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SOME INEQUALITIES FOR MEANS DEFINED ON THE LORENTZ CONE

YU-LIN CHANG, CHIEN-HAO HUANG, JEIN-SHAN CHEN AND CHU-CHIN HU

(Communicated by J.-C. Bourin)

Abstract. In this paper, we define various means associated with Lorentz cones (also known as

second-order cones), which are new concepts and natural extensions of traditional arithmetic

mean, harmonic mean, and geometric mean, logarithmic mean. Based on these means defined

on the Lorentz cone, some inequalities and trace inequalities are established.

1. Introduction

A mean is a binary map m : (0,∞)× (0,∞)→ (0,∞) satisfying the following:

(a) m(a,b) > 0;

(b) min{a,b} 6 m(a,b) 6 max{a,b} ;

(c) m(a,b) = m(b,a) ;

(d) m(a,b) is increasing in a,b ;

(e) m(αa,αb) = αm(a,b) , for all α > 0;

(f) m(a,b) is continuous in a,b .

Many types of means have been investigated in the literature, to name a few, the

arithmetic mean, geometric mean, harmonic mean, logarithmic mean, identric mean,

contra-harmonic mean, quadratic (or root-square) mean, first Seiffert mean, second

Seiffert mean, and Neuman-Sandor mean, etc.. In addition, many inequalities describ-

ing the relationship among different means have been established. For instance, for any

two positive real number a,b , it is well-known that
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min{a,b} 6 H(a,b) 6 G(a,b) 6 L(a,b) 6 A(a,b) 6 max{a,b}, (1)

where

H(a,b) =
2ab

a + b
,

G(a,b) =
√

ab,

L(a,b) =







a−b

lna− lnb
if a 6= b,

a if a = b,

A(a,b) =
a + b

2
,

represents the harmonic mean, geometric mean, logarithmic mean, and arithmetic mean,

respectively. For more details regarding various means and their inequalities, please re-

fer to [10, 17].

Recently, the matrix versions of means have been generalized from the classical

means, see [4, 6, 7, 8]. In particular, the matrix version of Arithmetic Geometric Mean

Inequality (AGM) is proved in [4, 5], and has attracted much attention. Indeed, let A

and B be two n×n positive definite matrices, the following inequalities hold under the

partial order induced by positive semidefinite matrices cone S
n
+ :

(A : B) � A#B � 1

2
(A + B), (2)

where

A : B = 2
(

A−1 + B−1
)−1

,

A#B = A1/2
(

A−1/2BA−1/2
)1/2

A1/2,

denotes the matrix harmonic mean, the matrix geometric mean, respectively. For more

details about matrix means and their inequalities, please see [4, 6, 7, 8, 19] and refer-

ences therein.

Note that the nonnegative orthant, the cone of positive semidefinite matrices, and

the second-order cone (denoted by K n and will be introduced later) belong to the so-

called symmetric cones [15]. In addition, Lim [22] generalized the geometric mean

from the cone of positive semidefinite matrices into the symmetric cone, and some

applications are established in [21, 23]. This motivates us to consider further extension

of means, that is, the means associated with second-order cone (SOC means for short).

In this paper, we generalize some well-known means to the setting of second-order

cone and build up some inequalities under the partial order induced by second-order

cone K
n . Moreover, two trace inequalities are established as well.
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2. Preliminary

In this section, we recall some background materials regarding Lorentz cones, also

known as second-order cones. The second-order cone (SOC for short) in R
n , is defined

by

K
n =

{

x = (x1,x2) ∈ R×R
n−1 |‖x2‖ 6 x1

}

.

For n = 1, K n denotes the set of nonnegative real number R+ . For any x,y in R
n , we

write x �K n y if x− y ∈ K n and write x ≻K n y if x− y ∈ int(K n) . In other words,

we have x �K n 0 if and only if x ∈ K n and x ≻K n 0 if and only if x ∈ int(K n) .

The relation �K n is a partial ordering but not a linear ordering in K n , i.e., there exist

x,y ∈K
n such that neither x �K n y nor y �K n x . To see this, for n = 2, let x = (1,1)

and y = (1,0) , we have x− y = (0,1) /∈ K n , y− x = (0,−1) /∈ K n .

For any x = (x1,x2) ∈ R×R
n−1 and y = (y1,y2) ∈ R×R

n−1 , we define their

Jordan product as

x◦ y = (xT y , y1x2 + x1y2).

