in dealing with optimization involved with SOC. Some in-
equalities are established in light of these functions.
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Let x = (21,22) € IR x R"™! with spectral values \;(x), Ao(z) given as in (1.3) and
spectral vectors u”, ul? given as in (1.4). We first define its corresponding SOC function
as below. For any real-valued function f : IR — IR, the following vector-valued function
associated with " (n > 1) was considered [46, 64]:

@) = fOn@)ul? + fFo(@)ul?, Vo = (z1,25) € R x R, (1.8)
The definition (1.8) is unambiguous whether x5 # 0 or 5 = 0. The cases of f* (z) = z'/2,
2%, exp(z), which correspond to f(t) = t'/2, #2, ¢!, are already discussed in the book [62].
Indeed, the above definition (1.8) is analogous to one associated with the semidefinite
cone ST, see [140, 145]. For subsequent analysis, we also need the concept of SOC trace
function [47] defined by

soc

f@) = fn(@) + f(e(@) = (f (2)). (1.9)

If f is defined only on a subset of IR, then ™ and f'* are defined on the corresponding
subset of IR™. More specifically, from Proposition 1.4 shown as below, we see that the

corresponding subset for f and f% is
S={reR" | N(z)e J, i=1,2} (1.10)

provided f is defined on a subset of J C IR. In addition, S is open in IR™ whenever J is
open in IR. To see this assertion, we need the following technical lemma.

Lemma 1.1. Let A € R™ ™ be a symmetric positive definite matriz, C € R™"™ be a
symmetric matriz, and B € IR™*™. Then,

{ ;T g } 0 <<= COC-B'A'B-0 (1.11)
and
{ ;T g ] -0 <<= C-B"A7'B>o0. (1.12)

Proof. This is indeed the Schur Complement Theorem, please see [22, 23, 75] for a proof.
O

Proposition 1.4. For any given f : JCR — IR, let f : S = R" and f*: S — R be
given by (1.8) and (1.9), respectively. Assume that J is open. Then, the following results
hold.

(a) The domain S of f° and f* is also open.
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(b) If f is (continuously) differentiable on J, then f is (continuously) differentiable
on S. Moreover, for any x € S, V[ (x) = f'(x1)I if xa =0, and otherwise

b(a) C(@nfu
ORI S R
c(x) 2l a(z)I + (b(z) — a(x)) ”$2H22

where

f(A2(2)) = f(M(2))

az) = No(z) — M(z)
ba) = f ()\2(37))42'f (>\1(3'7))7
f'(Aa(z)) — f’(Al(ﬂf)).

co(z) =

2

(c) If f is (continuously) differentiable, then f* is (continuously) differentiable on S
with V f*"(x) = 2(f)°(z); if f is twice (continuously) differentiable, then f* is
twice (continuously) differentiable on S with V2 f"(z) = V(f')*°(z).

Proof. (a) Fix any x € S. Then A\ (x), A2(x) € J. Since J is an open subset of IR,
there exist 01,2 > 0 such that {t € R ||t — A\ (x)] <01} C J and {t € R ||t — Xa(x)| <
53} € J. Let 0 := min{d;,d5}/v2. Then, for any y satisfying ||y — 2| < 0, we have
|IA1(y) — Ai(z)| < 01 and [A2(y) — A2(z)| < d2 by noting that

(M) = M(¥)* + (a(@) — Xa(y))?

2(% + Jlzal*) + 2097 + lly2l*) — 421y + 22|l [ly2])
2027 + llw2ll®) + 207 + llyal*) — 4lziys + (22, 32))

2 ([l=l* + [yl = 2(z, )

= 2llz -yl

IN

and consequently A\ (y) € J and \y(y) € J. Since f is a function from J to IR, this means
that {y € R™ |||y — z|| < 6} C S, and therefore the set S is open. In addition, from the
above, we see that S is characterized as in (1.10).

(b) The arguments are similar to Proposition 1.13 and Proposition 1.14 in Section 1.3.
Please check them for details.

(c) If f is (continuously) differentiable, then from part(b) and f"(z) = 2 (e, ™ (z)) it
follows that f* is (continuously) differentiable. In addition, a simple computation yields
that Vf(z) = 2V f ™ (z)e = 2(f")*°°(z). Similarly, by part(b), the second part follows.
U
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Proposition 1.5. Forany f : J = R, let {° : S — R" and f* : S — R be given by
(1.8) and (1.9), respectively. Assume that J is open. If f is twice differentiable on J,
then

(@) f"(t) >0 foranyt e J <= V(f)°(z) = O for any x € S <= [ is convex in S.

(®) f'(t) > 0 for any t € J < V(f)°(z) = O for any x € S = f* is strictly
convex in S.

Proof. (a) By Proposition 1.4(c), V2f"(x) = 2V(f')**¢(x) for any = € S, and the second
equivalence follows by [21, Prop. B.4(a) and (c)]. We next come to the first equivalence.
By Proposition 1.4(b), for any fixed x € S, V(f")**°(x) = f"(x1)] if 25 = 0, and otherwise
V(f")%°(x) has the same expression as in (1.13) except that

bz) = f//()\Q(fL'))‘;‘f”(/\l(x))’

_ ") — (M)
c(x) 5 ,

f'(A2(2)) = f'(AMi(2))
Aa(x) = M(w)

Assume that V(f/)*°(z) = O for any x € S. Then, we readily have b(z) > 0 for any
x € S. Noting that b(x) = f”(x1) when xo = 0, we particularly have f”(x;) > 0 for all
x1 € J, and consequently f”(t) > 0 for all ¢t € J. Assume that f”(¢) > 0forallt € J. Fix
any x € S. Clearly, b(z) > 0 and a(z) > 0. If b(z) = 0, then f"(A\(x)) = f"(X2(z)) =0,
and consequently ¢(z) = 0, which in turn implies that

0 0
V(') (x) = [ 0 alz) ([ msz)

2|2

= 0. (1.14)

If b(x) > 0, then by the first equivalence of Lemma 1.1 and the expression of V( f")%¢(x)
it suffices to argue that the following matrix
roxl A (x) worl

a(z)l + (b(z) — a(z)) - (1.15)

22 b(z) ||z

is positive semidefinite. Since the rank-one matrix zox3 has only one nonzero eigenvalue
|z2|?, the matrix in (1.15) has one eigenvalue a(x) of multiplicity n—1 and one eigenvalue

Y@ of multiplicity 1. Since a(x) > 0 and 2500 = f7(\, (1)) f(Ag(x) > 0, the

@
matrix in (1.15) is positive semidefinite. By the arbitrary of x, we have that V(f")*°(z) =
Oforallz e S.

(b) The first equivalence is direct by using (1.12) of Lemma 1.1, noting V(f')*°(z) = O
implies a(x) > 0 when 5 # 0, and following the same arguments as part(a). The second
part is due to [21, Prop. B.4(b)]. O
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Remark 1.1. Note that the strict convezity of f* does not necessarily imply the positive
definiteness of V2 f™(x). Consider f(t) =t* for t € R. We next show that f* is strictly
conver. Indeed, ' is convex in IR™ by Proposition 1.5(a) since f"(t) = 12t> > 0. Taking
into account that f* is continuous, it remains to prove that

o (240) - L L

— . 1.1
5 5 = r=y (1.16)

Since h(t) = (to + t)* + (to — t)* for some ty € R is increasing on [0,+00), and the
function f(t) = t* is strictly convex in IR, we have that

r(3) - B )

— <x1+y1 —2!\a:2+y2!\)4+ (a:1+y1 +2Hg;2+y2H)4
< <x1 +y — H2x2|| - ||y2||>4 N (961 oy + H2132H " Hy2||)4
< (<>\1(55))42+ (>\1(y>))4 +(()\2(x))42+ (>\2(2))4
I COR ) :

5 :

and moreover, the above inequalities become the equalities if and only if

||$2 + y2|| = ||$2|| + ||y2||, )\1@) = )\1(9)7 )\2@) = /\2(9)-

It is easy to verify that the three equalities hold if and only if x = y. Thus, the implication
in (1.16) holds, i.e., f™ is strictly convex. However, by Proposition 1.5(b), V(f")*°(z) >
O does not hold for all x € IR™ since f"(t) > 0 does not hold for all t € R.

We point out that the fact that the strict convexity of f implies the strict convexity
of f was proved in [7, 16] via the definition of convex function, but here we use the
Schur Complement Theorem and the relation between V(f/)**¢ and V2™ to establish
the convexity of SOC-trace functions. Next, we illustrate the application of Proposition
1.5 with some SOC trace functions.

Proposition 1.6. The following functions associated with K" are all strictly convez.
(a) Fi(z) = —In(det(z)) for x € int(K").

(b) Fy(z) = tr(z™!) for x € int(K").



1.2. SOC FUNCTION AND SOC TRACE FUNCTION 13

(c) Fs(x) =tr(o(x)) for x € int(K™), where

P+l e :
-~z ifpel01], ¢=1.

o) = { x:ﬁfe + zlq:qfe if pe[0,1], ¢ > 1,
(d) Fiy(x) = —In(det(e — x)) for x <. e.
(e) F5(z) =tr((e —x)tox) forxz <., e.
(f) Fs(z) =tr(exp(z)) for x € R™.
(g) Fr(x) =In(det(e + exp(x))) for x € R".

x + (22 + 4e)1/?

(h) Fy(z) = tr ( 5

Proof. Note that Fi(x), Fo(z) and Fs(x) are the SOC trace functions associated with
fi(t) =—Int (t >0), fot) =t (£ > 0) and f3(t) (¢t > 0), respectively, where

> for xz € R™.

fs(t):{ Rt ifpelo 1), > 1,

tp;lr;l —Int ifpel0,1], ¢=1;

Next, Fy(x) is the SOC trace function associated with f4(t) = —In(1 —1t) (t < 1), F5(2)
is the SOC trace function associated with f5(¢) = & (¢ < 1) by noting that
Ao () (2).

_ A1 (2)

)y logp = 21 )y 22
(e—z)  oux )\1(6—:6)% +)\2<6_x)ux ;
In addition, Fy(z) and Fr(x) are the SOC trace functions associated with fg(t) = exp(t)
(t € R) and f7(t) = In(1 4+ exp()) (t € R), respectively, and Fg(z) is the SOC trace
function associated with fs(t) = 1 (t+ V2 +4) (t € R). It is easy to verify that all
the functions fi-fg have positive second-order derivatives in their respective domain, and

therefore Fi-Fy are strictly convex functions by Proposition 1.5(b). O

The functions Fi, F> and Fj are the popular barrier functions which play a key role
in the development of interior point methods for SOCPs, see, e.g., [15, 20, 110, 124, 146],
where F3 covers a wide range of barrier functions, including the classical logarithmic
barrier function, the self-regular functions and the non-self-regular functions; see [15]
for details. The functions Fj and Fj are the popular shifted barrier functions [6, 7, 9]
for SOCPs, and Fi-Fg can be used as penalty functions for second-order cone programs
(SOCPs), and these functions are added to the objective of SOCPs for forcing the solu-
tion to be feasible.

Besides the application in establishing convexity for SOC trace functions, the Schur
Complement Theorem can be employed to establish convexity of some compound func-
tions of SOC trace functions and scalar-valued functions, which are usually difficult
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to achieve by checking the definition of convexity directly. The following proposition
presents such an application.

Proposition 1.7. For any x € K", let Fy(z) := —[det(z)]'/? with p > 1. Then,
(a) Fy is twice continuously differentiable in int(K").
(b) Fy is convex when p > 2, and moreover, it is strictly convexr when p > 2.

Proof. (a) Note that —Fy(z) = exp (p~! In(det(x))) for any z € int(K"), and In(det(z)) =
f"(x) with f(¢t) = In(t) for t € R,,. By Proposition 1.4(c), In(det(z)) is twice contin-
uously differentiable in int(K"). Hence —Fy(x) is twice continuously differentiable in
int (™). The result then follows.

(b) In view of the continuity of Fy, we only need to prove its convexity over int(K"). By
part(a), we next achieve this goal by proving that the Hessian matrix V2Fy(z) for any
x € int(K™) is positive semidefinite when p > 2, and positive definite when p > 2. Fix
any x € int(K"). From direct computations, we obtain

1_
T @) (27 = fla=l®)?
2

VF9<CC) = — 1_q
P (=2m,) (2] — [Jal?) 7
and
20(w3 Il 1) T
p—1 1o | 4x? — — —4dzx
V2 Fy(x) = —5— (det(x))» | o zp(x22—||w2||2)
p —Ax129 4roxd + —lp_l I

Since z € int(K™), we have z; > 0 and det(x) = 7 — ||z2]|* > 0, and therefore

2p (3 — [l2s]]%) 2 2p
= 4a? — 1 = (4 - 2 2,
ar(w) = 4a} - i K| 21

We next proceed the arguments by the following two cases: a;(z) = 0 or a;(x) > 0.

Case 1: a;(z) = 0. Since p > 2, under this case we must have x3 = 0, and consequently,

—1 Lo o0
U PR

o

V2Ey(z) = L

Case 2: a;(z) > 0. Under this case, we calculate that

9 2 2 2 2 2
[EEEL =l [ R T R T
D — p =

4p (22 — 2 —2
_ ) [p=2,, P
p—1 p—1 p—1

||:E2||2I—2x2xg} . (1.17)
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Since the rank-one matrix 2z922 has only one nonzero eigenvalue 2||z2||?, the matrix in
the bracket of the right hand side of (1.17) has one eigenvalue of multiplicity 1 given by

p—2
—1

pP—2 4 P

ot Lol — 2] =

(27 = [lz=|*) = 0,

and one eigenvalue of multiplicity n — 1 given by ;’%fx% +:5 |z2||* > 0. Furthermore, we
see that these eigenvalues must be positive when p > 2 since 2 > 0 and z? — ||z5||* > 0.
This means that the matrix on the right hand side of (1.17) is positive semidefinite,
and moreover, it is positive definite when p > 2. Applying Lemma 1.1, we have that
V2Fy(z) = O, and furthermore V2Fy(x) = O when p > 2.

Since aq(x) > 0 must hold when p > 2, the arguments above show that Fy(z) is
convex over int(K"™) when p > 2, and strictly convex over int(K") when p > 2. O

It is worthwhile to point out that det(x) is neither convex nor concave on K", and
it is difficult to argue the convexity of those compound functions involving det(x) by
the definition of convex function. But, our SOC trace function offers a simple way to
prove their convexity. Moreover, it helps on establishing more inequalities associated
with SOC. Some of these inequalities have been used to analyze the properties of SOC
function ™ [42] and the convergence of interior point methods for SOCPs [7].

Proposition 1.8. For any x =,, 0 and y =, 0, the following inequalities hold.
(a) det(ax + (1 —a)y) > (det(z))*(det(y)) = for any 0 < a < 1.

(b) det(x +y)'/P > 257! (det(z)? + det(y)'/?) for any p > 2.

(c) det(ax + (1 — a)y) > a?det(z) + (1 — a)*det(y) for any 0 < a < 1.

(d) [det(e + 2)]"/2 > 1 + det(x)"/2.

1
e) det(x)/? = inf{ —tr(zoy)| det(y) =1, y >, 0p. Furthermore, when © >_, 0,
2 K K

the same relation holds with inf replaced by min.
(f) tr(xoy) > 2det(x)/2det(y)/2.

Proof. (a) From Proposition 1.6(a), we know that In(det(z)) is strictly concave in
int(KC"). With this, we have

In(det(az + (1 — a)y)) > aln(det(z)) + (1 — «) In(det(y))
In(det(z)*) + In(det(x)' )

for any 0 < @ < 1 and z,y € int(K™). This, together with the increasing of Int (¢ > 0)
and the continuity of det(z), implies the desired result.
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(b) By Proposition 1.7(b), det(z)"/? is concave over K". Then, for any z,y € K", we

have
1/p
1
det (x ;L y) > 5 [det(2)/? + det(y)"/7]
Ty +y 2 Ty + Y 217
1+ U1 2+ Yo 1 1
= 2|(25n) |22 > (a? — aal) " + (57  lel?)"”

1
1 4r 1 1
= @)=l + el = 5 @ el + (4 = )]

s det(z+y)"? > 2571 (det(z) P + det(y)"/?)
which is the desired result.
(c) Using the inequality in part(b) with p = 2, we have
det(x + y)Y? > det(x)"/? + det(y)"/2.
Squaring both sides yields
det(z + y) > det(z) + det(y) + 2det(x)/? det(y)*/? > det(z) + det(y),

where the last inequality is by the nonnegativity of det(z) and det(y) since z,y € K".
This together with the fact det(ax) = a? det(z) leads to the desired result.

(d) This inequality is presented in Proposition 1.2(d). Nonetheless, we provide a different
approach by applying part(b) with p = 2 and the fact that det(e) = 1.

(e) From Proposition 1.3(b), we have
tr(zoy) > M(2)Aa(y) + Ai(y)Aa(z), Va,y € R™

For any z,y € K™, this along with the arithmetic-geometric mean inequality implies that

tr(z o y) S A() A2 (y) + M (y) Ae(x)
2 - 2
> VAL(@) A2 (y) A () Aa(2)
= det(z)"? det(y)"/?,

1
which means that inf {Etr(x oy)| det(y) =1,y =, O} = det(z)'/? for a fixed v € K"
_ 1
If z >, 0, then we can verify that the feasible point y* = \/ZT% is such that Etr(a:oy*) =
det(z)"/?, and the second part follows.
(f) Using part(e), for any x € K™ and y € int(K"), we have

M — %tr (J; [¢) L) Z \/det(x),

2/det(y) det(y)
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which together with the continuity of det(x) and tr(z) implies that
tr(z oy) > 2det(z)? det(y)"?, Va,y € K™

Thus, we complete the proof. [

We close this section by remarking some extensions. Some of the inequalities in
Proposition 1.8 were established with the help of the Schwartz Inequality, see Proposition
1.2, whereas here we achieve the goal easily by using the convexity of SOC functions.
In particular, Proposition 1.8(b) has a stronger version shown as in Proposition 2.32 in
which p > 2 is relaxed to p > 1 and the proof is done by different approach. These
inequalities all have their counterparts for matrix inequalities [22, 75, 135]. For example,
Proposition 1.8(b) with p = 2, i.e., p being equal to the rank of Jordan algebra (IR", o),
corresponds to the Minkowski Inequality of matrix setting:

det(A + B)Y™ > det(A)Y™ + det(B)Y/™

for any n x n positive semidefinite matrices A and B. Moreover, some inequalities in
Proposition 1.8 have been extended to symmetric cone setting [38] by using Euclidean
Jordan algebras. Proposition 1.6 and Proposition 1.7 have also generalized versions in
symmetric cone setting, see [36]. There will have SOC trace versions of Young, Holder,
and Minkowski inequalities in Chapter 4.

1.3 Nonsmooth analysis of SOC functions

To explore the properties of the aforementioned SOC functions, we review some basic
concepts of vector-valued functions, including continuity, (local) Lipschitz continuity,
directional differentiability, differentiability, continuous differentiability, as well as (p-
order) semismoothness. In what follows, we consider a function F : R¥ — IRY. We say
F is continuous at z € IR* if

F(y) = F(z) as y — x;

and F is continuous if F is continuous at every x € IR¥. F is strictly continuous (also
called ‘locally Lipschitz continuous’) at x € IR* [134, Chap. 9] if there exist scalars x > 0
and 0 > 0 such that

IF(y) = F(2)|| < wlly — 2| Vy,2 € RF with ||y —af| <4, ||z — 2 <

and F is strictly continuous if F is strictly continuous at every z € IR*. If § can be taken
to be oo, then F'is Lipschitz continuous with Lipschitz constant . Define the function

lipF : IRF — [0, 00] by
lipF'(z) := limsup 1) = F(Z)”

ety =2l
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Then, F' is strictly continuous at x if and only if lipF'(x) is finite.

We say F is directionally differentiable at = € IR” if
F - F
Flahy = lim 2ETH) = F@)

t—0t t

exists Vh € R¥;

and F is directionally differentiable if F is directionally differentiable at every z € IR*.
F is differentiable (in the Fréchet sense) at # € IR if there exists a linear mapping
VF(z): R¥ — IR such that

F(z+h) — F(z) — VF(@)h = of|h]).

We say that F is continuously differentiable if F' is differentiable at every x € IR¥ and
V F' is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s
Theorem, see [54] and [134, Chapter 9J]. In this case, the generalized Jacobian 0F () of
F at x (in the Clarke sense) can be defined as the convex hull of the generalized Jacobian
OpF(x), where

OpF(x) = { lim VF(27) | F is differentiable at 27 € IR’“} :
] —x

The notation dp is adopted from [129]. In [134, Chap. 9], the case of £ = 1 is considered

and the notations “V” and “0” are used instead of, respectively, “Op” and “0”.

Assume F : R — IR! is strictly continuous. We say F is semismooth at z if F is
directionally differentiable at x and, for any V' € 0F(x + h), we have

Fx+h)—F(x) —Vh=o(|h])-

We say F' is p-order semismooth at z (0 < p < 00) if F' is semismooth at = and, for any
V € OF (z + h), we have

F(z +h) — F(z) — Vh = O(|h]'+*).

We say F' is semismooth (respectively, p-order semismooth) if F' is semismooth (respec-
tively, p-order semismooth) at every x € IR¥. We say F is strongly semismooth if it is
1-order semismooth. Convex functions and piecewise continuously differentiable functions
are examples of semismooth functions. The composition of two (respectively, p-order)
semismooth functions is also a (respectively, p-order) semismooth function. The prop-
erty of semismoothness plays an important role in nonsmooth Newton methods [129, 130]
as well as in some smoothing methods [52, 64, 72]. For extensive discussions of semis-
mooth functions, see [63, 109, 130]. At last, we provide a diagram describing the relation
between smooth and nonsmooth functions in Figure 1.2.
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Figure 1.2: Relation between smooth and nonsmooth functions
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Let R™™ denote the space of n x n real matrices, equipped with the trace inner
product and the Frobenius norm

(X, V)p =tr[XTY], [ X]|r:= V(X X)F,

where XY € IR™" and tr[-] denotes the matrix trace, i.e., tr[X] = >  X;;. Let ¢
denote the set of P € IR"*" that are orthogonal, i.e., PT = P~!. Let 8" denote the sub-
space comprising those X € IR™*" that are symmetric, i.e., X? = X. This is a subspace
of R™" with dimension n(n + 1)/2, which can be identified with IR®"™*1/2, Thus, a
function mapping S” to S™ may be viewed equivalently as a function mapping IR™("+1)/2
to IR™"*t1/2 We consider such a function below.

For any X € 8", its (repeated) eigenvalues A1, - - - , A, are real and it admits a spectral
decomposition of the form:

X = Pdiag[\y, -, A\ PP, (1.18)

for some orthogonal matrix P, where diag[A,- -+, A,] denotes the n x n diagonal matrix
with its ith diagonal entry A;. Then, for any function f : R — IR, we can define a
corresponding function f™* : 8" — S™ [22, 76] by

F7UX) = Pdiag[f(M), -+, fOW)] PP (1.19)

It is known that f™*'(X) is well-defined (independent of the ordering of Ay, ..., \, and
the choice of P) and belongs to 8", see [22, Chap. V] and [76, Sec. 6.2]. Moreover, a
result of Daleckii and Krein showed that if f is continuously differentiable, then f™ is
differentiable and its Jacobian V™' (X) has a simple formula, see [22, Theorem V.3.3];

also see [51, Proposition 4.3].

In [50], f """ was used to develop non-interior continuation methods for solving semidef-
inite programs and semidefinite complementarity problems. A related method was stud-
ied in [86]. Further studies of f™ in the case of f(£) = |¢| and f(€) = max{0,&} are
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given in [123, 140], obtaining results such as strong semismoothness, formulas for direc-
tional derivatives, and necessary/sufficient conditions for strong stability of an isolated
solution to semidefinite complementarity problem (SDCP).

The following key results are extracted from [51], which says that ™" inherits from
f the property of continuity (respectively, strict continuity, Lipschitz continuity, direc-
tional differentiability, differentiability, continuous differentiability, semismoothness, p-
order semismoothness).

Proposition 1.9. For any f : R — R, the following results hold.

(a) ™ is continuous at an X € 8™ with eigenvalues i, -+, A, if and only if f is
continuous at Ai,--- , A\p.

(b) £ is directionally differentiable at an X € S™ with eigenvalues i, --- , A, if and
only if f 1s directionally differentiable at Ay, --- , \,.

(c) ™" is differentiable at an X € S™ with eigenvalues Ay, --- , Ay if and only if f is
differentiable at Ai,--- , \,.

(d) ™™ is continuously differentiable at an X € S™ with eigenvalues Ay, -+ , A, if and

only if f 1s continuously differentiable at \y, -, \,.
(e) ™ is strictly continuous at an X € S™ with eigenvalues \y, - - - , Ay if and only if f
18 strictly continuous at Ay, --- , \,.

(f) f™ is Lipschitz continuous (with respect to || - ||p) with constant k if and only if f
18 Lipschitz continuous with constant k.

(g) ™ is semismooth if and only if f is semismooth. If f : IR — IR is p-order semis-
mooth (0 < p < 00), then f™ is min{1, p}-order semismooth.

The SOC function f™ defined as in (1.8) has a connection to the matrix-valued f™
given as in (1.19) via a special mapping. To see this, for any x = (x1,75) € R x IR"1,
we define a linear mapping from IR" to IR" as

L,: R — IR"
T
T Xy (1.20)
— Lyy = )

y y |:I2 $1]:|
It can be easily verified that x oy = L,y for all y € IR", and L, is positive definite
(and hence invertible) if and only if € int(K"). However, L'y # 2! oy, for some
r € int(K") and y € R", ie., L;! # L,-1. The mapping L, will be used to relate f
to ™. For convenience, in the subsequent contexts, we sometimes omit the variable
notion = in A;(z) and u{ for i = 1,2.
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Proposition 1.10. Let z = (z1,22) € R x R"™! with spectral values M\ (), Ao(x) given
by (1.3) and spectral vectors ug}), ul? given by (1.4). We denote z := xy if xo # 0;
otherwise let z be any nonzero vector in IR"~1. Then, the following results hold.

(a) For any t € IR, the matriz L, + tM, has eigenvalues A\ (z), Ao(z), and x1 +t of
multiplicity n — 2, where

M, = ! ! 1.21
2 0 I_zzT ( )

[ER
(b) Forany f: IR — IR and any t € IR, we have

@) = 7 (Lo + tM)e. (1.22)

Proof. (a) It is straightforward to verify that, for any z = (21, 25) € R x R""!, the
eigenvalues of L, are A\i(z), Aa(z), as given by (1.3), and z; of multiplicity n — 2. Its
corresponding orthonormal set of eigenvectors is

Voul, vVou® ul = (0,u%),i =3, ...,
where u;(nl), U§c2) are the spectral vectors with w = ﬁ whenever x5 = 0, and ug’), . ’ug”)

is any orthonormal set of vectors that span the subspace of IR*~2 orthogonal to z. Thus,
L, = Udiag[\i(2), A2(2), 21, - - - 71171}UT,

where U = \/§u§}) ﬂuff) ug(f’) ué”) ] . In addition, it is not hard to verify

using ul) = (O,ugi)), i1 =3,...,n, that

0 0
U diag0,0,1,--- ,1]UT = ~ (@), (i .
gl ] 03wl sy
1=3

Since @ = [ﬁ u?) e ugn) is an orthogonal matrix, we have
T 22 NS0 (0T
i=3

and hence )" . ug) (ugi))T =1- % This together with (1.21) shows that
Udiag[0,0,1,...,1] U = M,.
Thus, we obtain

Ly +tM, = Udiag[\ (), \o(x), 1 + £, 21 + ] UL, (1.23)
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which is the desired result.

(b) Using (1.23) yields

Ly + tM)e = Udiag [f(Mi(2)), f(Ma(2)), f(x1 +1), -+, fzr + )] UTe
= fOu(@)ul + fQo(2))ul
= [ (2),

where the second equality uses the special form of U. Then, the proof is complete. [

Of particular interest is the choice of t = +||z3]|, for which L, + tM,, has eigenvalues
A1(z), Ao(x) with some multiplicities. More generally, for any f,g : R — IR,, any
h:Ry — R and any = = (71, 22) € R x IR"™!, we have

R (f () + g(p)e) = 1™ (fmat(Lx) +g(p)I ) e.

In particular, the spectral values of f~ (x) and g(u)e are nonnegative, as are the eigen-
values of f™(L,) and g(p)I, so both sides are well-defined. Moreover, taking

F&) =€, glu)=p* h(=¢"

leads to
(22 4+ %) = (L2 + p21) e,

It was shown in [142] that (X, u) — (X2 + p21)"/? is strongly semismooth. Then, it fol-

lows from the above equation that (z,u) — (2* + u2e)1/2 is strongly semismooth. This

provides an alternative and indeed shorter proof for [52, Theorem 4.2].

Now, we use the results of Proposition 1.9 and Proposition 1.10 to show that if
f IR — IR has the property of continuity (respectively, strict continuity, Lipschitz con-
tinuity, directional differentiability, differentiability, continuous differentiability, semis-
moothness, p-order semismoothness), then so does the vector-valued function f™.

Proposition 1.11. For any f : R — R, let f be its corresponding SOC function
defined as in (1.8). Then, the following results hold.

(a) [ is continuous at an x € S with spectral values \i(z), Xo(x) if and only if f is
continuous at Ai(x), Aa(x).

(b) [ is continuous if and only if f is continuous.

Proof. (a) Suppose f is continuous at A\ (x), Ao(z). If 25 = 0, then z; = A\ (z) = Ao(2)
and, by Proposition 1.10(a), L, has eigenvalue of \(x) = A2(z) of multiplicity n. Then,
applying Proposition 1.9(a), ™" is continuous at L,. Since L, is continuous in z,
Proposition 1.10(b) yields that f“(z) = ™ (Lg)e is continuous at x. If z5 # 0, then,
by Proposition 1.10(a), L, + ||x2|| M., has eigenvalue of A (z) of multiplicity 1 and Ay(z)
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of multiplicity n — 1. Then, by Proposition 1.9(a), f™" is continuous at L, + ||22||M,,.
Since z +— Ly + 22| M., is continuous at x, Proposition 1.10(b) yields that z — £ (z) =
™ (Ly + || 22| My, )e is continuous at z.

For the other direction, suppose f~ is continuous at o with spectral values \;(z), \(z),

and spectral vectors ué ), uc(g) For any pq € IR, let

Y _/MU +/\2( Jus >,
We first claim that the spectral decomposition of y is

y = ,u1ux +)\2( ) ut? if 1 < Aa(z),
A (z ) T S TS Ao().

To ratify this assertion, we write out y = pul” + Ao (x ) uz’ as (y1,y2), which means
1)

1 = 3 0ale) + ) amcl gl = 2 Pa(e) — gl Then, we have o) = o, uf? = )
and

My) =y — |yl = { l)g(x) i 51 i iig}
)
)

/\2(1’) if M1 S )\2(1’ N

2(y) = 1 + [lva| {m ity > Ao(z).

Thus, the assertion is proved, which says y — x as u; — A (z). Since f is continuous
at x, we have

Flpul? + fQa(@)ul® = f(y) = f7(2) = fa (@)l + fQo(x))ul?.

)
Due to ul"” # 0, this implies fl) = f(Ai(z)) as py — Ai(2).
A1(z). A similar argument shows that f is continuous at \y(z).

Thus, f is continuous at

(b) This is an immediate consequence of part(a). [

The “if” direction of Proposition 1.11(a) can alternatively be proved using the Lip-
schitzian property of the spectral values (see Property 1.4) and an upper Lipschitzian
property of the spectral vectors. However, this alternative proof is more complicated. If
f has a power series expansion, then so does f*°, with the same coefficients of expansion,
see [64, Proposition 3.1].

By using Proposition 1.10 and Proposition 1.9(b), we have the following directional
differentiability result for f, together with a computable formula for the directional
derivative of f°. In the special case of f(-) = max{0,-}, for which f™(z) corresponds
to the projection of x onto ", an alternative formula expressing the directional derivative
as the unique solution to a certain convex program is given in [123, Proposition 13].

Proposition 1.12. For any f : R — R, let f~° be its corresponding SOC function
defined as in (1.8). Then, the following results hold.
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(a) ™ is directionally differentiable at an x = (z1,72) € IR x R with spectral values
A (2), Ao(x) if and only if f is directionally differentiable at Ai(x), Ao(z). Moreover,
for any nonzero h = (hy, hy) € R x R, we have

(f) (w5 h) = f'(@1; ha)e
if vto =0 and hy = 0;

—hy
el

ho

() i) = o= ) (122 ) 2 sl (1 20 ) (1220

if o = 0 and hy # 0; otherwise

NP op_ath —n\  fu(@)
Yy = o (e =) (1) = S e
1 xghg i) f(/\Q(I))
oyt Qutorn ) (1) + S et 0125

(b) £ is directionally differentiable if and only if f is directionally differentiable.

Proof. (a) Suppose f is directionally differentiable at A\i(z), Ao(z). If 25 = 0, then
x1 = A (x) = A(x) and, by Proposition 1.10(a), L, has eigenvalue of x; of multiplicity
n. Then, by Proposition 1.9(b), f™* is directionally differentiable at L,. Since L, is
differentiable in z, Proposition 1.10(b) yields that f™(z) = f™(L,)e is directionally
differentiable at x. If x5 # 0, then, by Proposition 1.10(a), L, + ||xs||M,, has eigenvalue
of A (z) of multiplicity 1 and Ay(z) of multiplicity n—1. Then, by Proposition 1.9(b), ™
is directionally differentiable at L, + ||z2||M,,. Since x — L, + ||z2]|M,, is differentiable
at x, Proposition 1.10(b) yields that z +— f*(z) = f™ (L, + ||z2|| M., )e is directionally
differentiable at .

Fix any nonzero h = (hy, hy) € IR x IR"™!. Below we calculate (f)'(x;h). Suppose
ry = 0. Then, A\;(z) = A\o(x) = 21 and the spectral vectors u™, u® sum to e = (1,0).
If hy = 0, then for any t > 0, x 4 th has the spectral values u; = s = 1 + thy and its
spectral vectors vV, v® sum to e = (1,0). Thus,

G th) — £ ()

/
_ % ()0 + fu2)v® = F(@))u™ = fo(2))u®)
_ St th) = fl)

I

= fl(z1;hy)e ast — 07,

If hy # 0, then for any ¢ > 0, = + th has the spectral values p; = (z1 + thy) + (—1)%t||hs||

and spectral vectors v = 1(1, (=1)"ha/||ho]|), i = 1,2. Moreover, since z, = 0, we can
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choose u® = v® for s = 1,2. Thus,

£ th) — £ (2)

t
- % (f(ul)v(l) + f(MQ)U(2) - f()\l)v(l) — f()\g)v@))
_ St = hall) = flo) ), S+t hel)) = f(z1) o

t t
— f/(.Tl; h1 — th“)?)(l) + f/(iﬂl; hl + HhQH)'U(2) ast — 0.

This together with v = L1(1,(=1)"ha/||hol|), i = 1,2, yields (1.24). Suppose x5 # 0.
Then, \;(z) = 21 + (—1)||z2| and the spectral vectors are u'? = (1, (=1)'zs/|z2]]),
1 =1,2. For any ¢t > 0 sufficiently small so that xo+thy # 0, x+th has the spectral values
pi = x1+thy+(—1)"||z2+ths|| and spectral vectors v = 1(1, (=1)(z2+1ths)/||z2+ths]]),
1 =1,2. Thus,

£ th) — £ (2)

t
= 3 (e + () = (@) — fOu(e))u®)
1 /1 T + thy 1 T2
= 7 (f e+ thy =z + thal) (1 — ) = S/ a@) (L -
1 $2+th2 1 —:UQ
N 5Mﬁmﬁ||J;2+th2||)(1,m)—51‘(A2(zc))(1, ”@H)). (1.26)

We now focus on the individual terms in (1.26). Since

22 + tholl — llz2f _ |l22 + thy || — [|22]? _ 23 hy + t||ha | . 3 hy as t — O,
t (llze + thel| + [|z2l)t  |lzo 4+ tho|l + |zl [|l22]]
we have
1
S (F @1+ thy = [lez + thall) = £ (@)
1 To + the|| — ||z
_ ;(f (Al(x)—l—t(hl— || 2 i” H 2||>)—f(>\1<1’))>
Tp
— f (Al(x);hl _ b 2) ast — 0T,
(B2

Similarly, we find that

%(f(xl + thy + ||zo + ths|)) — f(Aa(x)))

/ $gh2 +
- f )\g(x);hl—l—w ast — 0",
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Also, letting ®(z5) = x2o/||x2||, we have that

1 ( Ty + thy Ty ) _ P(wp + thy) — P(x) — V®(x5)hy ast— 0"

22+ the]| [z t

Combining the above relations with (1.26) and using a product rule, we obtain that

. £ th) — £ ()

t—0t t

- 1 ( I (Al(x);hl - T\xhu) (1, ﬁ) - f<A1<x>><o,v<I><xz>hz>)

g (7 (ot + 222 (1,720 ) + 500 0. 90 ).

Using V®(xs)hy = —- ( I— \757\22) ha 50 that (0, VO (xy)hs) =

llz=l

o Mo, b yields (1.25).

Suppose f is directionally differentiable at = with spectral eigenvalues A\ (), A2(z) and

spectral vectors U;(pl), ul?. For any direction d; € IR, let

h = dlug(cl)
Since # = Ay (z)ul’ + Apy(z)ul?, this implies z + th = (A1 (z) + tdy) ul” + Aa(z)ul?, so

that
fo@tth)—f(z)  fal) +tdy) — f()\1(95))u(1)
t t ’
Since £ is directionally differentiable at x, the above difference quotient has a limit as
t — 0%. Since uM) £ 0, this implies that

lim fM(z) +tdy) — f(Ai(x))

t—0t t

exists.

Hence, f is directionally differentiable at A;(x). A similar argument shows f is direction-
ally differentiable at Ay(x).

(b) This is an immediate consequence of part(a). O

Proposition 1.13. Let x € R™ with spectral values \i(x), Aa(x) given by (1.8). For any
f:IR = IR, let f° be its corresponding SOC function defined as in (1.8). Then, the
following results hold.

(a) £ is differentiable at an x = (21, 35) € IR x R™ ™ with spectral values A1, Xy if and
only if f 1is differentiable at A\, Ay. Moreover,

V() = fl(x)] (1.27)
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if vto =0, and otherwise

() = b c a3 /||z||
Vi) = c xaf||zall al + (b— a)zaxd /||zo* |’ (1.28)
where
_ ) = f() L, , 1, )
S W WL A (S Qo)+ (), e=5 () = (M) (1.29)

(b) £ is differentiable if and only if f is differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Proposition 1.12,
but with “directionally differentiable” replaced by “differentiable” and with Proposition
1.9(b) replaced by Proposition 1.9(c). The formula for Vf™(z) is from [64, Proposition
5.2].

To prove the “only if” direction, suppose f  is differentiable at . Then, for each i = 1, 2,

[+ ) = (@) fu) +8) = Fu@) )

t t

has a limit as t — 0. Since u(¥ # 0, this implies that

i Q@) ) = fQu()) -
t—0 t

Hence, f is differentiable at A\;(z) for i =1, 2.

(b) This is an immediate consequence of part(a). [

We next have the following continuous differentiability result for f based on Propo-
sition 1.9(d) ‘and Proposition 1.10. Again, we sometimes omit the variable notation z in
Ai(z) and u¥ for i =1,2.

Proposition 1.14. Let x € R™ with spectral values A\i(x), A2(x) given by (1.3). For any
f:R = IR, let f*° be its corresponding SOC function defined as in (1.8). Then, the
following results hold.

(a) ™ is continuously differentiable at an x = (x1,z2) € R x R™™! with spectral values
A, Ao if and only if f is continuously differentiable at Ay, \s.

(b) £ is continuously differentiable if and only if f is continuously differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Proposition 1.11,
but with “continuous” replaced by “continuously differentiable” and with Proposition
1.9(a) replaced by Proposition 1.9(d). Alternatively, we note that (1.28) is continuous at



28 CHAPTER 1. SOC FUNCTIONS

any x with xo # 0. The case of 25 = 0 can be checked by taking y = (y1,y2) — « and
considering the two cases: yo = 0 or yo # 0.

Conversely, suppose f is continuously differentiable at an z = (2, 25) € R x R}
with spectral values A\i(x), Ao(x). Then, by Proposition 1.13, f is differentiable in
neighborhoods around A (z), Ag(z). If 2o = 0, then A\ (z) = Ay(z) = 27 and (1.27)
yields V™ (z) = f(z1)I. For any hy € R, let h := (hy,0). Then, V™ (z + h) =
f'(z1+ hy)I. Since V™ is continuous at x, then limy,, o f'(z1 + hy)I = f'(x1)I, imply-
ing limy, 50 f'(x1 + hy) = f'(x1). Thus, f’ is continuous at x;. If 5 # 0, then V7 (z)
is given by (1.28) with a, b, ¢ given by (1.29). For any h; € R, let h := (hy,0). Then,
x + h = (z1 + hy, x2) has spectral values py := A\ () + hy, po == Aao(x) + hy. By (1.28),

B X 3 /|||

VISEER =1 vl of + (8 — a)eaadlal? |
where
a = LU )+ ) = () = )

Since Vf™° is continuous at z so that limj, ;o V" (x +h) = Vf (z) and x5 # 0, we
see from comparing terms that § — b and x — ¢ as h — 0. This means that

() + f'(pn) = f'(A2) + f/(M) and f/(p2) — f/(11) = f'(A2) = f'(A1) as hy — 0.

Adding and subtracting the above two limits and we obtain

f) = /(M) and  f'(u2) = f'(N2) as by — 0.
Since py = A\ () + hq, g2 = Aa(x) + hy, this shows that f’ is continuous at A\ (x), Az(x).

(b) This is an immediate consequence of part(a). [

In the case where f = ¢’ for some differentiable g, Proposition 1.9(d) is a special case
of [101, Theorem 4.2]. This raises the question of whether an SOC analog of the second
derivative results in [101] holds.

We now study the strict continuity and Lipschitz continuity properties of f~ . The
proof is similar to that of [51, Proposition 4.6], but with a different estimation of V(f*)™".
We begin with the following lemma, which is analogous to a result of Weyl for eigenvalues
of symmetric matrices, e.g., [22, page 63], [75, page 367].

We also need the following result of Rockafellar and Wets [134, Theorem 9.67].

Lemma 1.2. Suppose f : RF — IR is strictly continuous. Then, there exist continuously
differentiable functions f* : R¥ — R, v = 1,2,..., converging uniformly to f on any
compact set C' in IR and satisfying

Vf¥(xz) <sup lipf(y) Vo e C, V.
yeC
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Lemma 1.2 is slightly different from the original version given in [134, Theorem 9.67].
In particular, the second part of Lemma 1.2 is not contained in [134, Theorem 9.67], but
is implicit in its proof. This second part is needed to show that strict continuity and
Lipschitz continuity are inherited by f from f. We note that Proposition 1.9(e),(f)
and Proposition 1.10 can be used to give a short proof of strict continuity and Lipschitz
continuity of f°°, but the Lipschitz constant would not be sharp. In particular, the
constant would be off by a multiplicative factor of y/n due to || L.||r < v/nljz| for all
x € R™. Also, spectral vectors do not behave in a (locally) Lipschitzian manner, so we
cannot use (1.8) directly.

Proposition 1.15. Let x € R™ with spectral values A\ (x), Ao(x) given by (1.83). For any
f:R = R, let f° be its corresponding SOC function defined as in (1.8). Then, the
following results hold.

(a) £ is strictly continuous at an x € IR™ with spectral values A1, Xy if and only if f is
strictly continuous at Ay, As.

(b) [ is strictly continuous if and only if f is strictly continuous.

(c) £ is Lipschitz continuous (with respect to || - ||) with constant k if and only if f is
Lipschitz continuous with constant k.

Proof. (a) “if” Suppose f is strictly continuous at A;, Ao. Then, there exist x; > 0 and
0; > 0 for ¢ = 1,2, such that

1f(&) = f(O] < mil€ =], VE ¢ €[N — i, Ai + 04
Let 6 := min{d;, d,} and
C:[)\l—g,/\l—f-g]U[/\2—57>\2+5]

We define f : R — IR to be the function that coincides with f on C; and is linearly
extrapolated at the boundary points of C' on IR\ C. In other words,

G ) e )
i (I—=t)f(M+9)+tf(Aa—0) if Ay +J < Ay — dand, for some ¢ € (0,1),
f&) = . £=(1—t)(Ai +0) +t(A2 — ),
f()\l—(S) if£<)\1—(5,
f(Ag+9) if € > X+ 6.

From the above, we see that f is Lipschitz continuous, so that there exists a scalar Kk > 0
such that lipf(¢) < & for all £ € IR. Since C is compact, by Lemma 1.2, there exist
continuously differentiable functions f* : R — IR, v = 1,2,..., converging uniformly to
f and satisfying

(M<K VE€l, VY . (1.30)
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Let 0 := \%5, so by Property 1.4, C contains two spectral values of any y € B(x,?).
Moreover, for any w € B(z,d) with spectral factorization

w = mu + pou®

we have py, s € C' and
1) (w) = ()| = |r< Y(i1) = Fl))u® + (F (2) = f(p2))u®]?
= S = P + 17 )~ F)P, (131)

where we use |[u®?||? = 1/2 for i = 1,2, and (uV)Tu® = 0. Since {f*}>°, converges
uniformly to f on C, equation (1.31) shows that {(f*)™ }°2, converges uniformly to f~
on B(x,d). Moreover, for all w = (wy,ws) € B(z,d) and all v, we have from Proposition
1.13 that V(f*)™ (w) = (f)'(wy)1 if wy = 0, in which case V(f*)™ (w) = |(f*) (w;)| <
k. Otherwise wy # 0 and

b ¢ wy /|Jws|
¢ waf|lws|| - al + (b — a)wyw; /||ws?

V() (w) =

where a, b, ¢ are given by (1.29) but with A;, As replaced by g1, po, respectively. If ¢ = 0,
the above matrix has the form bl + (a — b)M,,. Since M,,, has eigenvalues of 0 and 1,
this matrix has eigenvalues of b and a. Thus,

soc

IV (7)™ (w)]| = max{lal, o} < s.

If ¢ # 0, the above matrix has the form o L.+(a—b) My, = rir (L: + (@ — b)[|wellc™ My,)
where z = (b||ws]|/c,ws). By Proposition 1.10, this matrix has eigenvalues of b & ¢ and
“(w)]| = max{|b+ ¢/, [b— ¢|,|a]} < &. In all cases, we have
V()™ (w)|| < - (1.32)

socC

Fix any y,z € B(x,6) with y # 2. Since {(f*)”}5%, converges uniformly to f
B(xz,0), for any € > 0 there exists an integer 1 such that for all v > vy we have

1) (w) = f ()| < elly — 2l Vw € B(a,4).

Since f” is continuously differentiable, then Proposition 1.14 shows that (f*)™" is also
continuously differentiable for all v. Thus, by inequality (1.32) and the mean value
theorem for continuously differentiable functions, we have

£ ) = £ (2
= /"W ="+ W) =)@+ )T ) = R
(y

< 17 - I L0 - @I 106 - £ @
< ady—sl+1 [ VU7l - ) - 2]
< (e +20)ly -
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Since y, z € B(z,d) and € is arbitrary, this yields

177 @W) = 7@ < slly — 2l Yy, 2 € B(x,9). (1.33)

sSOoC . . .
Hence, f is strictly continuous at x.

“only if” Suppose instead that f is strictly continuous at & with spectral values i, A
and spectral vectors u"), u(?). Then, there exist scalars x > 0 and § > 0 such that (1.33)
holds. For any i € {1,2} and any ¥, € [A\; — §, \; + 9], let
y=a+ @ —\u?, z:=a+ (- N)u.
Then, ||y — || = | — \|/v2 < 6 and ||z — 2| = |¢ — N\i|/V/2 < 6, so it follows from (1.8)
and (1.33) that
[f@) = £l = V27 - TG
< V25lly - 2|
= Kl — (|

This shows that f is strictly continuous at Ay, As.

(b) This is an immediate consequence of part(a).

(c) Suppose f is Lipschitz continuous with constant £ > 0. Then lipf({) < & for all
¢ € R. Fix any = € IR™ with spectral values A\, A\o. For any scalar § > 0, let

C .= [)\1—57/\1+(5] U [/\2—5,)\2+5] .

Then, as in the proof of part (a), we obtain that (1.33) holds. Since the choice of § > 0
was arbitrary and k is independent of ¢, this implies that

1) = @ < slly — 2] ¥y z e R

Hence, f° is Lipschitz continuous with Lipschitz constant x.

Suppose instead that = is Lipschitz continuous with constant x > 0. Then, for any
¢, ¢ € IR we have

soc

FE =1 = |17 (&) = f el
< kll€e — Cell
- K|£ - <‘7
which says f is Lipschitz continuous with constant x. [

Suppose f : IR — IR is strictly continuous. Then, by Proposition 1.15, f is strictly
continuous. Hence, dpf™ () is well-defined for all z € IR™. The following lemma studies
the structure of this generalized Jacobian.
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Lemma 1.3. Let f : R — IR be strictly continuous. Then, for any v € IR", the
generalized Jacobian Ogf™* (x) is well-defined and nonempty. Moreover, if x5 # 0, then
Opf " (x) equals the following set

{l b ¢ a3 /|| :|‘a_f<>\2)_f()\l) b+c € dpf(ra) }
c zo/l|zo|| al + (b— a)xoxd /|| 2o T Xa—=MN T b—cedpfh) [’

(1.34)
where A1, \o are the spectral values of x. If xy = 0, then Opf " (x) is a subset of the
following set

{{ ’ cw! T } ‘ a€df(xr), bcecdpf(r), v = 1}- (1.35)

cw al +(b—a)ww

Proof. Suppose 7o # 0. For any sequence {z*}?°, — x with f° differentiable at z*,
we have from Proposition 1.13 that {\f}2°, — \; with f differentiable at \¥, i = 1,2,
where Af, A5 are the spectral values of z*. Since any cluster point of {f/(A\F)}2, is
in dgf(\;), it follows from the gradient formula (1.28)-(1.29) that any cluster point of
{V 7 (2%)}52, is an element of (1.34). Conversely, for any b, c with b — ¢ € 95 f(\1),
b+ c € dpf(Aa), there exist {AF}22, — A1, {A5}12°, — Ay with f differentiable at A}, A}
and {f/ (M)}, = b—c, {f/ (N5}, = b+ c. Since Ay > Ay, by taking k large, we can
assume that )\’5 > )\’f for all k. Let
= g0E M), = g0sabrtn = )

Then, {z¥}22, — x and, by Proposition 1.13, f™ is differentiable at x*. Moreover,
the limit of {V ™ (2%)}2, is an element of (1.34) associated with the given b,c. Thus
o[ (z) equals (1.34).

Suppose 73 = 0. Consider any sequence {x*}2°, = {(2% 25)}%°, — z with f™° differen-
tiable at z* for all k. By passing to a subsequence, we can assume that either x5 = 0
for all k or x% # 0 for all k. If 25 = 0 for all k, Proposition 1.13 yields that f is dif-
ferentiable at 2% and V£ (2*) = f/(2¥)I. Hence, any cluster point of {V ™ (z*)}2,
is an element of (1.35) with a = b € dgf(x1) C Of(x1) and ¢ = 0. If & # 0 for all
k, by further passing to a subsequence, we can assume without loss of generality that
{xh /|25 |1}22, — w for some w with |Jw|] = 1. Let A¥, A} be the spectral values of z* and
let a*, b, c* be the coefficients given by (1.29) corresponding to A\¥, 5. We can similarly
prove that b+ ¢ € dpf(z1), where (b, c) is any cluster point of {(b*,c*)}2°,. Also, by a
mean-value theorem of Lebourg [54, Proposition 2.3.7],

k\ _ k .

for some A* in the interval between A5 and A}, Since f is strictly continuous so that
Jf is upper semicontinuous [54, Proposition 2.1.5] or, equivalently, outer semicontinuous
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[134, Proposition 8.7], this together with \¥ — 1, i = 1,2, implies that any cluster point
of {a*}3°, belongs to df(z;). Then, the gradient formula (1.28)-(1.29) yields that any
cluster point of {V £ (2*)}2 | is an element of (1.35). [

Below we refine Lemma 1.3 to characterize dgf~ (x) completely for two special cases
of f. In the first case, the directional derivative of f has a one-sided continuity property,
and our characterization is analogous to [51, Proposition 4.8] for the matrix-valued func-
tion ™. However, despite Proposition 1.10, our characterization cannot be deduced
from [51, Proposition 4.8] and hence is proved directly. The second case is an example
from [134, page 304]. Our analysis shows that the structure of dpf™ (x) depends on f
in a complicated way. In particular, in both cases, dpf" (z) is a proper subset of (1.35)
when x, = 0.

In what follows we denote the right- and left-directional derivative of f : IR — IR by
[ = f(E) [ = FE)
! = lim ————>=, " (€)= lim —X——2,
f+(8) a3 S e (=&
Lemma 1.4. Suppose f : IR — R s strictly continuous and directionally differentiable
function with the property that

i LO=IW) _ vy poy = ), VEER, oe{- 4}, (136)
Cr—eT (—v (—¢7
C#V CEDf

where Dy = {& € R|f is differentiable at £}. Then, for any x = (x1,0) € R x R"!,
Opf(x1) = {f(x1), f1.(z1)}, and Opf™" (z) equals the following set

e ars 6 auer |

Proof. By (1.36), g f(x1) = {f"(x1), f\(z1)}. Consider any sequence {z"}32; — = with
f° differentiable at ¥ = (2%, 2%) for all k. By passing to a subsequence, we can assume
that either 25 = 0 for all k or 25 # 0 for all k.

If x5 = 0 for all k, Proposition 1.13 yields that f is differentiable at % and Vf™ (z*) =
f'(x¥)I. Hence, any cluster point of {Vf(2*)}22, is an element of (1.37) with a = b €
Opf(x1) and ¢ = 0.

ecither a = b € Opf(z1), ¢ =0

oot o= sty WI=1}
(1.37)

If 2% # 0 for all k, by passing to a subsequence, we can assume without loss of generality
that {x%/||z%||}22, — w for some w with ||w|| = 1. Let A}, A\f be the spectral values of
2®. Then \¥ < M} for all k and \f — z, i = 1,2. By further passing to a subsequence
if necessary, we can assume that either (i) \f < \f < z; for all k or (i) z; < A} < A}
for all k or (iii) ¥ < z; < A for all k. Let a*,b* c* be the coefficients given by
(1.29) corresponding to A}, A5, By Proposition 1.13, f is differentiable at Af, A5 and
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FIOF) = bk =k f/(\E) = bF + ¢*. Let (a,b, c) be any cluster point of {(a*,b*, c*)}2°,. In
case (i), we see from (1.36) that b+ ¢ = a = f’ (1), which implies b = f’ (z1) and ¢ = 0.
In case (ii), we obtain similarly that a = b = f/ (z1) and ¢ = 0. In case (iii), we obtain
that b —c = f'(z1), b+ c = f/(z1). Also, the directional differentiability of f implies
that

ak:f(xzc)_f()\]f):>\12€—331f(>‘]2€)—f($1)+$1—)\]ff(331)_f()\]f)
Y MNE g N

which yields in the limit that

a=(1-w)fl(z1)+wf (z1),

for some w € [0,1]. Thus a € f(x;). This shows that dgf™ (x) is a subset of (1.37).

Conversely, for any a = b € 9gf(r1), c = 0 and any w € R"™! with ||w| = 1, we

can find a sequence z§ € Dy, k = 1,2, ..., such that 2§ — z; and f'(z¥) — a. Then,

zF = (2%,0) — z and the preceding analysis shows that {Vf (2*)}?2, converges to
the element of (1.37) corresponding to the given a, b, c,w. For any a,b,c with b — ¢ =
f(x1), b4+ ¢ = fi(z1), a € Of(x1), and any w € IR"* with [|w|| = 1, we have that
a=(1-w)fi(x1)+wf_(z1) for some w € [0, 1]. Since Dy is dense in IR, for any integer
k > 1, there have

x1+(1—w)1+— # 0.

1 1
D o=
N [xl w =T

1 1
k_ﬁ’xl_”ﬂ #0, DsnN [ml—I—(l—w)—,

k

Let A} be any element of the first set and let A5 be any element of the second set. Then,

)\k )\k /\k o )\k
k= < 2 ;— L 5 lw) — z and 2* has spectral values \¥ < \¥ which satisfy

Py — N
Mo<ay < AFVE, —1—w, Ak N

/\k: )\k — W.

The preceding analysis shows that {Vf™(2%)}2°, converges to the element of (1.37)
corresponding to the given a,b,c,w. U

The assumptions of Lemma 1.4 are satisfied if f is piecewise continuously differen-
tiable, e.g., f(-) = |- | or f(-) = max{0,-}. If f is differentiable, but not continuously
differentiable, then 9z ™ () is more complicated as is shown in the following lemma.

Lemma 1.5. Suppose f: IR — IR is defined by

fE) = { e2sin(1/€) if € £0,

0 else.
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Then, for any v = (1,0) € IR x IR"™}, we have that Opf(z1) = [~1,1], and dpf~ (x) =
{f' (1)1} if 11 # 0 and otherwise dgf™" (x) equals the following set

b—c=—cos(fy), b+ c=—cos(b2), |w| =1,

b cw? . .
cw al +(b— a)ww” ) Y sin() —sin(6) k € {0,1,...,00}, 61,6, € [0, 27],

01—02+2/{7T7 01>921f/‘€:0
(1.38)
with the convention that a = 0 if kK = 0o and a = cos(0y) if Kk =0 and 0; = 0.
Proof. f is differentiable everywhere, with
2€sin (1/€) — cos (1 if 0,
Thus dpf(x1) = [—1,1]. Consider any sequence {z*}2°, — = with f differentiable at

ok = (2% 2%) for all k. By passing to a subsequence, we can assume that either x5 = 0
for all k or a5 # 0 for all k. Let A\¥ = 2% — |25, A = 2% + ||4]| be the spectral values
of x*.

If x5 = 0 for all k, Proposition 1.13 yields that f is differentiable at % and V f™ (z*) =
f'(x¥)I. Hence, any cluster point of {V £ (2¥)}22, is of the form bI for some b € dp f (7).
If x4 # 0, then b = f'(xq). If 21 = 0, then b € [—1, 1], i.e., b = cos(#;) for some 6 € [0, 27].
Then, bl has the form (1.38) with a = b, ¢ = 0, corresponding to ¢, = s, k = 0.

If 2% # 0 for all k, by passing to a subsequence, we can assume without loss of generality
that {z5/[|z5(|}2, — w for some w with ||w| = 1. By Proposition 1.13, f is differentiable
at AP, A5 and f/(AF) = 0% — c*) f/(A5) = b + c*, where a*, ¥, c* are the coefficients given
by (1.29) corresponding to A\¥, A5 If ; # 0, then a* — f/(x1), b* — f'(z1) and & — 0,
so any cluster point of {V £ (2¥)}2, equals f'(z;)I. Suppose z; = 0. Then, \} < A
tend to zero. By further passing to a subsequence if necessary, we can assume that either
(i) both are nonzero for all k or (ii) A} = 0 for all k or (iii) \f = 0 for all k. In case (i),

— =0V 42, — =054 2 (1.40)

for some 0%, 05 € [0, 27] and integers vy, i tending to co or —oo. By further passing to
a subsequence if necessary, we can assume that {(0F,05)}2°, converges to some (6, 0,) €
0, 27]%. Then, (1.39) yields

F'OR = 2X\Fsin(0F) — cos(6F) — —cos(6;), i=1,2,
G TOH) SO () sin(6) — (A sin(6})
b — Nk b — ¥
sin(6%) — sin(0F)
(07 — 05 + 2(ve — p)T)AS/ AT

= (A N5 sin(6%) +



36 CHAPTER 1. SOC FUNCTIONS

If vy, — pg| is bounded as k — oo, then A5 /A¥ — 1 and, by (1.40) and A\¥ < X5, vy > ..
In this case, any cluster point (a,b,c) of {(a*,b* c¥)}2 | would satisfy

_ sin(fy) — sin(0:)
N 01 — 92 + 2KT

b—c=—cos(by), b+ ¢ = —cos(f2), (1.41)
for some integer xk > 0. Here, we use the convention that a = cos(6;) if K = 0, 61 = 0s.
Moreover, if kK = 0, then v, = p; for all k sufficiently large along the corresponding
subsequence, so (1.40) and A} < A5 yields 0¥ > 65 > 0, implying furthermore that
01 > 0.

If |vg — x| — oo and |y /vg| is bounded away from zero, then |vy — pgl||pr/v] — oo.
If |vg — p| — oo and |ug/vk| — 0, then |vg — pgl||p/vil = el — pr/vi)| — oo due
to |ur| — oo. Thus, if |y — ur| — oo, we have |v, — px||M\5/A¥| — oo and the above
equation yields a® — 0, corresponding to (1.41) with k = co. In case (ii), we have
f'OF) = 0 and a* = f(AE)/\E = Absin(1/)\5) for all k, so any cluster point (a,b,c) of
{(a®, ¥, c*) o, satisfies b — ¢ =0, b+ ¢ = —cos(f), a = 0. This corresponds to (1.41)
with 6 = 7, kK = oco. In case (iii), we obtain similarly (1.41) with 6, = 7, K = co. This
and (1.28)-(1.29) show that any cluster point of {Vf™ (2*)}22, is in the set (1.38).

Conversely, if ;1 # 0, since dpf™ (r) is a nonempty subset of {f’(z1)I}, the two must
be equal. If z; = 0, then for any integer x > 0 and any 61,65 € [0, 27| satisfying 6; > 05

whenever £ = 0, and any w € IR"™! with [Jw|| = 1, we let, for each integer k > 1,
Af = ! M= 1
Y2kt Rm)m+ 1k 2 Oy + 2km
)\k: /\k: )\k o >\k
Then, 0 < A\ < M5 2% = ( 22 ;_ 122 5 Lw ) — = and 2* has spectral values A%, A\

which satisfy (1.40) with vy, = k + &, u, = k, 0§ = 6, + 1/k, 05 = 05. The preceding
analysis shows that {V ™ (2%)}2°, converges to the element of (1.37) corresponding to
the given 0y, 65, k, w with a given by (1.41). The case of a = 0 can be obtained similarly
by taking s to go to co with k. [

The following lemma, proven by Sun and Sun [140, Theorem 3.6] using the definition of
generalized Jacobian,! enables one to study the semismooth property of f° by examining
only those points # € IR® where f is differentiable and thus work only with the Jacobian
of £, rather than the generalized Jacobian.

Lemma 1.6. Suppose F: R¥ — R¥ is strictly continuous and directionally differentiable
in a neighborhood of x € R¥. Then, for any 0 < p < oo, the following two statements
(where O(-) depends on F' and x only) are equivalent:

(a) For any h € R* and any V € OF (z + h),
F(z+h)—F(z) —Vh=o(||h]]) (respectively, O(||h]***)).

1Sun and Sun did not consider the case of o(||k||) but their argument readily applies to this case.
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(b) For any h € R* such that F is differentiable at x + h,

F(z+h) — F(x) — VF(z +h)h = o(||h]]) (respectively, O(||h||***)).

By using Propositions 1.10, 1.6 and Propositions 1.9, 1.12, 1.15, 1.13, we can now
state and prove the last result of this section, on the semismooth property of . This
result generalizes [52, Thmeorem 4.2] for the cases of f(&) =[], f(§) = max{0,¢}.

Proposition 1.16. For any f : IR — R, let f be its corresponding SOC function
defined as in (1.8). Then, the following hold.

(a) The vector-valued function [~ is semismooth if and only if f is semismooth.
(b) If f is p-order semismooth (0 < p < oc), then f° is min{1, p}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and directionally differ-
entiable. By Propositions 1.12 and 1.15, f is strictly continuous and directionally dif-
ferentiable. By Proposition 1.10(b), f™(z) = ™' (L,)e for all z. By Proposition 1.9(g),
™ is semismooth. Since L, is continuously differentiable in z, f*(z) = f™" (L)e
is semismooth in z. If f is p-order semismooth (0 < p < o0), then, by Proposition
1.9(g), ™ is min{1, p}-order semismooth. Since L, is continuously differentiable in z,
£ (x) = f™ (Ly)e is min{1, p}-order semismooth in z.

Suppose f is semismooth. Then f™° is strictly continuous and directionally differen-
tiable. By Propositions 1.12 and 1.15, f is strictly continuous and directionally differen-
tiable. For any ¢ € R and any n € IR such that f is differentiable at & + n, Proposition
1.13 yields that £ is differentiable at x + h, where we denote x := e and h := ne. Since
7 is semismooth, it follows from Lemma 1.6 that

soc soc

fr @+ h) = [ (2) = VI (@ 4+ h)h = o([|A]]),
which, by (1.8) and (1.27), is equivalent to

fE+mn) = f(&) = f(E&+mn)mn=ollnl).

Then, Lemma 1.6 yields that f is semismooth. [

For each of the preceding global results there is a corresponding local result and there
is also an alternative way to prove each result by using the structure of SOC and the
spectral decomposition. Please refer to [41] for more details. We point out that both S¥
and K" belong to the class of symmetric cones [62], hence there holds a unified frame-
work for f™ and f*°, which is called Léwner operator. Almost parallel analysis are
extended to the setting of Lowner operator associated with symmetric cone by Sun and
Sun in [141]. Recently, another generalization of S} is done by Ding et al. [56, 57].
They introduce the so-called matrix cones and a class of matrix-valued functions, which
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is called spectral operator of matrices. This class of functions not only generalizes the
well known Lowner operator, but also has been used in many applications related to
structured low rank matrices and other matrix optimization problems in machine learn-
ing and statistics. Some parallel results like the continuity, directional differentiability
and Frechet-differentiability of spectral operator are also analyzed, see [57, Theorems 3-5].



Chapter 2

SOC-convexity and SOC-monotonity

In this chapter, we introduce the SOC-convexity and SOC-monotonicity which are nat-
ural extensions of traditional convexity and monotonicity. These kinds of SOC-convex
and SOC-monotone functions are also parallel to matrix-convex and matrix-monotone
functions, see [22, 75]. We start with studying the SOC-convexity and SOC-monotonicity
for some simple functions, e.g., f(t) = 2,3, 1/t,¢1/2,|t|, and [t];. Then, we explore char-
acterizations of SOC-convex and SOC-monotone functions.

2.1 Motivations and Examples
Definition 2.1. Let f: IR — IR be a real valued function.

(a) f is said to be SOC-monotone of order n if the corresponding vector-valued function
7 satisfies the following:

soc

Trey = (@) e (). (2.1)
We say f is SOC-monotone if f is SOC-monotone of all order n.

(b) f is said to be SOC-convex of order n if the corresponding vector-valued function
7 satisfies the following:

soc soc

P =N+ 2y) S (L=2F7 (@) + A (), (2.2)
forall x,y € R" and 0 < X\ < 1. We say f is SOC-convex if f is SOC-convex of
all order n.
Remark 2.1. We elaborate more about the concepts of SOC-convezity and SOC-monotonicity

in this remark.

39
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. A function f is SOC-convex of order 1 is the same as [ being a convex function. If

a function f is SOC-convex of order n, then f is SOC-convex of order m for any
m < n, see Figure 2.1(a).

. A function f is SOC-monotone of order 1 is the same as f being an increasing

function. If a function f is SOC-monotone of order n, then f is SOC-monotone
of order m for any m <n, see Figure 2.1(b).

. If f is continuous, then the condition (2.2) can be replaced by the more special

condition:

2 "2

o ($+y) < 1<fsoc(x) +fsoc(y))‘ (2.3)

. It is clear that the set of SOC-monotone functions and the set of SOC-convex

functions are both closed under positive linear combinations and under pointwise
limats.

$80C-convex of order 3 S0C-monotone of order 3

/ SOC-monotone of order n

f}c-monotone of order n+1 ) )

$S0C-monotone )

/' / SOC-convex of order n
( (Soc-convex of order n+1 ) )

SOC-convex )

(a) SOC-convex functions (b) SOC-monotone functions

Figure 2.1: The concepts of SOC-convex and SOC-monotone functions

Proposition 2.1. Let f: IR — R be f(t) = a+ pt. Then,

(a) f is SOC-monotone on IR for every a € R and B > 0;

(b) f is SOC-conver on R for all o, f € TR.

Proof. The proof is straightforward by checking that Definition 2.1 is satisfied. U

Proposition 2.2. (a) Let f: IR — R be f(t) = t?, then [ is SOC-convex on R.

(b) Hence, the function g(t) = a + Bt + yt* is SOC-convexr on R for all a, B € R and

v = 0.
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Proof. (a) For any z,y € IR", we have

2
e ) (E20) =T (200) L s

2 2 2 2 4
which says (2.3) is satisfied. Since f is continuous, it implies that f is SOC-convex.

(b) It is an immediate consequence of part(a). O

Example 2.1. The function f(t) = t* is not SOC-monotone on R.
Solution. Taking z = (1,0), y = (—2,0), then x —y = (3,0) =, 0. But,

v* —y* = (1,0) = (4,0) = (=3,0) . 0,
which violates (2.1). W

As mentioned in Section 1.2, if f is defined on a subset J C IR, f is defined on its
corresponding set given as in (1.10), i.e

S={reR"|N(z)e J, i=12} CR"

In addition, from Proposition 2.2(a), it indicates that f(t) = t? is also SOC-convex on the
smaller interval [0,00). These observations raise a natural question. Is f(t) = t* SOC-
monotone on the interval [0, c0) although it is not SOC-monotone on IR? The answer is
no! Indeed, it is true only for n = 2, but, false for n > 3. We illustrate this in the next
example.

Example 2.2. (a) The function f(t) = t* is SOC-monotone of order 2 on [0, 00).

(b) However, f(t) = t* is not SOC-monotone of order n > 3 on [0, 00).

Solution. (a) Suppose that x = (z1,23) =x2 ¥ = (Y1,¥2) =z 0. Then, we have the
following inequalities:
v <1, fyol Swny w2 — gl < a1 -y,
which implies
1+ Ty 2y +y2 2 0. '
The goal is to show that fboc( ) = 7 (y) = (a1 + 23—y — 3, 20102 — 21y2) = = 0,
which suffices to verify that z3 + 23 — y} — y3 > |2z125 — 2y192|. This can be seen by

af + x2 yl % — 22129 — 29110

{ x3 + x2 y2 (22122 — 2u1y2), if 2129 —1hy2 >0
x1 + 23 — ?J1 —ys — (2p1y2 — 2m132), U w1w2 —y1y2 <0

{ xr — 952 — (1 — 92) , it xxe — 1y >0

0

(14 22)% — (1 +y2)?, i 120 — Y1y <0

v

Y
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where the inequalities are true due to the inequalities (2.4).

(b) From Remark 2.1, we only need to provide a counterexample for case of n = 3 to show
that f(¢t) = t* is not SOC-monotone on the interval [0,00). Take z = (3,1,-2) € K?
and y = (1,1,0) € K% Tt is clear that + —y = (2,0,-2) =, 0. But, 2* —y* =
(14,6, —12) — (2,2,0) = (12,4,~12) # , 0. W

Now we look at the function f(t) = t3. As expected, f(t) = t* is not SOC-convex.
However, it is true that f(t) = t* is SOC-convex on [0, 00) for n = 2, whereas false for
n > 3. Besides, we will see f(t) = ¢ is neither SOC-monotone on IR nor SOC-monotone
on the interval [0, 00). Nonetheless, it is true that it is SOC-monotone on the interval
[0, 00), for n = 2. The following two examples demonstrate what we have just said.

Example 2.3. (a) The function f(t) =t is not SOC-convex on R.
(b) However, f(t) =t* is SOC-convez of order 2 on [0, 0).
(c) Moreover, f(t) =1t is not SOC-convex of order n >3 on [0, 00).

Solution. (a) Taking z = (0, —2),y = (1,0) gives

e - (22) = (22 0

which says f(t) = t* is not SOC-convex on R.

N —

(b) It suffices to show that f (55%) <, 5(f™ ()+f""(y)), for any 2,y = , 0. Suppose

that = (v1,72) =, 0 and y = (y1,¥2) =, 0, then we have
{ = (2% + 3123, 3xiws + 23),
y' o= (ui +3u193. 3yty2 + 3),

which yields

{ £ =5(( 1'1 +41)° + 3(951 +y1) (2 +y2)%, 3(21 + yl) (w2 +y2) + (22 + 10)%),
%(f ( ) + f )) = %(xl + ?Jl + 31"1% + 3913/27152 + y2 + 35’71x2 + 3913/2)

After simplifications, we denote § (™ (z) + f™(y)) — f (53) := (21, Zs), where

{ Z1 = 4ad + 4P+ 120022 + 12008 — (1 + 1) — (21 4+ y1) (20 + 1),
EQ = 41‘% —+ 4yg’ + 121}%%2 + 12y%y2 — (.]32 + y2)3 — 3(1’1 + y1)2<£[}2 —+ yg)
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We want to show that =Z; > |=Z,|, for which we discuss two cases. First, if =5 > 0, then

= — |5,
= (42§ + 122125 — 120739 — 423) + (dyi + 120195 — 12y7ys — 4y3)
- (($1 + y1)3 + 3(x1 + y1)(ze + y2)2 —3(z1 + y1)2($2 + 1Y) — (T2 + y2)3)
= Ay — @)’ + 4 — 1) — (01 +91) = (22 +10))°
= 4(-751 - 332)3 + 4(3/1 - y2)3 - ((371 - 302) + (yl - ?JQ))S
= 3(z1 —22)° +3(y1 — v2)° = 3(x1 — 22)* (1 — v2) — 3(21 — x2) (11 — ¥a)°
3((w1 — 22) + (y1 — y2)) (w1 — 22)? = (w1 — 22) (1 — o) + (11 — 1))
=3(z1 — 22)(y1 — yo) (1 — 22) + (y1 — 1))

= 3((:}51 —29) + (y1 — 92)) ((xl —x9) — (y1 — y2))2
> 0,

where the inequality is true since x,y € K?. Similarly, if Z, < 0, we also have

=1 — =]
= (4o} + 122125 + 12072, + 423) + 4y} + 120195 + 1297y + 4y5)
— (21 +11)° + 3(z1 4+ y1) (@2 + y2)? + 3(21 + 11)* (22 + y2) + (22 4+ 12)°)
— Ay 4 22) + 4y + 1)’ — (11 +91) + (22 + 12))°
= 4z +22)° +4(ys + y2)3—((x1 +x2) + (Y1 + y2))3
3(w1 + 22)° + 3(y1 + 92)° = 3(x1 4+ 22)°(y1 + y2) — (21 + 22) (41 + 12)°
= 3((z1+22) + (Y1 + 1) (21 + 22)* — (21 4 22) (41 + v2) + (11 + 12)°)
=3(z1 + x2) (y1 + y2) ((z1 + 32) + (41 + ¥2))
= 3((z1+22) + (Y1 +42)) (21 + 22) — (Y1 + 3/2))2
> 0,

where the inequality is true since x,y € K2 Thus, we have verified that f(t) = t® is

SOC-convex on [0, 00) for n = 2.

(c) Again, by Remark 2.1, we only need to provide a counterexample for case of n = 3.
To see this, we take x = (2,1, -1),y = (1,1,0) = , 0. Then, we have

1 soc soc sSocC a,/' + y
@ W) - £ () =613 £
which implies f(¢) = 3 is not even SOC-convex on the interval [0,00). W

Example 2.4. (a) The function f(t) =t* is not SOC-monotone on IR.

(b) However, f(t) = t* is SOC-monotone of order 2 on [0, 00).
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(c) Moreover, f(t) =1t is not SOC-monotone of order n > 3 on [0, 00).

Solution. To see (a) and (c), let ¥ = (2,1, 1) =xs 0 and y = (1,1,0) =, 0. Tt is clear
that 2 = , y. But, we have f™(z) = 2® = (20,14, -14) and f™(y) = y3 = (4,4,0),
which gives f (z) — f (y) = (16,10, —14) #xs 0. Thus, we show that f(¢) = 3 is not

even SOC-monotone on the interval [0, co).
To see (b), let x = (z1,29) =, and y = (y1,42) =, 0, which means
T2 S @1, ol Syis w2 — e S —w
Then, it leads to the inequalities (2.4) again. On the other hand, we know

SOC( ) = 2 = (x‘;’ + 3x1x§, 3(13%@2 + x%),

) = v* = (y! 4+ 3193, 3u7y2 + 43).

For convenience, we denote [~ (z) — f (y) := (21, Z2), where

{

We wish to prove that f“(x) — £ (y) = 2% —4® =x= 0, which suffices to show Z; > |=s|.
This is true because

1 = $1 - y1 + 3x1:p2 3?/1927
5 = y2 + 3:1:1932 — 3y1y2.

(11 [1]

— i + 3125 — 3y1ys — |3 — v5 + 3aTws — 3yt .|
{ i — y1 + 31123 — 3y1ys — (25 — y5 + 3wy — 3yiya) if Zy >0,
x} =yt + 31“1952 = 3y1ys + (23 — y5 + 3wize — 3yfye) i Ey <0,
{ Ty — 902 —(pn—w)® if 23>0,
(14 22)° — (11 + ) If Zy <0,

=)

>

J

where the inequalities are due to the inequalities (2.4).
Hence, we complete the verification. W

Now, we move to another simple function f(¢) = 1/t. We will prove that —% is SOC-
monotone on the interval (0, c0) and } is SOC-convex on the interval (0, co) as well. For
the proof, we need the following technical lemmas.

Lemma 2.1. Suppose that a,b,c,d € IR. For anya >b> 0 and ¢ > d > 0, there holds

(2)- ()=

Proof. The proof follows from ac(b + d) — bd(a + ¢) = ab(c —d) + cd(a—b) > 0. O

Lemma 2.2. For any = (z1,22) € K" and y = (y1,y2) € K", we have
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(@) (21 +11)% = [l > 4211/57 — ]

(b) (w1 + w1 — llw2l)® > 421 (1 — [lgal))-

(©) (w1 +u1+ lpall)” > 42 (1 + [lgell).-

(d) 2131 — (w2,02) > /2T = [22[2\/43 = [l

(e) (z1+31)? = o2+ 1l* = 4v/27 — [l2af* /57 — [lual>

Proof. (a) The proof follows from

(@1 4+1y1)? = lell? = 27+ @i — llwl?) + 221
> 2z1\/yF — vl + 22131
> 92
4

Ti\/ Y
v\ yi = Iyl + 2210/ 47 — [yl
v/ v — llyell?,

where the first inequality is true due to the fact that a + b > 2vab for any positive
numbers a and b.

(b) The proof follows from
(21 +y1 = lly2ll)® = 41 (1 = [l

23+ yt + |lyall® — 22191 — 201 y2|| + 221 [|y2|)
(z1 —y1 + [le]))? > 0.

(c) Similarly, the proof follows from

(1 4+ 31+ [ly2l)? — 421 (y1 + 192l
= 27 +y; + lv2l® = 22191 + 2u1 |yl — 224]|y2 ||
(z1 — 1 — [lv2])* > 0.

(d) From (1.7), we know that z1y; — (xa, y2) > 191 — ||z2]| ||y2]] > 0, and

2
(@1yn = llz2]l 2l = (27 = ll2al*) (47 = llz2ll*)
= 2i[gell” + yilleal® — 2z o]l .|
= (w1llgell —yalla2]))* 2 0.

Hence, we obtain 2191 — (v2,92) = 2131 — |22l [ly2]] = /2% — [22]* V7 — e,
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(e) The proof follows from

(z1+11)* = |22 + 12|
(23 = llz2ll?) + (45 — llw2ll?) + 2 (211 — (22, 12))

2/ — )2 — Tl + 2 (oagn — ()
23/ (@ — 222 (57 — ll12) + 24/ (a3 — [l2]2) (2 — Il ]2
(@ — ) (57 — N,

v

v

where the first inequality is true since a + b > 2v/ab for all positive a,b and the second
inequality is from part(d). O

The inequalities in Lemma 2.2(d)-(e) can be achieved by applying Proposition 1.8(b).
Next proposition is an important feature of the SOC-function corresponding to f(¢) = %
which is very useful in the subsequent analysis and also similar to the operator setting.

Proposition 2.3. Let f: (0,00) — (0,00) be f(t) = 1. Then,
(a) —f is SOC-monotone on (0,00);
(b) f is SOC-convex on (0,00).

Proof. (a) It suffices to show that = =, y =, 0 implies f~ (z) = 27! <, y~! =

f(y). For any x = (z1,22) € K" and y = (y1,52) € K", we know that y~! =

detl(y) (Y1, —y2) and z7" = detl(x) (1, —x3), which imply

P @) =y e

_ < Yy m T2 Y )
det(y) det(z)’ det(z) det(y)

1
dot(z) det(y) (det(z)yr — det(y)z, det(y)zs — det(z)ys).

To complete the proof, we need to verify two things.
(1) First, we have to show that det(x)y; — det(y)z; > 0. Applying Lemma 2.1 yields

det(z) a2 —|lo|® <x1 + ||a:2||> <x1 — ||xz||) S 2t m

det(y) — vi — vl w1+ ol —llell/ =20 w0

Then, cross multiplying gives det(z)y; > det(y)z:, which says det(z)y; — det(y)xz, > 0.
(2) Secondly, we need to argue that || det(y)zy — det(x)ys|| < det(x)y; — det(y)z;. This
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is true by

Jyr — det(y)z1)* — | det(y)zy — det(z)ys|”
= (det(x))?y} — 2det(z) det(y)z1y1 + (det(y))?x?
—((det(y))?|lz2]* — 2 det(x) det(y){xa, y2) + (det(z))?[|y2]|*)
= (det(2))*(y7 — [lvall®) + (det(y))*(z] — [[z2]*)
—2det(z) det(y)(z1y1 — (22, y2))
= (det(x))* det(y) + (det(y))* det(z) — 2 det(z) det(y) (x1y1 — (22, 92))

(det(x

(2% — llz2l*) + (W — llgall®) — 22191 + 2(z2, 32))
(21 = y1)* = (lzal* + [|y2]l* — 2(x2, 32)))
(21— y1)* = (|2 — 12["))

= det(x
> 0

I

o

[}

—+
~—~~
\/\a_/\/\/

where the last step holds by the inequality (1.7).

Thus, from all the above, we prove y~! — z~! € K", that is, y~! > -1

Kn x

(b) For any  >,, 0 and y >, 0, using (1.7) again, there hold

=zl >0, y1 — [lyall >0, [za, y2)| < |lz2f - g2l < 2101

From z7! = #()(xl, —23) and y~! = )(yl, —1), we also have

]— SOC SOC . 1 :L‘Q y2

2 (£ () + 2 det y)" det(x) det(y)) ’
and

()

1

iOC
For convenience, we denote 3 ( f(z

and =, € IR"! are given by

- ( x n 1 ) B 4(z1 + 1)
det(z)  det(y) det(z +y)’

= Azty) [ L

~ det(xr+y) \det(z) det(y)

(at
)  det x—l—y)( w1+ Y1, — (T2 + 42)).
) +

A )) - (%) = %(51,52), where =; € IR

Again, in order to prove f is SOC-convex, it suffices to verify two things: =; > 0 and
122 < Ei

(1) First, we verify that Z; > 0. In fact, if we define the function

( ) T T
x) = = ,
g 22— [l det(z)
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then we observe that

g(x;y) < %(g(:v)Jrg(y)) = = >0.

Hence, to prove Z; > 0, it is equivalent to verifying g is convex on int(K"™). Since int(K"™)
is a convex set, it is sufficient to argue that VZg(z) is a positive semidefinite matrix.
From direct computations, we have

1 3 2 (G2 2y,.T
V2g(z) = [ _23’31 + 61 | 22| (627 + 2[| x5 )2

(23 — ||z2]?)? (622 + 2[|wa|®) s 211 ((2F — ||w2||*)] + 4woal)

Let V2g(z) be viewed as the matrix [ A given as in Lemma 1.1 (here A is a

B
BT C
scalar). Then, we have

AC - B"B
— 21y (20 + 61 ||ma||?) (22 — |Jwal| )T + dxoa]) — (627 + 2||2]|?)” woa]
(427 + 123 [|2o %) (27 — fl22]|?) T — (2027 — 24ai||2s||* + 4][w2]|*) 2oy
(421 + 1207 [|2o[?) (27 — [lwal®) T — 4 (52T — [|22l|?) (27 — [|22l|*) w223
(2 = llwall?) [ (a1 + 1203]J2]1*) T — 4 (52 — [|l2a]?) w2 ]
(21 = llwal?) M,

=N =N

where we denote the whole matrix in the big parenthesis of the last second equality by
M. Tt can be verified that z,x? is positive semidefinite with only one nonzero eigenvalue
|z2||>. Hence, all the eigenvalues of the matrix M are (4] + 1222||xo||? — 2023||z2||* +
4]|zo||*) and 4x] 4+ 122%||z2||? with multiplicity of n — 2, which are all positive since

42} + 12|22 ||* — 2023 |2a||* + 42"
= 4a} — 8af||z2||” + 422"
= 4 (a] — llz2]?)
> 0.

Thus, by Lemma 1.1, we see that V?g(z) is positive definite and hence is positive semidef-
inite. This means g is convex on int(X"), which says =; > 0.
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(2) Tt remains to show that =2 — ||Z,]]* > 0 :

P H:2||2
2214 n yi C8@ity) [ m LN
det det(m) det(y)  det(y)? det(z +y) \ det(x)  det(y)

6 2 2 A(z2 + y2) To Y2 2
2
+det (z + y)? <x1 e yl)} ‘
+

det(z +y) \det(z) * det(y)
2T n yi _ 8(z1+ 1) o, W
det det( Ydet(y)  det(y)? det(x +y) \ det(z)  det(y)
16
2 2 2 - 2 2 2
o <x1+ e+ )|~ | g s (sl + 200 + Lial?)

(
B T2 + Y2 T2 Y2 ||9U2||2 2(x2, ya) ||y2||2
8<det(x +y)  det(x) + det(y)>+(det(x)2 * det(z) det(y) * det(y)2)]

_ [ —llz2l* | 20z — (z2,92)) | i — ||yz||2]
det(x)? det(x) det(y) det(y)?
16

+det(a: +y)2 [(27 = l|22ll?) + 2(z1y1 — (22, 92)) + (v7 — [lv2]1?)]

— [|z2f? z1y1 — (T2, 42) T1y1 — (T2, 42) yi — |yl
det(x + y)det(x)  det(x 4+ y)det(x) det(z +y)det(y) det(x+ y)det(y)

, ) 1 16 8
= (Il — ||z ) (det(x)2 + det(x + y)? N det(z + y) det(x))

, , 1 16 8
(7~ llel”) (det(y)2 + det(z +y)2  det(z +y) det(y ))

1 16 4
el GURCERD) det(2) det(y) | det(z +9)? det(:c+y)det( )~ det(z +y) det(y))
) o\ (det(z +y) — 4det(x) det( a:+y — 4 det(y)
= (s ) (D AN ) ( wy

det(y) det(z + v)
(det(z +y) — 4 det(x))(det(x + y 4det( )))

) —
det(z) det(y) det(z + y)2

+2(z1y1 — (22,92)) (

Now applying the facts that det(z) = 2% — ||22]]?, det(y) = y? — [|y2||*, and det(z +
y) — det(x) — det(y) = 2(z1y1 — (22, y2)), we can simplify the last equality (after a lot of
algebra simplifications) and obtain

[det(m +y) — 2det(z) — 2 de‘c(yﬂ2
det(x) det(y) det(z + y)

= - 2l =

Hence, we prove that f (szer> = n % (fsoc(:p) + (y)), which says the function f(t) =
1

— is SOC-convex on the interval (0,00). O
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Proposition 2.4. (a) The function f(t) = 1= is SOC-monotone on (0,00).

(b) For any A > 0, the function f(t) = 155 is SOC-monotone on (0, 00).

Proof. (a) Let g(t) = —1 and h(t) = 1 +t. Then, we see that g is SOC-monotone on
(0,00) by Proposition 2.3, while A is SOC-monotone on IR by Proposition 2.2. Since
f(t) =1— 357 = h(g(1 +1)), the result follows from the fact that the composition of two
SOC-monotone functions is also SOC-monotone, see Proposition 2.9.

(b) Similarly, let g(t) = %5 and h(t) = £, then both functions are SOC-monotone by

part(a). Since f(t) = g(h(t)), the result is true by the same reason as in part(a). O

Proposition 2.5. Let L, be defined as in (1.20). For any x >, 0 andy >, 0, we have

cn

Ly =Ly« L' = L' <= Ly = L.

Proof. By the property of L, that z =, y <= L, = L,, and Proposition 2.3(a), then
proof follows.  [J

Next, we examine another simple function f(t) = v/t. We will see that it is SOC-
monotone on the interval [0, 00), and —+/f is SOC-convex on [0, c0).

Proposition 2.6. Let f : [0,00) — [0,00) be f(t) = \/t. Then,
(a) f is SOC-monotone on [0,00);

(b) —f is SOC-convex on [0,00).

Proof. (a) This is a consequence of Property 1.3(b).

(b) To show —f is SOC-convex, it is enough to prove\tfhat () = L @ @
T+/Y

xn 2

which is equivalent to verifying that (””Tﬂ’)l/ ? > , for all z,y € K". Since

2
- () s

2
can be seen by (””—;“y) — (ﬁ;*/@> = (\/5;\/@)2 = 0. Thus, we complete the proof. [

r+y >, 0, by Property 1.3(e), it is sufficient to show that (;‘—;y) -

K

Proposition 2.7. Let f : [0,00) — [0,00) be f(t) =t where 0 <r < 1. Then,
(a) f is SOC-monotone on [0, 00);

(b) —f is SOC-convex on [0,00).
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Proof. (a) Let r be a dyadic rational, i.e., a number of the form r = I, where n
is any positive integer and 1 < m < 2". It is enough to prove the assertion is true
for such r since the dyadic rational numbers are dense in [0,1]. We will claim this
by induction on n. Let z,y € K" with >, y, then by Property 1.3(b) we have
x!/? = y'/2. Therefore, part(a) is true when n = 1. Suppose it is also true for all

m
dyadic rational 2 in which 1 < j < n—1. Now let r = & with m < 2". By

induction hypothesis, we know T = n yzn%. Then, by applying Property 1.3(b), we
1/2 1/2

obtain (3;2"1) = n (ywl) , which says xom = n y%. Thus, we have shown that

T =0 Y = 0implies 2" =, y", for all dyadic rational 7 in [0,1]. Then, the desired

result follows.

(b) The proof is similar to the above arguments. First, we observe that

<:v42ry> B (\/5‘;\/?)2: (@)2 im0,

which implies (““”—;ry)l/2 = 3 (VT +/y) by Property 1.3(b). Hence, we show that

the assertion is true when n = 1. By induction hypothesis, suppose (%)~ =

_’Cn
m 1 m I
2n— 2n—
(%) . Then, we have

:L‘+y WL—l xzﬂn+y2ﬂn 2 o xwi—l—f—yzn% q}zﬂ"—}-yzﬂ" 2

() (=) = (=) ()
&g\

— (%) = 0,

which implies (x—;“y)T" > n <x27";y27n> by Property 1.3(b). Following the same argu-
ments about dyadic rationals in part(a) yields the desired result. [

From all the above examples, we observe that f being monotone does not imply f
is SOC-monotone. Likewise, f being convex does not guarantee that f is SOC-convex.
Now, we move onto some famous functions which are used very often for NCP (nonlinear
complementarity problem), SDCP, and SOCCP. It would be interesting to know about
the SOC-convexity and SOC-monotonicity of these functions. First, we will look at the
Fischer-Burmeister function, ¢, : IR” x R™ — IR", given by

bes (2,y) = (2% +y)? = (2 + ), (2.5)

which is a well-known merit function for complementarity problem, see [88, 139]. Here,
(-)? and (-)¥/2 are defined through Jordan product introduced as in (1.5) in Chapter 1.
For SOCCP, it has been shown that squared norm of ¢, i.e.,

Ven (2,9) = 6z, )II%, (2.6)
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is continuously differentiable (see [49]) whereas 1), is only shown differentiable for SDCP
(see [145]). In addition, ¢, is proved to have semismoothness and Lipschitz continuity
in the recent paper [142] for both cases of SOCCP and SDCP. For more details regarding
further properties of these functions associated with SOC and the roles they play in the
solutions methods, please refer to [48, 120-122]. In NCP setting, ¢, is a convex function,
so we may wish to have an analogy for SOCCP. Unfortunately, as shown below, it is not
an SOC-convex function.

Example 2.5. Let ¢, be defined as in (2.5) and 1., defined as in (2.6).
(a) The function p(z,y) = (2® + y2)/? does not satisfy (2.2).
(b) The Fischer-Burmeister function ¢, does not satisfy (2.2).

(c) The function ¥, : R x R" — R is not convex.

Solution. (a) A counterexample occurs when taking x = (1,1) and y = (1,0).

(b) Suppose that it satisfies (2.2). Then, we will have p satisfies (2.2) by p(z,y) =
¢ps (2, y) + (x +y), which is a contradiction to part(a). Thus, ¢, does not satisfy (2.2).

(¢) Let x = (1,-2),y = (1,—1) and w = (0, —1), v = (1, —1). Then, we have

¢FB(x7y) = (_3—1—2\/1—3 ) 7_2\/1—?))

¢FB(U7/U) = <_1_g\/g ) > _2\/g>

Thus, 2 (¢ (2, y) + ¥(u,v)) = 2(30 — 5v/13 — 3v/5) ~ 2.632.
On the other hand, let (Z,9) := i(z,y) + 3(u,v), that is, & = (3, —3) and § = (1,-1).
Indeed, we have #2+¢? = (2, —1) and hence (22 +9%)"/? = (ng/i’ 1’3‘/5), which implies

Vo (2,9) = || 0w (2, 9) || = 14 — 84/2 ~ 2.686. Therefore, we obtain

Vg (7, Y) = || G (T, ) || = 21 — 5V/13.

wFB(u7U) = ||¢FB(U’U)H2 =9 - 3\/5

1 1 1 1
wFB (§(sc,y) + §(u7 U)) > éwFB (.T, y) + EwFB <u7v)7

which shows 1, is not convex. W

Another function based on the Fischer-Burmeister function is ¥; : IR” x IR" — IR,
given by
Vi@, y) = |l[es (2, )]+ 1%, (2.7)

where ¢, is the Fischer-Burmeister function given as in (2.5). In the NCP case, it is
known that ; is convex. It has been an open question whether this is still true for
SDCP and SOCCP (see Question 3 on page 182 of [145]). In fact, Qi and Chen [128]
gave the negative answer for the SDCP case. Here we provide an answer to the question
for SOCCP: 1)1 is not convex in the SOCCP case.



2.1. MOTIVATIONS AND EXAMPLES 53

Example 2.6. Let ¢, be defined as in (2.5) and 1, defined as in (2.7).
(a) The function (¢, (z,y)]s = [(z +9y*)Y2 — (x +y)]4 does not satisfy (2.2).
(b) The function 1y is not convez.

Solution. (a) Let z = (2,1,-1), y = (1,1,0) and v = (1,-2,5), v = (—1,5,0). For
simplicity, we denote ¢1(x,y) := [P (2, y)]+. Then, by direct computations, we obtain

%gbl(x, y) + %gbl(u,v) — ¢ (%(w, y) + %(u, U)) = (1.0794, 0.4071, —1.0563) i3 0,

which says ¢; does not satisfy (2.2).

(b) Let x = (17,5,16), y = (20, —3,15) and u = (2, 3 3) = (9,—7,2). Then, it can be
easily verified that 3¢y (z,y) + 3¢ (u,v) — ¥ (5(z,y ,v)) < 0, which implies ¢ is
not convex. W

Example 2.7. (a) The function f(t) = |t| is not SOC-monotone on RR.
(b) The function f(t) = [t| is not SOC-conver on R.
(c) The function f(t) = [t|+ is not SOC-monotone on IR.

(d) The function f(t) = [t]; is not SOC-convex on IR.

Solution. To see (a), let z = (1,0),y = (—2,0). It is clear that z = , y. Besides, we
have 22 = (1,0), y*> = (4,0) which yields |z| = (1,0) and |y| = (2,0). But, |z] — |y| =
(_170) z,@ 0.
To see (b), let z = (1,1,1), y = (—1,1,0). In fact, we have |z| = (\/ﬁ,%,\%» ly| =
(1,-1,0), and |z + y| = (v/5,0,0). Therefore,

o+l = o431 = (VE+ 1= VB —Lb = ) 0,

V2 V2) 8

which says [ (52) 2, 5 (/" (2) + [ (y)) . Thus, f(t) = |t| is not SOC-convex on
R.

To see (c) and (d), just follows (a) and (b) and the facts that [¢]; = 1(¢ + |¢) where
t € R, and Property 1.2(f): [z]; = 3(z + |2|) where z € R". W

To close this section, we check with one popular smoothing function,

f(t)z%(\/ert),
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which was proposed by Chen and Harker [39], Kanzow [85], and Smale [138]; and is called
the CHKS function. Its corresponding SOC-function is defined by

socC 1
£ @) = 5 (@ +40) +2)
where e = (1,0,---,0). The function f(¢) is convex and monotone, so we may also
wish to know whether it is SOC-convex or SOC-monotone or not. Unfortunately, it is
neither SOC-convex nor SOC-monotone for n > 3, though it is both SOC-convex and
SOC-monotone for n = 2. The following example demonstrates what we have just said.