We write x2 to mean x◦x and write x+y to mean the usual componentwise addition of

vectors. Then, ◦,+ , together with e′ = (1,0, . . . ,0)T ∈ R
n and for any x,y,z ∈ R

n , the

following basic properties [15, 16] hold: (1) e′ ◦x = x , (2) x◦y = y◦x , (3) x◦(x2 ◦y) =
x2 ◦(x◦y) , (4) (x+y)◦z = x◦z+y◦z . Notice that the Jordan product is not associative

in general. However, it is power associative, i.e., x◦ (x◦ x) = (x◦ x)◦ x for all x ∈ R
n .

Thus, we may, without loss of ambiguity, write xm for the product of m copies of x

and xm+n = xm ◦ xn for all positive integers m and n . Here, we set x0 = e′ . Besides,

K n is not closed under Jordan product.

For any x ∈ K n , it is known that there exists a unique vector in K n denoted by

x1/2 such that (x1/2)2 = x1/2 ◦ x1/2 = x . Indeed,

x1/2 =
(

s,
x2

2s

)

, where s =

√

1

2

(

x1 +
√

x2
1 −‖x2‖2

)

.

In the above formula, the term x2/s is defined to be the zero vector if x2 = 0 and s = 0,

i.e., x = 0. For any x ∈ R
n , we always have x2 ∈ K n , i.e., x2 �K n 0. Hence, there

exists a unique vector (x2)1/2 ∈ K n denoted by |x| . It is easy to verify that |x| �K n 0

and x2 = |x|2 for any x∈R
n . It is also known that |x| �K n x . For any x∈R

n , we define

[x]+ to be the nearest point (in Euclidean norm, since Jordan product does not induce a

norm) projection of x onto K n , which is the same definition as in R
n
+ . In other words,

[x]+ is the optimal solution of the parametric SOCP: [x]+ = argmin{‖x−y‖|y∈K n} .

In addition, it can be verified that [x]+ = (x + |x|)/2; see [15, 16].

Recently, there has found many optimization problems involved second-order cones

in real world applications. For dealing with second-order cone programs (SOCP) and

second-order cone complementarity problems (SOCCP), there needs spectral decom-

position associated with SOC [14]. More specifically, for any x = (x1,x2) ∈ R×R
n−1 ,

the vector x can be decomposed as

x = λ1u
(1)
x + λ2u

(2)
x , (3)
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where λ1,λ2 and u
(1)
x ,u

(2)
x are the spectral values and the associated spectral vectors of

x , respectively, given by

λi = x1 +(−1)i‖x2‖, (4)

u
(i)
x =

{

1
2
(1,(−1)i x2

‖x2‖ ) if x2 6= 0,
1
2
(1,(−1)iw) if x2 = 0.

(5)

for i = 1,2 with w being any vector in R
n−1 satisfying ‖w‖ = 1. If x2 6= 0, the

decomposition is unique.

For any function f : R → R , the following vector-valued function associated with

K n (n > 1) was considered in [12, 13]:

f soc(x) = f (λ1)u
(1)
x + f (λ2)u

(2)
x , ∀x = (x1,x2) ∈ R×R

n−1. (6)

If f is defined only on a subset of R , then f soc is defined on the corresponding subset

of R
n . The definition (6) is unambiguous whether x2 6= 0 or x2 = 0. The cases of

f soc(x) = x1/2 , x2 , exp(x) are discussed in [15].

LEMMA 1. ([16, Proposition 3.3]) For any x = (x1,x2) ∈ R×R
n−1 with spectral

decomposition (3)–(5), there have

(a) |x| = (x2)1/2 = |λ1|u(1)
x + |λ2|u(2)

x ;

(b) [x]+ = [λ1]+u
(1)
x +[λ2]+u

(2)
x = 1

2
(x + |x|) .

We point out that the relation �K n is not a linear ordering. Hence, it is not

possible to compare any two vectors (elements) via �K n . Nonetheless, we note that

for any a,b ∈ R

max{a,b} = b +[a−b]+ =
1

2
(a + b + |a−b|),

min{a,b} = a− [a−b]+ =
1

2
(a + b−|a−b|).

This motivates us to define supremum and infimum of {x,y} , denoted by x∨ y and

x∧ y respectively, in the setting of second-order cone as follows. For any x,y ∈ R
n ,

x∨ y := y +[x− y]+ =
1

2
(x + y + |x− y|),

x∧ y :=

{

x− [x− y]+ = 1
2
(x + y−|x− y|) , if x + y �

K n |x− y|;
0 , otherwise.