244+
2

(a) f is not SOC-monotone of order n >3 on R;

Example 2.8. Let f: IR — IR be f(t) = . Then,

(b) however, f is SOC-monotone of order 2 on R;

(c) f is not SOC-convex of order n >3 on RR;

(d) however, f is SOC-convez of order 2 on RR.

Solution. Again, by Remark 2.1, taking z = (2,1,—1) and y = (1, 1,0) gives a coun-
terexample for both (a) and (c).

To see (b) and (d), it follows by direct verifications as what we have done before. W

2.2 Characterizations of SOC-monotone and SOC-
convex functions

Based on all the results in the previous section, one may expect some certain relation
between SOC-convex function and SOC-monotone function. One may also like to know
under what conditions a function is SOC-convex. The same question arises for SOC-
monotone. In this section, we aim to answer these questions. In fact, there already
have some analogous results for matrix-functions (see Chapter V of [22]). However, not
much yet for this kind of vector-valued SOC-functions, so further study on these topics
is necessary.

Originally, in light of all the above observations, two conjectures were proposed in
[42]) as below. The answers for these two conjectures will turn clear later after Section
2.2 and Section 2.3.

Conjecture 2.1. Let f: (0,00) = R be continuous, convez, and nonincreasing. Then,

(a) f is SOC-convex;
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(b) —f is SOC-monotone.

Conjecture 2.2. Let f : [0,00) — [0,00) be continuous. Then,

—f is SOC-conver <= f is SOC-monotone.

Proposition 2.8. Let f : [0,00) — [0,00) be continuous. If —f is SOC-convex, then f
is SOC-monotone.

Proof. Suppose that = =,, vy =, 0. For any 0 < A < 1, we can write

xn

)\x:/\y—l—(l—)\)l)\

— @y
Then, using the SOC-convexity of —f yields that

F70w) = M)+ (- 08 (2

(w—w>tm0,

where the second inequality is true since f is from [0, co) into itself and z —y >, 0. This
yields ™ (Az) =, A\ (y). Now, letting A — 1, we obtain that f~"(z) =.. f (y),
which says that f is SOC-monotone. [

The converse of Proposition 2.8 is not true, in general. For counterexample, we
consider
s

f@:—m% %Lwrww» t € [0, 00).

Notice that — cot(t) is SOC-monotone on [ /2, 7), whereas —%(1+¢)~" is SOC-monotone
on [0,00). Hence, their compound function f(¢) is SOC-monotone on [0,00). However,
— f(t) does not satisfy the inequality (2.36) for all ¢ € (0, 00). For example, when ¢t; = 7.7
and ty = 7.6, the left hand side of (2.36) equals 0.0080, whereas the right hand side equals
27.8884. This shows that f(t) = — cot(t) is not SOC-concave of order n > 3. In sum-
mary, only one direction (“=") of Conjecture 2.2 holds. Whether Conjecture 2.1 is true
or not will be confirmed at the end of Section 2.3.

We notice that if f is not a function from [0, co) into itself, then Proposition 2.8 may
be false. For instance, f(t) = —t* is SOC-concave, but not SOC-monotone. In other
words, the domain of function f is an important factor for such relation. From now on,
we will demonstrate various characterizations regarding SOC-convex and SOC-monotone
functions.

Proposition 2.9. Let g: J - IR and h : I — J, where J C IR and I C IR. Then, the
following hold.
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(a) If g is SOC-concave and SOC-monotone on J and h is SOC-concave on I, then their
composition go h = g(h(-)) is also SOC-concave on 1.

(b) If g is SOC-monotone on J and h is SOC-monotone on I, then go h = g(h(-)) is
SOC-monotone on 1.

Proof. (a) For the sake of notation, let ¢*° : S — IR™ and h*°° : § — S be the vector-
valued functions associated with ¢ and h, respectively, where S C IR™ and S C IR™.
Define g(t) = g(h(t)). Then, for any x € S, it follows from (1.2) and (1.8) that

gsoc<hsoc(x)) _ gsoc|:h<>\1(x))u§cl)+h<>\2(x>>u:(p2)i|
= O + o[l
= 7%x).

We next prove that g(t) is SOC-concave on I. For any z,y € S and 0 < § < 1, from the
SOC-concavity of h(t) it follows that

W (B 4+ (1 = B)y) =en BR(x) + (1 = B)R™(y).
Using the SOC-monotonicity and SOC-concavity of g, we then obtain that
g (B + (1= B)y)] men g0 (@) + (1= B ()]
i}cn /BgSOCI:hSO(f(:C)] _'_ (1 _ ﬁ)gSOC[hSOC(y>].
This together with (2.8) implies that for any z,y € S and 0 < g < 1,
@ (Br+ (1= Bly) me BE () + (1= G ().
Consequently, the function g(t), i.e. g(h(-)) is SOC-concave on I.

(b) Tt is clear that for all z,y € IR", =~ y if and only if A\;(z) > \;(y) with i = 1, 2.
In addition, ¢ is increasing on J since it is SOC-monotone. From the two facts, we

(2.8)

immediately obtain the result. [

Proposition 2.10. Suppose that f : IR — IR and z € IR". Let g, : R" — IR be defined
by g.(x) := (f " (x),2). Then, f is SOC-convex if and only if g. is a convex function for
all z =, 0.

Proof. Suppose f is SOC-convex and let x,y € R™, A € [0,1]. Then, we have
fSOC((l . )\>x+)\y) t)cn (1 . A)fsoc( )+)\fsoc( )

which implies
- (T=Nz+Xy) = (T (Q1=Nz+Xy),z)
< (=N @) + A (), 2)
(1= (@), 2)+ (" (), 2)
(1=2)

1= A)g=(x) + Ag:(y),
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where the inequality holds by Property 1.3(d). This says that g. is a convex function.
For the other direction, from the convexity of g, we obtain

(F(I=Nz+Xy),2) <{(L=Nf"(2) +Af " (y),2).

SOC

Since z =, 0, by Property 1.3(d) again, the above yields

soc soc

P =Nz +xy) = (1= A7 (@) + A7 (y),

which says f is SOC-convex. [

Proposition 2.11. A differentiable function f : IR — IR is SOC-convex if and only if
W) men @)+ V7 (2)(y — 2) for all z,y € R™.

Proof. From Proposition 1.13, we know that f is differentiable if and only if f
differentiable. Using the gradient formula given therein and following the arguments as
in [21, Proposition B.3] or [30, Theorem 2.3.5], the proof can be done easily. We omit
the details. [

soc .

To discover more characterizations and try to answer the aforementioned conjectures,
we develop the second-order Taylor’s expansion for the vector-valued SOC-function f™°
defined as in (1.8), which is crucial to our subsequent analysis. To the end, we assume
that f € C®(J) with J being an open interval in IR and dom(f™°) is open in IR™ (this
is true by Proposition 1. 4( )). Given any z € dom(f™") and h = (hy,hy) € R x IR* 1,
we have z + th € dom(f™) for any sufﬁmently small ¢ > 0. We wish to calculate the
Taylor’s expansion of the function f™*(x + th) at z for any sufficiently small ¢ > 0. In

particular, we are interested in finding matrices Vf (z) and A;(z) for i = 1,2,...,n
such that
hTAl(ZL’)h
soc socC socC 1 2 h/TAQ (x) h 2
f (@+th)=f (x)+tVf (x)h+ §t : + o(t%). (2.9)
BT A, (2)h

Again, for convenience, we omit the variable notion z in \;(z) and ul? for i = 1,2 in the
subsequent discussions.

It is known that f™° is differentiable (respectively, smooth) if and only if f is differ-
entiable (respectively, smooth), see Proposition 1.13. Moreover, there holds that

T
p(D) Hey H% ||
VI (x) = = r (2.10)
M 22 oy (bM) — a(®) x2x22
(21 21
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if 25 # 0; and otherwise

VI (@) = [,

(2.11)
where
o _ fO2) = f(\) p1) — f'(A2) + (A1) m _ ') = (M)
a —_ = , = .
A2 — A 2 2
Therefore, we only need to derive the formula of A;(x) for i = 1,2 ,nin (2.9).

We first consider the case where x5 # 0 and x5 + the # 0. By the definition (1.8)
see that

£ (@ + th)

- __x2+tho
lza+thall |

1 1

Ta+tho
llza+the| |

1 1
+§f(l’1 + thl + HiL‘Q + thg”) [

f(zy + thy — ||xo + the||) + f(z1 + thy + ||xe + ths]|)

f(xy 4 thy + ||z + thyl]) —

2
f([)?l —+ thl — ||I2 + thg”) T + thg

i 2 ||xe + thsl|
_ & 1
= |
To derive the Taylor’s expansion of ™ (z + th) at o with x5y # 0, we first write out and
expand ||x2 4 ths||. Notice that
xd hal|?
To + the|| = Ta||? + Ty 2+ 2 T2 + +
o2+ thall = sl + 2taFha + 2] el = | H\/ e
Therefore, using the fact that
1 1, 9
Vi4e = 1—|—§€—§£ + o(e?),
we may obtain
1, B 2
|za + tho|| = ||z [ 14+¢ + t + o(t%), (2.12)
I 2|| |2
where Ty (T
x
L Lo LT
[ 2 22

with
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Furthermore, from (2.12) and the fact that (1+¢)™! =1 — e+ &%+ o(e?), it follows that

1 a?
|22 + thy|| ™t = ||z~ 1(1—15” N + t2 (2 __F >+0(t2)). (2.13)

[E:2 221

Combining equations (2.12) and (2.13) then yields that

{EQ—I—thQ N i) —{—t( h2 _ (6] i) >
|22 + thel| |22 [zl (|2l (|22l
1 a? 1G] T hy «
+ =t ((2 - > -2 + o(t?)
2 ol fl2l? / llzall [zl {22
L (2.14)
2]l 222l
1 hiz,xTh hsl? hoht
12 (3 2$2$24 2 T2 I 2||2 Z2 _olt 22 T2 )Jro(tz)‘
2 ol flzall lal® o2l [zl 22|
In addition, from (2.12), we have the following equalities
f(l‘l + thl — ||5L'2 + thg”)
1
[EA] 2H 2]l
= f <)\1 +t(h —a) — t?Hf i +0(t2)> (2.15)
2

= T+ O )+ 5 (<O PO — o)) + ol

and

_ 4l By o
= f (Ag +t(hy + @) + 2t ol (t )> (2.16)
= f(\) +tf'(A)(hy + ) + %tQ (f’(&)ﬁ + f"(X)(hy + a)2) + o(t?).

For i =0, 1,2, we define
S - AP0) = FON) e _ fP0) O e [P 0s) _f(i)(m, (2.17)

Aoy — A\ ’ 2 7 2
where f® means the i-th derivative of f and () is the same as the original f. Then, by
the equations (2.15)—(2.17), it can be verified that

— 1
S0 = 5 (F@ntthy+ oo+ thall) + flay +thy — a2 + tha])))

1
= O 4¢ (b(l)hl + c(l)oz) + §t2 (a(l)/B + b (h2 4+ a?) + 20(2)h1a) + o(t?)

_ b(O (b(l)h + (1)hT >+ tQhTAl( )h+0(t2)’

* |
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where .
b 2 “5’32 ”
A (z) = 2 r |- (2.18)
@ 12wy (b — () 2222 T2ls

2] [[]I?

Note that in the above expression for Z;, b is exactly the first component of f™(x)

and (bWhy + cMpT HWH) is the first component of Vf™*(x)h. Using the same techniques

0)

again,

1
§(f<x1 —+ thl + H.Z'Q + thQH) — f(l'l + thl — HQ?Q + thg”))
1
= V4t (s +0Wa) + o <b<1) ” i it D (h? 4 a?) + 26(2)h1a) +o(t?)
1
= 94y (c(l)hl + b(l)a) + §t2hTB(x)h + o(t?), (2.19)
where .
He) (2)_T2
B(zx) = b(l)“x?” . (2.20)

p@ 12 @4 — @) M,
2] 2]

Using equations (2.19) and (2.14), we obtain that

To + the

1
% = 5 (Sl thy+ o+ thall) = flog+ thy = Jlza + tha)) o |72 + tha]

2

ha
c0 12y (&(c(l)hl +oMa) + M, —— )—I— —t*W + o(t?),
2]l 2]l 2

where

W = iz HhTB( )h+2Mx2H H((l)h1+b(1)a)
T2

10 (3h§x2m2 he x4 ||h2||2 Ly hoh a9 ) .

lzal|* o]l ||562||2||w2|| 2| [l

Now we denote
O —q©  2(pD) — )

= = , U = h'C(x)h
o] o (@)
1 1 T
v o ot tla iy ooy g Tahe
|2 [| 22| [E=YN
where
T
He) (b2 — g0 2
Olx) = i Il (2.21)
b2 — M) 2 g1 4 (@ — 3q) 272
( Tl 43D
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Then U can be further recast as

hT Th h 2 Th
U= W B(a)h + 03 2!1?2%4 2 0l 2H2 0% 2 (cOhy +bVa)
2 |22 2
Consequently,
x
W = 20U+ hyV.
2]

We next consider the case where xo = 0 and x5 + thy # 0. By definition (1.8),

1 1
soc th - h
P = Aoz, hy
|2l 1Pl

f(oy +t(hy — ||h2|)) + f(z1 + t(h + [[h2]]))
[+ t(hy + ||ha]]) — Jg(ﬂ?l +t(hi — [[hall)) ho
2 [ ha]|

Using the Taylor expansion of f at x1, we can obtain that

2 7+ 10— ) + FCa 4 1+ ol

= f@) D)+ 52O @) b+ o),

A +t(h21 + [[h2l))

2 7+ 10— o)) — £l + 10 + o))

1
= tf(l) (Il)hg + §t2f(2) ($1)2h1h2 + O(tQ).
Therefore,

Pt th) = F@) + D )b+ L2 @) |
- ! 2 YU ohihy |

Thus, under this case, we have that

5T
0 &

L A R | B S I RO -

where ¢; € IR"! is the vector whose j-th component is 1 and the others are 0.

Summing up the above discussions gives the following conclusion.

Proposition 2.12. Let f € C®(J) with J being an open interval in IR and dom(f™°) C
IR™. Then, for any x € dom(f™), h € R™ and any sufficiently small t > 0, there holds

hTAl (I’)h
1t2 hTAg(.f)h

f7 @t thy = £ (@) + ¢V " (2)h+ 5

T A, (x)h
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where V" (z) and A;(x) fori =1,2,--- ,n are given by (2.11) and (2.22) if x5 = 0;
and otherwise V£ (z) and Ai(z) are given by (2.10) and (2.18), respectively, and for

1> 2,
T2

2]

Ai(z) = C(z) + B;(z)

where

T T d
Bi(z) = vel +en?, v= {a(l) d T2 } = (a(l), —l'Q) )
[|2]] (21

From Proposition 2.11 and Proposition 2.12, the following consequence is obtained.

Proposition 2.13. Let f € C®)(J) with J being an open interval in R and dom(f™°) C
R™. Then, [ is SOC-convez if and only if for any x € dom(f™") and h € R", the vector

hTAl (l’)h
hT Ay(x)h
R e
T A, (x)h
where A;(x) is given as in (2.22).
Now we are ready to show our another main result about the characterization of

SOC-monotone functions. Two technical lemmas are needed for the proof. The first one
is so-called S-Lemma whose proof can be found in [125].

Lemma 2.3. Let A, B be symmetric matrices and y* Ay > 0 for some y. Then, the
implication [ZTAZ >0= 2Bz > 0} is valid if and only if B = AA for some A > 0.

Lemma 2.4. Given 0 € IR, a € R"!, and a symmetric matriz A € IR™*". Let B" 1 .=
{z € R" Y ||z|| < 1}. Then, the following hold.

(a) For any h € K", Ah € K" is equivalent to A [ i ] € K" for any z € B*1.

(b) For any z € B"', 0+ a’z > 0 is equivalent to 6 > ||a].

T
(c) If A= [ z E;_I } with H being an (n — 1) x (n — 1) symmetric matriz, then for any

h € K", Ah € K" is equivalent to 6 > ||a|| and there exists X = 0 such that the

matrix

62 — J|al|? — A fa® —aTH “ 0
fa— H'a aal’ —HTH+ X | —
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Proof. (a) For any h € K™, suppose that Ah € K". Let h = { i } where z € B"~1. Then

h € K" and the desired result follows. For the other direction, if h = 0, the conclusion is
obvious. Now let h := (hy, ha) be any nonzero vector in ™. Then, hy > 0 and ||hs|| < hy.

1 . .
Consequently, Z—j € B !and A { he } € K. Since K™ is a cone, we have

h1
1
hlA{h_z } — Ahe K",
h1

(b) For z € B"!, suppose § + a’z > 0. If a = 0, then the result is clear since § > 0. If
a#0,let z:= —2.. Clearly, 2 € B"! and hence 6 + ﬁ’ > (0 which gives 6 — ||a|| > 0.

lla] -
For the other direction, the result follows from the Cauchy Schwarz Inequality:

O+a'z>0—|all[lz] >0 —all > 0.

(c) From part(a), Ah € K" for any h € K™ is equivalent to A [ i } € K" for any
z € B"!. Notice that

=l w1

Then, Ah € K" for any h € K" is equivalent to the following two things:
0+a’z>0 forany z¢e B"! (2.23)

and
(a+ Hz)"(a+ Hz) < (§+a’z)?, forany z¢e B" ' (2.24)

By part(b), (2.23) is equivalent to 6 > ||a||. Now, we write the expression of (2.24) as
below:

2T (aaT — HTH) z+2 (HaT — aTH) 2+6*>—aTa>0, forany ze B,
which can be further simplified as

6? — ||al|>? 60aT —alH

1
T > n—1
[1 < ]|:93—HT3_ aaT_HTH:|[ :|—07 forany z€B .

z

Observe that z € B! is the same as

B ZT}H _OIHHZO.

Thus, by applying the S-Lemma (Lemma 2.3), there exists A > 0 such that

{¢92—||a||2 QaT—aTH}_)\[l 0

—
fa— H'a aa’ — H'H 0 —I} = 0.

This completes the proof of part(c). O
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Proposition 2.14. Let f € CM(J) with J being an open interval and dom(f™") C IR™.
Then, the following hold.

(a) f is SOC-monotone of order 2 if and only if f'(7) > 0 for any T € J.

(b) f is SOC-monotone of order n > 3 if and only if the 2 X 2 matrix

f(ta) — f(t1)

(1)
— ta—t =0, Yt ts€J
f(tj&) :f(tl) FD (1)
2 1

Proof. By the definition of SOC-monotonicity, f is SOC-monotone if and only if
f(x4+h)— () e K" (2.25)

for any x € dom(f™°) and h € K" such that z+h € dom(f ). By the first-order Taylor
expansion of f°, i.e.,

f(w+h)=f"(2) + VS (x+th)h for some t € (0,1),

it is clear that (2.25) is equivalent to V" (z + th)h € K" for any x € dom(f™) and
h € K" such that z+h € dom(f™), and some ¢ € (0,1). Let y := x+th = o™ + v
for such z, h and t. We next proceed the arguments by the two cases of y, # 0 and y, = 0.

Case (1): y2 # 0. Under this case, we notice that

where .
0=00, a=cD 2 and H =a®1 + (B — g©) L2
’ 2]’ a2’
with
a0 _ 2 = Q) 5y _ fQpa) + f(m) ) _ f'(2) = f'()
o — 1 2 ’ 2

In addition, we also observe that
0> — ||al]* = (13(1))2 — (6(1))2, fa’ —aTH =0

and

T
aal — HTH — —(EL(O))2I 4 ((6(1))2 _ (5(1))2 + (d(o))2> Hyzy|2|2
Y2

Thus, by Lemma 2.4, f is SOC-monotone if and only if

(i) o > [,
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(ii) and there exists A > 0 such that the matrix
(bM)2 — (&2 — ) 0

0 (A= @O + (@) = (O + (@©)?) !?(5372

= 0.

When n = 2, (i) together with (ii) is equivalent to saying that f’(u1) > 0 and f'(use) > 0.
Then we conclude that f is SOC-monotone if and only if f/(7) > 0 for any 7 € J.

When n > 3, (ii) is equivalent to saying that (6M)2 — (EM)2 =X >0 and A — (@) > 0,
ie., (BW)2 — (M)2 > (@)% Therefore, (i) together with (ii) is equivalent to

fp2) — f(p)

FO () 1 -
flp2) — f() FO(119) -
H2 — M1

for any * € R",h € K" such that z + h € domf™", and some ¢t € (0,1). Thus, we
conclude that f is SOC-monotone if and only if

f(l)(tl) p n
2~ U - for all ;
Fts) — f(t1) n = O forall ty,t5 € J
JW(t2)
to — 1

Case (2): y» = 0. Now we have pu; = p and V£ (y) = fO(u))I = fO(up)I. Hence, f
is SOC-monotone is equivalent to f()(u;) > 0, which is also equivalent to

fp2) — f(n)

FBm) Mo — M1
_ .0
f(p2) — f(pa) FO(119)
M2 —
since f( (1) = £V (uz) and % = fW(uy) = fO () by the Taylor formula and
p1 = po. Thus, similar to Case (1), the conclusion also holds under this case. [

The SOC-convexity and SOC-monotonicity are also connected to their counterparts,
matrix-convexity and matrix-monotonicity. Before illustrating their relations, we briefly
recall definitions of matrix-convexity and matrix-monotonicity.

Definition 2.2. Let M** denote nxn self-adjoint complex matrices, o(A) be the spectrum
of a matriz A, and J C IR be an interval.

(a) A function f:J — R is called matriz monotone of degree n or n-matrixz monotone
if, for every A, B € M* with o(A) C J and o(B) C J, it holds that

A= B = f(A) 2 f(B).
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(b) A function f : J — IR is called operator monotone or matriz monotone if it is
n-matriz monotone for all n € N.

(c) A function f:J — IR is called matriz convex of degree n or n-matriz convez if, for
every A, B € M3 with 0(A) C J and o(B) C J, it holds that

f(A=XNA+AB) =2 (1= A)f(A)+Af(B).
(d) A function f: J — IR is called operator convex or matriz convex if it is n-matriz

convez for all n € N.

(e) A function f : J — R is called matriz concave of degree n or n-matriz concave if
—f 1s n-matriz convez.

(f) A function f:J — R is called operator concave or matriz concave if it is n-matriz
concave for all n € N.

In fact, from Proposition 2.14 and [76, Theorem 6.6.36], we immediately have the
following consequences.

Proposition 2.15. Let f € CW(J) with J being an open interval in IR. Then, the
following hold.

(a) f is SOC-monotone of order n > 3 if and only if it is 2-matriz monotone, and f is
SOC-monotone of order n < 2 if it is 2-matriz monotone.

(b) Suppose that n > 3 and f is SOC-monotone of order n. Then, f'(ty) =0 for some
to € J if and only if f(-) is a constant function on J.

We illustrate a few examples by using either Proposition 2.14 or Proposition 2.15.

Example 2.9. Let f : (0,00) — R be f(t) = Int. Then, f(t) is SOC-monotone on
(0, 00).

Solution. To see this, it needs to verify that the 2 x 2 matrix

FO(1) f(t2) — f(t) 1 In(t2) —In(t)
lo —t1 _ 3] lo —ty
f(t2) = f(t1) (1) In(ts) —In(t) 1
—— = fU(t) — =
t2 - tl t2 - tl t2
is positive semidefinite for all ¢1,t; € (0,00). W

Example 2.10. (a) For any fized o € IR, the function f(t) = ﬁ is SOC-monotone on
(0,00).
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(b) For any fized o € IR, the function f(t) =/t — o is SOC-monotone on [o, o).
(c) For any fixred o € R, the function f(t) = In(t — o) is SOC-monotone on (o, 0).
(d) For any fired 0 > 0, the function f(t) = -5 is SOC-monotone on (—a,00).

Solution. (a) For any t1,t, € (0,00), it is clear to see that

1 1
(O' —1t1>2 (O’ — tg)l(O' — tl) t O
(O' — tz)(O‘ — tl) (0' — t2)2

Then, applying Proposition 2.14 yields the desired result.

(b) If x =, oe, then (z — oe)t/? =, 0. Thus, by Proposition 2.14, it suffices to show
1 \/tg — 0 — \/tl — 0
N> _zvatl__\/gl — 2 I f = O for any ti,ty > 0,
t2 — tl 2\/t2 — 0

which is equivalent to proving that

1 1
WG —ovh—0 (Vb-o0+ V-0

This inequality holds by 4v/t; — ov/ts — 0 < (y/t2 — 0 ++/t1 — 0)? for any ty,t, € (0, 0).

> 0.

(¢) By Proposition 2.14, it suffices to prove that for any ¢, € (0, 00),

1 1 <t2—0')
— In
(tl—O') (tQ—tl) tl—O' s
1 (tQ_U 1 - ’
In
(tz—tl) tl—O' (tg—O')

which is equivalent to showing that

(t — 0)1(152 —o) [@2 . oy (2 = Z)r > 0.

Notice that Int <t —1 (¢t > 0), and hence it is easy to verify that

[@;m " (iiii)r = —a>1<t2—a>'

Consequently, the desired result follows.
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(d) Since for any fixed o > 0 and any ¢;,t; € (—0o, 00), there holds that

o o
(o —I;Itl)Q (0+t2¥0+t1) - 0.
(0 +t2)(0+ 1) (0 +t2)?
we immediately obtain the desired result from Proposition 2.14. N

We point out that the SOC-monotonicity of order 2 does not imply the 2-matrix
monotonicity. For example, f(t) = t* is SOC-monotone of order 2 on (0, 00) by Exam-
ple 2.2(a), but by [76, Theorem 6.6.36] we can verify that it is not 2-matrix monotone.
Proposition 2.15(a) indicates that a continuously differentiable function defined on an
open interval must be SOC-monotone if it is 2-matrix monotone.

Next, we exploit Peirce decomposition to derive some characterizations for SOC-
convex functions. Let f € C®(J) with J being an open interval in IR and dom(f™) C
IR™. For any z € dom(f" ) and h € IR™, if x5 = 0, from Proposition 2.12, we have

hTA1($)h
hTAQ z)h T

S( | FO(z)) { 22122 } .
hT A, (x)h

Since (h'h,2h1hy) € K™, from Proposition 2.13, it follows that f is SOC-convex if and
only if f (2)<£L'1) > 0. By the arbitrariness of 1, f is SOC-convex if and only if f is convex
on J.

For the case of xy # 0, we let x = Mu® + Xu® . where uM and u® are given by
(1.4) with 7o = ch—iu Let u® = (O,Ug)) for i = 3,--- ,n, where Ués), e ,vén) is any
orthonormal set of vectors that span the subspace of IR*~2 orthogonal to 5. It is easy
to verify that the vectors u™, u®, u®, ... u( are linearly independent. Hence, for any

given h = (hy, hy) € IR x IR™™L, there exists y;, i = 1,2,--- ,n such that
h = Nl\/gu(l) + ,ug\/iu@) + Z/LZ u(i)'
i=3

From (2.18), we can verify that b® 4 c® and b® — ¢? are the eigenvalues of A;(x) with
u® and u being the corresponding eigenvectors, and a) is the eigenvalue of multiplicity
n—2 with u® = (0, ’Uél)) for s = 3,...,n being the corresponding eigenvectors. Therefore,

hTAl(l’)h — M%(b@) _ 6(2)) + Mg(b@) + 0(2)) + a(l) Zﬂf
=3
= SO0+ PO+ aVp, (2.26)
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where
/L2 = 2?23 /%2'
Similarly, we can verify that ¢ + b® — a1 and ¢® — b® + M) are the eigenvalues of
T
2 (b2 — ) 2
2
T2 L2T5
(b — a(V) dI + d
el ) oy

with ©® and u™ being the Correspondlng elgenvectors and d is the eigenvalue of mul-
tiplicity n — 2 with u® = (0, U ) for ¢ = 3,--- ,n being the corresponding eigenvectors.
Notice that C'(x) in (2.21) can be decomposed the sum of the above matrix and

0 0
0 —2d MQTQ
[
Consequently,
W' C(a)h = i (c® = b2 +a) + 3 (e® + 2 — aV) —d(py — pn)? + dp®. (2.27)

In addition, by the definition of B;(x), it is easy to compute that
hTBZ(.CI?)h = ﬁhg,ifl(ul(&(l) — d) + ILLQ(G(l) + d)), (228)

where hy; = (hai, ..., hopn—1). From equations (2.26)-(2.28) and the definition of A;(z) in
(2.22), we thus have

n

> (WA @)h)® = W C@)hP + 2lhel® (12 (@Y — d) + p2(a® + d))?

1=2

12tz — )W C @) (i (@ — d) + ra(a® + )
= WO + 2 (s — >2+u2><ul<a —d)+ pa(a + d))?
)+

2
+2(p2 — ) A C(@)h(pn (@ — d) + pa(a™V) + d))

= [ C@)h+ (42 — ) (u ( —d) + pa(a + d)))?

+2% (g () — d) + pa(a” ))2
= [-f¢ (>\1)M1+f2)(>\2)uz+du 2
+20% (11 (0 — d) + pa(a® + d))>. (2.29)

On the other hand, by Proposition 2.13, f is SOC-convex if and only if

Ay(z) = O and i(hTAi(x)h)Q < (WT Ay (z)h)?. (2.30)
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From (2.26) and (2.29)-(2.40), we have that f is SOC-convex if and only if A;(z) = O
and

(=) + A0 + de?])” + 262 (1 (V) — d) + o (0 + d))?
< [P0+ 1203 +aV ] (2.31)

When n = 2, it is clear that g = 0. Then, f is SOC-convex if and only if
Ay(x) = O and fP (M) P () > 0.

From the previous discussions, we know that b — c¢2) = f2()\), b2 + 2 = F2)(),)

and a(V) = £202)=rOo)

v are all eigenvalues of A;(z). Thus, f is SOC-convex if and only
if

FAN) >0, fPN) =0, fP) > DN,

which by the arbitrariness of z is equivalent to saying that f is convex on J.

When n > 3, if u = 0, then from the discussions above, we know that f is SOC-convex
if and only if f is convex. If u # 0, without loss of generality, we assume that p? = 1.
Then, the inequality (2.41) above is equivalent to

AP M) PN piud + (@) — &

+2fP (A3 (aV) — d) + 2P (M) pF (0 + d)

~2(s(a) — &) + 3@V + ) + 21 pa( (V) — )

>0 for any p1, fio. (2.32)

Now we show that A;(z) »= O and (2.32) holds if and only if f is convex on J and

ANV +d) > (oM —ad)?, (2.33)
ANV —d) > (aV+d)2 (2.34)

Indeed, if f is convex on J, then by the discussions above A;(z) > O clearly holds. If
the inequalities (2.33) and (2.34) hold, then by the convexity of f we have alV) > |d|. If
pjte < 0, then we readily have the inequality (2.32). If e > 0, then using a® > |d|
yields that
FEONE )i > (aV)? — .

Combining with equations (2.33) and (2.34) thus leads to the inequality (2.32). On the
other hand, if A;(x) = O, then f must be convex on J by the discussions above, whereas
if the inequality (2.32) holds for any puq, p9, then by letting p; = po = 0 yields that

aV > |d|. (2.35)

Using the inequality (2.35) and letting p; = 0 in (2.32) then yields (2.33), whereas using
(2.35) and letting pe = 0 in (2.32) leads to (2.34). Thus, when n > 3, f is SOC-convex
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if and only if f is convex on J and (2.33) and (2.34) hold. We notice that (2.33) and
(2.34) are equivalent to

Lo [F(A) = F(A2) + FO(A2) (A2 — A1)
§f< () o= )2

S [F(X2) = F(A1) = fO ) (A2 — M))?

- (A2 — Ar)?

and

1. [f (A2) = F(A1) = FO ) (e — A)]
5f( )()\2) Do — M2

> [F(A) = F(A2) + FO(A) (A2 — Ap)]?

- (A2 — Ap)* '

Therefore, f is SOC-convex if and only if f is convex on .J, and

Loy, (ko) = () = fO()(to — t)]
éf( )(tO) (tO _ t>2

[f(t) — f(to) — FO(t0)(t — to))*
(to —1)* 7

> Yig,t € J. (2.36)

Summing up the above analysis, we can characterize the SOC-convexity as follows.

Proposition 2.16. Let f € C®)(J) with J being an open interval in R and dom(f™") C
IR™. Then, the following hold.

(a) f is SOC-convex of order 2 if and only if [ is convex.

(b) f is SOC-convex of order n > 3 if and only if f is convex and the inequality (2.36)
holds for any ty,t € J.

By the formulas of divided differences, it is not hard to verify that f is convex on J
and (2.36) holds for any ty,t € J if and only if

A% f(to, to,to) A2f(to,t,to)
N2 f(tto te) AL Et) | = (2.37)

This, together with Proposition 2.16 and [76, Theorem 6.6.52], leads to the following
results.

Proposition 2.17. Let f € C®(J) with J being an open interval in IR and dom(f™) C
IR™. Then, the following hold.

(a) f is SOC-convex of order n > 3 if and only if it is 2-matriz convexr.
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(b) f is SOC-convex of order n < 2 if it is 2-matriz convex.

Proposition 2.17 implies that, if f is a twice continuously differentiable function de-
fined on an open interval J and 2-matrix convex, then it must be SOC-convex. Similar to
Proposition 2.15(a), when f is SOC-convex of order 2, it may not be 2-matrix convex. For
example, f(t) = t* is SOC-convex of order 2 on (0, +00) by Example 2.3(c), but it is easy
to verify that (2.37) does not hold for this function, and consequently, f is not 2-matrix
convex. Using Proposition 2.17, we may prove that the direction “<” of Conjecture 2.2
does not hold in general, although the other direction is true due to Proposition 2.8.
Particularly, from Proposition 2.17 and [69, Theorem 2.3], we can establish the following
characterizations for SOC-convex functions.

Proposition 2.18. Let f € CYW(J) with J being an open interval in IR and dom(f™°) C
R™. If f&(t) > 0 for every t € J, then f is SOC-convex of order n with n > 3 if and
only if one of the following conditions holds.

(a) For everyt € J, the 2 x 2 matriz

(b) There is a positive concave function c(-) on I such that fP(t) = c(t)™ for every
teJ.

(c) There holds that

( [£(to) — f(t) — fO() (o — 1)] ) ( [£(t) = f(to) — FO(to)(t — to)] )

(to —1)? (to — 1)?
1

< PP ). (2.38)

Moreover, f is also SOC-convex of order 2 under one of the above conditions.

Proof. We note that f is convex on J. Therefore, by Proposition 2.17, it suffices to
prove the following equivalence:

(2.36) <= assertion (a) <= assertion (b) <= assertion (c).

Case (1). (2.36) = assertion (a): From the previous discussions, we know that (2.36)
is equivalent to (2.33) and (2.34). We expand (2.33) using Taylor’s expansion at A; to

the forth order and get
3
Zlf(2)()\l)f(4)(>\l) > (FP(M)%
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We do the same for the inequality (2.34) at Ay and get the inequality

2 P00 0) > (7).

The above two inequalities are precisely

Zf@) OFDE) > (FO@)2, Ve, (2.39)

which is clearly equivalent to saying that the 2 x 2 matrix in (a) is positive semidefinite.
Case (2). assertion (a) = assertion (b): Take c(t) = [f®(t)]7'/3 for t € J. Then cis a

positive function and £ (¢) = ¢(t)~3. By twice differentiation, we obtain

FO) = 12e(6) [ (6) ()] = 3e(t) ().
Substituting the last equality into the matrix in (a) then yields that
1
—Ec(t)_7c"(t) >0,
which, together with ¢(t) > 0 for every ¢ € J, implies that ¢ is concave.

Case (3). assertion (b) = assertion (c): We first prove the following fact: if f®)(t) is

strictly positive for every ¢ € J and the function c(t) = [f® (t)}_l/ ® is concave on J,
then

[f(to) = f(t) = f () (to — 1)]
(to —1)?

Indeed, using the concavity of the function ¢, it follows that

o e o 1 ul
Lf (to) f<20 _J;)z(t)(to t)] _ / / f(2) [t + us(to — t)] dusduy
_ / / (1 = )t + uate))~* dusduy

< / / 1 — UQ —|— UgC(to)) 3 du2du1.
Notice that g(t) = 1/t (t > 0) has the second-order derivative ¢'® (¢) = 2/t>. Hence,
=10 1Ot 1 /
(to — 1)? B

_ _( to)) —g(c()) g (c(t)) )
(c(to) = c(t))®  clto) = c(t)

1
< §f(2)(t0)1/3f(2)(t)2/3, Vo, t € J. (2.40)

1 — ’UQ (t) -+ UQC(f())) du2du1

2
1

2¢(to)c(t)c(t)
_ % FO(1)V? FO ()2
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which implies the inequality (2.40). Now exchanging to with ¢ in (2.40), we obtain
f(t) — flto) — fFO(te)(t —t 1
Lf(t) — f( O(>to | t)2< 0)(t —to)] < §f(2)(t)1/3f(2)(t0)2/37

Since f is convex on J by the given assumption, the left hand sides of the inequalities
(2.40) and (2.41) are nonnegative, and their product satisfies the inequality of (2.38).

Case (4). assertion (c) = (2.36): We introduce a function F': J — IR defined by
[f(t) = f(to) = F (ko) (t — to)]?
(to —1)°

if t # to, and otherwise F'(tg) = 0. We next prove that F' is nonnegative on J. It is easy
to verify that such F(t) is differentiable on J, and moreover,

F@) = /P20 -t

)
—2(t — to) *[f(t) — f(to) — fV (to)(t — o) (F V(1) — fV (ko))
+2(t — to) *[f () — f(to) — f(l (o) (t — to)]”
)
f(t
)

Vi, ty € J. (2.41)

F(1) = 37O (t0) ~ £(2) ~ FO 1)t — 1)) ~

= PP~
d

(t — 1) Lf(t) — f(to) — F (o) (t — to)][f (to) — f(t) — FV(E) (o — 1)]
= 2(t —to) Zf@ (to) S (1) — (t — to)™* (F(t) — f(to) — fV(to)(t — to))

(f(to) = F(O) = SV W)t — 1) |
Using the inequality in part(c), we can verify that F'(¢) has a minimum value 0 at ¢ = ¢,
and therefore, F'(t) is nonnegative on J. This implies the inequality (2.36). O

We demonstrate a few examples by using either Proposition 2.16, Proposition 2.17,
or Proposition 2.18.

Example 2.11. Let f : IR — [0,00) be f(t) = e'. Then,
(a) f is SOC-convex of order 2 on R;

(b) f is not SOC-convez of order n > 3 on IR.

Solution. (a) By applying Proposition 2.16(a), it is clear that f is SOC-convex because
exponential function is a convex function on IR.

(b) As below, it is a counterexample which shows f(t) = ¢ is not SOC-convex of order
n > 3. To see this, we compute that

2,0,—1)+(6,—4,—3)]/2 — 6(4,72772)
_ <cosh(2\/§) , sinh(2v/2) - (=2, —2) /(2\/5))
~ (463.48, —325.45, —325.45)

ol
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and

% (20D 4 (6.-0:-9))
= % [€*(cosh(1), 0, — sinh(1)) + €®(cosh(5), sinh(5) - (—4, —3)/5)]
— (14975, —11974, —8985).

We see that 14975 — 463.48 = 14511.52, but
| (11974, —8985) — (—325.4493, —325.4493)|| = 14515 > 14511.52

which is a contradiction. [ ]

Example 2.12. (a) For any fired 0 € R, the function f(t) = (t — o)™ with r > 0 is
SOC-convex on (o,00) if and only if 0 < r < 1.

(a) For any fized o € IR, the function f(t) = (t —o)" with r > 0 is SOC-convexr on
[0,00) if and only if 1 < r < 2, and f is SOC-concave on [o,00) if and only if
0<r<1.

(c) For any fixred o € R, the function f(t) = In(t — o) is SOC-concave on (o, 00).

(d) For any fived o > 0, the function f(t) = 1 is SOC-concave on (—0,00).

Solution. (a) For any fixed o € IR, by a simple computation, we have that

fAw ) r(r+ 1)t —o0)"? r(r+ ) (=r=2)(t—0o)"?
f(?’%(t) f(g(t) | r(r+ 1) (=r —22)(t —o)7 r(r+1)(r+ 2)(7(“5 +3)(t—o)
6 24 6 24

The sufficient and necessary condition for the above matrix being positive semidefinite is
P+ D+ 2)(r+3)t—0)™ 0 P+ DA r 422t — o) 0
24 18 -

which is equivalent to requiring 0 < r < 1. By Proposition 2.18, it then follows that f is
SOC-convex on (o, +00) if and only if 0 < r < 1.

(2.42)

(b) For any fixed o € R, by a simple computation, we have that

fA ) r(r =1t —o) 2 r(r =1 =2)(t—0)"
f(?’%(t) f(g(t) | r(r=1D)(r —22)(t —o)" 3 r(r—1)(r— 2)8‘ - 3)(t—o)*
6 24 6 24

The sufficient and necessary condition for the above matrix being positive semidefinite is

r2(r —1)%(r —2)(r = 3)(t — 0)?° B r2(r —1)%(r — 2)*(t — o)* ¢ _

24 18 =
(2.43)

r>1 and
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whereas the sufficient and necessary condition for it being negative semidefinite is
2 _12 -9 _ _ 2r—6 2 _12 _22 _ 2r—6
V[ i A e s i Y
24 18
(2.44)
It is easily shown that (2.43) holds if and only if 1 <r <2, and (2.44) holds if and only
if 0 <r < 1. By Proposition 2.18, this shows that f is SOC-convex on (¢, c0) if and only
if 1 <r <2, and f is SOC-concave on (0, 00) if and only if 0 < r < 1. This together
with the definition of SOC-convexity yields the desired result.

(c) Notice that for any ¢t > o, there always holds that

f@ () f® (t) 1 B 1
f(:g(t) f(g(t) _ _Q(t —10) S(tl— o) = 0.
6 24 3t—0) Al—o)!

Consequently, from Proposition 2.18(a), we conclude that f is SOC-concave on (o, 00).

(d) For any ¢t > —o, it is easy to compute that

f(2) () f(3) (t) 1 _ 1
S o el N GO SA R
6 24 (t+o)t  (t+0)°

By Proposition 2.18 again, we then have that the function f is SOC-concave on (—a, 00).

2.3 Further characterizations in Hilbert space

In this section, we establish further characterizations in the setting of Hilbert space. The
main idea is similar, nonetheless, the approach is slightly different. Let H be a real Hilbert
space of dimension dim(H) > 3 endowed with an inner product (-, -) and its induced norm
| - ||. Fix a unit vector e € H and denote by (e€)* the orthogonal complementary space
of e, i.e., (e}t ={z € H|(x,e) = 0}. Then each x can be written as

T = 1, + zpe for some z. € ()" and zy € RR.
The second-order cone (SOC) in H, also called the Lorentz cone, is a set defined by

1
K:=3zxeH|(x,e) > —||z||p ={xe + xoe € H|xg > ||z} .
{een|az e} = (o +roc € Bl o)}

We also call this K the second-order cone because it reduces to SOC when H equals the
space IR". From [53, Section 2|, we know that K is a pointed closed convex self-dual
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cone. Hence, H becomes a partially ordered space via the relation =,,. In the sequel,
for any z,y € H, we always write  >,, y (respectively,  >,, y) when v —y € K
(respectively, z — y € intK); and denote T, by the vector A if . # 0, and otherwise

by any unit vector from (e)*.

Likewise, associated with the second-order cone K, each x = x, 4+ xge € H can be
decomposed as

z = M(@)ul) + Ao (2)u?,
where \;(z) € R and w;(z) € H for ¢ = 1,2 are the spectral values and the associated
spectral vectors of x, defined by

Ai(@) = 20+ (1) ||lze]l, ul) = = (e+ (=1)'7.).

Clearly, when z. # 0, the spectral factorization of x is unique by definition. In addition,
the SOC function is given by

[ ) = (@)l + fQe(@)ul?, Vo e s.

We will not distinguish this decomposition from the earlier spectral decomposition (1.2)
given in Chapter 1 since they possess the same properties. Analogous to Property 1.4,
there also holds

(Ai(@) = M (y)* + (Qa(@) — Aa(y))?
= 2([l2l” + llylI* — 2zoyo — 2llzellllyell)
< 2(ll=l* + Iy l* - 2(z, )
= 2llz —yl

We may verify that the domain S of f~ is open in H if and only if .J is open in IR. Also,
S is always convex since, for any x = z. + zge, y = Yy + yoe € S and 5 € [0, 1],

M Bz + (1= Byl = (Bxo+ (1= B)yo) — |Bze + (1 = B)yell = min{ (x), M1 (y)},
Ao [Bx 4 (1= B)y] = (Bxo + (1 = B)yo) + [|6ze + (1 — B)yell < max{Az(z), A2(y)},

which implies that Bz + (1 — B)y € S. Thus, [~ (Bz + (1 — B)y) is well defined.

Throughout this section, all differentiability means Fréchet differentiability. If F' :
H — H is (twice) differentiable at z € H, we denote by F'(x) (F”(x)) the first-order
F-derivative (the second-order F-derivative) of F' at z. In addition, we use C"(J) and
C>(J) to denote the set of n times and infinite times continuously differentiable real
functions on .J, respectively. When f € C*(.J), we denote by fI! the function on J x J
defined by

f)—f)
f[l]()\, ILL) — { pw—" BLGf )\ % 22

A s (2.45)
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and when f € C?(J), denote by f? the function on J x J x J defined by

W(rs,7) = fM(r 7
f[z}(T177—27T3> = f ( . j_z _ 7]; ( - 3) (246)

if 71,7, 73 are distinct, and for other values of 71, 72, 75, 1 is defined by continuity; e.g.,

f(m) = fm) = () —11) N Y
(7_3_7_1)2 ) f (17 1 1) 2f ( 1)-

f[Q}(Tla T1, 7—3) =

For a linear operator £ from H into H, we write £ > 0 (respectively, £ > 0) to mean
that £ is positive semidefinite (respectively, positive definite), i.e., (h, Lh) > 0 for any
h € H (respectively, (h, Lh) > 0 for any 0 # h € H).

Lemma 2.5. Let B:= {z € (e)* | ||z|| < 1}. Then, for any given u € (€)= with ||ul] =1
and 0, \ € R, the following results hold.

(@) 04+ Xu,z) >0 for any z € B if and only if 0 > |)|.
(b) 0 —||\2]|> > (0 — M) (u, 2)? for any z € B if and only if 6 — \* > 0.

Proof. (a) Suppose that 6 + A(u,z) > 0 for any z € B. If A = 0, then 6 > || clearly
holds. If A # 0, take z = —sign(\)u. Since |[u|| = 1, we have z € B, and consequently,
0 + Au, z) > 0 reduces to 8 — |\| > 0. Conversely, if § > |A|, then using the Cauchy-
Schwartz Inequality yields 6 + A(u, z) > 0 for any z € B.

(b) Suppose that 6—||Az||? > (0—\?){u, z)? for any z € B. Then, we must have —\? > 0.
If not, for those z € B with ||z|| = 1 but (u, z) # ||ul|||z||, it holds that

(0 = X*)(u, 2)* > (0 = M) [[ul*[|2]* = 0 — | A=]?,

which contradicts the given assumption. Conversely, if § — A2 > 0, the Cauchy-Schwartz
inequality implies that (0 — A\?)(u, 2)?> < 0 — ||A\z|* for any z € B. [

Lemma 2.6. For any given a,b,c € R and v = x. + xpe with x. # 0, the inequality

a [|[hell? = (he,Te)?] + b[ho + (Te, he)]” + c[ho — (T, he)]* > 0 (2.47)

holds for all h = h. + hoe € H if and only if a > 0, b > 0 and ¢ > 0.

Proof. Suppose that (2.47) holds for all h = h, + hoe € H. By letting h, = Ze, hg = 1
and h, = —T,, ho = 1, respectively, we get b > ¢0 and ¢ > 0 from (2.47). If a > 0 does

not hold, then by taking h, = /%< Zeo with (z,,7.) = 0 and hy = 1, (2.47) gives a

lal |zl

contradiction —1 > 0. Conversely, if a > 0, b > 0 and ¢ > 0, then (2.47) clearly holds for
alhe H. O
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Lemma 2.7. Let f € C*(J) and u, € (e)* with |lu.|| = 1. For any h = h. + hge € H,
define

hO - <u67 he> L hO + <u6’ h€> 2
—\/5 , Ho(h) = —\/5 \/Hh 12 -

Then, for any given a,d € IR and A\, Ay € J, the following inequality
4f”(/\1)f”(/\2)u1(h)2u2(h) + 2(a — d) f"(A2)pa(h)* u()?

+2(a+d) f"(M)m 2+ (a® — @) u(h)*
—2[(a —d) p1(h) + (a + d) Q(h)]2 u(h)> >0 (2.48)

pa(h) = (te; e)?.

holds for all h = h. + hoe € H if and only if
a>—d*>>0, f"(\)(a—d) > (a+d)?and f'(\)(a+d) > (a—d)> (2.49)

Proof. Suppose that (2.48) holds for all h = h, + hge € H. Taking hy = 0 and h, # 0
with (he,ue) = 0, we have pi(h) = 0, ua(h) = 0 and u(h) = ||he|| > 0, and then (2.48)
gives a? — d*> > 0. Taking h, # 0 such that |(ue, he)| < ||| and hg = (ue, he) # 0, we
have 1(h) = 0, pa(h) = v/2hg and p(h) > 0, and then (2.48) reduces to the following
inequality

4[(a— d)f" () — (a+ ] B+ (@ = @) (][> — 12) > 0.

This implies that (a —d) f”(\2) — (a+d)? > 0. If not, by letting hy be sufficiently close to
||hel|, the last inequality yields a contradiction. Similarly, taking h with h, # 0 satisfying
|(te, he)| < ||hell and hg = —{(ue, he), we get f”(A1)(a+ d) > (a — d)? from (2.48).

Next, suppose that (2.49) holds. Then, the inequalities f”(A\2)(a — d) > (a + d)* and
f"(M)(a+d) > (a — d)? imply that the left-hand side of (2.48) is greater than

4f" () "N (h)*pa(h)? = A(a® — d)pa (W) pa () p(h)? + (a® — @) p(h)?,

which is obviously nonnegative if p;(h)uz(h) < 0. Now assume that py(h)ua(h) > 0. If
a’? — d?> = 0, then the last expression is clearly nonnegative, and if > — d* > 0, then the
last two inequalities in (2.49) imply that f”(A)f”(A2) > (a® — d?) > 0, and therefore,

Af" () ' (Ao)pn (R)*pa(R)? — 4(a® — &) pa () pa(R)p(h)* + (a® — @) u(R)*
> 4fa? = @y (s ()? — Ala? — By (Wa(h(h)? + (a2 — &) (k)"
= (0 — ) (2 (R)pa(h) — p(h)*]* > 0.

Thus, we prove that inequality (2.48) holds. The proof is complete. [

To proceed, we introduce the regularization of a locally integrable real function. Let
@ be a real function of class C* with the following properties: ¢ > 0, ¢ is even, the
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support supp ¢ = [—1,1], and f]Rgo t)dt = 1. For each ¢ > 0, let ¢.(t) = 6@(5). Then,
supp ¢. = [—¢,¢] and ¢. has all the properties of ¢ listed above. If f is a locally
integrable real function, we define its regularization of order ¢ as the function

_ / (s — Do ()t = / F(s — et)o(t)dt. (2.50)

Note that f. is a C* function for each € > 0, and lim._, f.(x) = f(z) if f is continuous.

Lemma 2.8. For any given f : J — IR with J open, let [~ : S — H be defined by (1.8).
(a) ™ is continuous on S if and only if f is continuous on J.

(b) ™ is (continuously) differentiable on S if and only if f is (continuously) differen-
tiable on J. Also, when f is differentiable on J, for any r = x, + xoe € S and
v = v, + vge € H,

‘ f'(xo)v if z, = 0;
(f"Y(2)v =< (bi(x) — ao(2))(Te, ve)Te + c1(2)007Te (2.51)
+ag(z)ve + by (z)vge + ¢1(x)(Te, ve)e  if z. # 0,

where

o) = 10— S
Mole) = (@)
FOu(2) + (@)

b1<l‘> = 9 >

['Qa(2) = f'(M(x))
5 .

cx) =

(c) If f is differentiable on J, then for any given x € S and all v € H,
(f) (@)e= (f)(z) and (e, (f7) (x)v) = (v, (f)*(2)).
(d) If f" is nonnegative (respectively, positive) on J, then for each x € S,

(f")(x) >0 (respectively, (f )(z) > 0).

Proof. (a) Suppose that f~ is continuous. Let Q be the set composed of those z = te
with ¢t € J. Clearly, Q C S, and f~ is continuous on €. Noting that " (z) = f(t)e for
any x € (2, it follows that f is continuous on J. Conversely, if f is continuous on .J, then
7 is continuous at any x = z. + zpe € S with z, # 0 since \;(z) and w;(x) for i = 1,2
are continuous at such points. Next, let © = x. + zge be an arbitrary element from S
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with z. = 0, and we prove that f~° is continuous at z. Indeed, for any z = 2z, + zpe € S
sufficiently close to z, it is not hard to verify that

vy e < H02E) = Sl | W) = fao)l | 1 Galz) = ()
15 ()~ 1 () < LOED Tl TED = Jll . .

Since f is continuous on J, and A;(2), A2(2) — xo as z — z, it follows that

f(A(2)) = f(zo) and f(A2(2)) — f(zo) as z — x.

The last two equations imply that f is continuous at .

(b) When f™ is (continuously) differentiable, using the similar arguments as in part(a)
can show that f is (continuously) differentiable. Next, assume that f is differentiable.
Fix any © = x. + zpe € S. We first consider the case where z. # 0. Since \;(x) for
i = 1,2 and pi= are continuously differentiable at such z, it follows that f (A\i(x)) and
u;(z) are differentiable and continuously differentiable, respectively, at x. Then, f™ is
differentiable at such z by the definition of ™. Also, an elementary computation shows

that

/ o i(xevv — <U7€>€> _ . i<x6>v6>
[)‘l<x>] U= <U, €> + (_1) eru = o + ( 1) erH ) (252)
Te T v—(ve)e  (ze,v— (v,€)e)z, Ve (T, Ve) e 553
(1) = B el s
for any v = v, + vpe € H, and consequently,
PO = FOua) |+ (-prdietid )
/ 1 il Ve <xeyve>$e:|
i - - —1 — .
o = 300 [ S
Together with the definition of f™°, we calculate that (f)'(z)v is equal to
f' (M) [UO _ <l‘eave>] (e— Le ) _ S () { Ve <xevve>xe]
2 [EA [EA 2 el [lzel®
['(a(2)) l <xe,ve>} ( . ) F (o)) [ v <xe,ve>xe]
I S 2 I N 17 A T PR PA

= bi(z)voe + c1(2) (Te, ve) € + €1 (2) 00T + b1 (2)(Te, Ve) T

+aop()ve — ao(x)(Te, ve) Te,

where Ao(z) — A(x) = 2||z.|| is used for the last equality. Thus, we obtain (2.51) for
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x. # 0. We next consider the case where . = 0. Under this case, for any v = v.+vpe € H,

soc

e to) = [ (2)

S (o + vo — [[ve])

— (e_@e)_,_f(x0+“0+||ve”)

(e +Te) — f(xo)e

2 2
_ Lo)wo = el ST (o) (wo + [lvell)
2 2
+f <x0)(vg+ HUGH)EE N f (1'0)(?);— HUGH)UE —{—O(HUH)

= f'(wo)(voe + [|ve[[Te) + o([|v]]),

where 7, = ﬁ if v, # 0, and otherwise ¥, is an arbitrary unit vector from (e)*. Hence,
e
socC

£ (@ +v) = £ (@) = f'(zo)v]| = o]|v]])-
This shows that f is differentiable at such z with (f~)(z)v = f/(xo)v.

Assume that f is continuously differentiable. From (2.51), it is easy to see that (f)'(x)
is continuous at every x with x, # 0. We next argue that (f* )'(x) is continuous at every
x with z. = 0. Fix any = = zge with z¢ € J. For any z = z. + zpe with z, # 0, we have

1) (=)o = () ()]

< [ba(2) = ao(2)|vell + [br(2) = f (o) w0l (2.54)
+lao(z) = f'(wo) llvell + lea(2)[(Jvo] + [lvell)-

Since f is continuously differentiable on J and Ao(2) — xo, A\1(2) — 2o as z — x, we
have
ao(z) = f'(xo), bi(2) = f'(x0) and c¢1(z) — 0.
Together with equation (2.54), we obtain that (f™°)'(2) — (f)(x) as z — z.
(¢) The result is direct by the definition of f° and a simple computation from (2.51).

(d) Suppose that f'(t) > 0 for all t € J. Fix any ¢ = z. + xpe € S. If 2. = 0, the
result is direct. It remains to consider the case x. # 0. Since f'(t) > 0 for all t € J,
we have by(x) > 0, by(z) — c1(z) = f'(M(x)) > 0, bi(z) + c1(z) = f'(A2(x)) > 0 and
aop(z) > 0. From part(b) and the definitions of by(x) and ¢;(x), it follows that for any
h = he + ho@ c H,

(h, (F7) (2)h) = (bi(@) — ag(2)) @e, he)® + 2c1(2) ho(Te, he) + bi(@)hg + ao(@)[|he|*
= ag(x) [[|he]l® = (Te, he)’] + 5 (01(2) = e1(2) [ho — (T, )]

43 (1) + (@) [ho + (T, )] 2 0.

N | —

This implies that the operator (f°)'(x) is positive semidefinite. Particularly, if f/(£) > 0
for all t € J, we have that (h, (f ) (z)h) > 0 for all h # 0. The proof is complete. [
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Lemma 2.8(d) shows that the differential operator (f°)'(x) corresponding to a dif-
ferentiable nondecreasing f is positive semidefinite. Therefore, the differential operator
(f7)(x) associated with a differentiable SOC-monotone function is also positive semidef-
inite.

Proposition 2.19. Assume that f € C'(J) with J being an open interval in R. Then,
f is SOC-monotone if and only if (f°°)(x)h € K for any x € S and h € K.
Proof. If f is SOC-monotone, then for any x € S, h € K and t > 0, we have

soc

T (x+th) — 7 (2) = 0,

which, by the continuous differentiability of f*° and the closedness of K, implies that
(f7) (@)h = 0.

Conversely, for any z,y € S with x =, vy, from the given assumption we have that

£ ) — S () = / (Y (@ 4tz — y))(x — y)dt € K.

This shows that f~ (z) =, f (y), i.e., f is SOC-monotone. The proof is complete.
U

Proposition 2.19 shows that the differential operator (f)'(z) associated with a dif-
ferentiable SOC-monotone function f leaves K invariant. If, in addition, the linear
operator (f°)(x) is bijective, then (f°)'(x) belongs to the automorphism group of K.
Such linear operators are important to study the structure of the cone K (see [62]).

Proposition 2.20. Assume that f € C'(J) with J being an open interval in R. If f is
SOC-monotone, then

(a) [ (z) € K for anyx € S;
(b) £ is a monotone function, that is, (f* (z) — f (y),x —y) >0 for any z,y € S.

Proof. Part(a) is direct by using Proposition 2.19 with A = e and Lemma 2.8(c). By
part(a), f'(7) > 0 for all 7 € J. Together with Lemma 2.8(d), (f*)(z) > 0 for any
x € S. Applying the integral mean-value theorem, it then follows that

(f " (x) = ),z —y) :/0 (x—y, (") (y+t(z —y)(z—y))dt > 0.

This proves the desired result of part (b). The proof is complete. [

Note that the converse of Proposition 2.20(a) is not correct. For example, for the
function f(t) = —t=2 (¢t > 0), it is clear that f~ () € K for any = € intK, but it
is not SOC-monotone by Example 2.13(b). The following proposition provides another
sufficient and necessary characterization for differentiable SOC-monotone functions.
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Proposition 2.21. Let f € CY(J) with J being an open interval in R. Then, f is
SOC-monotone if and only if

(12)=f (1)
f[l](TlaTl) f[l](TlaTz) _ f(m1) fTT
Uy, 1) (1) |~ | L)=f) f?(ﬁ) =0, Vrn,meJ (255

T1—T2

Proof. The equality is direct by the definition of fI!! given as in (2.45). It remains
to prove that f is SOC-monotone if and only if the inequality in (2.55) holds for any
71,72 € J. Assume that f is SOC-monotone. By Proposition 2.19, (f*) (z)h € K for
any x € S and h € K. Fix any x = x. + zge € S. It suffices to consider the case where

soc

z. # 0. Since (f)(z)h € K for any h € K, we particularly have (f™) (z)(z +¢€) € K
for any z € B, where B is the set defined in Lemma 2.5. From Lemma 2.8(b), it follows
that

(f7) (@)(z +e) = [(bi(x) — ao(2)) (Te, 2) + c1(2)] Te + ao(x)z + [b1(x) + e1(2)(Te, 2)] €.
This means that (f)'(z)(z + €) € K for any z € B if and only if

bi(x) + ¢1(2)(Ze, z) > 0, (2.56)
by () + c1(2)(Te, 2)]° > [ (b1(z) = ag(x)) (Te, 2) + a1(x) | Te + ao(:ic)zH2 . (2.57)

By Lemma 2.5(a), we know that (2.56) holds for any z € B if and only if b;(z) > |¢1(2)].
Since by a simple computation the inequality in (2.57) can be simplified as

(o) — er(@)? — ao(a)? |21 2 [b1(2)? — er(@)? — aole)?] {27,
applying Lemma 2.5(b) yields that (2.57) holds for any z € B if and only if
bi(2)? — c1(z)? — ap(x)* > 0.
This shows that (f°)'(z)(z + €) € K for any z € B if and only if
bi(z) > |ci(z)] and by(x)* — ci(x)? — ag(x)* > 0. (2.58)

The first condition in (2.58) is equivalent to by(z) > 0, by(z) — c1(x) > 0 and by () +
c1(x) > 0, which, by the expressions of b;(z) and ¢;(z) and the arbitrariness of z, is
equivalent to f’(7) > 0 for all 7 € J; whereas the second condition in (2.58) is equivalent
to

f(Tz)—f(

2
-
1)} >0, Vm,med
T2 — T

P - |

The two sides show that the inequality in (2.55) holds for all 7, € J.

Conversely, if the inequality in (2.55) holds for all 71, 75 € J, then from the arguments
above we have (f*°)(z)(z +e) € K for any x = x, + xpe € S and z € B. This implies



2.3. FURTHER CHARACTERIZATIONS IN HILBERT SPACE 85

that (f™°) (z)h € K for any z € S and h € K. By Proposition 2.19, f is SOC-monotone.
]

Propositions 2.19 and 2.21 provide the characterizations for continuously differentiable
SOC-monotone functions. When f does not belong to C*(J), one may check the SOC-
monotonicity of f by combining the following proposition with Propositions 2.19 and
2.21.

Proposition 2.22. Let f : J — R be a continuous function on the open interval J, and
fe be its reqularization defined by (2.50). Then, f is SOC-monotone if and only if f. is
SOC-monotone on J. for every sufficiently small € > 0, where J. := (a 4+ ¢,b — €) for
J = (a,b).

Proof. Throughout the proof, for every sufficiently small ¢ > 0, we let S. be the set of all
x € H whose spectral values A\ (z), Ao(z) belong to J.. Assume that f. is SOC-monotone
on J, for every sufficiently small € > 0. Let x, y be arbitrary vectors from S with z =, v.
Then, for any sufficiently small ¢ > 0, we have x +¢ce, y+ce € S; and z +ee =, y+ce.

Using the SOC-monotonicity of f. on J. yields that f2°(z + ce) =, fF°(y + ce).
Taking the limit € — 0 and using the convergence of f5°°(z) — f~ (x) and the continuity
of f° on S implied by Lemma 2.8(a), we readily obtain that " (x) =, f (y). This
shows that f is SOC-monotone.

Now assume that f is SOC-monotone. Let ¢ > 0 be an arbitrary sufficiently small
real number. Fix any z,y € S. with >, y. Then, for all t € [-1,1], we have
x —tee,y —tee € S and x — tee =, y — tee. Therefore, [ (z —tee) =, [ (y — tee),
which is equivalent to

fa—te)+ fRo—te) [l —te) + [ —te)
2 2
Hf(Al—tE)—f()\z—ﬁf)_ Sl —te) = fpe —te)

5 Te B Ye

Together with the definition of f., it then follows that

Je) + fe(Qe)  fe(pa) + fe(pa)

_ / {f(/\zl —tﬁ);f(/b —tg) Sl —t€);rf(ﬂ2 —tE)} H(1)dt
> /HfA1—5 fa—e)_ z f(m—ﬁ);f(/m—f‘?)ye S(1)dt
> H/[ fu—¢) - f()\2—5) z f(#l—ff);f(m—g)ye} (p(t)dtH

fe )\1) fa()‘2>x f( ) fs(“?)

5 e 5 Ye
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By the definition of f°°, this shows that f2°°(x) = . f2*°(y), i.e., f. is SOC-monotone.
]

From Proposition 2.21 and [22, Theorem V. 3.4], f € C'(J) is SOC-monotone if and
only if it is matrix monotone of order 2. When the continuous f is not in the class C(.J),
the result also holds due to Proposition 2.22 and the fact that f is matrix monotone of
order n if and only if f. is matrix monotone of order n. Thus, we have the following main
result.

Proposition 2.23. The set of continuous SOC-monotone functions on the open interval
J coincides with that of continuous matriz monotone functions of order 2 on J.

Remark 2.2. Combining Proposition 2.23 with Léwner’s Theorem [104] shows that if
f:J — IR is a continuous SOC-monotone function on the open interval J, then f €

).

We now move to the characterizations of SOC-convex functions, and shows that the
continuous f is SOC-convex if and only if it is matrix convex of order 2. First, for the
first-order differentiable SOC-convex functions, we have the following characterizations.

Proposition 2.24. Assume that f € C'(J) with J being an open interval in IR. Then,
the following hold.
(a) f is SOC-convex if and only if for any z,y € S,

Foy) = @) = () (@)Y — @) = 0.
(b) If f is SOC-convex, then (f')*°° is a monotone function on S.

Proof. (a) By following the arguments as in [21, Proposition B.3(a)], the proof can be
done easily. We omit the details.

(b) From part(a), it follows that for any z,y € S,
Fo@) =) - W —y) oz 0
Fow) = @) = () @)y —2) = O

Adding the last two inequalities, we immediately obtain that

(@) = (V@] (y—2) = 0.
Using the self-duality of K and Lemma 2.8(c) then yields
0< (e, [(f) ) = (f)Y@)] (y—2)) = (y— 2, (f)*(y) = (f)* ().
This shows that (f")*° is monotone. The proof is complete. [

To provide sufficient and necessary characterizations for twice differentiable SOC-
convex functions, we need the following lemma that offers the second-order differential
Of fSOC'
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SOC

Lemma 2.9. For any given f : J — IR with J open, let f : .S — H be defined by (1.8).

(a) £ is twice (continuously) differentiable on S if and only if f is twice (continuously)
differentiable on J. Furthermore, when f is twice differentiable on J, for any given
T =T, + x0€ €5 and u = u, + upe,v = v, + voe € H, we have that
(F7)" (@) (u,v) = f"(@o)uovoe + f"(wo) (uove + voue) + (o) (te, ve)e

if x. = 0; and otherwise

(f)" () (u, 0) = (ba() = ar(2))uo(Te, ve)Te + (c2(w) — 3d(2)) (T te) (Te, ve) Te
+d(l’) |:<ueu Ue>fe + <feu Ue>ue + <Eeu ue)”e} + CQ(I)UOUOEe
+(ba(z) — a1 () (Te, ue)voTe + a1 () (vote + uove)

+bs () ugvoe + c2(x) [vo(Te, te) + uo(Te, ve) | €

a1 (2) (Ue, ve)e + (ba(x) — a1 (2))(Te, e) (Te, ve)e, (2.59)
where
ea(2) = [ (Aa(2)) ; f”(A1<:c>>7 () = f”()\z(:z:));r f”()\l(x))7
ar(z) = L Q@) Z @) oy bil@) — aole)

Ao(x) — A () 7

[EA
(b) If f is twice differentiable on J, then for any given x € S and u,v € H,

) @) uv) = ()" (@), w),
(w, (f7) @) (w,0)) = (o, (f7)"(@)(u, ).

Proof. (a) The first part is direct by the given conditions and Lemma 2.8(b), and we
only need to derive the differential formula. Fix any u = u, + upe, v = v, + vpe € H. We
first consider the case where x. = 0. Without loss of generality, assume that u. # 0. For
any sufficiently small ¢ > 0, using Lemma 2.8(b) and x + tu = (zo + tug) + tu., we have
that

(f") (2 + tu)v = [b(z + tu) — ag(x + tw)] (Ue, ve)Te + c1(x + tu)vol
+ap(x + tu)ve + by (x + tu)voe + c1(x + tuw)(Te, ve)e.

In addition, from Lemma 2.8(b), we also have that () (x)v = f'(x¢)vee + f'(x0)ve.
Using the definition of by (x) and ag(z), and the differentiability of f’ on J, it follows that

b t —f
lim 1(z + tu)vge — f'(x0)voe -
t—0 t

/
P_{% ap(x + tu)vte 1 (xo)ve P (zo)uove,
bi(z + tu) — ap(x + tu)
t—0 t -
c1(z + tu)
t—0 t

0,

= " (o) |uell



88 CHAPTER 2. SOC-CONVEXITY AND SOC-MONOTONITY

Using the above four limits, it is not hard to obtain that

SOC 7/ T (f800>/(x + tu)v - (fsoc),<x>v
()" @)(u,0) = lim t

t—0

= f"(wo)uovoe + f"(20) (uove + voue) + f"(0) (e, ve)e-

We next consider the case where z, # 0. From Lemma 2.8(b), it follows that

(" YV(@)v = (by(x) — ag(x)) (Te, ve) Te + c1(2) 00T
+ao(z)ve + by (x)voe + ¢1(x) (Te, ve) €,

which in turn implies that

(S (@) (w,v) = [(ba(2) = ao(@)) (Fe, ve) Tel u + [er(z)voTe] u
+ [ao(z)ve + by (z)voe]) u + [c1(x) (Te, ve) €] u. (2.60)

By the expressions of ay(z), by (z) and ¢;(z) and equations (2.52)-(2.53), we calculate that
f"(a(@)) [uo + (Te ue)] | f1(M(2)) [0 = (Te, e)]

(a(a)u = : :
= b ( )UO + C2( )<$e ue>

(c1(z)u = ca@)uo + b2( ) (Te, ue),

(ao(a:))’u _ f()\2(<); (<x1< >>u0+ bl(x)H;eﬁlo(JI) <fe7ue>

= @@+ d@)T ),
(Terve))u = <1ufW“W%MQ.

[ e |

Using these equalities and noting that a;(z) = ¢1(z)/||x.||, we obtain that
[(bl (z) — ao(z)) (e, ve)fe} /u = |:(b2(l') — a1(z))uo + (e2(z) — d(2))(Z, ue>] (T, Ve)Te
Hnlo) e (e = )7

|zl [

0le) —le) B | e~

— | Ba(@) — ar(@))uo + (ea() = (@) (@e, ue) | (e, ve)T
+d(2) (te, Ve)Te — 2d(x)(Te, Ve) (Te, Ue)Te + d(2)(Te, Ve ) Ue;
[ao(:ﬁ)ve + b (x)voe] U= [al x)ug + d(x)(Te, Ue

[ x)ug + () (T, ue>} vo€;

/
[01 (f)vofe} U = [C Uo + 52 fe, Ue) | VoTe + Cl ||1U ”
e

)]
} — (T, Ue) T
)

= [ UO + b2 l‘e ue VoTe + CLl [ <xe ue>f ])
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and

[cl(:v)(fe, v€>e] w = [cz(x)uo + by(7) (7, ue>] (Te, ve)e + c1(x) <ue — ﬁii’uueﬁe : ve> e
= (@) uo(Te, ve)e + (ba(x) — a1(2)) (Te, te) (Te, ve) € + a1 () (ue, ve)e.

Adding the equalities above and using equation (2.60) yields the formula in (2.59).
(b) By the formula in part (a), a simple computation yields the desired result. [

Proposition 2.25. Assume that f € C*(J) with J being an open interval in R. Then,
the following hold.

(a) f is SOC-convex if and only if for any x € S and h € H, ()" (x)(h,h) € K.

(b) f is SOC-convex if and only if f is convex and for any 11,72 € J,

(f"(ﬁ)) (f(ﬁ) — f(n) = f'(n)(2 — 71))

2 (19 —11)?
f(n) = f(r2) = f'(m2) (11 — ™) ’
> | (2 7P | 200
(c) f is SOC-convez if and only if f is conver and for any 11,7 € J,
1)) (2.62)
f(m2) = f(m) = f'(m)(e = 7))\ [ f() = f(r2) = f'(m) (11 — 72)
- ( (12 = 1) ) ( (12 — 1) )

(d) f is SOC-convex if and only if for any 11,79 € J and s = 71, T2,

f[2](7—275a7—2) fm(’r?a 577—1) =0
fp](Tl?SaTQ) fm(TlasaTl) o .

Proof. (a) Suppose that f is SOC-convex. Since f is twice continuously differentiable
by Lemma 2.9(a), we have for any given x € S, h € H and sufficiently small ¢ > 0,

Frlatth) = f7 (@) + () (2)h + %tg(fm)”(ﬂf)(h, h) + o(t?).

Applying Proposition 2.24(a) yields that 1(f™)"(x)(h, h) 4+ o(t?)/t* =,.. 0. Taking the
limit ¢ | 0, we obtain (f)"(z)(h,h) € K. Conversely, fix any 2 € K and z,y € S.
Applying the mean-value theorem for the twice continuously differentiable (f™°(-), z) at
x, we have

W), 2) = (@) 2) +((f) (@) —2).2)

PV @+ by — 2y — 7,y — 7). 2
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for some t; € (0,1). Since x 4+ t;(y — x) € S, the given assumption implies that

) = @) = () @)y —2),2) 2 0.

This, by the arbitrariness of z in K, implies that f~ (y)— f (2)—(f" ) (z)(y—x) =,. 0.
From Proposition 2.24(a), it then follows that f is SOC-convex.

(b) By part (a), it suffices to prove that (f)"(z)(h,h) € K for any z € S and h € H if
and only if f is convex and (2.61) holds. Fix any z = x, + zpe € S. By the continuity of
(f°)"(x), we may assume that x, # 0. From Lemma 2.9(a), for any h = h, + hoe € H,

(Y @), R) = | (@) = 3d(@)) (e, he)? + 2(ba() = a1 (2)) P (T )| 7
o+ [ea(@)hE + d(@) [l |7e + [2a1(@)ho + 2d(2) (T, he) | e
o+ [262(@) o (@es he) + ba @)1 + ar (@) e |2 e
+(be(2) — a1(z))(Te, he)?e.

Therefore, (f~°)"(x)(h, h) € K if and only if the following two inequalities hold:

ba() (h(2) + (Te, he>2) + 2¢a(2) ho(Te, he) + a1 () (||he||2 — (T, he>2) >0 (2.63)
and

[ba(2) (B3 + (Te, h)?) + 26a(2)ho(Tes he) + ar () (IAell® = (e, he)?) r

> || (ca(@)h2 + d(@) | he]?) Te + 2 (bs(w) — a1 (2)) ho(Te, he) T
+ (ea(@) = 3d()) (T, he)2Te + 2 (a1 (2)ho + d(@) (e he)) e (2.64)

Observe that the left-hand side of (2.63) can be rewritten as

" Qa(@))(ho + (T, he))” | f"(a(@))(ho = (Te, he))®

2 9 +a1(x)(||he||2_ <fe7he>2)'

From Lemma 2.6, it then follows that (2.63) holds for all A = h, + hoe € H if and only if
f"A(x)) >0, f"(Aa(z)) >0 and ay(x) > 0. (2.65)

In addition, by the definition of by(x), co(z) and a;(x), the left-hand side of (2.64) equals

POl ) + 5 On(e)m (B + ax(@u(h)’] (2.66)

where 1 (h), po(h) and pu(h) are defined as in Lemma 2.7 with wu, replaced by Z.. In the
following, we use pu1, 2 and p to represent pq(h), p2(h) and u(h) respectively. Note that
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the sum of the first three terms in || - [|? on the right-hand side of (2.64) equals

1< (&) + ba(2) — a1(2)) (ho + (T, 1)) e

2
( 2(2) = ba(x) + a1 (2)) (ho — (Te, he))” Te
) ([|hel|” = (Ze, he)?) Te — 2d(2) (Te, he) T
= ”()‘2( )):u2xe (/\ ( ))N%Ee - (al(x) + d(x))/i%fe
+(ai(z) —d(x ))mxﬁ?d(w)mme+d(a:)/ﬁfe
=: E(z,h)T.,

where (p2 — p1)? = 2(%., he)? is used for the equality, while the last term is

(a1 () — d(x)) (ho = (Te, he)) he + (a1(2) + d(x)) (ho + (Te, he)) he
= V2(ai(x) = d(@)) prhe + V2 (ar(@) + d()) pohe.

Thus, we calculate that the right-hand side of (2.64) equals

B, h)? + 2 (ar () — () s + (o (x) + () o] el

+2V2E(z, h) (a1 () — d(2)] 1 (Te, he) + 2V2E(2, h) [a1(z) + d(2)] o (e, he)
— E(z,h)?+ 2[(a () — d(x)) 1 + (as (x)+d(x))u2]2{,u2+M}
Dias + (ar(2) + d(z))po]
= [Blh) + (o — ) [(aa o) = d@))s + (an(a) + ()] |

2] (r(e) — (@) jur + (a1(2) + d()) m] "2, (2.67)

+2E(x, h)(

l—|

where the expressions of py, o and g are used for the first equality. Now substituting
the expression of F(z,h) into (2.67) yields that the right-hand side of (2.67) equals

2

(£ Oal@)id = £ + d] +2] (@r(x) = () oo + (o) + da)) o] 12
Together with equation (2.66), it follows that (2.64) is equivalent to
4f"()\1(%’)) F'a(@))pips + 2 (a1 (@) = d(2)) [ (Aa(x)) o

+2 (ar(@) + d(@)) [ (@) pip® + (ai(2)? — d(2)?) p*
—2[(a(z) = d(2)) g + (a2(2) + d(2)) pe]” 1* 2 0.

By Lemma 2.7, this inequality holds for any h = h, + hge € H if and only if
a(@)* = d(@) > 0, f"Oa(@)) (i (x) = d(@)) > (ar(x) +d(x))’,

2

f' (@) (ar(z) + d(2)) > (ar(x) — d(x))",
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which, by the expression of a;(z) and d(x), are respectively equivalent to

f2) = () = [ A2 = A1) f(A1) = f(A2) = [/(A2) (AL — Ao)

(A2 — A1)? (A2 — A1)? =0
F'(a) F2) = FO) = F(A)Ae — A1) - [F ) = F(X2) = F/(Aa) (A — Aa)]°
2 (A2 = A2 - [ (A2 = Ay)? } » (268)
f"O0) FA) = [(Re) = o)\ = Aa) {f@\z) — f) = /() (e — /\1)12
2 (A2 — Ap)? - (Ag — Ap)? ’

where Ay = A;(z) and Ay = A\a(x). Summing up the discussions above, f is SOC-convex
if and only if (2.65) and (2.68) hold. In view of the arbitrariness of z, we have that f is
SOC-convex if and only if f is convex and (2.61) holds.

(c) It suffices to prove that (2.61) is equivalent to (2.62). Clearly, (2.61) implies (2.62).
We next prove that (2.62) implies (2.61). Fixing any 7 € J, we consider g(t) : J — R
defined by

B f”(TQ)
2

[f(t) = f(72) = f'(m2)(t — 72)]?
(t—12)?

g(t) [f(r2) = f(t) = f/(&) (2 — )] —
if t # 7, and otherwise g(m2) = 0. From the proof of [69, Theorem 2.3], we know
that (2.61) implies that g(¢) attains its global minimum at ¢ = 5. Consequently, (2.61)
follows.

e result is immediate by part(b) and the definition o given as in (2.46).
d) Th It i diate b b d the defini f 2 2.46 U

Propositions 2.24 and 2.25 provide the characterizations for continuously differentiable
SOC-convex functions, which extend the corresponding results of [45, Section 4]. When
f is not continuously differentiable, the following proposition shows that one may check
the SOC-convexity of f by checking that of its regularization f.. Since the proof can be
done easily by following that of Proposition 2.22, we omit the details.

Proposition 2.26. Let f : J — IR be a continuous function on the open interval J,
and f. be its reqularization defined by (2.50). Then, f is SOC-convex if and only if f.
is SOC-conver on J. for every sufficiently small € > 0, where J. := (a + €,b — €) for
J = (a,b).

By [69, Theorem 2.3] and Proposition 2.26, we can obtain the below consequence
immediately.

Proposition 2.27. The set of continuous SOC-convez functions on the open interval J
coincides with that of continuous matriz convez functions of order 2 on J.
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Remark 2.3. Combining Proposition 2.27 with Kraus’ theorem [93] shows that if f :
J — R is a continuous SOC-convex function, then f € C*(J).

We establish another sufficient and necessary characterization for twice continuously
differentiable SOC-convex functions f by the differential operator (™).

Proposition 2.28. Let f € C*(J) with J being an open interval in R. Then, f is
SOC-convez if and only if

vy = (f)(@) - (7)) 20, VryeS (2.69)

Proof. Suppose that f is SOC-convex. Fix any z,y € S with z =, vy, and h € H.
Since ™ is twice continuously differentiable by Lemma 2.9(a), applying the mean-value
theorem for the twice continuously differentiable (h, (f™°)'(-)h) at y, we have

(Y @) = (Y)Y = (b () (y + ta(e — ) (z — 5, b))
= (z—y, (f")"(y+ti(z—y)(h,h))  (2.70)

for some t; € (0,1), where Lemma 2.9(b) is used for the second equality. Noting that
y+ti(r—y) €S and fis SOC-convex, from Proposition 2.25(a) we have

(F)'(y + ti(x — v))(h, h) € K.

This, together with z—y € K, yields that (z —y, (f™)"(z + ti(z — y))(h, h)) > 0. Then,
from (2.70) and the arbitrariness of h, we have (f*)'(x) — (" )'(y) > 0.

Conversely, assume that the implication in (2.69) holds for any z,y € S. For any fixed
u € K, clearly, x + tu =, x for all ¢t > 0. Consequently, for any h € H, we have

Kn
(h [(f7) (@ 4 tu) — (F77) (2)] h) > 0.
Note that (f™)(x) is continuously differentiable. The last inequality implies that
0< (h (f7) (@) (u, b)) = (u,(f )" (x)(h, h)).

By the self-duality of K and the arbitrariness of u in K, this means that ()" (x)(h, h) €
K. Together with Proposition 2.25(a), it follows that f is SOC-convex. [

Example 2.13. The following functions are SOC-monotone.
(a) The function f(t) =t" is SOC-monotone on [0,00) if and only if 0 < r < 1.
(b) The function f(t) = —t=" is SOC-monotone on (0,00) if and only if 0 < r < 1.

(c) The function f(t) = In(t) is SOC-monotone on (0, 00).
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(d) The function f(t) = — cot(t) is SOC-monotone on (0, 7).

(e) The function f(t) = S5 with ¢ > 0 is SOC-monotone on (—oo,c) and (c,0).

(f) The function f(t) = -

- with ¢ > 0 is SOC-monotone on (—oo,c) and (c, 00).

Example 2.14. The following functions are SOC-convex.

(a) The function f(t) = t" with r > 0 is SOC-convez on [0, 00) if and only if r € [1,2].
Particularly, f(t) =t* is SOC-conver on R.

(b) The function f(t) =t~ with r > 0 is SOC-convezx on (0,00) if and only if r € [0, 1].
(c) The function f(t) =t" with r > 0 is SOC-concave if and only if r € [0, 1].

(d) The entropy function f(t) =tlnt is SOC-convezr on [0,00).

(e) The logarithmic function f(t) = —Int is SOC-convex on (0, 00).

(f) The function f(t) = 7= with o > 0 is SOC-convex on (o, 00).

(8) The function f(t) = —7= with o > 0 is SOC-convex on (—o,00).

(h) The function f(t) = 1"/—1 is SOC-convez on (—1,1).

Next we illustrate the applications of the SOC-monotonicity and SOC-convexity of
certain functions in establishing some important inequalities. For example, by the SOC-
monotonicity of —t~" and ¢" with r € [0, 1], one can get the order-reversing inequality
and the Lowner-Heinz inequality, and by the SOC-monotonicity and SOC-concavity of
—t~1, one may obtain the general harmonic-arithmetic mean inequality.

Proposition 2.29. For any z,y € H and 0 < r < 1, the following inequalities hold:
@)y " ifr =, Yy 0
(b) 2" = ¥ if = Y = O

(c) [Bx=t+ (1 - ﬁ)y‘l]fl =k Br+ (1= B)y for any z,y >, 0 and B € (0,1).

From the second inequality of Proposition 2.29, we particularly have the following
result which generalizes [64, Eq.(3.9)], and is often used when analyzing the properties
of the generalized Fischer-Burmeister (FB) SOC complementarity function ¢,(z,y) =
(|z[? + |y[P)/? — (z + y). To know more about this function ¢,, please refer to [122].
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Proposition 2.30. For any x,y € H, let z(z,y) := (|z|P + |y[")/? for any p > 1. Then,

2(2,y) mpn 2] Zen @ and 2(x,y) = Y] =

The SOC-convexity can also be used to establish some matrix inequalities. From
(2.51) we see that, when H reduces to the n-dimensional Euclidean space R™, the differ-
ential operator (f°)'(x) becomes the following n x n symmetric matrix:

bi(z) c1(x)Tr
c1(2)T. ap(z)] + (bi(z) — ap(z))T 2"

where ag(x), b1 (x) and ¢;(z) are same as before, and I is an identity matrix. Thus, from
Proposition 2.28, we have the following result which is hard to get by direct calculation.

Proposition 2.31. If f € C?(J) is SOC-convex on the open interval J, then for any
z,y €S withx =, v,

bi(z) ¢ (x)T!l } o [ bi(y) o (y)z!
()T aol) + (bi(x) — an(e)TTT | = | )T o) + (aly) — ao(w))7ET

Particularly, when f(t) = t* (t € R), this conclusion reduces to the following implication

=T T

To T Yo Y
- " —_— € - € .
T oxn Y {fe fﬁol} [ge yol}

As mentioned earlier, with certain SOC-monotone and SOC-convex functions, one can

easily establish some determinant inequalities. Below is a stronger version of Proposition
1.8(b).

Proposition 2.32. For any z,y € K and any real number p > 1, it holds that

Ydet(z +y) > 20~ <{/det +{/det(y)>.

Proof. In light of Example 2.12(b), we see that f(t) = t'/? is SOC-concave on [0, co),
which says

2 2
This together with the fact that det(x) > det(y) whenever z =, y >, 0 implies

2‘§det(m)=det<§/%) s o (VI , Q) e

<x+y)1/p _ xl/p+y1/p
—Kn .

4 Y

where det(z + y) > det(x) + det(y) for z,y € K is used for the last inequality. In
addition, by the definition of det(x), it is clear that det ( = {/det(z). Thus, from the
last equation, we obtain the desired inequality. The proof is complete 0]
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Comparing Example 2.13 with Example 2.14, we observe that there are some rela-
tions between SOC-monotone and SOC-convex functions. For example, f(t) = tInt and
f(t) = —Int are SOC-convex on (0,00), and its derivative functions are SOC-monotone
on (0,00). This is similar to the case for matrix-convex and matrix-monotone func-
tions. However, it is worthwhile to point out that they can not inherit all relations
between matrix-convex and matrix-monotone functions, since the class of continuous
SOC-monotone (SOC-convex) functions coincides with the class of continuous matrix-
monotone (matrix-convex) functions of order 2 only, and there exist gaps between matrix-
monotone (matrix-convex) functions of different orders (see [70, 114]). Then, a question
occurs to us: which relations for matrix-convex and matrix-monotone functions still hold
for SOC-convex and SOC-monotone functions.

Lemma 2.10. Assume that f : J — IR is three times differentiable on the open interval
J. Then, f is a non-constant SOC-monotone function if and only if f' is strictly positive
and (f)7V% is concave.

Proof. “<”. Clearly, f is a non-constant function. Also, by [69, Proposition 2.2], we

have
J) =) o oS Fm), Vb e

to — 11
This, by the strict positivity of f" and Proposition 2.21, shows that f is SOC-monotone.
“=". The result is direct by [59, Theorem III] and Proposition 2.23. [

Using Lemma 2.10, we may verify that SOC-monotone and SOC-convex functions
inherit the following relation of matrix-monotone and matrix-convex functions.

Proposition 2.33. If f : J — IR is a continuous SOC-monotone function, then the
function g(t) = fj f(s)ds with some a € J is SOC-convex.

Proof. It suffices to consider the case where f is a non-constant SOC-monotone function.
Due to Proposition 2.22, we may assume f € C3(J). By Lemma 2.10, f'(t) > 0 for all
t € J and (f')~"2 is concave. Since g € C*(J) and ¢"(t) = f'(t) > 0 for all t € J, in
order to prove that g is SOC-convex, we only need to argue
2
gy _ 9] THOVRIONVEO)s

> <~ >
48 - 36 48 - 36

vt e J. (2.71)

Since (f')~'/2 is concave, its second-order derivative is nonpositive. From this, we have
1
32
which implies the inequality (2.71). The proof is complete. [

(0 < P OO0, vies

Similar to matrix-monotone and matrix-convex functions, the converse of Proposition

2.33 does not hold. For example, f(t) = f—it on (—1,1) is SOC-convex by Example
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2.14(g), but its derivative ¢'(t) = ﬁ — 1 is not SOC-monotone by Proposition 2.21.
As a consequence of Proposition 2.33 and Proposition 2.28, we have the following result.

Proposition 2.34. Let f € C*(J). If f' is SOC-monotone, then f is SOC-convex. This
is equivalent to saying that for any x,y € S with x =, y,

(@) Zen (@) = (F ) (@) = (f ) () = 0.

From [22, Theorem V. 2.5], we know that a continuous function f mapping [0, c0)
into itself is matrix-monotone if and only if it is matrix-concave. However, for such f we
cannot prove that f is SOC-concave when it is SOC-monotone, but f is SOC-concave
under a little stronger condition than SOC-monotonicity, i.e., the matrix-monotonicity
of order 4.

Proposition 2.35. Let f : [0,00) — [0,00) be continuous. If f is matriz-monotone of
order 4, then f is SOC-concave.

Proof. By [108, Theorem 2.1], if f is continuous and matrix-monotone of order 2n, then
f is matrix-concave of order n. This together with Proposition 2.27 gives the result. [

Note that Proposition 2.35 verifies Conjecture 2.2 partially and also can be viewed
as the converse of Proposition 2.8. From [22], we know that the functions in Example
2.13(a)-(c) are all matrix-monotone, and so they are SOC-concave by Proposition 2.35(b).
In addition, using Proposition 2.35(b) and noting that —t=! (¢ > 0) is SOC-monotone
and SOC-concave on (0,00), we readily have the following consequence.

Proposition 2.36. Let f : (0,00) — (0,00) be continuous. If f is matriz-monotone of
order 4, then the function g(t) = ﬁ is SOC-conver.

Proposition 2.37. Let f be a continuous real function on the interval [0,«). If f is
SOC-convez, then the indefinite integral of @ 1s also SOC-conver.

Proof. The result follows directly by [115, Proposition 2.7] and Proposition 2.27. [

For a continuous real function f on the interval [0, «), [22, Theorem V. 2.9] states
that the following two conditions are equivalent:

(i) f is matrix-convex and f(0) < 0;

(ii) The function ¢(t) = @ is matrix-monotone on (0, a).

At the end of this section, let us look back to Conjecture 2.1. By looking into Example
2.13(a)-(c) and (f)-(g), we find that these functions are continuous, nondecreasing and
concave. Then, one naturally asks whether such functions are SOC-monotone or not,
which recalls Conjecture 2.1(b). The following counterexample shows that Conjecture
2.1(b) does not hold generally. To the contrast, Conjecture 2.1(a) remains open.
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—tlnt+t if te(0,1),

Example 2.15. Let f : (0,00) — R be f(t) = { ] if 1€ 1, +00)

the function f(t) is not SOC-monotone.

Then,

Solution. This function is continuously differentiable, nondecreasing and concave on
(0, +00). However, letting t; = 0.1 and ¢t = 3,

F(t)f'(t2) = (MY = - (_tl h;fl_zl — 1)2 = —0.0533.

By Proposition 2.21, we know that the function f is not SOC-monotone. W



Chapter 3

Algorithmic Applications

In this Chapter, we will see details about how the characterizations established in Chap-
ter 2 be applied in real algorithms. In particular, the SOC-convexity are often involved
in the solution methods of convex SOCPs; for example, the proximal-like methods. We
present three types of proximal-like algorithms, and refer the readers to [116, 117, 119]
for their numerical performance.

3.1 Proximal-like algorithm for SOCCP

In this section, we focus on the convex second-order cone program (CSOCP) whose
mathematical format is

min  f(¢)
st. AC+b>.. 0, (3.1)

where A is an n x m matrix with n > m, b € R", f : R™ — (—o00, 00| is a closed proper
convex function. Here K" is the second-order cone given as in (1.1), i.e.,

Kr = {(z1,22) € R x R [ ||za]| < a1},

and z =, 0 means x € K". Note that a function is closed if and only if it is lower
semi-continuous (l.s.c. for short) and a function is proper if f({) < oo for at least
one ¢ € R™ and f(¢) > —oo for all ¢ € R™. The CSOCP, as an extension of the
standard second-order cone programming (SOCP), has applications in a broad range
of fields including engineering, control, data science, finance, robust optimization, and
combinatorial optimization; see [1, 28, 46, 49, 80, 99, 103, 105, 136] and references therein.

Recently, the SOCP has received much attention in optimization, particularly in the
context of solutions methods. Note that the CSOCP is a special class of convex programs,
and therefore it can be solved via general convex programming methods. One of these
methods is the proximal point algorithm for minimizing a convex function f(¢) defined

99
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on IR which replaces the problem Cmﬂi)\n f(¢) by a sequence of minimization problems
e m

with strictly convex objectives, generating a sequence {¢*} defined by

¢t = avguing g { 1(6) + 5~ ¢} 32)

where {p} is a sequence of positive numbers and || - || denotes the Euclidean norm in IR™.
The method was due to Martinet [106] who introduced the above proximal minimization
problem based on the Moreau proximal approximation [111] of f. The proximal point
algorithm was then further developed and studied by Rockafellar [132, 133]. Later, several
researchers [35, 40, 60, 61, 144] proposed and investigated nonquadratic proximal point
algorithm for the convex programming with nonnegative constraints, by replacing the
quadratic distance in (3.2) with other distance-like functions. Among others, Censor and
Zenios [35] replaced the method (3.2) by a method of the form

¢* = argming g {f<<> DG <k>} , (3.3)

where D(+,-), called D-function, is a measure of distance based on a Bregman function.
Recall that, given a differentiable function ¢, it is called a Bregman function [34, 55| if it
satisfies the properties listed in Definition 3.1 below, and the induced D-function is given
as follows:

where (-, -) denotes the inner product in IR™ and V¢ denotes the gradient of ¢.

Definition 3.1. Let S C IR™ be an open set and S be its closure. The function ¢ : S — IR
is called a Bregman function with zone S if the following properties hold:

(1) ¢ is continuously differentiable on S;
(ii) o is strictly conver and continuous on S;

(iii) For each v € R, the level sets Lp(€,v) = {¢C € S : D(¢,€) <~} and Lp(¢,y) =
{£€85:D((E) <} are bounded for any € € S and ¢ € S, respectively;

(iv) If {€*} C S converges to £*, then D(€*, &%) — 0;

(v) If {¢*} and {€*} are sequences such that & — ¢ € S, {¢*} is bounded and if
D(¢*, &%) — 0, then ¢% — &*.

The Bregman proximal minimization (BPM) method described in (3.3) was further
extended by Kiwiel [90] with generalized Bregman functions, called B-functions. Com-
pared with Bregman functions, these functions are possibly nondifferentiable and infinite
on the boundary of their domain. For the detailed definition of B-functions and the
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convergence of BPM method using B-functions, please refer to [90].

Next, we present a class of distance measures on SOC and discuss its relations with
the D-function and the double-regularized Bregman distance [137]. To the end, we need
a class of functions ¢ : [0,00) — IR satisfying

(T1) ¢ is continuously differentiable on IR, ;
(T2) ¢ is strictly convex and continuous on IR ;

(T3) For each v € IR, the level sets {s € R, |d(s,t) <~} and {t € Ry |d(s,t) <~}
are bounded for any ¢t € IR, and s € IR, respectively;

(T4) If {t*} C R,, is a sequence such that limy_,, t* = 0, then for all s € R,
limy_, 400 @' (t7) (s — tF) = —o0;

where the function d : [0,00) x (0,00) — IR is defined by

d(s,t) = d(s) — (t) — ¢ (t)(s —t), Vse Ry, t € Rauy. (3.5)

The function ¢ satisfying (T4) is said in [81-83] to be boundary coercive. If setting
¢(x) = 400 when = ¢ IR,, then ¢ becomes a closed proper strictly convex function on
IR. Furthermore, by [90, Lemma 2.4(d)] and (T3), it is not difficult to see that ¢(z) and
Yo ¢(z;) are an B-function on IR and IR™, respectively. Unless otherwise stated, in the
rest of this section, we always assume that ¢ satisfies (T1)-(T4).