Next, we review the concepts of SOC-monotone and SOC-convex functions which

are introduced in [12] and needed for subsequent analysis. For a real valued function

f : R→ R , f is said to be SOC-monotone of order n if its corresponding vector-valued

function f soc defined as in (6) satisfies

x �K n y =⇒ f soc(x) �K n f soc(y).
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The function f is said to be SOC-monotone if f is SOC-monotone of all order n . f

is said to be SOC-convex of order n if its corresponding vector-valued function f soc

defined as in (6) satisfies

f soc((1−λ )x + λ y)�K n (1−λ ) f soc(x)+ λ f soc(y)

for all x,y ∈ R
n and 0 6 λ 6 1. The function f is said to be SOC-convex if f is

SOC-convex of all order n . In fact, it easily follows by induction that for each integer

m > 2,

f soc

(

m

∑
i=1

λix
(i)

)

�K n

m

∑
i=1

λi f soc
(

x(i)
)

where each x(i) ∈ R
n and ∑

m
i=1 λi = 1 with 0 6 λi 6 1.

The concepts of SOC-monotone and SOC-convex functions are analogous to ma-

trix monotone and matrix convex functions [3, 18], and are special cases of operator

monotone and operator convex functions [2, 8, 20]. Examples and characterizations of

SOC-monotone and SOC-convex functions are given in [12, 13].

LEMMA 2. ([12, Proposition 3.3]) Let f : (0,∞) → (0,∞) be f (t) = 1/t . Then,

(a) − f is SOC-monotone on (0,∞);

(b) f is SOC-convex on (0,∞) .

LEMMA 3. ([12, Proposition 3.7]) Let f : [0,∞)→ [0,∞) be f (t) = tr , 0 6 r 6 1 .

Then,

(a) f is SOC-monotone on [0,∞);

(b) − f is SOC-convex on [0,∞) .

3. Main results

Inspired by the definition of classical means, we define the means associated with

Lorentz cones in a similar way. As introduced in Section 2, the Lorentz cone is also

called second-order cone. For convenience, we use “SOC means” to denote our pro-

posed means defined on the Lorentz cone.

In the setting of second-order cone, we call a binary operation (x,y) 7→ M(x,y)
defined on int(K n)× int(K n) a SOC mean if the following are satisfied:

(i) M(x,y) ≻
K n 0;

(ii) x∧ y �
K n M(x,y) �

K n x∨ y ;

(iii) M(x,y) = M(y,x) ;

(iv) M(x,y) is monotone in x,y ;

(v) M(αx,αy) = αM(x,y) , α > 0;
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(vi) M(x,y) is continuous in x,y .

It is clear to see that the SOC arithmetic mean A(x,y) : int(K n)× int(K n) →
int(K n) given by

A(x,y) =
x + y

2
(7)

satisfies all the above properties. Besides, it is not hard to verify that the SOC harmonic

mean of x and y , H(x,y) : int(K n)× int(K n) → int(K n) , can be defined as

H(x,y) =

(

x−1 + y−1

2

)−1

(8)

Note that some of the above properties are obvious, whereas some others are not.

THEOREM 1. Let A(x,y) , H(x,y) be defined as in (7) and (8), respectively. For

any x ≻
K n 0 , y ≻

K n 0 , there holds

x∧ y �
K n H(x,y) �

K n A(x,y) �
K n x∨ y.

Proof. (i) To verify the first inequality, if 1
2
(x + y−|x− y|) /∈ K

n , the inequality

holds clearly. Suppose 1
2
(x + y−|x− y|)�

K n 0, we note that 1
2
(x + y−|x− y|)�

K n x

and 1
2
(x + y − |x − y|) �

K n y . Then, using the SOC-monotonicity of f (t) = −t−1

(Lemma 3), we obtain

x−1 �
K n

(

x + y−|x− y|
2

)−1

and y−1 �
K n

(

x + y−|x− y|
2

)−1

,

which imply

x−1 + y−1

2
�

K n

(

x + y−|x− y|
2

)−1

.

Next, applying the SOC-monotonicity again, we conclude that

x + y−|x− y|
2

�
K n

(

x−1 + y−1

2

)−1

.