Using (1.8), the corresponding SOC functions of ¢ and ¢’ are given by

¢ (2) = ¢ (M) ul) + ¢ (Na(z)) ul?, (3.6)
and
(@) (x) = ¢ (M(@)) ul) + ¢ (Ao(2)) u?, (3.7)

which are well-defined over K™ and int(K"), respectively. In view of this, we define

Hiz,y) = { tr[¢o0(z) — ¢*°(y) — (¢/)*(y) o (x — y)] Vo € K",y € int(K"),

00 otherwise.

(3.8)

In what follows, we will show that the function H : R" x IR" — (—o0,+00] enjoys
some favorable properties similar to those of the D-function. Particularly, we prove that
H(z,y) > 0 for any x € K",y € int(K™), and moreover, H(x,y) = 0 if and only if x = y.
Consequently, it can be regarded as a distance measure on the SOC.

We first start with a technical lemma that will be used in the subsequent analysis.
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Lemma 3.1. Suppose that ¢ : [0,00) — IR satisfies (T1)-(T4). Let $*°°(x) and (¢')*°(x)
be given as in (3.6) and (3.7), respectively. Then, the following hold.

(a) ¢*°°(x) is continuously differentiable on int(KC™) with the gradient V¢*°°(x) satisfying
V¢SOC('%.)€ — (¢/)SOC<.,L.>.

(b) trlg=c(2)] = 320, o[hi(@)] and tr[(¢)(2)] = o0, & [Nil)].

(c) tr[¢p™(x)] is continuously differentiable on int(K™) with Vtr[¢*°°(x)] = 2V 6™ (z)e.
(d) tr[¢=°(z)] is strictly conver and continuous on int(K").

(e) If {y*} C int(K") is a sequence such that limy_, o y* = 4 € bd(K"), then

lim (Vtr[¢™¢(y")], 2 —y*) = —oco for all z € int(K").

k—4o00
In other words, the function tr[¢™°(x)] is boundary coercive.

Proof. (a) The first part follows directly from Proposition 1.14. Now we prove the second
part. If zo # 0, then by formulas (1.28)-(1.29) it is easy to compute that

¢'(Na(x)) + ' (M (2))

VE@e = | yu(e) — F() o
2 |2 ]|

In addition, using equations (1.4) and (3.7), we can prove that the vector in the right
hand side is exactly (¢')*°°(z). Therefore, V¢*°(z)e = (¢')*°°(x). If 29 = 0, then using
(1.27) and (1.4), we can also prove that V¢*¢(z)e = (¢')%°(x).

(b) The result follows directly from Property 1.1(d) and equations (3.6)-(3.7).

(c) From part(a) and the fact that tr[¢®°°(x)] = tr[¢*°(x) o €] = 2(¢*(x), e), clearly,
tr[¢™°¢(z)] is continuously differentiable on int(K™). Applying the chain rule for inner
product of two functions immediately yields that Vtr[¢™°(x)] = 2V¢™°(x)e.

(d) It is clear that ¢*°(x) is continuous on K". We next prove that it is strictly convex
on int(K™). For any z,y € K" with z # y and «, 8 € (0,1) with a + 5 = 1, we have

Mlax + By) = amy+ By — [Jaze + Byl > ali(z) + BA(y),
Ao(ax + By) = axy + By + ||aze + Bya|| < ada(z) + Bra(y),

which implies that
ali(z) + BAi(y) < Miaz + By) < Ao(ax + By) < ada(z) + Bra(y).
On the other hand,

Moz + By) + Ao + By) = 201 + 2Byr = [al(z) + BAi(y)] + [ada(x) + BAz(y)].
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The last two equations imply that there exists p € [0, 1] such that

Moz + By) = pladi(x) + BA(y)] + (1 — p)lara(z) + B (y)],
M(az +By) = (1—p)lari(z) + BAi(y)] + plare(z) + Bra(y)].

Thus, from Property 1.1, it follows that

tr[¢™(ax + By)] = ¢[M(ax + By)] + ¢[A2(ax + By)]
= 6|plai(@) + B () + (1 = p)(@dala) + Bha(y))

+0[(1= p)(ahi(@) + BAu(y)) + plada(a) + Ahay))]
)

pp(ari(z) + B (y)) + (1 — p)p(ara(z) + Bra(y)
+(1 = p)p(@hi (@) + BMi(y)) + po(ara(z) + BAa(y))
= (ad(z) + BM(y)) + d(ada(z) + BAa(y))
< ag(M(@)) + B (M(y)) + ad(Xa(2)) + Bo(Na(y))
= atr[¢™(x)] + Btr[¢p™(y)],
where the first equality and the last one follow from part(b), and the two inequalities are

due to the strict convexity of ¢ on IR, . From the definition of strict convexity, we thus
prove that the conclusion holds.

IN

(e) From part(a) and part(c), we can readily obtain the following equality
Vir[¢™¢(z)] = 2(¢')**°(x), Va € int(K"). (3.9)
Using the relation and Proposition 1.3, we then have

(Ve[ ()], = —y*) = 2(@)* ("), v —y")

VAN
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In addition, by Property 1.1, for any y € int(K"), we can compute that

(@) ey =

| @)l + ¢ Qal)u®] o [ M (m)u) + As(y)ul?
= ¢'(M

WM @)uy) + ¢ Qe (y) Aa(y)u?, (3.11)

which implies that

tr[(¢)(y*) o '] = Z &Ny ("), (3.12)
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Combining with (3.10) and (3.12) immediately yields that

(Vir[p™(y*)], =z —y") < Z &' ()] i) — Xa(y™)]. (3.13)

Note that A\a(7) > A1 (y) = 0 and Aa(x) > Ay(x) > 0 since g € bd(K") and x € int(K™).
Hence, if A2(y) = 0, then by (T4) and the continuity of X\;(-) for i = 1,2,

lim &' A (y")][Ai(2) — Ai(y*)] = —o0, i=1,2,

k——+o0

which means that

2

dim S SN = X)) = —oe. (3.14)

If Xo(7) > 0, then limy_, o0 @' [Aa(y%)][A2(z) — Ao(y*)] is finite and

lim ¢'[A1 (5°)][Ai (2) — M (y*)] = —o0,

k——+o0

and therefore the result in (3.14) also holds under such case. Combining (3.14) with
(3.13), we prove that the conclusion holds. [

Using the relation in (3.9), we have that for any z € K™ and y € int(K"),

(@) (y) o (v = )| = 2((¢)** (W), =~ y) = (Vg™ W), =~ ).
As a consequence, the function H(x,y) in (3.8) can be rewritten as

tr[¢=°(z)] — tr[¢™(y)] — (Vir[p™(y)], x —y) Vo € K",y € int(K"),

H(z,y) = { 00 otherwise. (3.15)

By the representation, we next investigate several important properties of H(z,y).

Proposition 3.1. Let H(x,y) be the function defined as in (3.8) or (3.15). Then, the
following hold.

(a) H(z,y) is continuous on K™ x int(K"), and for any y € int(K"), the function H(-,y)
is strictly convex on K.

(b) For any given y € int(K"), H(-,y) is continuously differentiable on int(K™) with
V.H(z,y) = Vir[o™(z)] — Vir[¢™(y)] = 2[(¢")*°(z) — (¢")*(y)].  (3.16)

(c) H(x,y) > 32, d\i(z), \i(y)) > 0 for any x € K™ and y € int(K"), where d(-,-) is
defined by (3.5). Moreover, H(x,y) =0 if and only if x = y.
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(d) For every v € R, the partial level sets of Ly(y,v) = {x € K" : H(z,y) <~} and
Ly(z,y) = {y € int(K™) : H(z,y) < 7} are bounded for any y € int(K") and
x € K", respectively.

(e) If {y*} C int(K") is a sequence converging to y* € int(K"), then H(y*,y*) — 0.

(f) If {z*} C int(K™) and {y*} C int(K") are sequences such that {y*} — y* € int(K"),
{a*} is bounded, and H(z*,y*) — 0, then 2 — y*.

Proof. (a) Note that ¢*°°(z), (¢')*°(y), (¢')**°(y) o (x —y) are continuous for any =z € K"

and y € int(K") and the trace function tr(-) is also continuous, and hence H(x,y) is

continuous on K" x int(K"). From Lemma 3.1(d), tr[¢*°¢(x)] is strictly convex over K",

whereas —tr[¢*°(y)] — (Vtr[¢*°(y)],z — y) is clearly convex in K" for fixed y € int(K").
This means that H(-,y) is strictly convex for any y € int(K").
(

(b) By Lemma 3.1(c), the function H(-,y) for any given y € int(K") is continuously
differentiable on int(K™). The first equality in (3.16) is obvious and the second is due to
(3.9).

(c) The result follows directly from the following equalities and inequalities:

H(z,y) = tr[¢™(2)] - tr[¢*(y)] — tr[(¢)*(y) o (= — y)]
= tr[¢7(2)] — tr[¢*(y)] - tr[(¢’)s°°(y) ox] +tr[(¢)**(y) o y]

tr[¢™ ()] — tr[6™(y Z ¢'(A ) + tr[(@)**(y) o o]

v

where the first equality is due to (3.8), the second and fourth are obvious, the third
follows from Lemma 3.1(b) and (3.11), the last one is from (3.5), and the first inequality
follows from Proposition 1.3 and the last one is due to the strict convexity of ¢ on IR, .
Note that tr[¢*°(z)] is strictly convex for any z € K™ by Lemma 3.1(d), and therefore
H(z,y) =0 if and only if z = y by (3.15).

(d) From part(c), we have that Ly(y,v) C {z € K"| Z?Zl d(Ai(z), Mi(y)) <~} By (T3),
the set in the right hand side is bounded. Thus, Lg(y,~) is bounded for y € int(KX").
Similarly, Ly (x,~) is bounded for x € ™.

From part(a)-(d), we immediately obtain the results in (e) and (f). O
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Remark 3.1. (i) From (3.8), it is not difficult to see that H(x,y) is exactly a distance

measure induced by tr[¢*°°(x)] via formula (3.4). Therefore, if n = 1 and ¢ is a
Bregman function with zone R4, i.e., ¢ also satisfies the property:

(e) if {s"} C Ry and {t*} C Ry, are sequences such that t* — t*, {s*} is
bounded, and d(s*,t*) — 0, then s* — t*;

then H(x,y) reduces to the Bregman distance function d(z,y) in (3.5).

(ii) When n > 1, H(x,y) is generally not a Bregman distance even if ¢ is a Bregman

(iii)

function with zone Ry, , by noting that Proposition 3.1(e) and (f) do not hold for
{2*} C bd(K") and y* € bd(K"). By the proof of Proposition 3.1(c), the main
reason 1s that in order to guarantee that

tr(¢')*(y) o x] = Z ¢'(Aiy)Ai(z)

for any x € K™ and y € int(K™), the relation [(¢')*°°(y)]2 = axy with some o > 0
is required, where [(¢')*°°(y)]s is a vector composed of the last n — 1 elements of
(@')*°(y). It is very stringent for ¢ to satisfy such relation. By this, tr[¢*°°(z)] is
not a B-function [90] on IR", either, even if ¢ itself is a B-function.

We observe that H(x,y) is inseparable, whereas the double-reqularized distance func-
tion proposed by [137] belongs to the separable class of functions. In view of this,
H(z,y) can not become a double-regularized distance function in K" x int(K"),
even when ¢ is such that d(s,t) = d(s,t)/¢"(t) + L(s —t)? is a double regularized
component (see [137]).

In view of Proposition 3.1 and Remark 3.1, we call H(x,y) a quasi D-function. In
the following, we present several specific examples of quasi D-functions.

Example 3.1. Let ¢ : [0,00) — IR be ¢(t) = tInt — t with the convention 0ln0 = 0.

Solution. It is easy to verify that ¢ satisfies (T1)-(T4). By [64, Proposition 3.2 (b)] and
(3.6)-(3.7), we can compute that for any z € K™ and y € int(K"),

*°(r) =zolnz —z and (¢)°°(y) =1Iny.

Therefore, we obtain

tr(zolne —zolny+y—x), Vore K" yeint(K"),
00, otherwise,

H(:v,y)z{

which is a quasi D-function. W
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Example 3.2. Let ¢ : [0,00) — R be ¢(t) = 12 — /1.

Solution. It is not hard to verify that ¢ satisfies (T1)-(T4). From Property 1.2, we have
that for any = € K",

2 =zox=X(x)ul) + N(2)ul? and 2% = /A (2)ul) + /g (x)u?.
By a direct computation, we then obtain for any x € K™ and y € int(K"),

tr(y*)e — g

2/det(y)

gbsoc(x) —ror— xl/? and (gbl)SOC(y) —

This yields

(tr(y'?)e —y'/?) o (x — )

24/det(y)

0, otherwise,

tr|(z—y)* = (@2 —y'/?) +

, Vre K"y e int(K"),
H(z,y) = y € nt(K”)

which is a quasi D-function. W

Example 3.3. Let ¢ : [0,00) = IR be ¢(t) = tlnt — (1 +¢)In(1l +¢) + (1 +¢) In2 with
the convention 0In0 = 0.

Solution. It is easily shown that ¢ satisfies (T1)-(T4) Using Property 1.1, we know that
for any z € K™ and y € int(K"),
¢*°(z) =zolnz — (e+z)oln(e+z)+ (e+x)In2
and
(¢")°“(y) =lny —In(e +y) + eln2.

Consequently, we obtain

tr[zo(Inz —Iny) —(e + z) o (In(e +z) — In(e +y))], Vz € K",y € int(K"),
00, otherwise,

H(:v,y):{

which is a quasi D-function. W

In addition, from [81, 83, 144], it follows that > ", #(¢;) generated by ¢ in the above
examples is a Bregman function with zone S = IR'?, and consequently » " d((;,&;)
defined as in (3.5) is a D-function induced by > 7" ¢((;)-

Proposition 3.2. Let H(x,y) be defined as in (3.8) or (3.15). Then, for all z,y €
int (") and z € K, the following three-points identity holds:

H(zo)+ H(zy) = H(zy) = (Vilg(y)] - Vel @), 2 - )
=t | ((0)() = (¢)**(2)) o (= ~ )|
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Proof. Using the definition of H given as in (3.15), we have
(Valg(@)], z—2) = o™ (2)] - tp**(2)] - H(z,2),
(Vale=(y)], v —y) = o™ (@)] - tlo™(y)] - H(x,y),
(Vale=(y)], z—y) = 6l ()] - l6(y)] — H(zy).

Subtracting the first two equations from the last one gives the first equality. By (3.9),

(Virlg=(y)] = Virlg (@), = =) =2((¢)*(y) = (#)*(2), =~ y).

This together with the fact that tr(z o y) = (z,y) leads to the second equality. [

In this section, we propose a proximal-like algorithm for solving the CSOCP based
on the quasi D-function H(x,y). For the sake of notation, we denote F by the set

F= {cemm | AC+b =, o}. (3.17)
It is easy to verify that F is convex and its interior int(F) is given by
int(F) = {c eR™ | AC+b -, o}. (3.18)
Let ¢ : R™ — (—o0, +00] be the function defined by

tr[p*°°(AC +b)] if ¢ € F,

v(C) = { 00 otherwise. (3.19)

By Lemma 3.1, it is easily shown that the following conclusions hold for ().

Proposition 3.3. Let ¢(() be given as in (3.19). If the matriz A has full rank m, then
(a) ¥(C) is continuously differentiable on int(F) with V() = 2AT (¢/)*°°(AC + b);

(d) ¥(C) is strictly convex and continuous on F;

(c) ¥(C) is boundary coercive, i.e., if {€*} C int(F) such that limy_, o & = £ € bd(F),
then for all ¢ € int(F), there holds that limy_, o V(E¥)T (¢ — £F) = —o0.

Let D((, &) be the function induced by the above ¥(() via formula (3.4), i.e.,

D(C, &) = v(C) — (&) = (V(§), ¢ —¢). (3.20)
Then, from (3.15) and (3.19), it is not difficult to see that
D(¢,€) = H(AC+ b, A+ D). (3.21)

Thus, by Proposition 3.1 and Lemma 3.3, we draw the following conclusions.
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Proposition 3.4. Let D((, &) be given by (3.20) or (3.21). If the matriz A has full rank
m, then

(a) D(¢,€) is continuous on F x int(F), and for any given £ € int(F), the function
D(-,€) is strictly convex on F.

(b) For any fized £ € int(F), D(-,&) is continuously differentiable on int(F) with
VeD(G,€) = Vi(Q) = V() = 247 | (¢)°(AC +b) — (¢) (A€ + b)|.

(c) D(¢,€) = Yo7, d(M(AC +b), Mi(AE + b)) = 0 for any ¢ € F and & € int(F), where
d(-,-) is defined by (3.5). Moreover, D((,&) = 0 if and only if { = ¢&.

(d) For each v € R, the partial level sets of Lp(€,v) = {¢ € F : D((,€) < v} and
Lp(¢,v) ={§ € int(F) : D((,&) < v} are bounded for any & € int(F) and ¢ € F,
respectively.

The PLA. The first proximal-like algorithm that we propose for the CSOCP (3.1)
is defined as follows:

" e int(F),
{ék = argmincg_-{f(g)—|—(1/Iuk)p(<’<k—1)} (k> 1), (3.22)

where {fu}r>1 is a sequence of positive numbers. To establish the convergence of the
algorithm, we make the following Assumptions for the CSOCP:

(A1) inf {f(g) ICe J—"} .= f. > —o0 and dom(f) N int(F) # 0.

(A2) The matrix A is of maximal rank m.

Remark 3.2. Assumption (A1) is elementary for the solution of the CSOCP. Assump-
tion (A2) is common in the solution of SOCPs and it is obviously satisfied when F = K".
Moreover, if we consider the standard SOCP

min 'z
st. Ar =0, ze K",

where A € R™ "™ with m < n, b € R™, and ¢ € R", the assumption that A has full row
rank m is standard. Consequently, its dual problem, given by

max b'y

st. c—Aly =, 0, (3.23)

satisfies assumption (A2). This shows that we can solve the SOCP by applying the
proximal-like algorithm (PLA) defined as in (3.22) to the dual problem (5.23).
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Now, we show the algorithm PLA given by (3.22) is well-defined under assumptions
(A1) and (A2).

Proposition 3.5. Suppose that assumptions (A1)-(A2) hold. Then, the algorithm PLA
given by (3.22) generates a sequence {C*} C int(F) such that

=2 " AT [(#)°(ACK +b) — (¢)°°(ACF + b)] € DF(CH).

Proof. The proof proceeds by induction. For k& = 0, it clearly holds. Assume that
¢kt e int(F). Let fx(¢) := f(C)+p "D(¢, ¢*1). Then assumption (A1) and Proposition
3.4(d) imply that fi has bounded level sets in F. By the lower semi-continuity of f and
Proposition 3.4(a), the minimization problem mincer fi(¢), i.e., the subproblem in (3.22),
has solutions. Moreover, the solution (¥ is unique due to the convexity of f and the strict
convexity of D(+,€). In the following, we prove that ¢* € int(F).

By [131, Theorem 23.8] and the definition of D((,£) given by (3.20), we can verify that
¢* is the only ¢ € dom(f) N F such that

20 AT (@) (ACT 1) € O (F(Q) + py 0 (C) + (¢ F)) (3.24)
where 6(¢|F) = 0 if ¢ € F and +o0 otherwise. We will show that
O (f(Q)+ p " () +6(¢|F)) =0 for all ¢ € bd(F), (3.25)
which by (3.24) implies that ¢* € int(F). Take ¢ € bd(F) and assume that there exists
w e a(ﬂc) + u,;w(c)). Take ¢ € dom(f) N int(F) and let
(=1 -ea)+al (3.26)

with lim; o ¢ = 0. From the convexity of int(F) and dom(f), it then follows that
¢t € dom(f) Nint(F), and moreover, lim;_, ., ¢! = . Consequently,

~

ew’ (¢ = ¢) wh(¢'=¢)
l

< (S = FQ + i [0S = (0]
< F(C) = Q) + 1 (247 () (AC +b), ¢! = ¢)
< ez<f<2>—f<<>>+u;11_ x| () (AC' + D) o (AT~ AC) |,

where the first equality is due to (3.26), the first inequality follows from the definition of
subdifferential and the convexity of f(¢) + p; '9(¢) in F, the second one is due to the
convexity and differentiability of ¢(¢) in int(F), and the last one is from (3.26) and the
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convexity of f. Using Proposition 1.3 and (3.11), we then have

~

k<1—el <> f(C) w’'(¢ ()]
(Gl o (AC+b)| = tr[ () (A¢ +b) o (AC' + )|

IA
g =

‘MN

[¢'<&<Acl FBDALAT+B) = ¢/ (AC + D)A(AC + )

1

= DI AC +B) [M(ACT + ) = M(AC 1 b)),

=1

7

o |l

Since ¢ € bd(F), i.e., AC +b € bd(K"), it follows that lim;_, o A\ (AC' +b) = 0. Thus,
using (T4) and following the same line as the proof of Lemma 3.1(d), we can prove that
the right hand side of the last inequality goes to —oo when [ tends to oo, whereas the
left-hand side has a finite limit. This gives a contradiction. Hence, the equation (3.25)
follows, which means that ¢* € int(F).

Finally, let us prove 96(¢*| F) = {0}. From [131, page 226, it follows that
00(z|K") ={v e R"|v Zxn 0, tr(voz)=0}.
Using [131, Theorem 23.9] and the assumption dom(f) Nint(F) # (), we have
06(¢| F) = {ATv € R™ [v Zen 0, tr(v o (AC +b)) =0}

In addition, from the self-dual property of symmetric cone K", we know that tr(zoy) =0
for any z =, 0 and y >, 0 implies z = 0. Thus, we obtain d§(¢*|F) = {0}. This
together with (3.24) and [131, Theorem 23.8] yields the desired result. [

Proposition 3.5 implies that the second-order cone constrained subproblem in (3.22)
is actually equivalent to an unconstrained one

Ck = argmin{elRm {f(C) + iD<C7 Ck_l)} )

which is obviously simpler than the original CSOCP. This shows that the proximal-
like algorithm proposed transforms the CSOCP into the solution of a sequence of simpler

problems. We next present some properties satisfied by {¢*}. For convenience, we denote
the optimal set of the CSOCP by X :={C € F| f({) = f.}.

Proposition 3.6. Let {C*} be the sequence generated by the algorithm PLA given by
(3.22), and let oy = Zszl wy. Then, the following hold.

(a) {f(¢")} is a nonincreasing sequence.

(b) 1k (£(C*) = () <D, Y =D, CF) for all ¢ € F.
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(¢) on(f(¢Y) = £(Q)) £D(¢,¢°) = D(C,CY) for all ( € F.
(d) D(¢,¢F) is nonincreasing for any ¢ € X if the optimal set X # ).
(e) D(C*, ¢* 1) — 0 if the optimal set X # ().
Proof. (a) By the definition of ¢* given as in (3.22), we have
FER) + D ) < FEEY) + p 'DC Y.

Since D(¢*, ¢*1) > 0 and D(¢*1, (%) = 0 by Proposition 3.4(c), it follows that
FICF) < f(EY) (R0,

(b) By Proposition 3.5, 2u; *AT[(¢/)%°¢(AC* + b) — (¢')*°¢(AC* + b)] € 9f(¢*). Hence,
from the definition of subdifferential, it follows that for any ( € F,

F(Q) 2 JICH) + 20 (@Y (AC 4+ ) = (&/)*(AC* +), AC— AC*)
= F(C) + i e[S (AC T +B) — (&) (AC* +B)] 0 [(AC +b) — (AC* +b)]
= f(C*) + pt [H(AC + b, ACE +b) + H(ACK + b, AC*™ +b) — H(AC + b, AC*™ +b)]
= (&) + ! [PU6, ¢ + DS ¢ = D¢ (3.27)

where the first equality is due to the definition of determinant and the second follows from
Proposition 3.2. From this inequality and the nonnegativity of D(¢*,¢*¥71), we readily
obtain the conclusion.

(c) From the result in part(b), we have

el (SN = F(EM] =2 D(E ) = DL ¢ = DL ).

Multiplying this inequality by o4_; and noting that o, = ox_1 + s, one has

k-1 f(CFH) = (on — ) F(CF) = ormapy " DICELCP). (3.28)

Summing up the inequalities in (3.28) for k = 1,2,--- , N and using oy = 0 yields

N N
—on F(CY) + D f (@) =) o D, ). (3.29)
k=1 k=1

On the other hand, summing the inequality in part (b) over k =1,2,--- | N, we get

—onf(¢ +Zﬂkf ) <D, ¢") = D, ¢M). (3.30)
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Now subtracting (3.29) from (3.30) yields that

onf(CY) = F(OT <D, = DG CY) =D onap 'D(CH ¢).
k=1

This together with the nonnegativity of D(¢*~1, ¢*) implies the conclusion.

(d) Note that f(¢*) — f(¢) > 0 for all ¢ € X. Thus, the result follows from part(b)
directly.

(e) From part(d), we know that D((, (") is nonincreasing for any ¢ € X. This together
with D((, ¢*) > 0 for any k implies that D((, ¢*) is convergent. Thus, we have
On the other hand, from (3.27) it follows that

0 < el f(¢") = FIOI €D =D, ¢F) = D(CF. M), Ve,
which implies
D(¢*,¢"1) < D¢ ¢ = D¢, ¢h), Ve,
This together with (3.31) and the nonnegativity of D(¢*, (*71) yields the result. [

We have proved that the proximal-like algorithm (PLA) defined as in (3.22) is well-
defined and satisfies some favorable properties. By this, we next establish its convergence.

Proposition 3.7. Let {¢*} be the sequence generated by the algorithm PLA given by in
(8.22), and let oy = Zszl tr. Then, under Assumptions (A1)-(A2),

(a) if oy — 00, then limy_, o0 f(CN) — fi;

(b) ifon — oo and the optimal set X # 0, then the sequence {x*} is bounded and every
accumulation point is a solution of the CSOCP.

Proof. (a) From the definition of f,, there exists a ¢ € F such that

f(Q) < fet+e, Ve>0.
However, from Proposition 3.6(c) and the nonnegativity of D(¢, (), we have that

F(CN) = F(O) < ox'D((, "), VCe F.

Let ¢ = Zin the above inequality and take the limit with oy — +00, we then obtain

th—H—oo f(CN) < f* +e
Considering that e is arbitrary and f(¢V) > f., we thus have the desired result.

(b) Suppose that ¢* € X. Then, from Proposition 3.6(d), D(¢*,¢*) < D(¢*, () for
any k. This implies that {¢*} C Lp(¢*, D(¢*,¢Y)). By Proposition 3.6(d), the sequence
{¢*} is then bounded. Let ¢ € F be an accumulation point of {¢*} with subsequence
{¢%} — (. Then, from part(a), it follows that f(¢*) — f.. On the other hand, since
f is lower-semicontinuous, we have f(¢) = liminfy, ;o f(¢*). The two sides show that

f(C) < f(¢*). Consequently, ¢ is a solution of the CSOCP. O
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3.2 Interior proximal-like algorithms for SOCCP

In Section 3.1, we present a proximal-like algorithm based on Bregman-type functions
for the CSOCP (3.1). In this section, we focus on another proximal-like algorithm, which
is similar to entropy-like proximal algorithm. We will illustrate how to construct the
distance measure needed for tacking the CSOCP (3.1).

The entropy-like proximal algorithm was designed for minimizing a convex function
f(¢) subject to nonnegative constraints ¢ > 0. In [61], Eggermont first introduced the
Kullback-Leibler relative entropy, defined by

d(¢,&) =) GIn(G/&) +G—&, V=0, £>0,
i=1

where we adopt the convention of 0ln0 = 0. The original entropy-like proximal point
algorithm is as below:

>0
{ ¢* = argmin { f(¢) + i 'd(C*1, )} (3.32)

¢>0

Later, Teboulle [144] proposed to replace the usual Kullback-Leibler relative entropy
with a new type of distance-like function, called (p-divergence, to define the entropy-like
proximal map. Let ¢ : R — (—o00, 00| be a closed proper convex function satisfying
certain conditions (see [81, 144]). The p-divergence induced by ¢ is defined as

m

dp(C,€) ==Y &p(Gi/)-

i=1

Based on the ¢-divergence, Isume et al [81-83] generalized Eggermont’s algorithm as

>0
{ ¢ = argmin { £(¢) + u'do (¢, ¢*Y)} (3.33)

¢>0

and obtained the convergence theorems under weaker assumptions. Clearly, when
o(t)=—Int+t—1 (t>0),

we have that d,(¢,§) = d(&, ¢), and consequently the algorithm reduces to Eggermont’s
(3.32).

Observing that the proximal-like algorithm (3.33) associated with ¢(t) = —Int+t—1
inherits the features of the interior point method as well as the proximal point method,
Auslender [8] extended the algorithm to general linearly constrained convex minimiza-
tion problems and variational inequalities on polyhedra. Then, is it possible to extend
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the algorithm to nonpolyhedra symmetric conic optimization problems and establish the
corresponding convergence results? In this section, we will explore its extension to the
setting of second-order cones and establish a class of interior proximal-like algorithms
for the CSOCP. We should mention that the algorithm (3.33) with the entropy function
tlnt —t+1 (t > 0) was recently extended to convex semidefinite programming [58].

Again as defined in (3.17) and (3.18), we denote F the constraint set of the CSOCP,
ie.,

Fi={CeR"|AC+b>=,, 0},

and denote its interior by int(F), i.e.,
int(F) :={( e R"|AC+b >, 0}.
Accordingly, the 2nd proximal-like algorithm that we propose for the CSOCP is defined

as follows:
¢" € int(F)
{ ¢* = argmin { () + i 'D(AC + b, AC*" + 1)}, (3.34)
CEint(F)
where D : IR" x IR" — (—o00,+00] is a closed proper convex function generated by a
class of twice continuously differentiable and strictly convex functions on (0, +00), and
the specific expression is given later. The class of distance measures includes as a special
case the natural extension of d,(x,y) with ¢(t) = —Int+t—1 to the second-order cones.
For the proximal-like algorithm (3.34), we particularly consider an approximate version
which allows inexact minimization of the subproblem (3.34) and establish its global con-
vergence results under some mild assumptions.

Throughout this section, for a differentiable function A on IR, we denote h’, h” and
R by its first, second and third derivative, respectively. Recall that a function is closed
if and only if it is lower semi-continuous and a function is proper if f({) < oo for at
least one ¢ € R™ and f(¢) > —oo for all ( € IR™. For a closed proper convex function
f:R™ — (—o00, 0], we denote its domain by domf :={ ( € R™| f(¢) < oo} and the
subdifferential of f at Eby

0f(Q) = {w e R [ £() 2 F(O) + {w,¢ = ), W e R™}.
As usual, if f is differentiable at ¢, the notation V f({) represents the gradient at ¢ of f.

Next, we present the definition of the distance-like function D(x,y) involved in the
proximal-like algorithm (3.34) and some specific examples. Let ¢ : R — (—o0, 00] be a
closed proper convex function with dom¢ = [0, 00) and assume that

(C1) ¢ is strictly convex on its domain.
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(C2) ¢ is twice continuously differentiable on int(dom¢) with lim, ,o+ ¢”(t) = +oc.
(C3) ¢'(t)t — ¢(t) is convex on int(dome).
(C4) ¢ is SOC-concave on int(dome).

In the sequel, we denote by ® the class of functions satisfying conditions (C1)-(C4).

Given a ¢ € O, let ¢*°° and (¢)*° be the vector-valued function given as in (1.8). We
define D(z,y) involved in the proximal-like algorithm (3.34) by

Dia.g) im { tr[6°(y) = 67°(2) = () (x) o (y — v)], Vo € int(K"),y € K",
00, otherwise.
(3.35)
The function, as will be shown later, possesses some favorable properties. Particularly,

D(x,y) > 0 for any z,y € int(K"), and D(x,y) = 0 if and only if 2 = y. Hence, D(x,y)
can be used to measure the distance between any two points in int(K").

In the following, we concentrate on the examples of the distance-like function D(z,y).
For this purpose, we first give another characterization for condition (C3).

Lemma 3.2. Let ¢ : IR — (—o0,00] be a closed proper conver function with dom(¢) =
[0,400). If ¢ is thrice continuously differentiable on int(dome), then ¢ satisfies condition
(C3) if and only if its derivative function ¢' is exponentially convex (which means the
function ¢'(exp(+)) : R — R is conver on IR), or

& (Lits) < %(oy(t%) n gb’(tg)), Vit > 0. (3.36)

Proof. Since the function ¢ is thrice continuously differentiable on int(dome), ¢ satisfies
condition (C3) if and only if

¢"(t) + 14" (t) > 0, Vt>0.
Observe that the inequality is also equivalent to
to"(t) +t2¢" (t) >0, Vt >0,
and hence substituting by ¢t = exp(f) for 6 € IR into the inequality yields that
exp(0)¢” (exp(0)) + exp(20)¢" (exp()) > 0, VO € R.

Since the left hand side of this inequality is exactly [¢'(exp(#))]”, it means that ¢'(exp(-))
is convex on IR. Consequently, the first part of the conclusions follows.
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Note that the convexity of ¢'(exp(-)) on IR is equivalent to saying for any 6,60, € IR,
¢'(exp(réh + (1 —7)02)) < r¢/(exp(61)) + (1 — r)¢'(exp(62)), r € [0,1],
which, by letting ¢; = exp(#;) and t; = exp(fs), can be rewritten as
¢ty ") <1/ (t) + (1 — )¢/ (t2), Vti,ta >0 and r € [0, 1].

This is clearly equivalent to the statement in (3.36) due to the continuity of ¢. O

Remark 3.3. The exponential convexity was also used in the definition of the self-reqular
function [124], in which the authors denote Q by the set of functions whose elements are
twice continuously differentiable and exponentially conver on (0,4+00). By Lemma 3.2,
clearly, if h € €, then the function fot h(0)dO necessarily satisfies condition (C3). For
example, Int belongs to 2, and hence f(f In0df = tint satisfies condition (C3).

Now we present several examples showing how to construct D(z,y). From these
examples, we see that the conditions required by ¢ € ® are not so strict and the con-
struction of the distance-like functions in SOCs can be completed by selecting a class of
single variate convex functions.

Example 3.4. Let ¢; : R — (—o00, 00] be given by

tlnt—t+1 if t >0,
¢1(t)_{oo if £ <0,
Solution. It is easy to verify that ¢; satisfies conditions (C1)-(C3). In addition, by
Example 2.10 and 2.12, the function Int¢ is SOC-concave and SOC-monotone on (0, co),
hence the condition (C4) also holds. From formula (1.8), it follows that for any y € X"
and z € int(K"),

*(y) =yolny —y+e and (¢')*°°(z) =Inx.
Consequently, the distance-like function induced by ¢; is given by
Di(z,y) =tr(yolny —yolnz+x—y), Vreint(K"),ye K"

This function is precisely the natural extension of the entropy-like distance dy(-,-) with
o(t) = —Int + ¢t — 1 to the second-order cones. In addition, comparing D;(z,y) with
the distance-like function H(z,y) in Example 3.1 of [116] (see Section 3.1), we note
that Di(x,y) = H(y,x), but the proximal-like algorithms corresponding to them are
completely different. W
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Example 3.5. Let ¢y : R — (—00, 00] be given by

tlnt+(1+¢t)In(1+¢t)—(1+¢)In2 if ¢t >0,
o0 if t<O0.

Pa(t) = {

Solution. By computing, we can verify that ¢, satisfies conditions (C1)-(C3). Further-
more, from earlier examples, we learn that ¢, also satisfies condition (C4). This means
that ¢o € ®. For any y € K" and = € int(K"), we can compute that

¢*(y) = yolny+(e+y)olnle+y) —In2(e+y),
(@')°°(z) = (2—In2)e+Inx+In(e+ x).

Therefore, the distance-like function generated by such a ¢ is given by
Ds(z,y) =tr[—In(e+z)o(e+y)+yo(lny—Inz) + (e+y)oln(e +y) — 2(y — z)]

for any = € int(K") and y € K". It should be pointed out that Ds(z,y) is not the
extension of d,(-,-) with ¢(t) = ¢2(t) given by [81] to the second-order cones. W

Example 3.6. For any 0 <r < %, let ¢3 : IR — (—o00, 00| be given by
bat) = £ 2 if >0,
T oo if ¢ < 0.
Solution. It is easy to verify that ¢5 satisfies conditions (C1)-(C3). Furthermore, from
Examples 2.10-2.12, it follows that ¢3 satisfies condition (C4). Thus, ¢3 € ®. By a
simple computation,

T 2 T
Gy =y 7 +y° Vyek" and (¢)°(z) = T; S Lo W imt(KY).

Hence, the distance-like function induced by ¢3 has the following expression

2r+1 2r43 9 2r+3 2ri1 2r+3 9
T2 —i—:r—yo( T 2 +2x>+y2 +y

Dy(z,y) = tr [

Example 3.7. For any 0 < a <1, let ¢4 : R — (—00, 0] be given by

ttl L atlnt —at if t >0,
00 if ¢t < 0.

Pa(t) = {
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Solution. It is easily shown that ¢, satisfies conditions (C1)-(C3). By Examples 2.11-
2.14, (¢')4 is SOC-concave on (0,00). Hence, ¢4 € ®. For any y € K" and x € int(K"),

(y) =y +ayolny —ay and (¢)°°(x) = (a+ 1)2" +alnm.
Consequently, the distance-like function induced by ¢4 has the following expression
Dy(z,y) = tr[ax““ +axr —yo ((a + 1)z + alrm) + ¢ fayolny — ayl.

In what follows, we study some favorable properties of the function D(x,y). We begin
with some technical lemmas that will be used in the subsequent analysis.

Lemma 3.3. Suppose that ¢ : R — (—o0, 00| belongs to the class of ®, i.e., satisfying
(C1)-(C4). Let ¢*°¢ and (¢')*°° be the corresponding SOC-functions of ¢ and ¢' given as
in (1.8). Then, the following hold.

(a) ¢*°(z) and (¢')*°°(x) are well-defined on K™ and int(K"), respectively, and
Ao (2)] = olAi(@)], Mil(¢)(2)] = ¢ [Ni(z)], i=1,2.

(b) ¢™°(x) and (¢')*°°(x) are continuously differentiable on int(K™) with the transposed
Jacobian at x given as in formulas (1.27)-(1.28).

(c) tr[¢p™°(z)] and tr[(¢')*°°(x)] are continuously differentiable on int(K™), and
Vir[¢p™(z)] = 2Ve™(x)e = 2(¢')* (),
Vir [(¢)7(x)] = 2V(¢')*(x)e = 2(¢")*(x).
(d) The function tr[¢*°¢(x)] is strictly convex on int(K").

Proof. Mimicking the arguments as in Lemma 3.1, in other words, using Propositions
1.13-1.14, Lemma 2.8 and the definition of ®, the desired results follow.  [J

Lemma 3.4. Suppose that ¢ : IR — (—o0, 00| belongs to the class of ® and z € R™. Let
¢, int(K") — R be defined by

¢.(x) :=tr[ — z o (¢)*(z)]. (3.37)
Then, the function ¢,(x) possesses the following properties.
(a) ¢.(x) is continuously differentiable on int(K™) with V¢, (z) = =2V (¢')**(x) - z.

(b) ¢.(z) is convex over int(K") when z € K", and furthermore, it is strictly convexr
over int(K™) when z € int(K").
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Proof. (a) Since ¢.(x) = —2((¢')*°(z), 2) for any = € int(K"), we have that ¢.(x) is
continuously differentiable on int(X™) by Lemma 3.3(c). Moreover, applying the chain
rule for inner product of two functions readily yields V¢, (x) = =2V (¢/)*%(x) - 2.

(b) By the continuous differentiability of ¢.(z), to prove the convexity of ¢, on int(KX"),
it suffices to prove the following inequality

0. (5) < 5(0:0) +0.00). Vo € (i), (3.39)

By condition (C4), ¢ is SOC-concave on (0, +00). Therefore, we have

@ (5] 2 3@ @ @),

ie.,

1

(@) () =z O

= (T5) - e - 5

2

Using Property 1.3(d) and the fact that z € K", we then obtain that

(= 0 (252) - ) - 560" w) 20 (330

which in turn implies that
(=2 @ (550)) < 5( -5 @=@) +5( - @ W)

The last inequality is exactly the one in (3.38). Hence, ¢, is convex on int(K") for z € K.

To prove the second part of the conclusions, we only need to prove that the inequality
in (3.39) holds strictly for any z,y € int(K") and x # y. By Property 1.3(d), this is also
equivalent to proving the vector (¢')*° (£2) — 1(¢/)*°°(x) — 3(¢/)**°(y) is nonzero since

1

)% (252) - 50607 - ) €7 and = € (k)

From condition (C4), it follows that ¢’ is concave on (0, +00) since the SOC-concavity
implies the concavity. This together with the strict monotonicity of ¢’ implies that ¢’
is strictly concave on (0, +00). Using Lemma 3.3(d), we then have that tr[(¢')%¢(z)] is
strictly concave on int(K™). This means that for any x,y € int(K") and = # vy,

Tty

|0 (52)] - el @l - guler=ml > o (3.40)
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In addition, we note that the first element of (¢')**° (£3%) — 1(¢/)**°(z) — L(¢)™°(y) is

d(M(59) 0 ((2) @)+ 00ul@) S Ouw) + ¢ 0aly)
2 4 4 ’

which, by Property 1.1(d), can be rewritten as
1 1 1
st |0 (5 )| - Jr el - o).

This together with (3.40) shows that (¢/)*¢ (552) — 1(¢')™°(z) — $(¢/)***(y) is nonzero
for any z,y € int(K™) and = # y. Consequently, ¢, is strictly convex on int(K"). O

Lemma 3.5. Let F be the set defined as in (3.17). Then, its recession cone 0TF is
described by

0+ F = {d eR™ | Ad -, 0}. (3.41)

Proof. Assume that d € IR™ such that Ad =, 0. Then, for any A > 0, AAd =, 0.
Considering that K" is closed under the “4” operation, we have for any ¢ € F,

AC+ M) +b=(AC+0b) + NAd) =.. O. (3.42)

Kxn

By [131, page 61], this shows that every element in the set of the right hand side of (3.41)
is a recession direction of F. Consequently, {d € R™ | Ad -,, 0} C 0" F.

Now take any d € 0" F and ¢ € F. Then, for any A > 0, equation (3.42) holds. By
Property 1.3, we then have )\ [(AC +b) + AAd} > 0 for any A > 0. This implies that
A1 (Ad) > 0, since otherwise letting A — +o00 and using the fact that

M[(AC+0) + AAd| = (AC+b)1 + A(Ad) = I(AC +b); + A(Ad)s |
< (AC+b) + M(Ad) — (A(Ad)al] = I(AC + b))
= A (Ad) 4+ A (ACH+ D),

we obtain that A\ [(AC + b) + AAd] — —oo. Thus, we prove that Ad >, 0, and conse-
quently 0" F C {d € R™ | Ad >, 0}. Combining with the above discussions then yields
the result. [

Lemma 3.6. Let {a,x} be a sequence of real numbers satisfying

(1) ape >0,Vn=1,2,--- and Yk =1,2,---.

(ii) Za"k =1,Vn=1,2,---; and lim Zankuk =u, Vk=1,2,---.
k=1 k=1

n—oo
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If {ug} is a sequence such that limg_, oo u, = u, then limg_ o0 Gprty = U.
Proof. Please see [92, Theorem 2]. [

Now we are in a position to study the properties of the distance-like function D(z,y).

Proposition 3.8. Given a function ¢ € @, let D(x,y) be defined as in (3.35). Then,
the following hold.

(a) D(z,y) >0 for any x € int(K"™) and y € K", and D(z,y) = 0 if and only if z = y.
(b) For any fized y € K", D(+,y) is continuously differentiable on int(K") with

VoD(z,y) = 2V(¢')*(2) - (z — y). (3.43)

(c) For any fized y € K", the function D(-,y) is convex over int(K"), and for any fized
y € int(K"), D(-,y) is strictly convex over int(K").
(d) For any fized y € int(K™), the function D(-,y) is essentially smooth.

(e) For any fized y € K", the level sets Lp(y,v) := {x € int(K") : D(z,y) < v} for all
v > 0 are bounded.

Proof. (a) By Lemma 3.3(c), for any = € int(K") and y € K", we can rewrite D(x,y) as

D(z,y) = tr[¢*(y)] — tr[¢™(2)] = (VEr[¢™*(2)], y — 2).

Notice that tr[¢®°°(x)] is strictly convex on int(K"™) by Lemma 3.3 (d), and hence D(z,y) >
0 for any = € int(K") and y € K", and D(x,y) = 0 if and only if z = y.

(b) By Lemma 3.3(b) and (c), the functions tr[¢*°(x)] and ((¢')*°°(z), z) are continuously
differentiable on int(K™). Noting that, for any z € int(K") and y € K,

D(z,y) = tr[¢*(y)] — tr[¢™(x)] — 2((¢")*(2),y — x),

we then have the continuous differentiability of D(-,y) on int(K"). Furthermore,

VoD(z,y) = —Vir[¢™(z)] = 2V(¢")*(z) - (y — z) + 2(¢)**(x)
= —2(¢)(x) +2V(¢)*(2) - (z = y) +2(¢) ()
= 2V(¢)*(x) - (z —y).

(c) By the definition of ¢, given as in (3.37), D(x,y) can be rewritten as
D(z,y) = tr[(¢')**(x) 0w — ¢*°(2)] + ¢y (2) + t2[0™(y)].

Thus, to prove the (strict) convexity of D(-,y) on int(K"), it suffices to show that

tr{(¢)(w) 0z — ¢™°(2)] + ¢y (w)
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is (strictly) convex on int(K"). Let v : (0,400) — IR be the function defined by

Y(t) == ¢'(1)t — o(1). (3.44)
Then, the vector-valued function induced by ¢ via (1.8) is (¢')%°(x) o x — ¢*°(x), i.e
7ﬁSOC('%,) — (¢/)Soc(x) or — ¢SOC(£E)' (3'45)

From condition (C3) and Lemma 3.3(d), it follows that tr[(¢')*°¢(x)ox —¢*°°(x)] is convex
over int(K"). In addition, by Lemma 3.4(b), ¢,(z) is convex on int(K") if y € K", and
it is strictly convex if y € int(K™). Thus, we get the desired results.

(d) From [131, page 251] and part(a)-(b), to prove that D(-,y) is essentially smooth for
any fixed y € int(K"), it suffices to show that ||V,D(z*,y)|| — +oo for any {2*} C
int(K") with 2% — x € bd(K™). We next prove the conclusion by the two cases: z; > 0
and x; = 0. For the sake of notation, let 2* = (2% 2%) € R x R"L.

Case 1: 71 > 0. In this case, ||z3|| = 71 > 0 since x € bd(K™). Noting that z* — z, we
have 2§ # 0 for all sufficiently large k. From the gradient formula (3.43),

IVaD(@", y)ll = 12V (¢ (") - (@" = y)ll = [2[V(¢')**(2") - (2" = )|, (3.46)

where [V(¢')%°¢(2*)- (x% —y)]; denotes the first element of the vector V(¢ )*¢(z%)- (2% —y).
By the gradient formula (1.28), we can compute that

AT ) (=l = [ Oala) + o On D) et = )
HOOalih) - o O () 2

= ¢"(a(z") (Na(a®) —y1 - yz%/”%”)
=" (M(2")) (1 — g w3/ ll25 ] = M (=")) . (3.47)

Therefore,
2AV(#)(@") - (@ = | = |6 (a@) (o~ vkl - (")
—[6" (")) (a(a®) = g1 — g b/ ll25])|
> " (M (@)] - (Jon = ya 25/ [l5]l] = M ("))
—10" 2 (®))] - [Aa(@®) — y1 — y3 25 /| 25|
> [¢"u@)] - (M) - M)

—|¢"(Na(2")| - [Aa(2®) — g1 — yp a5/ ||3 ]|

T

Noting that A(z%) — A\ (z) = 0, Xo(2¥) — Xp(z) > 0 and ?‘Jﬁ ‘2| ‘?ﬁZ x‘2| as k — oo,
2 X2

the second term in the right hand side of last inequality converges to a finite value,
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whereas the first term approaches to oo since |¢”(\;(z*))| — oo by condition (C2) and
A (y) — A (2%) — Xy (y) > 0. This implies that as k — +o0,

2V (@) (2") - (" — )i | — o0.

Combining with the inequality (3.46) immediately yields |V, D(z*, y)| — oo.

Case 2: x1 = 0. In this case, we necessarily have that x = 0 since z € K". Considering
that x% — =, it then follows that x5 = 0 or x5 > 0 for all sufficiently large k. If & = 0
for all sufficiently large k, then from (1.27) we have that

IVaD(2*, )| = 126" (@7) (" — y)ll > 2|¢" (@1)| - |27 — wl.

Since y; > 0 by y € int(K") and 2} — z; = 0, applying condition (C2) yields that the
right hand side tends to oo, and consequently ||V,D(z*,y)| — +oo when k — cc.

Next, we consider the case that 25 > 0 for all sufficiently large k. In this case, the

inequalities (3.46)-(3.47) still hold. By Cauchy-Schwartz Inequality,
Xo(a®) =y =z a /a5l > Na(a®) =y — [lgell = Aala®) = Xa(y),
v —yaas/llasll = M(@®) >y = el = (@) = Mily) — M(2®).
Since A;(z%), Aa(z¥) — 0 as k — +o00 and A\ (y), A2(y) > 0 by y € int(K"), the last two
inequalities imply that
Xo(a®) =y —ygay/llas] = —a(y) <0,
y1 =y 25/ llos] = M) = Aiy) > 0.
On the other hand, by condition (C2), when k — oo,
¢" (Ao (2)) — 00,  ¢"(Ai(2*)) — oo0.

The two sides show that the right hand side of (3.47) approaches to —oo as k — +oo,
and consequently, 2|[V(¢')%°¢(z*) - (z* — y)]1| = +o00. Thus, from (3.46), it follows that
|V.D(z*, y)|| — oo as k — oco.

(e) From the definition of D(x,y), it follows that for any z,y € int(K"),

D(xz,y) = tr[¢™(y)] — tr[¢* ()] — tr[(¢)(x) o y] + tr[(¢)*(2) 0 2]

2

= D o) = Y o)) — tr[(@)°(x) 0 y] + tr[(¢) () 0 2] (3.48)

i=1 i=1
where the second equality is from Lemma 3.3(a) and Property 1.1. Since
(@) @or = [FM@)ud + ¢ a(@)u®] o M@l + Ag(z)u]
= ¢ @) M(@)ul? + ¢' Qo) da(2)u?,



3.2. INTERIOR PROXIMAL-LIKE ALGORITHMS FOR SOCCP 125

we have from Lemma 3.3(a) that

() (@) 0 2] = Y ¢ (Ni())Mi()-

(2

=1
In addition, by Property 1.1 and Lemma 3.3(a), we have that

[\

() (@) 0 y] <D ¢ (M) Aiy).

i=1
Combining the last two inequalities with (3.48) yields that

2

D@,y) = D [60uly) — o((@)) — & (@) Xily) + ¢ (@) Ai(w)]

i=1

= >~ o) — o(N(@)) — I Aula))Muly) = ()|

_ ZdB(Ai(y),Ai(x)),

where dp : Ry X IR, — IR is the function defined by

dp(s,t) = d(s) — o(t) — ¢'(t)(s — 1).
This implies that for any fixed y € K™ and v > 0,

Lp(y,v) C {m € int(K")

Z dp(Ni(y), Ai(z)) < 7} : (3.49)

Note that for any fixed s > 0, the set {t > 0|dp(s,t) < 0} equals to {s} or (), and
hence it is bounded. Thus, from [131, Corollary 8.7.1] and condition (C3), it follows that
the level sets {t > 0|dg(s,t) <~} for any fixed s > 0 are bounded. This together with
(3.49) implies that the level sets Lp(y,7) are bounded for all v > 0. O

Proposition 3.9. Given a function ¢ € ®, let D(x,y) be defined as in (3.35). Then,
for all x,y € int(K") and z € K™, we have the following inequality

D(z,z) = D(y,2) = 2(V(¢')*(y)- (z —y), y — )
= 2AV()"(y) - (y—2), z—y). (3.50)
Proof. From the definition of D(z,y) and ¢,(z) and equality (3.45), it follows that

D(z,2) = D(y,2) = tr[(¢/)*(x) oz — ¢™(2)] + ¢.()

—tr[(¢')**°(y) oy — ¢™(y)] — b= (y)

tr[*(2)] — tr[p™(y)] + ¢.(2) — d-(y)

(Ve[ ()], = —y) + (Véa(y), v — )

Qy), v —y) — 2V(¢)*(y) -z,  —y), (3.51)

v
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where the inequality is due to the convexity of tr[¢)*°°(x)] and ¢,(z) and the last equality
follows from Lemma 3.3(c) and Lemma 3.4(a). From the definition of ¢ given as in (3.44),
it is easy to compute that

(@)(y), 2 —y) = ()W) oy, T —y). (3.52)
In addition, by the gradient formulas in (1.27)-(1.28), we can compute that

V(@) (y) -y = (") (y) oy,

which in turn implies that

V() *(y) -z, v —y)
V(@)Y ) w+z—y), —y)
(y) -

V(@) (y) -y, = y) +(V(¢)**(v) - (2 —y), z— )
(@) y) oy, x—y) +(V(¢)*(y) - (2 —¥), v —y).

This, together with (3.52) and (3.51), yields the first inequality in (3.50), whereas the
second inequality follows from the symmetry of the matrix V(¢')*°(y). O

{
{
{
(9

Propositions 3.8-3.9 indicate that D(x,y) possesses some favorable properties similar
to those for d,. We will employ these properties to establish the convergence for an
approximate version of the proximal-like algorithm (3.34).

The proximal-like algorithm described as (3.34) for the CSOCP consists of a sequence
of exact minimization. However, in practical computations, it is impossible to obtain the
exact solution of these minimization problems. Therefore, we consider an approximate
version of this algorithm which allows the inexact solution of the subproblems (3.34).
Throughout this section, we make the following assumptions for the CSOCP:

(A1) inf{f(¢)|¢ € F} := f. > —o0 and dom(f) Nint(F) # 0.

(A2) The matrix A is of maximal rank m.

Remark 3.4. As remarked in Remark 3.2, Assumption (A1) is elementary for the ex-
istence of the solution of the CSOCP. Assumption (A2) is common in the solution of
the SOCPs, which is clearly satisfied when F = {{ € R"|{ =xn 0}. Moreover, if we
consider the linear SOCP

min ¢l

st. Ar=b, ze€Kkm,

where A € R™" with m < n, b € R™, and ¢ € R", the assumption that A has full row
rank m is standard. Consequently, its dual problem, given by

(3.53)

max b7y

st - ATy»_. 0, (8:54)
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satisfies assumption (A2). This shows that we can solve the linear SOCP by applying
the approximate proximal-like algorithm described below to the dual problem (8.54). In
addition, we know that the recession cone of F is given by 0" F = {d € R™| Ad >, 0}.
This implies that assumption (A2) is also satisfied when F is supposed to be bounded,
since its recession cone 0T F nmow reduces to zero.

For the sake of notation, in the sequel, we denote D : int(F) x F — IR by
D(C,€) := D(AC + b, A€ +b). (3.55)

From Proposition 3.8, we readily obtain the following properties of D((,§).

Proposition 3.10. Let D((,§) be defined by (3.55). Then, under Assumption (A2), we
have

(a) D(C,&) >0 for any ¢ € int(F) and § € F, and D((,&) =0 if and only if { =&;
(b) the function D(-,&) for any fived & € F is continuously differentiable on int(F) with

V¢D((,§) = 24TV (¢)*°(AC + D)A(C = &); (3.56)

(c) for any fized & € F, the function D(-,§) is conver on int(F), and for any fixed
€ € int(F), then D(-,§) is strictly convex over int(F);

(d) for any fized & € int(F), the function D(-,§) is essentially smooth;

(e) for any fivred & € F, the level sets L(€,v) = {C € int(F) : D((, &) < 'y} for all v >0
are bounded.

Now we describe an approximate version of the proximal-like algorithm (3.34).

The APM. Given a starting point (° € int(F) and constants ¢, > 0 and pu > 0,
generate the sequence {¢*} C int(F) satisfying

g* € 0., f(¢Ch),
{ g + VD(CH, 51 = 0, (3:57)

where 0. f represents the e-subdifferential of f.

Remark 3.5. The APM can be regarded as an approzrimate version of the entropy
prozimal-like algorithm (3.34) in the following sense. From the relation in (3.57) and
the convezity of D(-,&) over int(F) for any fivzed & € int(F), it follows that for any
u € int(F),

flu) = f(¢") + (u— " g") — e
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and
p ' Du, M) > DS T (VDR ), u = ¢).
Adding the last two inequalities and using (3.57) yields
fu) + " Dlu, 1) = F(CF) + D ¢ — e

This implies that

(% € ¢, — argmin {f(() + i 'D(C, Ck_l)} , (3.58)
where for a given function F' and € > 0, the notation
e —argmin F(() := {C* cF(¢) < ian(C)+e}. (3.59)

In the rest of this section, we focus on the convergence of the APM defined as in (3.57)
under assumptions (A1) and (A2). First, we prove that the APM generates a sequence
{¢*} C int(F), and consequently the APM is well-defined.

Proposition 3.11. For any £ € int(F) and p > 0, we have the following results.
(a) The function F(-) := f(:)+u~'D(-, &) has bounded level sets under assumption (Al).

(b) If, in addition, assumption (A2) holds, then there has a unique EG int(F) such that
¢ =argmin {f(¢) +u "D, )}, (3.60)

CEint(F)
and moreover, the minimum in the right hand side is attained at Z satisfying

20 LATV (¢ )¢ (AC + D) A(C — €) € OF(O). (3.61)

Proof. (a) Fix £ € int(F) and g > 0. By assumption (Al) and the nonnegativity
of D((, &), to show that F({) has bounded level sets, it suffices to show that for all
v > f., the level sets L(v) := {¢ € int(F) | F(¢) < v} are bounded. Notice that L(v) C
L& p(v — fi) and L(&,7) := {¢ € int(F) | D((,€) < 7} are bounded for all v > 0 by
Proposition 3.10(e). Therefore, the sets L(v) all v > f, are bounded.

(b) By Proposition 3.10(b), F(¢) is a closed proper strictly convex function. Hence, if
the minimum exists, it must be unique. From part(a), the minimizer Z exists, and so it is
unique. Under assumption (A2), using the gradient formula in (3.56) and the optimality
conditions for (3.60) then yields that

0 € Df(C) +2u™ ATV (¢)**°(AC + b)A(C — €) + D8(C | F), (3.62)

where §(u | F) = 0if u € F and +o00 otherwise. By Proposition3.10(c) and [131, Theorem
26.1], we have 9;D((, &) = () for all ¢ € bd(F). Hence, the relation in (3.62) implies that
¢ € int(F). On the other hand, from [131, Page 226], we know that

(u|F)={veR"|v=kn 0, tr(vou)=0}.
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Using Property 1.3, we then obtain 85(5] F) = {0}. Thus, the proof is completed. [

Next, we investigate the properties of the sequence {¢*} generated by the APM
defined as in (3.57).

Proposition 3.12. Let {yu} be any sequence of positive numbers and o, = ;_, .
Let {C*} be the sequence generated by the APM defined as in (3.57). Then, the following
hold.

(@) uelf(CF) = F(O] <D(C*,¢) — D¢, Q) + ey, for all C € F.
(b) D(¢*,¢) < D(C*,¢) + pwer for all ¢ € F subject to f(C) < f(¢*).
(e) an(f(¢") = f(Q) £ D(C° ) — D(C, C) + 2of_y oxex for all € F.
Proof. (a) For any ¢ € F, using the definition of the e-subdifferential, we have
FO) = f(CF) +(g" ¢ =) e, (3.63)
where g* € 0., f(C*). However, from (3.57) and (3.56), it follows that
9" = =24 P ATV (¢ (ACH + D) A(CR - ¢F 7).

Substituting this ¢g* into (3.63), we then obtain that
(S = F(O)] < 2( ATV (AC* + DA = 7). ¢ = ¢F) + e

On the other hand, applying Proposition 3.9 at the points + = AC*! +b, y = AC* +b
and z = AC 4 b and using the definition of D((, &) given by (3.55) yields

D(C*,¢) = D(¢,€) = 2( ATV (@) (AC* + D) A(C* = ¢, ¢ = ¢F),

Combining the last two equations, we immediately obtain the result.
(b) The result follows directly from part (a) for any ¢ € F such that f(¢*) > f(¢).
(c) First, from (3.58), it follows that

¢* € e — argmin { f(C) + 1 D¢, M}
This implies that for any ¢ € int(F),
F(O) + DG E) = F(C) + e D(CH ) — e
Setting ¢ = ¢*~! in this inequality and using Proposition 3.10(d) then yields that

FEEN) = F(CR) = "D ¢ — e > —e
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Multiplying the above inequality by o1 and summing over k = 1,2,--- ,n, we get

n

Z [Uk—lf(ck_l) — (o), — Nk:>f(Ckﬂ > — Zak—ﬁk,

k=1

which, by noting that o = pp + 0,1 (with o9 = 0), can be reduced to

o f(C") =D () < orrer.
k=1 k=1

On the other hand, using part (a) and summing over k = 1,2,---  n, we have

—onf(Q)+ Y mf(¢*) <D ¢) = D(C" ) + Y pwer, Y € F.
k=1

k=1
Adding the last two inequalities yields

n

on(f(C") = f(0) <D(C°Q) = D(C" Q) + D (1 + 0k )er,

k=1
which proves (c) because uy + op—1 = 0. 0O
We are now in a position to prove our main convergence result for the APM defined

as in (3.57).

Proposition 3.13. Let {¢*} be the sequence generated by the APM defined as in (3.57)
and o, = > ;_, pu. Then, under assumptions (A1) and (A2), the following hold.

(a) If 0, — +oo and i ope, — 0, then lim, o f(C") = f..

(b) If the optimal set X # 0, 0, — 00 and > p, pxéx < 00, then the sequence ¥ is
bounded and every accumulation point is a solution of the CSOCP.

Proof. (a) From Proposition 3.12(c) and the nonnegativity of D((™, (), it follows that

f(¢") = £(Q) <o,'D(C°, ) + 0, Z%Ek, V¢ e F.

k=1

Taking the limit 0,, — 400 to the two sides of the last inequality, we immediately have
that the first term in the right hand side goes to zero. In addition, applying Lemma 3.6
with a,; == 0, 'y if & < n and a,, := 0 otherwise and uy = ,u,;lakek, we obtain that
the second term in the right hand side

n
-1 . O
g, Ok€p = AnrpUp —
k=1 k
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because g, = +00 and ,u,;lakek — 0. Therefore, we have

lim f(¢") < f..

n—-+00
This, together with the fact that f(¢™) > f., implies the desired result.

(b) Suppose that ¢* € X. For any k, we have f(¢*) > f(¢*). From Proposition 3.12(b),
it then follows that
D(¢*,¢") < D(CMH, ) + pwes.

Since Yo, pr€x < +00, using Lemma 3.6 with vy := D(¢*,¢*) > 0 and 8, = upex >
0 yields that the sequence {D(C*,(*)} converges. Thus, by Proposition 3.10(e), the
sequence {¢*} is bounded and consequently has an accumulation point. Without any
loss of generality, let ¢ € F be an accumulation point of {Ck} Then {¢%} — ¢ for some
k; — +oo. Since f is lower semi-continuous, we get f(C) = liminfy, f(¢*). On the
other hand, f(¢%) — f. by part (a). The two sides imply that f (E) = f.. Therefore, ¢
is a solution of the CSOCP. The proof is thus complete.  [J

3.3 Interior proximal methods for SOCCP

In this section, we consider the below CSOCP which is slightly different from (3.1):

inf f(x)
st. Ar=0b, x>=x0, (3.64)

where f: IR" — IR U {400} is a closed proper convex function, A is an m x n matrix
with full row rank m, b is a vector in IR™, z >, 0 means x € K, and K is the Cartesian
product of some second-order cones. In other words,

K=K"x K" x--- x K"
where r,ny,...,n, > 1 with ny +--- +n, =n, and

KM= {($1,3§'2) € R x ]R,niil |fE1 > H.I’QH}

with ||-|| being the Euclidean norm. When f reduces to a linear function, i.e. f(z) =clz

for some ¢ € R", (3.64) becomes the standard SOCP. Throughout this section, we de-
note by X, the optimal set of (3.64), and let V := {x € R" | Az = b}. This CSOCP, as
an extension of the standard SOCP, has a wide range of applications from engineering,
control, finance to robust optimization and combinatorial optimization; see [1, 103] and
references therein.

There have proposed various methods for the CSOCP, which include the interior
point methods [2, 110, 146], the smoothing Newton methods [52, 64], the smoothing-
regularization method [72], the semismooth Newton method [87], and the merit function
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method [49]. These methods are all developed by reformulating the KKT optimality
conditions as a system of equations or an unconstrained minimization problem. This
paper will focus on an iterative scheme which is proximal based and handles directly the
CSOCP itself. Specifically, the proximal-type algorithm consists of generating a sequence
{2*} via

2" = argmin {\p f(z) + H(z, 2" ") |z e KNV}, k=12,... (3.65)

where {A\;} is a sequence of positive parameters, and H: R" x R" — R U {400} is a
proximal distance with respect to int K (see Def. 3.1) which plays the same role as the
Euclidean distance ||z — y||* in the classical proximal algorithms (see, e.g., [106, 132]),
but possesses certain more desirable properties to force the iterates to stay in NV, thus
eliminating the constraints automatically. As will be shown, such proximal distances can
be produced with an appropriate closed proper univariate function.

In the rest of this section, we focus on the case where X = K™, and all the analysis can
be carried over to the case where IC has the direct product structure. Unless otherwise
stated, we make the following minimal assumption for the CSOCP (3.64):

(A1) domf N (VNint(K")) # 0 and f, :=inf{f(z) | z€ VNK"} > —c0.

Definition 3.2. An extended-valued function H : IR" x R" — IR U {400} is called a
prozimal distance with respect to int(K™) if it satisfies the following properties:

(P1) domH(+, ) = C; x Cy with int(K™) x int(K™) C C; x Co C K™ x K™.

(P2) For each given y € int(K™), H(-,y) is continuous and strictly convex on Cy, and it
is continuously differentiable on int(K") with domV1H (-, y) = int(K™).

(P3) H(z,y) >0 for all z,y € R", and H(y,y) =0 for all y € int(K").

or each Jized y € Cq, the sets \x € Cy : H(x,y) < v; are bounded for all v € IR.
P4) F h fized Co, th Ci: H bounded for all R

Definition 3.2 has a little difference from Definition 2.1 of [10] for a proximal distance
w.r.t. int(X"), since here H(-,y) is required to be strictly convex over C; for any fixed
y € int(K"). We denote D(int(K")) by the family of functions H satisfying Definition
3.2. With a given H € D(int(K")), we have the following basic iterative algorithm for
(3.64).

Interior Proximal Algorithm (IPA). Given H € D(int(K™)) and 2° € V N int(K").
For k =1,2,..., with A, > 0 and &, > 0, generate a sequence {z*} C V Nint(K") with
g* € 0., f(z") via the following iterative scheme:

2 := argmin { Ay f(2) + H(z,2"") | 2 € V} (3.66)
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such that
Meg® 4+ Vi H (2" 2" = ATuF for some v € R™. (3.67)

The following proposition implies that the IPA is well-defined, and moreover, from its
proof we see that the iterative formula (3.66) is equivalent to the iterative scheme (3.65).
When ¢, > 0 for any k € N (the set of natural numbers), the IPA can be viewed as an
approximate interior proximal method, and it becomes exact if e, = 0 for all £ € N.

Proposition 3.14. For any given H € D(int(K™)) and y € int(K"), consider the problem
fely,7) =inf{7f(z)+ H(z,y) | x € V} with 7> 0. (3.68)
Then, for each ¢ > 0, there exist x(y,7) € VNint(K") and g € 0-f(x(y,T)) such that
9+ ViH(x(y,7),y) = ATu (3.69)
for some u € IR™. Moreover, for such x(y,T), we have
Tf(x(y, 7)) + H(z(y,7),y) < fuly,7) + & (3.70)

Proof. Set F(z,7) := 7f(x)+H (x,y)+0ynicn (z), where dynien () is the indicator function
defined on the set YV N K". Since domH (-,y) = C, C K", it is clear that

fily, 7) =inf{F(z,7) | 2 € R"}. (3.71)
Since f, > —o0, it is easy to verify that for any v € IR the following relation holds
{r €R" [ F(z,7) <7} C {z €VNK" | H(z,y) <y —7f}
C {zeli|H(zy) <v-1f},

which together with (P4) implies that F'(-,7) has bounded level sets. In addition, by
(P1)-(P3), F(-,7) is a closed proper and strictly convex function. Hence, the problem
(3.71) has a unique solution, to say z(y, 7). From the optimality conditions of (3.71), we
get
0€ 0F(x(y. 7)) = 70f(x(y, 7)) + ViH (x(y,7), y) + Odvrucr (x(y, 7))

where the equality is due to [131, Theorem 23.8] and domf N (V Nint(K")) # 0. Notice
that dom V1 H(-,y) = int(K") and dom 0dynin(-) = VNK™. Therefore, the last equation
implies x(y, 7) € YV Nint(K"), and there exists g € df(x(y, 7)) such that

—79 — ViH(z(y,7),y) € Odparn(x(y, T)).
On the other hand, by the definition of dynin(+), it is not hard to derive that

Idyrin (x) = Im(AT), Vo € VNint(K").
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The last two equations imply that (3.69) holds for € = 0. When ¢ > 0, (3.69) also holds
for such z(y, 7) and g since Of (z(y, 7)) C 0-f(x(y,7)). Finally, since for each y € int(K")
the function H(-,y) is strictly convex, and since g € 0.f(z(y, 7)), we have

Tf(x)+ H(z,y) > 7f(x(y. 7))+ H(z(y
+(rg + ViH(z(y,7)

= 7f(x(y, 7)) + H(z(y

= 7f(x(y, 7)) + H(z(y

7),y)

y),z—x(y,7)) — €

7).y) + {(ATu,x —a(y, 7)) — ¢
7),y) —e forall z €V,

(x(y,

where the first equality is from (3.69) and the last one is by z,z(y,7) € V. Thus,
foly,7) = mf{7f(z) + H(z,y) | v € V} > 7f(2(y, 7)) + H(2(y,7),y) —. O

In the following, we focus on the convergence behaviors of the IPA with H from
several subclasses of D(int(K")), which also satisfy one of the following properties.

(P5) For any x,y € int(K") and z € Cy, H(z,y) — H(z,z) > (V1H(z,y), z — x);
(P5’) For any x,y € int(K") and z € Cy, H(y,2) — H(x,z) > (V1H(x,y),z — x).

(P6) For each z € Cy, the level sets {y € Cy | H(z,y) <~} are bounded for all v € IR.

Specifically, we denote Fi(int(K")) and Fa(int(K™)) by the family of functions H €
D(int(K™)) satisfying (P5) and (P5’), respectively. If C; = K", we denote F;(K") by
the family of functions H € D(int(K")) satisfying (P5) and (P6). If C; = K", we write
Fo(int(K™)) as F(K™). It is easy to see that the class of proximal distance F(int(K"))
(respectively, F(K™)) in [10] subsumes the (H, H) with H € F;(int(K")) (respectively,
F1(K™)), but it does not include any (H, H) with H € F(int(K")) (respectively, Fo(K™)).

Proposition 3.15. Let {2*} be the sequence generated by the IPA with H € JFy(int(K"))
or H € Fo(int(K™)). Set o, => 1_ M. Then, the following results hold.

(a) f(z")—f(z) <o, 'H(z,2%) 40, orer for any x € VNCy if H € Fi(int(K™));
f@)=f(z) <o, H(2° x)+0,t > orer for any x € VNCq if H € Fo(int(K™)).

(b) If 0, = +00 and g, — 0, then liminf, ., f(z") = f..
(c) The sequence {f(x*)} converges to f. whenever Y - & < 0o.
(d) If X, #0, then {x*} is bounded with all limit points in X, under (d1) or (d2) below:

(d1) X, is bounded and > 7~ e < 00;
(d2) >0, Mew <00 and H € Fi(K™) (or H € Fo(K™)).
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Proof. The proofs are similar to those of [10, Theorem 4.1]. For completeness, we here
take H € F(int(K"™)) for example to prove the results.

(a) Since ¢g* € O, f(«*), from the definition of the subdifferential, it follows that
flx) > f(@®) + (¢ 2 — 2% —ep, Vo e R™
This together with equation (3.67) implies that
Me(f(2F) = f(z) < (ViH (2%, 2*Y), 2 — 2F) + Mg, Yz € VN Co.
Using (P5’) with 2 = 2%,y = 2*71 and 2 = 2 € V Ny, it then follows that
Me(f(2®) = f(z) < H(2" ' 2) — H(2, 2) + Mer, Vo €V NCo. (3.72)

Summing over k = 1,2,... v in this inequality yields that

—o,f(x Z Mef (@) < H(2°, 2) — H(z", 2) + Z AK€k (3.73)
k=1
On the other hand, setting z = z*~! in (3.72), we obtain
f(xk) — fla* ) < )\,;1 [H(ajk_l,ask_l) - H(:Ek,a:k_l)} + e < &. (3.74)

Multiplying the inequality by ox_1 (with 0p = 0) and summing over k = 1,..., v, we get

ZUk f(x Zﬂk Lf(2F <Z‘7k 1€k

Noting that o, = A\ + 01 with oy = 0, the above inequality can reduce to

o, f(x Z Aef (%) < oaes. (3.75)
k=1

Adding the inequalities (3.73) and (3.75) and recalling that oy = Ay + o4_1, it follows
that

fa*) = fa) <oyt [H@"w) = H(",2)] + 0,1 Y ower, Vo €VNC
k=1
which immediately implies the desired result due to the nonnegativity of H(z",x).
(b) If 0, — 400 and ¢ — 0, then applying Lemma 2.2(ii) of [10] with a; = ¢; and
by =0, >0 ke yields o1 Y00 Age, — 0. From part(a), it then follows that

liminf f(2”) <inf{f(z) | z € YV Nint(K")}.

v—00
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This together with f(2) > inf {f(z) | x € VN K"} implies that

liﬂglff(m”) =inf{f(z) | z € VNint(K")} = f..

(c) From (3.74), 0 < f(2*) — f. < f(2*!) — f. +&x. Using Lemma 2.1 of [10] with 7, =0
and v, = f(2*) — f., we have that {f(z*)} converges to f. whenever > 7 & < oco.

(d) If the condition (d1) holds, then the sets {x € VNK"™ | f(x) <~} are bounded for all
v € IR, since f is closed proper convex and X, = {z € VN K" | f(z) < f.}. Note that
(3.74) implies {z*} Cc {z e VNK" | f(z) < f(2°) +Z§:1 g;}. Along with "% | g, < oo,
clearly, {*} is bounded. Since {f(z*)} converges to f. and f is ls.c., passing to the
limit and recalling that {z¥} C V N K" yields that each accumulation point of {z*} is a
solution of (3.64).

Suppose that the condition (d2) holds. If H € F,(K™), then inequality (3.72) holds for
each x € VN K", and particularly for z, € X,. Consequently,
H(z", z,) < H(" ' 2,) + e, Vo, € X, (3.76)

Summing over k = 1,2, ..., v for the last inequality, we obtain
H(z", x,) < H(z°, z,) Z/\kek

This, by (P4) and > 37, \eex < oo, implies that {z*} is bounded, and hence has an
accumulation point. Without loss of generality, let £ € K™ be an accumulation point of
{2*}. Then there exists a subsequence {x%/} such that z* — & as j — +o0. From the
lower semicontinuity of f and part(c), we get f(Z) < lim;_ o f(2%) = f., which means
that 2 is a solution of (3.64). If H € F1(K"), then the last inequality becomes

By (P6) and Y ;- Mep < oo, we also have that {z*} is bounded, and hence has an
accumulation point. Using the same arguments as above, we get the desired result. [

An immediate byproduct of the above analysis yields the following global rate of
convergence estimate for the IPA with H € F(K") or H € Fo(K").

Proposition 3.16. Let {z*} be the sequence given by the IPA with H € Fy(K") or
Fo(K™). If Xy £ 0 and Y - e < 00, then f(z¥) — f. = O(o, ).

Proof. The result is direct by setting z = x* for some z* € X, in the inequalities of
Proposition 3.15(a), and noting that 0 < 28 <1forall k=1,2,--- ,v. [
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To establish the global convergence of {z*} to an optimal solution of (3.64), we need
to make further assumptions on X, or the proximal distances in F;(K") and Fa(K").
We denote F;(K™) by the family of functions H € F,(K") satisfying (P7)-(P8) below,
F>(K™) by the family of functions H € F5(K") satisfying (P7)~(P8) below, and F(K™)
by the family of functions H € F,(K") satistying (P7’)-(P9’) below:

(P7) For any {y*} C int(K") converging to y* € K", we have H(y*,y*) — 0;

(P8) For any bounded sequence {y*} C int(K") and any y* € K™ with H(y*,y*) — 0,
there holds that \;(y*) — \;(y*) for i = 1,2;

(P7°) For any {y*} C int(K") converging to y* € K", we have H(y*, y*) — 0;

(P8’) For any bounded sequence {y*} C int(K") and any y* € K" with H(y*,y*) — 0,
there holds that \;(y*) — X\;(y*) for i = 1,2;

(P9’) For any bounded sequence {y*} C int(K") and any y* € K" with H(y*,y*) — 0,
there holds that y* — y*.

It is easy to see that all previous subclasses of D(int(K")) have the following relations:

Fi(K™) C Fi(K™) C Fi(int(K™), Fao(K™) C Fo(K™) C Fo(K™) C Fo(int(K™)).

Proposition 3.17. Let {z*} be generated by the IPA with H € JF,(int(K")) or F(int(K")).
Suppose that X, is nonempty, > oo Aper, < 00 and Y po | € < 00.

(a) If X, is a single point set, then {x*} converges to an optimal solution of (3.64).

(b) If X. at least includes two elements and for any x* = (z},z3),z" = (z},73) € X,
with x* # Z*, it holds that x% # z% or ||a5| # ||Z3]], then {x*} converges to an

optimal solution of (3.64) whenever H € Fi(K™) (or H € F5(K")).
(c) If H € Fo(K™), then {z*} converges to an optimal solution of (3.64).

Proof. Part (a) is direct by Proposition 3.15(d1). We next consider part (b). Assume
that H € F5(K"). Since Y pey AkEr < 00, from (3.76) and Lemma 2.1 of [10], it follows
that the sequence {H(x*,x)} is convergent for any z € X,. Let Z be the limit of
a subsequence {z*'}. By Proposition 3.15(d2), # € X,. Consequently, {H (z* %)} is
convergent. By (P7’), H(x",%) — 0, and so H(z*,7) — 0. Along with (P8’), \;(2%) —
\i(Z) for i = 1,2, ie.,

x’f — |]x§|| — Ty — ||Z2|| and x’f + H:I:SH — I + ||Z2|| as k — oo.

This implies that 2} — z; and ||z}|| — ||Z2]|. Together with the given assumption for
X,, we have that 2% — Z. Suppose that H € F,(K"). The inequality (3.76) becomes

H(x*,xk) < H(:U*,xk’l) + Aeer, Vo, € X,
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and using (P7)-(P8) and the same arguments as above then yields the result. Part(c) is
direct by the arguments above and the property (P9’). O

When all points in the nonempty X, lie on the boundary of K", we must have z} # ]
or ||z3|| # ||z5] for any z* = (af,x3),7* = (z7,75) € X, with 2* # Z*, and the assump-
tion for X, in (b) is automatically satisfied. Since the solutions of (3.64) are generally on
the boundary of K", the assumption for X, in Proposition 3.17(b) is much weaker than
the one in Proposition 3.17(a).

Up to now, we have studied two types of convergence results for the IPA by the class
in which the proximal distance H lies. Proposition 3.15 and Proposition 3.16 show that
the largest, and less demanding, classes Fi(int(K")) and F,(int(K™)) provide reasonable
convergence properties for the IPA under minimal assumptions on the problem’s data.
This coincides with interior proximal methods for convex programming over nonnegative
orthant cones; see [10]. The smallest subclass Fo(K") of Fyp(int(K")) guarantees that
{x*} converges to an optimal solution provided that X, is nonempty. The smaller class
Fo (K™) may guarantee the global convergence of the sequence {z*} to an optimal solution
under an additional assumption except the nonempty of X,. Moreover, we will illustrate
that there are indeed examples for the class Fo(K"). For the smallest subclass ]/-:1(IC”)
of Fi(int(KC™)), the analysis shows that it seems hard to find an example, although it
guarantees the convergence of {z*} to an optimal solution by Proposition 3.17(b).

Next, we provide three kinds of ways to construct a proximal distance w.r.t. int(X")
and analyze their own advantages and disadvantages. All of these ways exploit a l.s.c.
(lower semi-continuous) proper univariate function to produce such a proximal distance.
In addition, with such a proximal distance and the Euclidean distance, we obtain the
regularized ones.

The first way produces the proximal distances for the class F;(int(K")). This way is
based on the compound of a univariate function ¢ and the determinant function det(-),
where ¢ : IR — IR U {+o00} is a l.s.c. proper function satisfying the following conditions:

(B1) dom¢ C [0, 4+00), int(dom¢) = (0, +00), and ¢ is continuous on its domain;
(B2) for any t1,t, € dom¢, there holds that
Oty ™") < ro(ta) + (1 —1)g(tz),  Vr € [0,1]; (3.77)
(B3) ¢ is continuously differentiable on int(dom¢) with dom(¢’) = (0, 00);
(B4) ¢/(t) <0 for all t € (0,00), limy_,o+ ¢(t) = +o0, and limy_, o t1(t*) > 0.
With such a univariate ¢, we define the function H : R" x R" — IRU{+o0} as in (3.15)
Hiz,y) = { ¢(det(z)) — ¢(det(y)) — (Vo(det(y)), x —y), Va,y e nt(K");

oQ. otherwise.
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By the conditions (B1)-(B4), we may prove that H has the following properties.

Proposition 3.18. Let H be defined as in (3.15) with ¢ satisfying (B1)-(B4). Then,
the following hold.

(a) For any fized y € int(K"), H(-,y) is strictly convex over int(K").
(b) For any fized y € int(K™), H(-,y) is continuously differentiable on int(K™) with

X1

ViH(a,) = 20/den(a)) | 7| - 20@ent) | (375)

_ —ys
for all x € int(K™), where x = (x1,72),y = (y1,y2) € R x R" L.
(c¢) H(z,y) >0 for all x,y € R", and H(y,y) =0 for all y € int(K").
(d) For anyy € int(K"), the sets {x € int(K") | H(x,y) < v} are bounded for all vy € R.
(e) For any x,y € int(K™) and z € int(K"), the following three point identity holds
H(z,y) = H(z,z) + H(z,y) + (V1H(z,y), z — x).

Proof. (a) It suffices to prove ¢(det(x)) is strictly convex on int(KX™). By Proposition
1.8(a), there has

det(ax + (1 — a)z) > (det(z))*(det(2))' ™, Va € (0,1),

for all z,z € int(K") and x # z. Since ¢'(t) < 0 for all ¢ € (0, +00), we have that ¢ is
decreasing on (0, +00). This, together with the condition (B2), yields that
¢ [det(ax + (1 —a)z)] < ¢ [(det(z))*(det(z))" ]
< agldet(n)] + (1 — a)gldet(z)], Vo e (0,1)
for any x, z € int(K") and x # z. This means that ¢(det(z)) is strictly convex on int(X").

(b) Since det(z) is continuously differentiable on IR™ and ¢ is continuously differentiable
on (0, +00), we have that ¢(det(z)) is continuously differentiable on int(K™). This means
that for any fixed y € int(K"), H(-,y) is continuously differentiable on int(K"). By a
simple computation, we immediately obtain the formula in (3.78).

(c) Since ¢(det(x)) is strictly convex and continuously differentiable on int(K"), we have

¢(det(z)) > o(det(y)) — (Vo(det(y)), = —y),

for any z,y € int(K") with = # y. This implies that H(y,y) = 0 for all y € int(K"). In
addition, from the inequality and the continuity of ¢ on its domain, it follows that

¢(det(z)) > ¢(det(y)) — (Vo(det(y)), z —y)
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for any z,y € int(K™). By the definition of H, we have H(z,y) > 0 for all z,y € R™.

(d) Let {z*} C int(K") be a sequence with ||2*|] — oo. For any fixed y = (y1,32) €
int(K"), we next prove that the sequence {H (z* y)} is unbounded by three cases, and
then the desired result follows. For convenience, we write 2% = (2%, %) for each k.

Case 1: the sequence {det(z"*)} has a zero limit point. Without loss of generality, we
assume that det(z*) — 0 as k — oo. Together with lim,_o+ ¢(t) = +o0, it readily follows
that limy_,., ¢(det(z*)) — +oo. In addition, for each k we have that

(Vo(det(y)),2*) = 2¢/(det(y))(z1yn — (x5)"y2)
< 2¢/(det(y))y (=7 — [J5]]) <0, (3.79)
where the inequality is true by using ¢'(f) < 0 for all ¢ > 0, the Cauchy-Schwartz

Inequality, and y € int(K"). Now from (3.15), it then follows that limy . H (2% y) =
+00.

Case 2: the sequence {det(z*)} is unbounded. Noting that det(xz*) > 0 for each k, we
must have det(z*) — +00 as k — oo. Since ¢ is decreasing on its domain, we have that

o(det(@")) V28N (@)a(ah)  _ dl(Aa(a"))?]
=] VOuE))?2+ Q@) — delat)
Note that A\y(z*) — 0o in this case, and from the last equation and (B4) it follows that
oldet(e) L ol0u)?]

In addition, since {Hi—zn} is bounded, we without loss of generality assume that

:L’k

(gl

Then, z € K", ||| = 1, and & > 0 (if not, £ = 0), and hence

— & = (&1,4) € R x R".

lim <V¢(det(y)),x—> = (Vo(det(y)), )

koo %]
= 2¢/(det(y)) (@191 — T3 42)
< 2¢(det(y))21(yr — [ly2ll)
< 0.

The two sides show that limy_, %,I:”y) > 0, and consequently limg_,oo H (:Ek, y) = +oo.

Case 3: the sequence {det(z*)} has some limit point w with 0 < w < +o00. Without loss
of generality, we assume that det(z*) — w as k — oo. Since {z*} is unbounded and
{2¥} C int(K"), we must have 2§ — +o0. In addition, by (3.79) and ¢'(t) < 0 for t > 0,

—(Vo(det(y)), ") = —2¢/(det(y)) (ziyr — [l23]llly=]]) = —2¢'(det(y)) (y1 — [lyal])-
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This along with y € int(K") implies that —(V¢(det(y)), 2*) — +o00 as k — oco. Noting
that ¢(det(z*)) is bounded, from (3.15) it follows that limy_, H (2", y) — +o0.
(e) For any x,y € int(K") and z € int(K"™), from the definition of H it follows that
H(z,y) = H(z,2) = H(z,y) = (V¢(det(z)) — Vo(det(y)), z — x)
= (ViH(z,y),z — ),
where the last equality is by part (b). The proof is thus complete. O

Proposition 3.18 shows that the function H defined by (3.15) with ¢ satisfying (B1)-
(B4) is a proximal distance w.r.t. int(K") and dom H = int(K") x int(K"). Also,
H € Fi(int(K™)). The conditions (B1) and (B3)-(B4) are easy to check, whereas by
Lemma 2.2 of [124] we have the following important characterizations for the condition
(B2).

Lemma 3.7. A function ¢ : (0,00) — R satisfies (B2) if and only if one of the following
conditions holds:

(a) the function ¢(exp(-)) is convex on IR;

(o(t]) + 0(13)) for any t1,t5 > 0;

N —

(b) ¢(tit2) <

S

(c) ¢'(t)+td"(t) > 0 if ¢ is twice differentiable.

Proof. Please see [124, Lemma 2.2] a proof. [

—Int, ift>0,
oo,  otherwise.

Example 3.8. Let ¢ : (0,00) = IR be ¢(t) = {

Solution. It is easy to verify that ¢ satisfies (B1)-(B4). By formula (3.15), the induced
proximal distance is

det(z) 22T J,y

—In +
H(z,y) = det(y)  det(y)
0, otherwise,

- 27 any € lIlt(’Cn),

where J,, is a diagonal matrix with the first entry being 1 and the rest (n — 1) entries
being —1. This is exactly the proximal distance given by [10]. Since H € F;(int(K")),
we have the results of Proposition 3.15(a)-(d1) if the proximal distance is used for the
IPA. N

Example 3.9. Take ¢(t) =t'79/(¢—1) (¢ > 1) if t > 0, and otherwise ¢(t) = oo.
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Solution. It is not hard to check that ¢ satisfies (B1)-(B4). By (3.15), we compute that

(det(x))' ™9 — (det(y))'™1 22T J,y

H(z,y) = q—1 (det(y))
o0, otherwise,

— (det(y))l_q, Va,y € int(K"),

where J,, is the diagonal matrix same as Example 4.1. Since H € F(int(K")), when using
the proximal distance for the IPA; the results of Proposition 3.15(a)-(d1) hold. W

We should emphasize that using the first way can not produce the proximal distances
of the class F1(K"), and so F (K™), since the condition lim; o+ ¢(t) = +00 is necessary
to guarantee that H has the property (P4), but it implies that the domain of H(-,y)
for any y € int(K") can not be continuously extended to ™. Thus, when choosing such
proximal distances for the IPA, we can not apply Proposition 3.15(d2) and Proposition
3.17.

The other two ways are both based on the compound of the trace function tr(-) and
a vector-valued function induced by a univariate ¢ via (1.8). For convenience, in the
sequel, for any l.s.c. proper function ¢ : R — IRU {oo}, we write d : R x R — IRU {o0}
as

ds.) = { o(s) — o(t) — ¢ (t)(s —t), if s € domg, t € domg'. (3.80)

0, otherwise.

The second way also produces the proximal distances for the class Fi(int(X"™)), which
requires ¢ : IR — IR U {oc} to be a Ls.c. proper function satisfying the conditions:

(C1) dom¢ C [0,+400) and int(dome) = (0, 00);
(C2) ¢ is continuous and strictly convex on its domain;
(C3) ¢ is continuously differentiable on int(dom¢) with dom(¢’) = (0, c0);

(C4) for any fixed t > 0, the sets {s € dom¢ | d(s,t) < v} are bounded with all v € IR;
for any fixed s € dome, the sets {t > 0] d(s,t) < v} are bounded with all v € R.

Let ¢*°¢ be the vector-valued function induced by ¢ via (1.8) and write dom(¢*¢) = C;.
Clearly, C; € K™ and intCy = int(K™). Define the function H : R" x IR" — IR U {co} by

tr((bsoc(m)) . tr((bSOC(y)) — <vtr(¢soc(y))7x — y>, Vx € Cl, Yy e 1nt(’Cn)(381)

0, otherwise.

H(z,y) ;:{

Using Property 1.1, Proposition 1.2, Lemma 3.3, the conditions (C1)-(C4), and similar
arguments to [117, Proposition 3.1] (also see Section 3.1), it is not difficult to argue that
H has the following favorable properties.
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Proposition 3.19. Let H be defined by (3.81) with ¢ satisfying (C1)-(C4). Then, the

following hold.

(a) For any fized y € int(K"™), H(-,y) is continuous and strictly convex on Cy.

(b) For any fizred y € int(K™), H(-,y) is continuously differentiable on int(K") with
Vil (z,y) = Vir(¢*(x)) — Vir(¢™(y)) = 2[(¢')*(z) — (&) ()] -

(c) H(z,y) >0 for all x,y € R", and H(y,y) =0 for any y € int(K").

(d) H(x,y) > 37 d(Ni(x), \i(y)) >0 for any x € Cy and y € int(K™).

(e) For any fized y € int(K"), the sets {x € Cy | H(x,y) <~} are bounded for all v € R;
for any fixred x € Cy, the sets{y € int(K") | H(z,y) < v} are bounded for all v € R.

(f) For any x,y € int(K") and z € Cy, the following three point identity holds:

H(z,y) = H(z,2)+ H(z,y) + (V1H(z,y), z — ).

Proposition 3.19 shows that the function H defined by (3.81) with ¢ satisfying (C1)-
(C4) is a proximal distance w.r.t. int(K") with dom H = C; x int(K"), and furthermore,
such proximal distances belong to the class Fi(int(K")). In particular, when dom¢ =
[0, 00), they also belong to the class F;(K™). We next present some specific examples.

Example 3.10. Take ¢(t) = tlnt —t if t > 0, and otherwise ¢(t) = oo, where we
stipulate 0ln 0 = 0.

Solution. It is easy to verify that ¢ satisfies (C1)-(C4) with dom¢ = [0, 00). By formulas
(1.8) and (3.81), we compute that H has the following expression:

tr(zolnz —zolny+y—x), Vre K"y e int(K"),
00, otherwise.

H(ar,y)z{

Example 3.11. Take ¢(t) =t? —t? if t > 0, and otherwise ¢(t) = oo, where p > 1 and
0<q<l.

Solution. We can show that ¢ satisfies the conditions (C1)-(C4) with dom(¢) = [0, c0).
When p =1 and ¢ = 1/2, from formulas (1.8) and (3.81), we derive that
tr y% — x4 (tr(y2)e —y2) o (x —y) , Ve K"y e int(K"),
H(z,y) = 2/det(y)
00, otherwise.
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Example 3.12. Take ¢(t) = —t? if t > 0, and otherwise ¢(t) = oo, where 0 < g < 1.

Solution. We can show that ¢ satisfies the conditions (C1)-(C4) with dom¢ = [0, 00).
Now

(1 — g)tr(y?) — tr(x9) + tr(qyi~toz), Vo e K"y € int(K").,
0, otherwise.

H@w%:{
m

Example 3.13. Take ¢(t) = —Int +t — 1 if t > 0, and otherwise ¢(t) = co.

Solution. It is easy to check that ¢ satisfies (C1)-(C4) with dom¢ = (0, c0). The induced
proximal distance is

tr(lny) — tr(lnz) + 2(y~ ', z) — 2, Vz,y € int(K"),
00, otherwise.

H@w%={

By a simple computation, we have that the proximal distance is same as the one given
by Example 3.4, and the one induced by ¢(t) = —1Int (¢ > 0) via formula (3.81). ®

Clearly, the proximal distances in Examples 3.11-3.13 belong to the class Fi(K").
Also, by Proposition 3.20 below, the proximal distances in Examples 3.14-3.15 also satisfy
(P8) since the corresponding ¢ also satisfies the following condition (C5):

(C5) For any bounded sequence {a*} C int(dom¢) and a € dom¢ such that lim d(a, a")

k—o00
= 0, there holds that a = limy_,, a*, where d is defined as in (3.80).

Proposition 3.20. Let H be defined as in (3.81) with ¢ satisfying (C1)-(C5) and
dom(¢) = [0,00). Then, for any bounded sequence {y*} C int(K") and y* € K" such that
H(y*,y*) — 0, we have N\;(y*) — \i(y*) fori=1,2.

Proof. From Proposition 3.19(d) and the nonnegativity of d, for each k we have
H(y" y*) = dNi(y"), L(y") 2 0, i=1.2.
This, together with the given assumption H(y*,y*) — 0, implies that
dN(y), M(y®) =0, i=1,2.

Notice that {\;(y*)} C int(domg) and \;(y*) € K™ for i = 1,2 by Property 1.1(c). From
the condition (C5), we immediately obtain A\;(y*) — A\;(y*) fori=1,2. O

Nevertheless, we should point out that the proximal distance H given by (3.81) with
¢ satisfying (C1)-(C4) and dom¢ = [0, 00) generally does not have the property (P7),
even if ¢ satisfies the condition (C6) below. This fact will be illustrated by Example
3.14.
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(C6) For any {a*} C (0,+400) converging to a € [0, 00), limy_.o d(a*, a¥) — 0.

Example 3.14. Let H be the proximal distance induced by the entropy function ¢ in
Example 5.10.

Solution. It is easy to verify that ¢ satisfies the conditions (C1)-(C6). Here we shall
present a sequence {y*} C int(K®) which converges to y* € K2, but H(y*,y*) — co. Let

2(1 4 %) V2

Y= | VitklT—e® | cint(K® and y*=| 1 | €K
V1—k1l4e# 1

By the expression of H(y*,y*), i.e., H(y*,y*) = tr(y* olny*) — tr(y* o In y*) +tr(y* — y*),
it suffices to prove that limg .. —tr(y* o Iny*) = oo since limy_,o tr(y* — 4*) = 0 and
tr(y* o Iny*) = Ao (y*) In(A2(y*)) < oo. By the definition of Iny*, we have

tr(y” o lny") = (A (")) (vi — (43)"95) +m(Aa(y") (w7 + (v3)" ) (3.82)
for y* = (yi,95), ¥" = (yf,¥%) € R x R? with 7§ = y&/||y4]|. By computing,
n(Ai(y") = mv2—In (1 V1t e—k’3> e

k14 k= ek
+
1+ VIi4+k T —e® 14—k 14 ¥

* * — 1
Y — (QQ)T?/S = (

ly5 ]

The last two equalities imply that limy_. In(A; (y%)) (vi — (v3)7%5) = —oo. In addition,
by noting that y5 # 0 for each k, we compute that

lim InOa(y)) (3 — (53)775) = InQraly®)) (yr L ) = Ma(y) InQraly)).

k=00 13

From the last two equations, we immediately have limy_,o, —tr(y* olny¥) =oco. W

Thus, when the proximal distance in the IPA is chosen as the one given by (3.81)
with ¢ satisfying (C1)-(C6) and dom(¢) = [0, c0), Proposition 3.17(b) may not apply, i.e.
the global convergence to an optimal solution may not be guaranteed. This is different
from interior proximal methods for convex programming over nonnegative orthant cones
by noting that ¢ is now a univariate Bregman function. Similarly, it seems hard to find
examples for the class F, (K") in [10] so that Theorem 2.2 therein can apply for since it
also requires (P7).

The third way will produce the proximal distances for the class F»(int(K™)), which
needs a l.s.c. proper function ¢ : R — IR U {00} satisfying the following conditions:

(D1) ¢ is strictly convex and continuous on dom¢, and ¢ is continuously differentiable
on a subset of dom¢, where dom(¢') C dom(¢) C [0, 00) and int(domg') = (0, c0);
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(D2) ¢ is twice continuously differentiable on int(dome¢) and lim, o+ ¢”(t) = o0;

(D3) ¢'(t)t — ¢(t) is convex on dom(¢’), and ¢’ is strictly concave on dom(¢’);

(D4) ¢ is SOC-concave on dom(¢').

With such a univariate ¢, we define the proximal distance H : R™ x R™ — IRU {oo} by

H(x,y) = { tr(¢soc(y)) - tr(ésoc(:ﬂ)) - <Vtr(¢soc(x))’y - [E), Vz € Chy € CQv (383)

0, otherwise.

where C; and Cy are the domain of ¢*°°¢ and (¢')*°°, respectively. By the relation between
dom(¢) and dom(¢’), obviously, Co C C; C K" and intC; = intCy = int(K").

Lemma 3.8. Let ¢ : R — IR U {oo} be a ls.c. proper function satisfying (D1)-(D4).
Then, the following hold.

(a) tr[(¢')*°(z) ox — ¢*°(x)] is convex in C; and continuously differentiable on intC,.

(b) For any fized y € R™, ((¢')*°°(x),y) is continuously differentiable on intCy, and
moreover, it is strictly concave over Cy whenever y € int(K").

Proof. (a) Let ¢(t) := ¢'(t)t—¢(t). Then, by (D2) and (D3), 1(t) is convex on dom¢’ and
continuously differentiable on int(dom¢’) = (0, +00). Since tr [(¢/)*°(x) o x — ¢*°°(x)] =
tr[1°°¢(z)], using Lemma 3.3(b) and (c) immediately yields part(a).

(b) From (D2) and Lemma 3.3(a), (¢’)%°°() is continuously differentiable on int C;. This
implies that (y, (¢')*°(z)) for any fixed y is continuously differentiable on intC;. We next
show that it is also strictly concave in C; whenever y € int(K™). Note that tr[(¢")%°(+)]
is strictly concave on C; since ¢’ is strictly concave on dom(¢’). Consequently,

tr[(¢)*(Bz + (1 = B)2)] > Btr[(¢)*(2)] + (1 - B)tx[(¢')*(2)], VO< B <1
for any z,z € C; and = # 2. This implies that
(¢')°°(Br + (1 = B)2) — B(¢)**(x) — (1 = B)(¢)*(2) # 0.
In addition, since ¢’ is SOC-concave on domd, it follows that
(&) [Ba + (1 = B)2] — B(¢)***(z) — (1 = B)(¢')***(2) =k~ 0.
Thus, for any fixed y € int(K"), the last two equations imply that
(y, (&)[Br + (1 = B)2] = B(¢)*(x) — (1 = B)(¢)**(2)) > 0.

This shows that (y, (¢')*°°(x)) for any fixed y € int(K") is strictly convex on C;. O

Using the conditions (D1)-(D4) and Lemma 3.8, and following the same arguments
as [117, Propositions 4.1 and 4.2], we may prove the following proposition.
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Proposition 3.21. Let H be defined as in (3.83) with ¢ satisfying (D1)-(D4). Then,
the following hold.

(a) H(x,y) >0 for any x,y € R™, and H(y,y) = 0 for any y € int(K").

(b) For any fized y € Co, H(-,y) is continuous in Cy, and it is strictly convexr on C
whenever y € int(K").

(c) For any fixred y € Co, H(-,y) is continuously differentiable on int(K") with
Vil (z,y) = 2V(¢')(x)(z — y).
Moreover, domV 1 H(-,y) = int(K") whenever y € int(K").
(d) H(z,y) > 372 d(N(y), Ai(z)) >0 for any x € C; and y € Co.
(e) For any fized y € Cy, the sets {x € Cy | H(x,y) <~} are bounded for all v € IR.
(f) Forallx,y € int(K") and z € Cy, H(x,z) — H(y,2) > 2(V1H(y,z), z —y).

Proposition 3.21 demonstrates that the function H defined by (3.83) with ¢ satisfying
(D1)-(D4) is a proximal distance w.r.t. the cone int(X") and possesses the property (P5’),
and therefore belongs to the class Fo(int(K™)). If, in addition, dom¢ = [0, 00), then H
belongs to the class F5(K™). The conditions (D1)—(D3) are easy to check, and for the
condition (D4), we can employ the characterizations in [42, 45] to verify whether ¢’ is
SOC-concave or not. Some examples are presented as follows.

Example 3.15. Let ¢(t) =tInt —t+ 1 if t > 0, and otherwise ¢(t) = oco.

Solution. It is easy to verify that ¢ satisfies (D1)—(D3) with dom¢ = [0, 00) and dom¢’ =
(0,400). By Example 2.12(c), ¢ is SOC-concave on (0,00). Using formulas (1.8) and
(3.83), we have

Hiz,y) = { tr(yolny —yolnz+x —y), Vre in‘t(IC”),y e K,
00, otherwise.

|

g+l

+1

Solution. It is easy to show that ¢ satisfies (D1)-(D3) with dom¢ = [0, 00) and dom¢’ =
[0,00). By Example 2.12, ¢ is also SOC-concave on [0,00). By (1.8) and (3.83), we
compute that

t
Example 3.16. Take ¢(t) = if t > 0, and otherwise ¢(t) = 0o, where 0 < g < 1.
q

Artr(yh) + () —tr(atoy), V€ int(K"),y € K7,

H(z,y) :{ !

00, otherwise.
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q+1

+1

Example 3.17. Take ¢(t) = (1 +¢)In(1+¢t) +
q
where 0 < q < 1.

if t >0, and otherwise ¢(t) = oo,

Solution. We can verify that ¢ satisfies (D1)-(D3) with dom(¢) = dom(¢’) = [0, c0).
From Example 2.12, ¢’ is also SOC-concave on [0, 00). Using (1.8) and (3.83), it is not
hard to compute that for any =,y € K",

H(z,y) = tr[(e+y)o(In(e+y)—In(e+z))] —tr(y — )
1 q+1 q q+1 q
+q—i——1tr<y )+ mtr(az ) —tr(z?oy).

Note that the proximal distances in Example 3.16 and Example 3.17 belong to the
class Fo(K™). By Proposition 3.22 below, the ones in Example 3.16 and Example 3.17
also belong to the class Fa(K™).

Proposition 3.22. Let H be defined as in (3.83) with ¢ satisfying (D1)-(D4). Suppose
that dom(¢) = dom(¢’) = [0,00). Then, H possesses the properties (P7°) and (P§8’).

Proof. By the given assumption, C; = C; = K™. From Proposition 3.21(b), the function
H(-,y*) is continuous on K". Consequently, limy_ .. H(y*,y*) = H(y*,y*) = 0.

From Proposition 3.21(d), H(y*,y*) > d(\i(y*), M\i(y*)) > 0 for i = 1,2. This together
with the assumption H(y*,y*) — 0 implies d(\;(y*), Mi(y*)) — 0 for i = 1,2. From this,
we necessarily have \;(y*) — \;(y*) for i = 1,2. Suppose not, then the bounded sequence
{Xi(y*)} must have another limit point v} > 0 such that v} # X\;(y*). Without loss of
generality, we assume that limgex k00 \i(y*) = 7. Then, we have

(i, Ni(y)) = lim d(v;, \(y") = _limd(vf, Xi(y")) = d(v;,v}) =0,

k—o0 ke K, k—o0 v

where the first equality is due to the continuity of d(s, -) for any fixed s € [0, 4+00), and
the second one is by the convergence of {d(v;, \;(y*))} implied by the first equality. This
contradicts the fact that d(v}, \;(y*)) > 0 since v} # A\;(y*). O

As illustrated by the following example, the proximal distance generated by (3.83)
with ¢ satisfying (D1)-(D4) generally does not belong to the class Fo(K").

Example 3.18. Let H be the prorimal distance as in Fxample 3.15.
Solution. Let

2 V2

v = | (=)L | foreach k and y*=| 1
1
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It is not hard to check that the sequence {y*} C int(K?) satisfies H(y*,y*) — 0. Clearly,
the sequence y* - y* as k — 0o, but A1(y*) — A1 (y*) = 0 and A (v*) — Xa(y*) = 2v/2.

Finally, let H; be a proximal distance produced via one of the ways above, and define
Q@
Hoa(xay) = Hl(xvy)+§||$_y”2’ (384)

where o > 0 is a fixed parameter. Then, by Propositions 3.18, 3.19 and 3.21 and the
identity

HZ - ’xHZ = HZ - yH2 + Hy - xHQ + 2<Z - Y Y- fﬂ), vx?il/wz € IRna

it is easily shown that H, is also a proximal distance w.r.t. int(X"). Particularly, when
H, is given by (3.83) with ¢ satisfying (D1)-(D4) and dom(¢) = dom(¢') = [0, 00) (for
example the distances in Examples 3.16 and and Example 3.17), the regularized proximal
distance H,, satisfies (P7’) and (P9’), and hence H, € Fy(K"). With such a regularized
proximal distance, the sequence generated by the IPA converges to an optimal solution

of (3.64) if X, £0. MW

To sum up, we may construct a proximal distance w.r.t. the cone int(K"™) via three
ways with an appropriate univariate function. The first way in (3.15) can only pro-
duce a proximal distance belonging to Fi(int(K")), the second way in (3.81) produces
a proximal distance of F;(K") if dom(¢) = [0,00), whereas the third way in (3.83)
produces a proximal distance of the class J?Q(IC”) if dom(¢) = dom(¢’) = [0,00). Par-
ticularly, the regularized proximal distances H, in (3.84) with H; given by (3.83) with
dom(¢) = dom(¢') = [0, 00) belong to the smallest class F5(K™). With such regularized
proximal distances, we have the convergence result of Proposition 3.17(c) for the general
convex SOCP with X, # 0.

For the linear SOCP, we will obtain some improved convergence results for the IPA
by exploring the relations between the sequence generated by the IPA and the central
path associated to the corresponding proximal distances.

Given a l.s.c. proper strictly convex function ® with dom(®) C K" and int(dom®) =
int ("), the central path of (3.64) associated to & is the set {z(7)|7 > 0} defined by

z(T) = argmin{Tf(x) +®(z) |z eVn /C"} for 7> 0. (3.85)

In what follows, we will focus on the central path of (3.64) w.r.t. a distance-like function
H € D(int(K™)). From Proposition 3.2, we immediately have the following result.

Proposition 3.23. For any given H € D(int(K")) and = € int(K"), the central path
{z(7) |7 > 0} associated to H(-, ) is well defined and is in V Nint(K™). For each 7 > 0,
there exists g, € Of (x(7)) such that Tg, +V1H (z(7),z) = ATy(T) for some y(7) € R™.
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We next study the favorable properties of the central path associated to H € D(int(K")).

Proposition 3.24. For any given H € D(int(K")) and z € int(K"), let {z(7)|T > 0}
be the central path associated to H(-,Z). Then, the following results hold.

(a) The function H(x(7), ) is nondecreasing in T.

(b) The set {x(7) |7 <71 <7} is bounded for any given 0 < 7 < 7.

(c) z(7) is continuous at any T > 0.

(d) The set {x(7)|T > T} is bounded for any 7 > 0 if X, # 0 and domH(-,z) = K".
(e) All cluster points of {x(7)| T > 0} are solutions of (3.64) if X. # 0.

Proof. The proofs are similar to those of Propositions 3-5 of [83].

(a) Take 71,7, > 0 and let 2° = z(7;) for ¢ = 1,2. Then, from Proposition 3.23, we know
' 2% € VN int(K") and there exist g' € df(2') and ¢g* € 9f(2*) such that

ViH(2', %) = —1ig' + ATy' and V H (2%, 7) = —1g* + ATy? (3.86)
for some y!,y* € IR™. This together with the convexity of H(-,Z) yields that

ot (H(xl,f) — H(:z:2,f))
Ty (H(xz,f) — H(:El,;f))

Tfl(le(xl,f),xl — x2) = <g1,x2 — x1>,
7 YViH (2%, 7),2° — 2') = (¢% 2" — 2?). (3.87)

Adding the two inequalities and using the convexity of f, we obtain
(7’1_1 — 7'2_1) (H(xl,f) — H(mZ,f)) <{g'—g*2*—2") <.
Thus, H(x',z) < H(2% ¥) whenever 71 < 7. Particularly, from the last two equations,

0 ot [H(xl,j) — H(mz,f)}
Tf1<V1H($1,i'),x1 - $2> (388)

<g27 xQ - (L’1>

o [H(z', %) — H(z* )], ¥ >m>0.

VAN VAN VAR VAN

(b) By part(a), H(z(7),z) < H(z(7),z) for any 7 < 7, which implies that
{z(1):7 <7} C Ly ={x €int(K") | H(z,z) < H(z(7),7)} .

Noting that {z(7): 7 <7 <7} C{z(r): 7 <7} C Ly, the desired result follows by (P4).

(c) Fix 7 > 0. To prove that z(7) is continuous at 7, it suffices to prove that limy_,o, z(7%)
= z(7) for any sequence {7} such that limy_,., 7% = 7. Given such a sequence {7}, and
take 7,7 such that 7> 7 > 7. Then, {z(7): 7 < 7 < 7} is bounded by part (b), and
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T, € (7, 7) for sufficiently large k. Consequently, the sequence {x(74)} is bounded. Let g
be a cluster point of {z(7%)}, and without loss of generality assume that limg_,o, z(7%) = 7.
Let Ky :={k: 7. <7} and take k € K;. Then, from (3.88) with 7, = 7 and 75 = 7%,

0 < 7 '[H(x(7),z) — H(x(m), T)]
< TTHVLH (2(7), %), #(7) — 2(7))
< 7 [H(2(7), %) — H(x(m),7)] .

If K is infinite, taking the limit k£ — oo with k£ € K in the last inequality and using the
continuity of H(-, ) on int(K") yields that

H(a(7), 7) = H(5,2) = (Vi H(a(7), ), 2(7) - 7).
This together with the strict convexity of H(-,z) implies x(7) = y. If K is finite, then
Ky :={k : 7, > 7} must be infinite. Using the same arguments, we also have x(7) = g.

(d) By (P3) and Proposition 3.23, there exists g, € 0f(z(7)) such that for any z € VNK",
H(x(r),2) = H(z,7) < 77 (Vi H(2(7),7),2(1) = 2) = (g7, 2 — (7). (3.89)
In particular, taking z = x* € X, in the last equality and using the fact

0= f(") = f(a(r) = (g, 2" — (7)),

we have H(z(7),z) — H(z*,Z) < 0. Hence, {z(7)|7 > 7} C {z € int(K") | H(x,z) <
H(z* z)}. By (P4), the latter is bounded, and the desired result then follows.
(e) Let Z be a cluster point of {z(7)} and {7} be a sequence such that limy_,., 7, = +00
and limy_,o 2(7%) = 2. Write 2% := 2(7;,) and take 2* € X, and z € ¥V Nint(K"). Then,
for any € > 0, we have z(¢) ;= (1 — ¢)z* + ez € VN int(K™). From the property (P3),

(V1H(x(e),z) — V H (2", Z), 2" — x(e)) <0.
On the other hand, taking z = z(¢) in (3.89), we readily have

7, (ViH (2", 7), 2" — 2(e)) = (¢, 2(e) — o)
with ¢g* € df(2*). Combining the last two equations, we obtain

7 (ViH(2(e),7), 2" — x(e)) < (", z(e) — ).

Since the subdifferential set 0f(2*) for each k is compact and g* € f(z*), the sequence
{g*} is bounded. Taking the limit in the last inequality yields 0 < (g, z(¢) — ), where g
is a limit point of {¢g¥}, and by [131, Theorem 24.4], g € 9f(%). Taking the limit ¢ — 0
in the inequality, we get 0 < (g,z* — 2). This implies that f(z) < f(z*) since z* € X,
and g € 0f(z). Consequently, Z is a solution of the CSOCP (3.64). O

Particularly, from the following proposition, we also have that the central path is
convergent if H € D(int(K")) satisfies domH (-, z) = K", where Z € int(K") is a given
point. Notice that H (-, Z) is continuous on domH (-, z) by (P2), and hence the assumption
for H is equivalent to saying that H(-,Z) is continuous at the boundary of the cone K.
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Proposition 3.25. For any given T € int(K") and H € D(int(K")) with domH (-, %) =
K™, let {x(7): 7 > 0} be the central path associated to H(-,z). If X, is nonempty, then
lim, o x(7) exists and is the unique solution of min{H (z,Z) | = € X,}.

Proof. Let & be a cluster point of {x(7)} and {7} be such that limy_, 7, = 0o and
limg oo #(7x) = #. Then, for any x € X,, using (3.88) with 2! = z(7) and 2 = x, we
obtain

where the second inequality is since g* € df(z(7)), and the last one is due to x € X,.
Taking the limit k& — oo in the last inequality and using the continuity of H(-,z), we
have H(z,z) < H(x,z) for all z € X,. Since & € X, by Proposition 3.27(e), this shows
that any cluster point of {x(7)|7 > 0} is a solution of min{H(x,z) |z € X,}. By the
uniqueness of the solution of min{H(x,z) |z € X,}, we have lim, ,, z(7) =z*. O

For the linear SOCP, we may establish the relations between the sequence generated
by the IPA and the central path associated to the corresponding distance-like functions.

Proposition 3.26. For the linear SOCP, let {x*} be the sequence generated by the IPA
with H € D(int(K™)), 2° € VNint(K") and e, = 0, and {x(7) |7 > 0} be the central path
associated to H(-,z%). Then, 2% = z(73,) for k = 1,2, ... under either of the conditions:

(a) H is constructed via (3.15) or (3.81), and {7} is given by 1, = Z?:o Aj for k =
1,2, .;

(b) H is constructed via (3.83), the mapping V(¢')*°°(-) defined on int(K"™) maps any
vector R™ into ImAT, and the sequence {7} is given by 7, = A\ for k=1,2,---.

Moreover, for any positive increasing sequence {7y}, there ezists a positive sequence { A}
with > o | A = o0 such that the prozimal sequence {x*} satisfies x = (7).

Proof. (a) Suppose that H is constructed via (3.15). From (3.67) and Proposition
3.18(b), we have

Aje+ Vo(det(z?)) — Vo(det(™1)) = ATw? for j =0,1,2,.... (3.90)
Summing the equality from j = 0 to k and taking 75, = Zfzo A, yF = Z?:o uw’, we get
e + Vo(det(2¥)) — Vo(det(a?)) = ATy".

This means that 2* satisfies the optimal conditions of the problem

min {7, f(z) + H(z,2") | 2 € VNint(K")}, (3.91)
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and so ¥ = x(7;). Now let {x(7): 7 > 0} be the central path. Take a positive increasing

sequence {73} and let 2% = x(7;). Then from Proposition 3.23 and Proposition 3.18(b),
it follows that

e + Vo(det(2¥)) — Vo(det(z°)) = ATy*  for some y* € R™.
Setting A\, = 7 — Te—1 and u*F = y* — y*~!, from the last equality it follows that
Are 4 Vo(det(xF)) — Vo(det(z*1)) = ATk

This shows that {z*} is the sequence generated by the IPA with e, = 0. If H is given by
(3.81), using Proposition 3.19(b) and the same arguments, we also have the result holds.

(b) Under this case, by Proposition 3.21(c), the above (3.90) becomes
Aje+ V(@) (x?) - (a7 — 27 ) = ATw? for j=0,1,2,....

Since ¢”(t) > 0 for all t € (0,00) by (D1) and (D2), from [64, Proposition 5.2] it follows
that V(¢')%°(x) is positive definite on int(K™). Thus, the last equality is equivalent to

[V () (a9)] " N+ (a7 — 277 = [V(¢)*(a)] T ATwd for j=0,1,2,.... (3.92)

Summing the equality (3.92) from j = 0 to k and making suitable arrangement, we get

ApcC + V(¢/>SOC(Ik)(Ik _ IO) _ ATuk + V(¢/)Soc(xk) ‘ [V((b/)soc(xj)} -1 (ATuj _ )\jc>,

e
—_

i
o

which, using the given assumptions and setting 7, = Ag, reduces to
e+ V()¢ (27) (2" — 2°) = ATg"  for some §* € R™.

This means that " is the unique solution of (3.91), and hence z* = z(7) for any k. Let

{z(7): 7 > 0} be the central path. Take a positive increasing sequence {73} and define
the sequence 2% = z(73,). Then, from Proposition 3.23 and Proposition 3.21(c),

e + V(@) (2") (2% — 2°) = ATy*  for some y* € R™,
which, by the positive definiteness of V(¢')*°(-) on int(K"), implies that
[V(@) (@) (e — ATY") + [V(¢) (2" )] (mmae — ATy ) + (% = 2*71) = 0.
Consequently,
e+ V(&) () (ot — 257 = V() (@) [V () (@] AT — o)
Using the given assumptions and setting A\ = 7, we have

e + V(¢ (27 (2* — 271) = ATuF for some u* € R™.
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for some u* € IR™. This implies that {2*} is the sequence generated by the IPA and the
sequence {\;} satisfies > ;- Ay = 0o since {73} is a positive increasing sequence.  [J

From Proposition 3.25 and Proposition 3.26, we readily have the following improved
convergence results of the sequence generated by the IPA for the linear SOCP.

Proposition 3.27. For the linear SOCP, let {x*} be the sequence generated by the IPA
with H € D(int(K™)), 2° € YV Nint(K™) and e, = 0. If one of the conditions is satisfied:

(a) H is constructed via (3.81) with domH (-, 2°) = K™ and Y5>y A, = 00;

(b) H is constructed via (3.83) with domH (-, 2°) = K", the mapping V(¢')*°°(-) defined
on int(K™) maps any vector in R™ into ImAT | and limy_,o A\x = 00;

and X, # 0, then {a*} converges to the unique solution of min{H (z,z°) |z € X.,}.



Chapter 4

SOC means and SOC inequalities

In this chapter, we present some other types of applications of the aforementioned SOC-
functions, SOC-convexity, and SOC-monotonicity. These include so-called SOC means,
SOC weighted means, and a few SOC trace versions of Young, Hélder, Minkowski in-
equalities, and Powers-Stgrmer’s inequality. We believe that these results will be helpful
in convergence analysis of optimizations involved with SOC. Many materials of this chap-
ter are extracted from [37, 78, 79|, the readers can look into them for more details.

4.1 SOC means

From Chapter 3, we have seen that the SOC-monotonicity and SOC-convexity are of-
ten involved in the solution methods of convex SOCPs. What other applications does
SOC-momotone functions hold besides the algorithmic aspect? Surprisingly, some other
applications of SOC-monotone functions lie in different areas from those for SOC-convex
functions. In particular, the SOC-monotone functions can be employed to establish the
concepts of various SOC-means, which are natural extensions of traditional means. It
also helps on achieving some important inequalities. To see these, we start with recalling
the definitions of means.

A mean is a binary map m : (0,00) x (0,00) — (0, 00) satisfying the following:
(a) m(a,b) > 0;
(b) min{a, b} < m(a,b) < max{a,b};

)
)
(c) m(a,b) =m(b,a);
)
)

5

(d) m(a,b) is increasing in a, b;
(e) m(aa,ab) = am(a,b), for all a > 0;

155
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(f) m(a,b) is continuous in a, b.

Many types of means have been investigated in the literature, to name a few, the
arithmetic mean, geometric mean, harmonic mean, logarithmic mean, identric mean,
contra-harmonic mean, quadratic (or root-square) mean, first Seiffert mean, second Seif-
fert mean, and Neuman-Sandor mean, etc.. In addition, many inequalities describing
the relationship among different means have been established. For instance, for any two
positive real number a, b, it is well-known that

min{a, b} < H(a,b) < G(a,b) < L(a,b) < A(a,b) < max{a, b}, (4.1)
where
2ab
H(a,b) =
(a,) a+b’
G(a,b) = Vab,
a—>b )
L(a,b) = Ina —1Inbd it a7b,
a if a=0,
a+b
Ala,b) = 5

represents the harmonic mean, geometric mean, logarithmic mean, and arithmetic mean,
respectively. For more details regarding various means and their inequalities, please refer
to [32, 66].

Recently, the matrix version of means have been generalized from the classical means,
see [23, 25-27]. In particular, the matrix version of Arithmetic Geometric Mean Inequal-
ity (AGM) is proved in [23, 24|, and has attracted much attention. Indeed, let A and B
be two n x n positive definite matrices, the following inequalities hold under the partial
order induced by positive semidefinite matrices cone S7:

(A:B) < A#B < %(A +B), (4.2)

where

A:B = 2(A' 4B,
A#B = A2 (A—l/QBA—1/2)1/2 A2,
denote the matrix harmonic mean and the matrix geometric mean, respectively. For

more details about matrix means and their related inequalities, please see [23, 25-27, 89]
and references therein.
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Note that the nonnegative orthant, the cone of positive semidefinite matrices, and
the second-order cone all belong to the class of symmetric cones [62]. This motivates us
to consider further extension of means, that is, the means associated with SOC. More
specifically, in this section, we generalize some well-known means to the SOC setting and
build up some inequalities under the partial order induced by K. One trace inequality
is established as well. For achieving these results, the SOC-monotonicity contributes a
lot in the analysis. That is the application aspect of SOC-monotone function that we
want to illustrate.

The relation >xn» is not a linear ordering. Hence, it is not possible to compare any
two vectors (elements) via >xn». Nonetheless, we note that for any a,b € R

—_

max{a,b} = b+[a—0bl, = (a+0b+|a—Db]),

[ V)

min{a,b} = a—[a—0b]; = §(a+b— la — b]).

This motivates us to define the supremum and infimum of {z,y}, denoted by z V y and
x Ay respectively, in the SOC setting as follows. For any x,y € IR", we let

1

zVy = ytlo -yl =@ty +lz—y),
_ Jro—fp—yh=5@ty—lr—yl), frtyr.lr—yl;
TNy = .
0, otherwise.

In view of the above expressions, we define the SOC means in a similar way.

Definition 4.1. A binary operation (x,y) — M(x,y) defined on int(K") x int(K") is
called an SOC mean if the following conditions are satisfied:

(1) M(z,y) = 0;

(i) ANy 2 M(z,y) 20 TV Yy;
(iiii) M(z,y) is monotone in x,y;
(iv) M(azx,ay) = aM(z,y), a > 0;

(v) M(x,y) is continuous in x,y.

We start with the simple SOC arithmetic mean A(z,y) : int(K") xint(K") — int(K"),
which is defined by
T4y

Ar,y) = 5

(4.3)
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It is clear that A(z,y) satisfies all the above conditions. Besides, it is not hard to verify
that the SOC harmonic mean of x and y, H(x,y) : int(K") x int (") — int(K™), can be

defined as X 1
Tty
H(z,y) = (—2 !/ ) : (4.4)

The relation between A(x,y) and H(z,y) is described as below.

Proposition 4.1. Let A(x,y), H(x,y) be defined as in (4.3) and (4.4), respectively. For
any x =, 0, y =, 0, there holds

TAY 2 H(z,y) <0 Az, y) <0 TV Y.

Proof. (i) To verify the first inequality, if 3(z + y — |z — y|) ¢ K", the inequality holds
clearly. Suppose 3(z +y — |z — y|) =, 0, we note that $(z +y — |z — y|) <., = and
sz +y— |z —y|) = y. Then, using the SOC-monotonicity of f(¢) = —t~* shown in

Proposition 2.3, we obtain

—1 —1
< (w+y—2!x—y!) and yl <, (fc+y—2!x—y!) |

which imply

z +y ! r+y—le—y\"
=7 =< )
2 —r 2
Next, applying the SOC-monotonicity again, we conclude that

_ _ —1
x—l—y—|x—y|< R T
2 —Kn 2 '

(i) To see the second inequality, we first observe that

ey 1 1 r+y
T Ty - D I B AP L R
(F35) 2o g ey =15

where the inequality comes from the SOC-convexity of f(t) = ¢!
(iii) To check the last inequality, we observe that

Tty , rtytlr—yl |z — vl
=en — 0= ,
2 —F 2 —r 2
where it is clear |z — y| =xn 0 always holds for any element z,y. Then, the desired result

follows. O

Now, we consider the SOC geometric mean, denoted by G(z,y), which can be bor-
rowed from the geometric mean of symmetric cone, see [102]. More specifically, let V'
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be a Euclidean Jordan algebra, I be the set of all square elements of V' (the associated
symmetric cone), and Q := intKC (the interior symmetric cone). For x € V| let L(x)
denote the linear operator given by L(z)y := x oy, and let

P(z) :=2L(x)* — L(z?). (4.5)

The mapping P is called the quadratic representation of V. If x is invertible, then we
have

Px)K =K and P(x)2=Q.

Suppose that x,y € Q, the geometric mean of x and y, denoted by x#1y, is

N

oy == P(x2)(P(277)y)?.

On the other hand, it turns out that the cone 2 admits a G(2)-invariant Riemannian
metric [62]. The unique geodesic curve joining z and y is

ey = Pt (P )

and the geometric mean x#y is the midpoint of the geodesic curve. In addition, Lim
establishes the arithmetic-geometric-harmonic means inequalities [102, Theorem 2.8],

!+ y_l
2

Tty
2 b

-1
) =k T#y 2k (4.6)

where < is the partial order induced by the closed convex cone K. The inequality (4.6)
includes the inequality (4.2) as a special case. For more details, please refer to [102]. As
an example of Euclidean Jordan algebra, for any = and y in int(X"), we therefore adopt
the geometric mean G(zx,y) as

1
2

G(z,y) = P(x?) (P(x—%)y) . (4.7)

Then, we immediately have the following parallel properties of SOC geometric mean.

Proposition 4.2. Let A(z,y), H(x,y), G(z,y) be defined as in (4.3), (4.4) and (4.7),
respectively. Then, for any x =,, 0 andy >, 0, we have

(a) G(r,y) =Gy, ).
(b) G(z,y)"' =Gt y™).

(c) H(z,y) 2w G(2,y) Zn Al2,y).
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Next, we look into another type of SOC mean, the SOC logarithmic mean L(z,y).
First, for any two positive real numbers a, b, Carlson [33] has set up the integral repre-

Ha) = Uol Jﬂ}

whereas Neuman [113] has also provided an alternative integral representation:

sentation:

1
L(a,b):/ a'~'htdt.
0

Moreover, Bhatia [23, page 229] proposes the matrix logarithmic mean of two positive
definite matrices A and B as

1
L(A, B) = A/ / (A2BAY) ar AV,
0

In other words,

1
L(A,B):/ A#,B dt,
0

where A#, B =: A2 (A=12BA-1/2)" AV2 = P(AY?)(P(A~"/?)B)" is called the t-weighted
geometric mean. We remark that A#,B = A'"!B! for AB = BA, and the definition of
logarithmic mean coincides with the one of real numbers. This integral representation
motivates us to define the SOC logarithmic mean on int(X") x int(K") as

L(z,y) = /0 T4ty dt. (4.8)

To verify it is an SOC mean, we need the following technical lemmas. The first lemma
is the symmetric cone version of Bernoulli inequality.

Lemma 4.1. Let V be a Fuclidean Jordan algebra, IC be the associated symmetric cone,
and e be the Jordan identity. Then,

(e+s)" =k e+ts,

where 0 <t <1, s = —e, and the partial order is induced by the closed convex cone K.

Proof. For any s € V| we denote the spectral decomposition of s as Z)‘ici‘ Since
i=1
s ~x —e, we obtain that each eigenvalue \; > —1. Then, we have
(et+s) = (I+M)a+@+A) et +1+A\)c
__<IC (1 + t)\l)Cl + (1 + t)\Q)CQ + -+ (1 + t)\r)cr
= e+ts,
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where the inequality holds by the real number version of Bernoulli inequality. [

Lemma 4.1 is the Bernoulli Inequality associated with symmetric cone although we
will use it only in the SOC setting.

Lemma 4.2. Suppose that u(t) : R — IR™ is integrable on [a,b].
(a) Ifu(t) =, O for any t € [a,b], then f t)dt = .. 0.
(b) Ifu(t) = . 0 for any t € [a,b], then f t)dt =, 0.

Proof. (a) Consider the partition P = {to,t1,...,t,} of [a,b] with ¢, = a+ k(b —a)/n
and some t;, € [t,_1, tx], we have

b n
. _.b—a
/a u(t)dt = Jl—glogu(tk) " Zen 0

because u(t) =, 0 and K™ is closed.

(b) For convenience, we write u(t) = (u1(t),us(t)) € R x R™!, and let

u(t) = ([luz(®)ll ua(t)),
at) = (u(t) = [lua(t)]], 0).

Then, we have

o . u(t) = 0,
u(t) = u(t) +u(t) and { uy (t) — |Juz(t)]] > 0.

Note that [*a@(t)dt = ([*(ur(t) — |[ua(t)])dt,0) =, 0 since uy(t) — |Jus(t)| > 0. This
together with f t)dt >, 0 yields that

/abu(t)dt = /aba(t)dt + /abft(t)dt -~ 0.

Thus, the proof is complete. [

Proposition 4.3. Suppose that u(t) : R — R™ and v(t) : R — IR™ are integrable on

la, b].
(a) If u(t) =, v(t) for any t € [a,b], then f t)dt =, f
(b) Ifu(t) = . v(t) for any t € [a,b], then f t)dt =, f

Proof. It is an immediate consequence of Lemma 4.2. [
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Proposition 4.4. Let A(x,y), G(z,y), and L(x,y) be defined as in (4.3), (4.7), and
(4.8), respectively. For any x >, 0, y >, 0, there holds

G(z,y) X L(2,y) Zn Alz,y),
and hence L(z,y) is an SOC mean.

Proof. (i) To verify the first inequality, we first note that

N

Gla.y) = PPt = [ PP hpiar

Let s = P(z72)y = Ml + Aout?. Then, we have

h

(z,y) — G(z,y)
_1 1
2

_ / (% Pz~ %))t dt — P(x3)(P(z7%)y)

0
= / P x% (Mu W+ Mu (2)) dt — P(mé) (x/)\lugl) + Agug2)>
0

1 1
= { / )\tdt] %>ug>+{ / Agdt} P(m%)uf)—P(x%)( Aull) + )\gug2))
0 0
M~ — V| P(z2)ul) + L_,/)\2 P(z2)u®
In)\ —Inl —lnl s InXo —Inl s

= [LOA,1) = GO D] Pe)ul!) + [L(Ae, 1) — G(Ae, 1)] Pl
> 0,

xn

SIS

=

)u(2)

where last inequality holds by (4.1) and P(z2)ul’ € K. Thus, we obtain the first
inequality.

(ii) To see the second inequality, we let s = P(x’%)y — e. Then, we have s =, —e, and
applying Lemma 4.1 gives

(e + Pz )y — 6>t < e+t [P(x_%)y - e] :
which is equivalent to

0= (L—=t)e+t [P(x*%)y] — (P(:z:2)y)t.
Since P(x2) is invariant on K", we have

0 S Pah) (=0t e [Piy] - (Pai))

= (I-tz+ty—a#hy.
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Hence, by Proposition 4.3, we obtain

1 1
L(z,y) = / r#y dt <. / [(1—t)x +ty] dt = A(x,y).
0 0
The proof is complete. [
Finally, for SOC quadratic mean, it is natural to consider the following

x2+y2 1/2
)

o=

It is easy to verify A(x,y) <. Q(z,y). However, Q(x,y) does not satisfy the property(ii)
31
mentioned in the definition of SOC mean. Indeed, taking x = | 10 | € K" and y =
—20
10
9 | € K", it is obvious that z >, y. In addition, by simple calculation, we have
0

2 2\ 1/2 S 2430
<“T ;y ) — |0 |~ | 823 |,
=620 —12.76

2s

where s = \/ 1 <821 + /3217 — (4007 + 6202)) ~ 24.30. However,

2 o\ 1/2 6.7
:E\/y—(x —21-1/) ~ | 1.77
—7.24

is not in ™. Hence, this definition of Q)(x,y) cannot officially serve as an SOC mean.

To sum up, we already have the following inequalities

T ANy 2 H(z,y) 20 G(2,y) 2n L(z,y) 2 A(z,y) 2 oV,

Kn

but we do not have SOC quadratic mean. Nevertheless, we still can generalize all the
means inequalities as in (4.1) to SOC setting when the dimension is 2. To see this, the
Jordan product on second-order cone of order 2 satisfies the associative law and closedness
such that the geometric mean

Gla,y) =2 oy'?

and the logarithmic mean
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are well-defined (note this is true only when n = 2) and coincide with the definition (4.7),
(4.8). Then, the following inequalities

r ANy =2, H(z,y) 2, Glo,y) 2, Liz,y) 2, Alz,y) 2, Q,y) 2, 2 Vy

hold as well.

By applying Proposition 1.1(a), we immediately obtain one trace inequality for SOC
mean.

Proposition 4.5. Let A(z,y), H(x,y), G(z,y) and L(x,y) be defined as in (4.3)-(4.4),
(4.7)-(4.8), respectively. For any x >, 0, y >, 0, there holds

tr(z Ay) < te(H(z,y)) < tr(Glz,y)) < tr(L(z,y)) < tr(Az,y)) < tr(zVy).

4.2 SOC Inequalities

It is well-known that the Young inequality, the Holder inequality, and the Minkowski
inequality are powerful tools in analysis and are widely applied in many fields. There
exist many kinds of variants, generalizations, and refinements, which provide a variety of
applications. Here, we explore the trace versions of Young inequality, Holder inequality,
Minkowski inequality in the setting of second-order cone. We start with recalling these
three classical inequalities [18, 67] briefly.

Suppose that a,b > 0 and 1 < p,q < oo with % + % = 1, the Young inequality is

expressed by
a? bl
ab < — + —.
p q

The Young inequality is a special case of the weighted AM-GM (Arithmetic Mean-
Geometric Mean) inequality and very useful in real analysis. In particular, it can be

employed as a tool to prove the Hélder inequality:
1
n q
()
k=1

> fun < (Sl
where aq,ag, -+, ap, by,ba,- -+ b, are real (or complex) numbers. In light of the Holder

k=1 k=1
inequality, one can deduce the Minkowski inequality as below:

1 1 1
(Z|ak+bk|p> < <Z|ak|p> + (ZV)HP) -
=1 =1 =1

3=
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In 1995, Ando [3] showed the singular value version of Young inequality that

AP B1
s;(AB) < s, (— + —) forall 1 <j <mn, (4.9)

p q
where A and B are positive definite matrices. Note that both positive semidefinite cone
and second-order cone belong to symmetric cones [62]. It is natural to ask whether there
is a similar version in the setting of second-order cone. First, in view of the classical
Young inequality, one may conjecture that the Young inequality in the SOC setting is in

form of

xr o y j)cn - + -
p q

However, this inequality does not hold in general (a counterexample is presented later).
Here “o” is the Jordan product associated with second-order cone. Next, according to
Ando’s inequality (4.9), we naively make another conjecture that the eigenvalue version

of Young inequality in the SOC setting may look like

Pyl

Aj(zoy) <A (— + —) , J=12. (4.10)
p q

Although we believe it is true, it is very complicated to prove the inequality directly due

to the algebraic structure of % + %q. Eventually, we seek another variant and establish

the SOC trace version of Young inequality. Accordingly, we further deduce the SOC

trace versions of Holder and Minkowski inequalities.

As mentioned earlier, one may conjecture that the Young inequality in the SOC
setting is in form of

roy X, —+ —.

p q

However, this inequality does not hold in general. For example, taking p = 3, ¢ = %,

. 3
é, %, ), and y = (%,0, %), we obtain 23 = (518, ﬁ,()), Y2 = (11—6,0, %) Hence,

1 1 1 4z N ys 17 1 16
O = e — 1N _ _ = _—
YT \eeea) MY 3T T \38473847384)

o3yl 11 =5 10 .,
—+?‘“y—(@’@’@)¢’c-

v =

which says

In view of this and motivated by the Ando’s singular value version of Young inequality
as in (4.9), we turn to derive the eigenvalue version of Young inequality in the setting of
second-order cone. But, we do not succeed in achieving such type inequality. Instead,
we consider the SOC trace version of the Young inequality.
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Proposition 4.6. (Young inequality-Type I) For any z,y € K", there holds

P
tr(zoy) <tr (x_ij_)’

p q
1 1
where 1 < p,q < oo and —+ — = 1.
P q
D yq
Proof. First, we note zoy = (z1y1 + (22, ¥2), T1y2 + y122) and denote —+=— := (wy, ws)
p q
where
oM@+ Aa(@)” | M(y)T + Ae(y)!
w, = + )
2p 2q
o Ao (2)P — A(2)P T9 Ao ()T = M(y)? 2
Wy = + .
2p 2 2q v

Then, the desired result follows by

tr(roy) < M(@)A(y) + Xa(z)\a(y)
< ()\1(:1:)7’ 4 )\1<y)q> " ()\g(x)p N Az(y)q)

p q p q
P q
)
p q
where the last inequality is due to the Young inequality on real number setting.  [J

Remark 4.1. When p = q = 2, the Young inequality in Proposition 4.6 reduces to

oy 2 2

2r,y) = twoy) < tr (2 + L) = l? + ol
which is equivalent to 0 < ||z —y||>. As a matter of fact, for any x,y € R", the inequality
(z —y)? = 0 always holds, which implies 2z oy <., *+y*. Therefore, by Proposition

1.1(a), we obtain tr(xoy) < tr <§ + %) as well.

We note that the classical Young inequality can be extended to nonnegative real
numbers, that is,

lab| = |a| - 0] < M+m7 Va,b € R.
p q
This motivates us to consider further generalization of the SOC trace version of Young
inequality as in Proposition 4.6. However, |z|o|y| and |zoy| are unequal in general; and no
relation between them. To see this, taking z = (v/2,1,1) € K> and y = (v/2,1, —1) € K3,
yields z oy = (2,2v/2,0) ¢ K°. In addition, it implies

2] o y] = (2,2V2,0) <. (2V2,2,0) = |z 0 y.
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On the other hand, let x = (0,1,0), y = (0,1,1), which give |z| = (1,0,0), |y| =
(v/2,0,0). However, we see that

w0yl = (1,0,0) % (V2,0,0) = |z[o Jy].

From these two examples, it also indicates that there is no relationship between tr(|x|o|y]|)
and tr(|z o y|). In other words, there are two possible extensions of Proposition 4.6:

P q » q
tr(|z|ofy|) < tr (ﬂ+ﬂ> or tr(lxoy|) <tr (ﬂ_FM) '
p

q p q

Fortunately, these two types of generalizations are both true.

Proposition 4.7. (Young inequality-Type II) For any x,y € R"™, there holds

zP q
trlal o ol) < or (1204 21,
p q
1 1
where 1 < p,q < oo and — + — = 1.
p g

Proof. Following the proof of Proposition 4.6, we have

tr(|z] o |yl)
< M(lzDA(lyl) + Aa(lz[)A=(lyl)
= min{|A;(2)[} min{|Ai(y)|} + max{[Ai(2)]} max{[Ai(y)[}
(min; {[A;(z)|})? N (min {|Ai(y)[})? N (max;{|Ai(z)[})? n (max; {[Ai(y)|})*
p q p q

_ (M1($)\”+ Mz(iv)!”) n (Ml(y)\‘ﬁr Mz(y)!q>

p p q q

p q
()
p q

where the last inequality holds by the Young inequality on real number setting. [

We point out that Proposition 4.7 is more general than Proposition 4.6 because it is
true for all z,y € IR™, not necessary restricted to =,y € K™. For real numbers, it is clear
that ab < |a| - |b|. Tt is natural to ask whether tr(z o y) is less than tr(|z| o |y|) or not.
Before establishing the relationship, we need the following technical lemma.

Lemma 4.3. For 0 <X, u =, x and 0 X, v =X, y, there holds

0 <tr(uowv) <tr(xoy).
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Proof. Suppose 0 <., v X,, v and 0 =, v =X, ¥, we have

Il
e nd -+
==
8 8
(e} o
—~
NSl
|
S
S—
SN—
T -
ﬂ/—\
o 8
—~
—~ |
8 g
I S~—
(e)
s =
o
e
SN—

> 0

Y

where the inequality holds by Property 1.3(d). O

Proposition 4.8. For any x,y € R", there holds tr(z o y) < tr (x| o |y]).
Proof. For any x € IR™, it can be expressed by x = [z]; + [z]_, and then

([z]4 + [2]) o y)
[

tr(roy) = tr

= tr(fzly oy) +tr((=[2]-) o (=)
< tr([z]y o ly]) + tr((=[x]-) o [y])
= tr(([z]y = [2]-) o fyl)

(
(
r(
(
tr(zf o [y]),

where the inequality holds by Lemma 4.3. [

There is some interpretation from geometric view for Proposition 4.8. More specifi-
cally, by the definition of trace in second-order cone, we notice

tr(zoy) = 2(z,y) = 2ll| - ly] cos

where 6 is the angle between the vectors x and y. According to the definition of absolute
value associated with second-order cone, we know the equality in Proposition 4.8 holds
whenever z,y € K" or x,y € —K". Otherwise, it can be observed that the angle between
|z| and |y| is smaller than the angle between z and y since the vector z, || and the axis
of second-order cone are in a hyperplane.

Proposition 4.9. For any x,y € IR", the following inequalities hold.
(@) tr((z +9)?) < tr((Jzl + [y)?), ice., [l +yll < [zl + [y]ll
(b) tr((z —)*) = tr((l=] — [y])?). i-e.. [z =yl = [l|=] = lylll.

Proof. (a) From Proposition 4.8, we have

tr ((x + y)2) = tr (:1:2 +2xo0y+ y2) < tr (]91;\2 + 2|x] o |y| + |y|2) =tr ((|.7c| + |y\)2) )
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This is equivalent to |z + y[|* < |||z| + |y[||*, which implies ||z + y|| < |||z] + |y]|.
(b) The proof is similar to part(a). [

In contrast to Proposition 4.8, applying Proposition 1.1(a), it is clear that tr(zoy) <
tr (|z o y|) because z oy <, |z oy|. In view of this, we try to achieve another extension
as below.

Proposition 4.10. (Young inequality-Type III) For any z,y € IR", there holds

p q
tr(|zoyl) < tr <—|$| + M) :
p q
1 1
where 1 < p,q < oo and — + — = 1.
p q

Proof. For analysis needs, we write x = (z1,22) € R x R"! and y = (y1,12) €
IR x R""!. Note that if z oy € K" U (—K"), the desired inequality holds immediately
by Proposition 4.7 and Proposition 4.8. Thus, it suffices to show the inequality holds for
zoy ¢ K"U(—K"). In fact, we only need to show the inequality for the case of z; > 0
and y; > 0. The other cases can be derived by suitable changing variable like

[woyl=[—(zoy)l=I(-z) oyl =lzo(=y)| =[(—z) o (=y)|.

To proceed, we first claim the following inequality
2|z + 1ol < Aa(z) A (y)| + [ Ae(2) Aa(y)]; (4.11)

which is also equivalent to 4||z1ys + y172]|? < (A1 (2)A1(y)] + [Ma(x)A2(y)])?. Indeed, we
observe that

A1y + piza||” = 4 (27 |yal® + yillz2l|* + 22191 (22, 12) ) -

On the other hand,

(M (@) A ()] + e(@) A ()
= @M + Pa(@)A2(y)] + 2 M (@) A (y)Ae(2) Ao (y)]
= 2@y + [oalllly2l)® + 2@yl + wullwal)? + 2 [ (27 = [l22ll?) (47 = llv2l®) ]
= 2 (a1yi + le2llly2ll” + 21 well* + yillwall?) + 8zayn w2 [yl

+ 2[(2F = llaall?) (w7 = llwal®)] -
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Therefore, we conclude that (4.11) is satisfied by checking

(A (@) W)] + [A2(@)Ae(W)])? — 4]z + y122)?
= 2 (2ii + zallPllvall + 23llgall® + yillzall?) + S8zayn||za [ va
+ 2| (2 = llzal®) (W7 = llwell®)| — 4 (21llgall® + yEll2all® + 22191 (22, 32))
= 2 (2} + N2l lly2ll® = 23 llwell® — vill22ll?) + 8zays (l2llllyall — (22, 92))
+2 (27 = [l2al?) (47 = llv2ll*) |
= 2(af — l22l?) (v — lv2l®) + 2| (27 = llz2)1?) (47 — llvel®) ]
+8z1y1 ([[z2[[[v2]] — (22, 92))
> 0,

where the last inequality is due to the Cauchy-Schwarz Inequality.

Suppose that x oy ¢ K™ U (—K™). From the simple calculation, we have

T1y1 + (T2, Y2)
|z1y2 + yrz2|

zoyl = (uxly? - (210 +y1x2>) |

which says tr(|z o y|) = 2||x1y2 + y122||. Using inequality (4.11), we obtain

tr(jroyl) < A(@)My)] + [Aa(2)Aa(y)]
M@ M)l Pa(@)lP | [Ma(y)]®
< () ()

p q
)
p q

where the last inequality holds by the classical Young inequality on real number setting.

O

There also exist some trace versions of Young inequalities in the setting of Euclidean
Jordan algebra, please see [14, Theorem 23] and [79, Theorem 3.5-3.6]. Using the SOC
trace versions of Young inequalities, we can derive the SOC trace versions of Holder
inequalities as below.

Proposition 4.11. (Hoélder inequality-Type I) For any z,y € IR", there holds

tr([z] o lyl) < [ex(|af)] - [or(e])]7,

1 1
where 1 < p,q < oo and — + — = 1.

p q
Proof. Let a = [tr(|:v|p)ﬁ and = [tr(|x|q)]%. By Proposition 4.7, we have

A r o 11
tr(Iﬂ!f\ !y\)<t |a|+|a| :_tr<ﬂ)+ <\y!):_+_:1‘
a B p q D a? B P q
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Therefore, we conclude that
tr(lz] o fy]) < a- B = [te([xf?)]7 - [tr(]z]?)]«
because o, § > 0. [

Proposition 4.12. (Hoélder inequality-Type II) For any x,y € R™, there holds

Q=

tr(e o)) < [ex(|al?)]7 - [ex(|]7)]

1 1
where 1 < p,q < oo and — + — = 1.

P q
Proof. The proof is similar to Proposition 4.11 by using Proposition 4.10. [

Remark 4.2. When p = q = 2, both inequalities in Proposition 4.11 and Proposition
4.12 deduce

2, 9)] = tr(z o yl) < [ex(|2?)]? - [te(|22)]? = 2lla]| - [yl

which is equivalent to the Cauchy-Schwarz inequality in IR™.
Next, we present the SOC trace version of Minkowski inequality.

Proposition 4.13. (Minkowski inequality) For any z = (r1,72) € R x R"™! and
y=(y1,y2) € R x R" !, and p > 1, there holds

[tr(j + yP)]7 < [or(af?)]7 + [te(lyl?)]7 -

Proof. We partition the proof into three parts. Let ¢ > 1 and % + % = 1.
(i) For x 4+ y € K™, we have |z + y| = = + y, then we have

(o +y) = il +ylolz+yl™) = tr((@+y) o lo+y)
= tr(wolr+yl™) +tr(yolr +y[FT)
< ftr(lel)]? - ol + g1 0]+ [ex(y?)]? - [ex(le + |V
= (Ie(al?))P + T (lyl?)? ) - [ex(le + 7))

Q=

which implies [tr(|z + y|")]# < [ex(je]?)]7 + [tx(ly|”)]7
(ii) For x +y € —K", we have |z + y| = —x — y, then we have

tr(le +ylP) = te((=2)olo+yl"™h) +tr((=y) oz +y[”)

< fte(jel))P - [tr(e + y|09)] 7 + ()] - [tr(|z + y| O]
= (1)) + ()P ) - [ex(le + )]

Q=
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which also implies [tr(|z + ylp)]% < [tr(]x\”)]% + [tr(|y\7’)]%

(iii) For 2 +y ¢ K" U (—K"), we note that A\ (z +y) < 0 and Ao(z +y) > 0, which says,
M@+ y)| = ler+y1 = 22+ w2lll = l[22 + 2]l — 210 — 90 < 2zl + lly2ll — 210 — w1,
Ao+ y)l = |21+ 41 + (|22 + g2l = 20 + 90 + [Jw2 + vol| < 21+ w1+ [l2] + (vl

This yields

[tr(|z + y|?)]7 (2 + ) + Palz + )77

Sl

[

< [l + llyall = 21 — 927 + (lzall + lyall + 21+ 51)7)
= [(=M(@) = @) + Qalx) + Aa(y))]?

= [IMa(@) + M) + Palx) + Ae(y)7)7

< M@ + Da(@)P]7 + [P + Paly) )2

= [er(ja?)]7 + [te(|yP?)]?

where the last inequality holds by the classical Minkowski inequality on real number
setting. U

Remark 4.3. We elaborate more about Proposition 4.13. We can define a norm ||| - |||,
on IR™ by .

]y = [er([=[")]7,
and hence it induces a distance d(x,y) = |||z — yl||, on R™. In particular, this norm
will deduce the Fuclidean-norm when p = 2, and the inequality reduces to the triangular
inequality. In addition, this norm is similar to Schatten p-norm, which arise when ap-
plying the p-norm to the vector of singular values of a matriz. For more details, please

refer to [22].

According to the arguments in Proposition 4.13, if we wish to establish the SOC trace
version of Minkowski inequality in general case without any restriction, the crucial key
is verifying the SOC triangular inequality

7+ y| Zen 2]+ yl.

Unfortunately, this inequality does not hold. To see this, checking # = (v/2,1, —1) and
y = (=2, —1,0) will lead to a counterexample. More specifically, z € K",y € —K", and
z+y=1(0,0,—-1) ¢ K"U(—K"), which says |z +y| = (1,0,0) and |z| + |y| = 2+ (—y) =
(2v/2,2, —1). Hence,

2| + [yl — = +y| = (2V2—1,2,—1) ¢ K" U (=K").
Moreover, we have

Mz +y) =1>2v2 = V5 = M(Jz] + Jy)),
Mol +yl) =1 < 2V2+ V5 = Xo(|z| + [yl).

Nonetheless, we build another SOC trace version of triangular inequality as below.
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Proposition 4.14. (Triangular inequality) For any z = (x1,22) € R x R"™! and
y = (y1,y2) € R x R"™!, there holds

tr(jz +yl) < tr(jz]) + tr(fy]).

Proof. In order to complete the proof, we discuss three cases.
(i) fz+y e K", then |[v +y| =2+ y <. |z] + |y|, and hence

tr(le +yl) < te(fz]) + tr(|y])

by Proposition 1.1(a).
(ii) If x +y € —K", then |z +y| = —v — y =<,.. || + |y|, and hence

tr(lz +yl) < tr(|z]) + tr([y))-

(iii) Suppose z 4+ y ¢ K" U (—K™), we have |z + y| = (||x2 + 2|, %(ch + y2)> from

simple calculation, then
tr(lz +yl) = 2[lz2 + p2||.

If one of x,y is in K" (for convenience, we let = € K™), we have two subcases: y € —K"
and y ¢ K" U (—=K"). For y € —K", we have |y| = —y and —y; > ||y2]|, and hence

tr(jz] +[yl) = tr(z —y) = 2(z1 — 1) = 2([|z2ll + lw2ll) = 2[|z2 + gal| = tr(lz + y]).
For y ¢ K" U (—K™), we have |y| = <Hy2||, ﬁgp), and hence

tr(jz +[yl) = 2(z1 + lyall) = 20|22l + llv2ll) = 222 + voll = tr(lz + y)).

If one of z,y is in —K", then the argument is similar. To complete the proof, it remains
to show the inequality holds for x,y ¢ K™ U (—K™). Indeed, in this case, we have

tr(lz + lyl) = 2(|z2ll + [l2l]) = 2[|z2 + g2l = tr(|lz + y)).

Hence, we complete the proof. [

To close this section, we comment a few words about the aforementioned inequalities.
In real analysis, Young inequality is the main tool to derive the Holder inequality, and
then the Minkowski inequality can be derived by applying Holder inequality. Tao et al.
[143] establish a trace p-norm in the setting of Euclidean Jordan algebra. In particular,
they directly show the trace version of Minkowski inequality, see [143, Theorem 4.1]. As
an application of trace versions of Young inequalities, we use the approach which follows
the same idea as in real analysis to derive the trace versions of Holder inequalities.
Furthermore, the SOC trace version of Minkowski inequality is also deduced. On the
other hand, the trace version of Triangular inequality holds for any Euclidean Jordan
algebra, see [97, Proposition 4.3] and [143, Corollary 3.1]. In the setting of second-order
cone, we prove the inequality by discussing three cases directly.
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Figure 4.1: Relationship between means defined on real number.

4.3 SOC weighted means and trace inequalities

In this section, we further investigate the weighted means and their induced inequalities
associated with SOC. More specifically, we set up the concepts of some weighted means
in the SOC setting. Then, we achieve a few inequalities on the new-extended weighted
means and their corresponding traces associated with second-order cone. As a byproduct,
a version of Powers-Stgrmers inequality is established. Indeed, for real numbers, there
exits a diagraph regarding the weighted means and the weighted Arithmetic-Geometric-
Mean inequality, see Figure 4.1. The direction of arrow in Figure 4.1 represents the
ordered relationship. We shall define these weighted means in the setting of second-order
cone and build up the relationship among these SOC weighted means.

Lemma 4.4. Suppose that V is a Jordan algebra with an identity element e. Let P(x)
be defined as in (4.5). Then, P(x) possesses the following properties.

(a) An element x is invertible if and only if P(x) is invertible. In this case, P(z)x™! =z
and P(z)™' = P(z™1).

(b) If x and y are invertible, then P(x)y is invertible and (P(z)y) ™" = Pz~ )y .

(c) For any elements x and y, P (P(x)y) = P(z)P(y)P(x). In particular, P(x?) =
P(x)?.

(d) For any elements x,y € Q, x <y if and only if P(x) < P(y), which means P(y) —
P(z) is a positive semidefinite matriz.

Proof. Please see Proposition 11.3.1, Proposition I1.3.2, and Proposition 11.3.4 of [62]
and Lemma 2.3 of [100]. O

Recall that a binary operation (z,y) — M(x,y) defined on int(K") x int(K") is called
an SOC mean if it satisfies all conditions in Definition 4.1. In light of A(z,y), H(z,y),
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G(x,y), we consider their corresponding SOC weighted means as below. For 0 < A < 1,
we let

Ax(z,y) = (1—=XNzx+ Ay, (4.12)
Hy(z,y) = (1=Na '), (4.13)
Ga(z,y) = P <x> (P(x-%)y) , (4.14)

denote the SOC weighted arithmetic mean, the SOC weighted harmonic mean, and the
SOC weighted geometric mean, respectively. According to the definition, it is clear that

A1_>\(ZL‘, y) = Ak(yv CL’),
Hl*/\(l’?y) = HA(y7I)7
Gi_a(z,y) = Gi(y,x).

We note that when A = 1/2; these SOC weighted means coincide with the SOC arithmetic
mean A(z,y), the SOC harmonic mean H(z,y), and the SOC geometric mean G(z,y),
respectively.

Proposition 4.15. Suppose 0 < X\ < 1. Let A\(z,y), Hx(x,y), and Gy(z,y) be defined
as in (4.12), (4.13), and (4.14), respectively. Then, for any x >, 0 and y >, 0, there
holds

ZL‘/\y j)(:n H)\(l',y) j)cn G)\(x7y> j)cn A,\(x,y) j)cn fL‘\/y.

Proof. (i) To verify the first inequality, we discuss two cases. For 2(z +y — |z — y|) ¢
K™, the inequality holds automatically. For %(a: +y — |z —y|) € K", we note that
s(x+y—|z—y|) 2 zand 3(z+y—|z—y|) 2 y. Then, using the SOC-monotonicity
of f(t) = —t~! shown in Proposition 2.3, we obtain

—1 —1
a:%&m(x+ygm—yg Emdg/3§m<x+ygu—yg |

which imply

-1
r+y—lr—yl
5 )
Next, applying the SOC-monotonicity again to this inequality, we conclude that

(1= N+ hy < (

r+y—|v—yl
9

= en ((1 — Nzt + )\3[1)_1 )

(ii) For the second and third inequalities, it suffices to verify the third inequality (the
second one can be deduced thereafter). Let s = P(z72)y — e, which gives s > n —E.
Then, applying Lemma 4.1 yields

(e + P(x_%)y - e)A =n €+ A [P(:p_%)y - e} ,
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which is equivalent to
A
0= (T=XNe+A [P(a:_%)y] — (P(x_%)y> :

Since P(x2) is invariant on K", we have

1 1 1 A

0 =<, P(a?) ((1 = Ne+ A [P by| = (Ph)y) )
1 1 A
= (1=Ne+ - P (P t)y)

and hence

1 1 A

P(x?) (P(gfa)y) <0 (1= Nz + Ay (4.15)

For the second inequality, replacing x and y in (4.15) by 7! and y~!, respectively, gives

P) (Plat )y—1>A < (=N

Using the SOC-monotonicity again, we conclude

1 1 N 1 1 A
(=22 s (P (Pabn)) =Pt (P
where the equality holds by Lemma 4.4(b).
(iii) To see the last inequality, we observe that <, i(z +y+ |z —y|) and y <.,
1(z 4y + |z — y|), which imply

r+y+|r—yl

(1—-Nz+ Ay <. 5

Then, the desired result follows. [

In Section 4.2, we have established three SOC trace versions of Young inequalities.
Based on Proposition 4.15, we provide the SOC determinant version of Young inequality.

Proposition 4.16. (Determinant Young inequality) For any x >,, 0 andy >, 0,
there holds

P q
det(z oy) < det (x— + y-) ,
p q

1 1
where 1 < p,q < oo and — + — = 1.

p g

Q=

Proof. Since %p + % = G1(2P,y?) = P(2%) (P(z7%)y?)*, and hence

(VS|

det (‘% + %) > det (P(x ) (P(x—%)yq) ‘3) — det(z) det(y) > det(z o y)
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by [62, Proposition I11.4.2] and Proposition 1.2(b). O

Now, we consider the family of Heinz means

aublfu + alflzbu

M,(a,b) = 5

for a,b > 0 and 0 < v < 1. Following the idea of Kubo-Ando extension in [96], the SOC
Heinz mean can be defined as

G,(z,y) + Gy, x)
2 )

M, (z,y) = (4.16)

where x,y >, 0 and 0 < v < 1. We point out that an obvious “naive” extension could

be

cn

v o ylfu + mlfu o yy

2

B,(z,y) = (4.17)
Unfortunately, B, may not always satisfy the definition of SOC mean. Although it is
not an SOC mean, we still are interested in seeking the trace or norm inequality about
B, and other SOC means, and it will be discussed later.

For any positive numbers a, b, it is well-known that

Vab < M,(a.b) < 22, 418
2

Together with the proof of Proposition 4.15, we can obtain the following inequality ac-
cordingly.

Proposition 4.17. Suppose 0 <v <1 and A\ = % Let A%(x, ), G%(x,y), and M, (z,y)

be defined as in (4.12), (4.14), and (4.16), respectively. Then, for any x >,, 0 and
Y = 0, there holds

Gi(z,y) 2 My(z,y) 2 As(z,y).

1
2
Proof. Consider z >, 0, y >,,, 0 and 0 < v <1, from Proposition 4.15, we have

Gy(r,y) + Gy, )
2
Ay(z,y) + Ay, T)
= Ai(zy).

M,(z,y) =
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On the other hand, we note that

GV(:L‘7 y) + Gl—V(xv y)
2

M,(z,y) =

u—+v
where the inequality holds due to the fact ;— = n u? ov? for any u,v € K™ and the

invariant property of P (ZL‘%) on £". O

Over all, we could have a picture regarding the ordered relationship of these SOC
weighted means as depicted in Figure 4.2.

Figure 4.2: Relationship between means defined on second-order cone.

Up to now, we have extended the weighted harmonic mean, weighted geometric mean,
weighted Heinz mean, and weighted arithmetic mean to second-order cone setting. As
below, we explore some other inequalities associated with traces of these SOC weighted
means. First, by applying Proposition 1.1(b), we immediately obtain the following trace
inequalities for SOC weighted means.

Proposition 4.18. Suppose 0 < X\ < 1. Let Ax(z,y), Hx(z,y), and Gx(x,y) be defined
as in (4.12), (4.13), and (4.14), respectively. For, any x >, 0 and y >, 0, there holds

tr(z Ay) <tr(Hy(z,y)) < tr(Ga(z,y)) < tr(Ax(z,y)) < tr(z Vy).
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Proposition 4.19. Suppose 0 < v < 1 and A = L. Let A%(:E,y), H%(.:E,y), G%(a:,y),

and M,(x,y) be defined as in (4.12), (4.13), (4.14), and (4.16), respectively. Then, for
any x =, 0 and y =, 0, there holds

tr(z Ay) < tr(H% (x,y)) <tr(Gi(z,y)) < tr(M,(z,y)) < tr(A

1 1
2 2

(z,y)) < tr(z Vy).

As mentioned earlier, there are some well-known means, like Heinz mean
avbl—y _|_a1—ybu

2 Y
which cannot serve as SOC means albeit it is a natural extension. Even though they are
not SOC means, it is still possible to derive some trace or norm inequality about these

M,(a,b) = for 0 <v <1,

mearns.

Next, we pay attention to another special inequality. The Powers-Stgrmers inequality
asserts that for s € [0, 1] the following inequality

2Tr (A°B'™*) > Tr (A+ B — |A — B)|)

holds for any pair of positive definite matrices A, B. This is a key inequality to prove the
upper bound of Chernoff bound, in quantum hypothesis testing theory [4]. In [73, 74],
Hoa, Osaka and Tomiyama investigate the generalized Powers-Stgrmer inequality. More
specifically, for any positive matrices A, B and matrix-concave function f, they prove
that
Tr(A) + Tr(B) - Tr(|1A - BJ) < 2Tr (f(A)}g(B)f(4)}),
where g(t) = ﬁ’ te(0,00)
0, t=20

Stermers Inequality characterizes the trace property for a normal linear positive func-

. Moreover, Hoa et al. also shows that the Powers-

tional on a von Neumann algebras and for a linear positive functional on a C*-algebra.
Motivated by the above facts, we establish a version of the Powers-Stgrmers inequality
for SOC-monotone function on [0, 00) in the SOC setting.

Proposition 4.20. For any z,y,z € R", there holds tr((z oy) o z) = tr(x o (y o 2)).

Proof. From direct computation, we have z oy = (2141 + (x2, y2), 1Yo + y122) and

tr((xoy)oz) =2 (xiyr121 + 21(x2, Y2) + T1(y2, 22) + Y1 (T2, 22)) .

Similarly, we also have y o 2z = (y121 + (Y2, 22), Y122 + 212) and

tr(z o (yoz)) =2(ziy121 + x1(ya, 22) + y1{22, 22) + 21(22, Y2)) -
Therefore, we conclude the desired result. [

According to the proof in [73, 74], the crucial point is under what conditions of f(t),

there holds the SOC-monotonicity of % For establishing the SOC version of Powers-

Stormers Inequality, it is also a key, which is answered in next proposition.
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Proposition 4.21. Let f be a strictly positive, continuous function on [0,00). The
t
ft)

(a) f is matriz-monotone of order 4;

function g(t) = 1s SOC-monotone if one of the following conditions holds.

(b) f is matriz-concave of order 3;
(c) For any contraction T : K" — K" and z € K", there holds

[T 2) = Tf2). (4.19)

Proof. (a) According to [73, Proposition 2.1], the 4-matrix-monotonicity of f would
imply the 2-matrix-monotonicity of g, which coincides with the SOC-monotonicity by
Proposition 2.23.

(b) From [74, Theorem 2.1], the 3-matrix-concavity of f implies the 2-matrix-monotonicity
of g, which coincides with the SOC-monotonicity as well.

(c) Suppose 0 <,.,, =, y, we have P(x%) < P(y%) by SOC-monotonicity of t/2 and
Lemma 4.4, which implies || P(z2)P(y~2)|| < 1. Hence, P(v2)P(y™2) is an contraction.
Then

Pl %>fS°C<> 2 Py (y)
v f24a) 2 1 0 ()
T o (fsoc(x))—l _<;cn y o (fsoc(y))—l
gsoc( )—<)cn gsoc(y)

where the second implication holds by setting T' = P(z 2
holds by the invariant property of P(z~2) on K". O

IIIIMM

)P(y~2) and the first equivalence

Remark 4.4. We elaborate more about Proposition 4.21. We notice that the SOC-
monotonicity and SOC-concavity of f are not strong enough to guarantee the SOC-
monotonicity of g. Indeed, the SOC-monotonicity and SOC-concavity only coincides with
the 2-matriz-monotonicity and 2-matriz-concavity, respectively. Hence, we need stronger
condition on f to assure the SOC-monotonicity of g. Another point to mention is that
the condition (4.19) in Proposition 4.21(c) is a similar idea for SOC setting parallel to
the following condition:

C*f(A)C < f(C*AC) (4.20)

for any positive semidefinite A and a contraction C in the space of matrices. This in-
equality (4.20) plays a key role in proving matriz-monotonicity and matriz-convexity.
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For more details about this condition, please refer to [13, 74]. To the contrast, it is not
clear about how to define (-)* associated with SOC. Nonetheless, we figure out that the
condition (4.19) may act as a role like (4.20).

Proposition 4.22. Let f : [0,00) — (0,00) be SOC-monotone and satisfy one of the
conditions in Proposition 4.21. Then, for any x,y € K", there holds

o=

(e +y) = el = yl) < 2t (0% 0 g (y) 0 ()} ) (4:21)

where g(t) = ﬁ if t >0, and g(0) = 0.

Proof. For any z,y € K", it is known that = — y can be expressed as [ —y|, — [z —y]_.
Let us denote by p := [z — y];+ and q := [z — y]_. Then we have

r—y=p-qand [z—y|=p+q
and the inequality (4.21) is equivalent to the following
tr() = tr (@)} 0 6(y) 0 f<(2)}) < tr(p).

Since y+p = Yy = n Oand y+p =2+q =, = =, 0, we have ¢°°(z) <., ¢°°(y+p)
and by Proposition 4.20

tr() — tr (F(2) 0 9 (y) 0 F(2)?)

D=

—tr (= +p)t 0 () 0 Sy + )

< tr(y+p) —tr (fsoc(y)% 0 g*(y) o f*“(y)
= tr(y +p) —tr(y)
= tr(p).

N

)

Hence, we prove the assertion. [

As an application we achieve the SOC version of Powers-Stgrmer’s inequality.
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Proposition 4.23. For any x,y € K" and 0 < X\ <1, there holds
tr(z+y—|z—y|) <2r(ztoy' ™) <tr(z+y+]z—yl).

Proof. (i) For the first inequality, taking f(¢) = ¢* for 0 < XA < 1 and applying
Proposition 4.22. It is known that f is matrix-monotone with f((0,00)) C (0,00) and

g(t) = ﬁ = t'7*. Then, the inequality follows from (4.21) in Proposition 4.22.

(ii) For the second inequality, we note that

R
rT+y+|r—y
0 Zen U3 2' |-

Moreover, for 0 < XA < 1, f(t) = t* is SOC-monotone on [0,00). This implies that

A
A r+y+|r—y
0 —_<;Cn X j;cn ( 2 ?

1-\
0 < g < ($+y+|$—y|) ‘

—Kn
r 2

Then, applying Lemma 4.3 gives

tr(x)‘oyl_’\) Str(55"‘3/"‘|5L'_3/|)7

2
which is the desired result. [
According to the definition of By, we observe that

Tty
5=

A

BO(‘T?y) :Bl(x7y): (LL’,y)

=

This together with Proposition 4.22 leads to
tr(z Ay) <tr(Ba(z,y)) < tr(zVy).

In fact, we can sharpen the upper bound of tr(B)y(z,y)) as shown in the following propo-
sition, which also shows when the maximum occurs. Moreover, the inequality (4.18)
remains true for second-order cone, in the following trace version.

Proposition 4.24. For any z,y € K™ and 0 < X\ < 1, there holds

2tr (x% o y%> <tr(ztoy' M+ oyt) <tr(z+y),

which is equivalent to tr (x% o y%> <tr(Bi(z,y)) < tr(Ai(x,y)). In particular,

1
2

tr (z' o y) < tr (Ax(z,)).
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Proof. It is clear that the inequalities hold when A = 0, 1. Suppose that A # 0, 1, we set

_ 1 _ 1
P=x4= 1=

For the first inequality, we write x = flux + fgux LY = ué) + ,uguy by spectral

decomposition (1.2)-(1.4). We note that &;, u; > 0 and u ud) e K for all 4§ = 1,2.
Then

2
x’\oylf’\—i-xl”\oyA—Qx%o 2 = Z ( M+ & A A 2\/@,“]') ug)ouéj),

which implies

—+

r<x>‘oy 1_>‘oy)‘—2x%oy%>

2
Z ( TRE £l- A /\ fiMj) ug) Ouéj))

4,j=1

2
_ Ztr< )\1)\ 1>\>\ 2\/§Z~_uj>ug)ou§/j)>

]:

= Y (@ e 2v/Em )t (uf) o ul))

7.]

-
—

.
)_l

>

Y

where the inequality holds by (4.18) and Property 1.3(d).

For the second inequality, by the trace version of Young inequality in Proposition 4.10,

p q q

() e,

Adding up these two inequalities together yields the desired result. [

we have

—+
~
—
8

—
|
>
e}
<
>
~
IN
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Chapter 5

Possible Extensions

It is known that the concept of convexity plays a central role in many applications includ-
ing mathematical economics, engineering, management science, and optimization theory.
Moreover, much attention has been paid to its generalization, to the associated general-
ization of the results previously developed for the classical convexity, and to the discovery
of necessary and/or sufficient conditions for a function to have generalized convexities.
Some of the known extensions are quasiconvex functions, r-convex functions [11, 151],
and SOC-convex functions as introduced in Chapter 2. Other further extensions can be
found in [127, 149]. For a single variable continuous, the midpoint-convex function on IR
is also a convex function. This result was generalized in [148] by relaxing continuity to
lower-semicontinuity and replacing the number % with an arbitrary parameter « € (0, 1).
An analogous consequence was obtained in [112, 149] for quasiconvex functions.

To understand the main idea behind r-convex function, we recall some concepts that
were independently defined by Martos [107] and Avriel [12], and has been studied by the
latter author. Indeed, this concept relies on the classical definition of convex functions and
some well-known results from analysis dealing with weighted means of positive numbers.
Let w = (wy,...,w,) € R™ ¢ = (q1,...,qm) € IR™ be vectors whose components are
positive and nonnegative numbers, respectively, such that > " ¢; = 1. Given the vector
of weights ¢, the weighted r-mean of the numbers wy, ..., w,, is defined as below (see [71]):

m 1/r
(; qi(wi)r) if r=#£0,

M, (w;q) = M. (wq, ..., wp; q) := - (5.1)
[T (w;)® if r=0.
i=1
It is well-known from [71] that for s > r, there holds
Mg(wy, .oy Wi; q) = M (w1, ..., Wiy q) (5.2)

for all g1, ..., ¢n > 0 with > ¢; = 1. The r-convexity is built based on the aforemen-
tioned weighted r-mean. For a convex set S C IR", a real-valued function f: S C IR" —

185
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R is said to be r-convez if, for any x,y € S, A € [0,1], ¢t =\, o =1 =X, ¢ = (q1, @),
there has
flaw + qy) <In{M, (/) e/W;q)}.

From (5.1), it can be verified that the above inequality is equivalent to

In 7@ 4 (1= N)e @]V if r 20,
AM(x)+ (1 =N f(y) if r=0.

Similarly, f is said to be r-concave on S if the inequality (5.3) is reversed. It is clear
from the above definition that a real-valued function is convex (concave) if and only if it
is 0-convex (0-concave). Besides, for » < 0 (r > 0), an r-convex (r-concave) function is
called superconvez (superconcave); while for r > 0 (r < 0), it is called subconvex (subcon-
cave). In addition, it can be verified that the r-convexity of f on C with r > 0 (r < 0)
is equivalent to the convexity (concavity) of ¢’/ on S.

fr+(1=XNy) < { (5.3)

A function f: S CIR"™ — IR is said to be quasiconver on S if, for all z,y € S,

f Az + (1= A)y) <max{f(x), f(y)}, 0<A<T

Analogously, f is said to be quasiconcave on S if, for all z,y € S,
fQz+ (1 =Ay) Z2min{f(z), fy)}, 0<A<L

From [71], we know that

lm M, (wy,...,wn;q) = My(wy, ..., wy,) = max{w;, ..., wy,},
r—00
m M, (wy, W q) = M_oo(wy, ..., wy,) = min{wy, -+, Wy}
r——00

Then, it follows from (5.2) that M (wy, ..., wn) > Mp(w1, ... Wi q) = M_oo (w1, ..., Wy)
for every real number r. Thus, if f is r-convex on S, it is also (+00)-convex, that is,
x4+ (1 = Ny) < max{f(z), f(y)} for every x,y € S and X € [0,1]. Similarly, if f is
r-concave on S, it is also (—oo)-concave, i.e., f(Az + (1 — N)y) > min{ f(x), f(y)}.

The following review some basic properties regarding r-convex function from [11] that
will be used in the subsequent analysis.

Property 5.1. Let f: S CIR®™ — R. Then, the followings hold.

(a) If f is r-convex (r-concave) on S, then f is also s-convez (s-concave) on S for s >r
(s <r).
(b) Suppose that f is twice continuously differentiable on S. For any (z,r) € S x R, we
define
$w,1) =V f(2) +rVf(2)V[(z)".

Then, f is r-convex on S if and only if ¢ is positive semidefinite for all x € S.
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(c) Ewvery r-convez (r-concave) function on a convex set S is also quasiconvex (quasi-
concave) on S.

(d) f is r-convex if and only if (—f) is (—r)-concave.

(e) Let f be r-convex (r-concave), a € R and k > 0. Then f+« is r-convex (r-concave)
and k - f is (7 )-convexr ((7 )-concave).

(f) Let ¢, : S CR™ — IR be r-convex (r-concave) and oy, as > 0. Then, the function
0 defined by
o(z) — In [alem(‘”) + age””("’“")] AT # 0,
a19(x) + ap(x) if r=0,

is also r-convez (r-concave).

(g) Let ¢ : S CR" — IR be r-convex (r-concave) such that r < 0 (r > 0) and let the
real valued function 1 be nondecreasing s-convex (s-concave) on IR with s € IR.
Then, the composite function 0 =1 o ¢ is also s-convex (s-concave).

(h) ¢ : S C R" — R is r-convex (r-concave) if and only if, for every x,y € S, the
function v given by
P(A) =@ ((1 =AMz +y)

is an r-convez (r-concave) function of A for 0 < X < 1.

(1) Let ¢ be a twice continuously differentiable real quasiconvex function on an open
conver set S C IR". If there exists a real number r* satisfying

*

—2TV%p(x)2
r* = sup

ves, =1 2TV (@)] (5.4)

whenever 2TV ¢(x) # 0, then ¢ is r-convex for every r > r*. We obtain the r-
concave analog of the above theorem by replacing supremum in (5.4) by infimum.

5.1 Examples of r-functions

In this section, we try to discover some new r-convex functions which can be verified by
applying Property 5.1. With these examples, we have a more complete picture about
characterizations of r-convex functions. Moreover, for any given r, we also provide ex-
amples which are r-convex functions.

Example 5.1. For any real number p, let f : (0,00) — R be defined by f(t) = tP.

(a) If p> 0, then f is convex for p > 1, and (+00)-convez for 0 < p < 1.
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(b) If p <0, then f is convex.
Solution. To see this, we first note that f'(t) = pt?~!, f"(t) = p(p — 1)t?~2? and

—s-f”(t)-s_ (1—p)tp_{oo if 0<p<l,

e 0 if p>lorp<O.

s f/(£)£0,]s|=1 W p#0 p
Then, applying Property 5.1 yields the desired result. W
Example 5.2. Suppose that [ is defined on (=5, 7).
(a) The function f(t) = sint is co-conver.
(b) The function f(t) = tant is 1-conver.
(c) The function f(t) = In(sect) is (—1)-convez.
(d) The function f(t) = In|sect + tant| is 1-convex.
Solution. (a) We note that f'(t) = cost, f’(t) = —sint, and

—s- f"(t)-s sin ¢
sup  ———=5— = Sup = 00
—I<t<E |s|=1 [s - ['(1)]? —I<t<% cos? ¢

Hence f(t) = sint is co-convex.
(b) Using f'(t) = sec?t, f"(t) = 2sec*t - tant, and
—f"(t) —2sec’t - tant

P —7np — Sup = sup (—sin2t) =1,
—I<t<Z ()] —I<t<Z sectt —I<t<Z

which says that f(¢) = tant is 1-convex.
(c) Note that f/(t) = tant, f”(t) = sec*t, and
—f"(t) —ksec®t 9
sup ———== sup ——5— = sup (—csc’t)=—1.
—I<t<Z (1)) —I<t<Z tan® ¢ —I<t<Z
Then, it is clear to see that f(¢) = In(sect) is (—1)-convex.

(d) Note that f’(t) = sect, f"(t) = sect - tant, and

—f"(t) —sect - tant ,
sup iy = Sup —————— = sup (—sint) =1
—I<t<Z [f/(1)] —I<t<Z sec”t —I<t<Z

Thus, f(t) = In|sect 4 tant| is 1-convex. W

In light of Example 5.2(b)-(c) and Property 5.1(e), the next example indicates that for
any given r € IR (no matter positive or negative), we can always construct an r-convex
function accordingly. The graphs of various r-convex functions are depicted in Figure
5.1.
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f
A

1-convex

(-1)-convex

£ =Insec )

s T o5
f(@®=In|sectttant|

f(=tanr 1
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Figure 5.1: Graphs of r-convex functions with various values of r.

Example 5.3. For any r # 0, let f be defined on (—3,7%).

tant

(a) The function f(t) = is |r|-convez.

1 t

(b) The function f(t) = n(sect) is (—r)-conver.
r
sec?t
Solution. (a) First, we compute that f'(t) = , ()
T
_f//(t) )
sup = sup (—rsin2t
—5<t<3 [f/(t)P —§<t<g( )
. tant .
This says that f(t) = is |r|-convex.
tant ¢
(b) Similarly, from f/(t) = ——", f'(t) = =" and
r
— 1) :
sup = sup (—rcsct
S SO S
| t
Then, it is easy to see that f(t) = n(sect) is (—r)-convex.
r

_ 2sec?t - tant

= Ir].

= —7.

, and
r

Example 5.4. The function f(x) = 3 In(||z||* + 1) defined on IR? is 1-convex.
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Solution. For z = (s,t) € IR?, and any real number 7 # 0, we consider the function

o(,r) = VAf(2) +rV[(2)Vf(2)"

B 1 2 —s2+1 —2st N r s st
N (lz||? + 1)2 —2st s2—t2 41 (Jlz|2 4+ 1)2 [st ¢
B 1 (r—1s*+t*+1 (r—2)st

(lz||? + 1)2 (r —2)st sS4+ (r—Dt2+1|°

Applying Property 5.1(b), we know that f is r-convex if and only if ¢ is positive semidef-
inite, which is equivalent to

(r—1s*+t*+1>0 (5.5)
(r—1s*+t*+1 (r —2)st
> 0. .
(r-2st  S+-De+1]" (5.6)

It is easy to verify the inequality (5.5) holds for all x € IR? if and only if » > 1. Moreover,
we note that

(r—1s*+t*+1 (r —2)st

(r —2)st 24+ (r—1t2+1
= S+ I+ (=D + (r = 1) (s S+t ) — (r—2)%5 >0
= St 14 (2r —2)2 4 (r = D)(s* + 82+t 12 >0,

-

and hence the inequality (5.6) holds for all z € IR? whenever r > 1. Thus, we conclude
by Property 5.1(b) that f is I-convex on IR.. W

5.2 SOC-r-convex functions

In this section, we define the so-called SOC-r-convex functions [77], which can be viewed
as the natural extension of r-convex functions to the setting associated with SOC.

Lemma 5.1. Let f: IR — IR be f(t) =€ and v = (z1,72) € R X IR"™, y = (y1,12) €
R x R If oy —y1 > ||zl + ||lv2l], then € =xn €¥. In particular, if © € K", then
e* t](:n 6(070).
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Figure 5.2: Graphs of 1-convex function f(z) = §In(||z||* + 1).
Proof. First, we analyze that
e® E]Cn e¥
x 1 T2 . Y2
< € cosh(||za]]) — € cosh(lg2]]) = ||e™ Slnh(||$2\|)m — e’ Slﬂh(||y2||)m ’
2
= [e" cosh(|laal) — e cosh(|lya|)]? — || sinh(||a])) 7 — e sinh(|lya]) 2
€™ cosh( ||z, e¥* cosh(|[ys e s T 2ol Yo T
X xX : : x 7y
= g e 2 o) cosh(al)  sinhaa ) sinh (el 7 2
> 0.

Looking into the above terms and the goal, it suffices to show that

e 4 2V — 2™ cosh(||zg|| + [|y2]]) > 0.

This is true under the assumption because

¥ 4 e — 2 cosh(|| o] + [Jya]]) > 0

e + e eT1=Yl 4 e¥1—T1
= coshlllaal) + lal) < S = S = cosh(z1 — )

= 21—y > ||| + ||yl

Thus, the proof is complete. [
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In general, to verify the SOC-convexity of e, we observe that the following fact

rfotAz+(1-Ny)

0 <xn € <=krw = rfAr+(1—-Ny) 2k In(w)

is important and often needed. Note for x5 = 0, we also have some observations as below.

() ¢ =xn 0 <= cosh(|Jas]]) > | sinh([jas]])] <= e lol > 0.

(b) 0 <n In(@) = (@3 = aa]?) > |in (242} | = (o) = aal) > 0 =

x1—||z2|

x1 — [|z2]] > 1. Hence (1,0) <xn x implies 0 <xn In(x).

(c) In(1,0) = (0,0) and e = (1,0).

Definition 5.1. Suppose that r € IR and f : C C IR — IR where C' is a convezr subset of
IR. Let 7 : S CIR™ — R" be its corresponding SOC-function defined as in (1.8). The
function f is said to be SOC-r-convex of order n on C if, for x,y € S and X € [0,1],
there holds

%ln ()\eTfSOC(x) +(1— )\>erfs°°(y)) r 0,

(5.7)
M)+ (1= N r=0,

0+ (1= Ny) = {

Similarly, f is said to be SOC-r-concave of ordern on C'if the inequality (5.7) is reversed.
We say f is SOC-r-convex (respectively, SOC-r-concave) on C' if f is SOC-r-convex of
all order n (respectively, SOC-r-concave of all order n) on C.

It is clear from the above definition that a real function is SOC-convex (SOC-concave)
if and only if it is SOC-0-convex (SOC-0O-concave). In addition, a function f is SOC-
r-convex if and only if —f is SOC-(—r)-concave. From [11, Theorem 4.1], it is shown
that ¢ : IR — IR is r-convex with r # 0 if and only if €’ is convex whenever r > 0
and concave whenever r < 0. However, we observe that the exponential function e’ is
not SOC-convex for n > 3 by Example 2.11. This is a hurdle to build parallel result for
general n in the setting of SOC case. As seen in Proposition 5.3, the parallel result is
true only for n = 2. Indeed, for n > 3, only one direction holds which can be viewed as
a weaker version of [11, Theorem 4.1].

Proposition 5.1. Let f : [0,00) — [0,00) be continuous. If f is SOC-r-concave with
r >0, then f is SOC-monotone.

Proof. For any 0 < A\ < 1, we can write Ax = \y + ((11__’\/\))’\ (x —vy).

(i) If r = 0, then f is SOC-concave. Hence, it is SOC-monotone by Proposition 2.8.
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(ii) If » > 0, then
Fa) men I (A0 4 (1= N PR

In (/\e’"(o’o) +(1- /\)eT(O’O))

IR | R3S~

= “In(A(1,0) + (1 — A)(1,0))

I

where the second inequality is due to x — y >=x» 0, Lemma 5.1 and Examples 2.9-2.10.
Letting A — 1, we obtain that f%°(z) =xn» f%°(y), which says that f is SOC-monotone.
O

In fact, in light of Lemma 5.1 and Examples 2.9-2.10, we have the following Lemma
which is useful for subsequent analysis.

Lemma 5.2. Let z € R™ and w € int(K™). Then, the following hold.
(a) Forn=2andr >0, z Zxn In(w)/r <= 1z J)cn In(w) <= € <gn w.
(b) Forn=2andr <0, z Zxn In(w)/r <= 12z =) In(w) <= €% =xn w.

(c) Forn>2, if € <xn w, then rz Sicn In(w).

Proposition 5.2. Forn =2 and let f : R — IR. Then, the following hold.
(a) The function f(t) =t is SOC-r-convex (SOC-r-concave) on R forr >0 (r <0).
(b) If f is SOC-convez, then f is SOC-r-convex (SOC-r-concave) for r >0 (r <0).

Proof. (a) For r > 0, x,y € R™ and X € [0, 1], we note that the corresponding vector-
valued SOC-function of f(t) =t is f*°(x) = x. Therefore, to prove the desired result,
we need to verify that

1 SOC SOC
F0z + (1= A)y) Zee —In (A @ 4 (1= N)er W)
To this end, we see that
1
A+ (1= Ay Zpen —In(Ae™ + (1= N)e™)

< Mrz+ (1= Nry g In(Ae’™ + (1 — N)e™)
— eAraH—(l—A)ry <en e 4+ (1 . )\)ery’
where the first “<=" is true due to Lemma 5.2, whereas the second “<=" holds because

e! and Int are SOC-monotone of order 2 by Lemma 5.1 and Example 2.9. Then, using
the fact that e’ is SOC-convex of order 2 gives the desired result.
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(b) For any z,y € R™ and 0 < A < 1, it can be verified that
[+ (1= Ny) Zpen AL(z) + (1= 2)*(y)
1 sOocC sSOC
<xn = In (A" TE 4 (1 - N)er W) |
,

where the second inequality holds according to the proof of (a). Thus, the desired result
follows. [

Proposition 5.3. Let f : IR — IR. Then f is SOC-r-convex if "' is SOC-convex (SOC-
concave) forn > 2 andr > 0 (r < 0). For n = 2, we can replace “if” by “if and only

if”.

Proof. Suppose that e’/ is SOC-convex. For any x,y € IR" and 0 < X < 1, using that
fact that In¢ is SOC-monotone (see Example 2.13) yields

IO L AT 4 (] )W)
= 7z +(1—-N)y) Zxn In ()\erfsoc(x) +(1 - )\)erfs"c(y))

1 SOC socC
; fsoc(/\l, + (1 . )\)y) =xen “In ()\erf (z) + (1 . /\)erf (y)) )
T

When n = 2, €' is SOC-monotone as well, which implies that the “=" can be replaced
by “«<=". Thus, the proof is complete.  [J

Combining with Proposition 2.16, we can characterize the SOC-r-convexity as follows.

Proposition 5.4. Let f € C®(J) with J being an open interval in R and dom(f*°°) C
R™. Then, for r > 0, the followings hold.

(a) f is SOC-r-convex of order 2 if and only if €’/ is convex;

(b) f is SOC-r-convex of order n > 3 if €'/ is convex and satisfies the inequality (2.36).
for any to,t € J and ty # t.

Next, we present several examples of SOC-r-convex and SOC-r-concave functions of
order 2. For examples of SOC-r-convex and SOC-r-concave functions (of order n), we
are still unable to discover them.

Example 5.5. For n = 2, the following hold.
(a) The function f(t) = t? is SOC-r-convexr on R for r > 0.

(b) The function f(t) = t> is SOC-r-convex on [0,00) for r > 0, while it is SOC-r-
concave on (—o0,0] for r < 0.
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1
(c) The function f(t) = n is SOC-r-convex on [—r/2,0) or (0,00) forr >0, while it is
SOC-r-concave on (—o0,0) or (0, —r/2] forr < 0.

(d) The function f(t) =/t is SOC-r-convex on [1/r% 00) for r > 0, while it is SOC-r-
concave on [0, 00) for r < 0.

(e) The function f(t) = Int is SOC-r-convex (SOC-r-concave) on (0,00) for r > 0
(r <0).

Solution. (a) First, we denote h(t) := e’ Then, we have #'(t) = 2rte’” and h'(t) =
(14 2rt?)2re™. We know h is convex if and only if A”(t) > 0. Thus, the desired result
holds by applying Proposition 2.16 and Proposition 5.4. The arguments for other cases
are similar and we omit them. W

5.3 SOC-quasiconvex Functions

In this section, we define the so-called SOC-quasiconvex functions which is a natural
extension of quasiconvex functions to the setting associated with second-order cone.

Recall that a function f : S C IR® — IR is said to be quasiconvex on S if, for any
z,y € Sand 0 < A <1, there has

fz + (1= A)y) <max{f(z), f(y)}.

We point out that the relation >xn is not a linear ordering. Hence, it is not possible to
compare any two vectors (elements) via >=xn». Nonetheless, we note that

1
max{a,b} =b+|a—b, = =(a+b+|a—0|), foranya,belR.
2

This motivates us to define SOC-quasiconvex functions in the setting of second-order
cone.

Definition 5.2. Let f : C C IR — R and 0 < A < 1. The function f is said to be
SOC-quasiconvex of order n on C' if, for any x,y € IR", there has

Sz + (1= Ay) e [2y) + [F(0) = ()]s

where

P y) + 177 () = (),
foc(x) it fox) Zien f2(y),
= f*(y) if [0 () <kn ),
5 (@) + f2y) + 1f0() = foo()l) 3 foo(a) — foo(y) € KU (=K").
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Similarly, [ is said to be SOC-quasiconcave of order n if

S+ (1= A)y) zgn [2() = [f*(2) = ()]

The function f is called SOC-quasiconvex (SOC-quasiconcave) if it is SOC-quasiconvex
of all order n (SOC-quasiconcave of all order n).

Proposition 5.5. Let f : IR — R be f(t) =t. Then, [ is SOC-quasiconver on IR.

Proof. First, for any x = (z1,22) E RXR" 1 y = (y1,92) € RxR" !, and 0 < X\ < 1,
we have

Py) 2 (@) = (1= A)(Y) Sk (1= A) ()
AP+ (L= () 2o ).
Recall that the corresponding SOC-function of f(t) = t is f*°°(z) = x. Thus, for all
x € R™, this implies f*°(Az + (1 — N)y) = Af*°(z) + (1 — X) f*°°(y) Zxn f*°(z) under
this case: f*°°(y) <xn f*°°(x). The argument is similar to the case of f%°(z) <jcn f5°°(y).
Hence, it remains to consider the case of f%°¢(x) — f5°(y) ¢ K" U (—=K"), i.e., it suffices
to show that
1
)\fSOC(a,;) + (1 _ )\)fSOC(y) j}cn 5 (fSOC(x) + fSOC(y) _'_ ‘fSOC(x) _ fSOC<y)|) .
To this end, we note that

|fSOC(x) _ fSOC(y)| i}cn fSOC(x)_fSOC(y) and |fSOC($) _ fSOC(y)| i’Cn ][‘SOC(y)_fSOC(:E)’

which respectively implies

S (@) + ) + )~ P e (58)
S F5) + £ () + 17@) — P = 59)

Then, adding up (5.8) xA and (5.9) x(1 — \) yields the desired result. [

Proposition 5.6. If f : ¢ C IR — R is SOC-convex on C, then f is also SOC-
quasiconver on C.

Proof. For any x,y € IR" and 0 < A < 1, it can be verified that

Qx4+ (1= AN)y) Zen Af(2) + (1= A)(y) 2 ) + 177(@) = ()],

where the second inequality holds according to the proof of Proposition 5.5. Thus, the
desired result follows. [

From Proposition 5.6, we can easily construct examples of SOC-quasiconvex functions.
More specifically, all the SOC-convex functions which were verified in [42] are SOC-
quasiconvex functions, for instances, ¢* on IR, and ¢*, 1, ¢/ on (0, 00). Nonetheless, the
characterizations of SOC-quasiconvex functions are very limited, more investigations are

desired.
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