(ii) To see the second inequality, we first observe that

(

x−1 + y−1

2

)−1

�
K n

1

2
(x−1)−1 +

1

2
(y−1)−1 =

x + y

2
,

where the inequality comes from the SOC-convexity of f (t) = t−1 .

(iii) To check the last inequality, we observe that

x + y

2
�

K n

x + y + |x− y|
2

⇐⇒ 0 �
K n

|x− y|
2

,
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where it is clear |x− y| �K n 0 always holds for any element x,y . Then, the desired

result follows. �

Now, we consider the SOC geometric mean, denoted by G(x,y) , which can be

borrowed from the geometric mean of symmetric cone, see [22]. More specifically,

let V be a Euclidean Jordan algebra, K be the set of all square elements of V (the

associated symmetric cone), and Ω := intK (the interior symmetric cone). For x ∈V ,

let L (x) denote the linear operator given by L (x)y := x◦y , and let P(x) := 2L (x)2 −
L (x2) . The mapping P is called the quadratic representation of V . If x is invertible,

then we have

P(x)K = K and P(x)Ω = Ω.

Suppose that x,y ∈ Ω , the geometric mean, denoted by x#y of x and y is

x#y := P(x
1
2 )(P(x−

1
2 )y)

1
2 .

On the other hand, it turns out that the cone Ω admits a G(Ω)-invariant Riemannian

metric [15]. The unique geodesic curve joining x and y is

t 7→ x#ty := P(x
1
2 )
(

P(x−
1
2 )y
)t

,

and the geometric mean x#y is the midpoint of the geodesic curve. In addition, Lim

establishes the arithmetic-geometric-harmonic means inequalities [22, Theorem 2.8],

{

x−1 + y−1

2

}−1

�K x#y �K

x + y

2
, (9)

where �K is the partial order induced by the closed convex cone K . We note that

inequality (9) includes the inequality (2) as a special case. For more details, please

refer to [21, 22, 23]. As an example of Euclidean Jordan algebra, for any x and y in

int(K n) , we therefore adopt the geometric mean G(x,y) as

G(x,y) := P(x
1
2 )
(

P(x−
1
2 )y
)

1
2
. (10)

Then, we immediately have the following parallel properties of SOC geometric mean.

PROPOSITION 1. Let A(x,y) , H(x,y) , G(x,y) be defined as in (7), (8) and (10),

respectively. Then, for any x ≻
K n 0 and y ≻

K n 0, we have

(a) G(x,y) = G(y,x) .

(b) G(x,y)−1 = G(x−1,y−1) .

(c) H(x,y) �
K n G(x,y) �

K n A(x,y) .
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Next, we look into another type of SOC mean, the SOC logarithmic mean L(x,y) .

First, for any two positive real numbers a,b , Carlson [11] has established the integral

representation

L(a,b) =

[

∫ 1

0

dt

ta +(1− t)b

]−1

,

whereas Neuman [24] has also given an alternative integral representation

L(a,b) =

∫ 1

0
a1−tbtdt.

Moreover, Bhatia [4, p. 229] proposes the matrix logarithmic mean of two positive

definite matrices A and B as

L(A,B) = A1/2

∫ 1

0

(

A−1/2BA−1/2
)t

dt A1/2.

In other words,

L(A,B) =

∫ 1

0
A#tB dt,

where A#tB =: A1/2
(

A−1/2BA−1/2
)t

A1/2 = P(A1/2)(P(A−1/2)B)t is also called the t -

weighted geometric mean. For general operator setting, Bourin and Hiai [9] establish

an operator mean, called geodesic mean, which is defined as

L(A,B) =

∫ 1

0
A#tB dν(t)

for positive definite matrices A , B , and some probability measure on [0,1] . From the

above, we observe that A#tB = A1−tBt for AB = BA , and the definition of logarith-

mic mean coincides with the one of real numbers. These two integral representations

motivate us to define the SOC logarithmic mean on int(K n)× int(K n) as

L(x,y) =

∫ 1

0
x#ty dt. (11)

To verify it is an SOC mean, we need the following technical lemmas. The first lemma

is the symmetric cone version of Bernoulli inequality.

LEMMA 4. Let V be a Euclidean Jordan algebra, K be the associated symmet-

ric cone, and e be the Jordan identity. Then,

(e + s)t �K e + ts,

where 0 6 t 6 1 , s �K −e, and the partial order is induced by the closed convex cone

K .



SOME INEQUALITIES FOR MEANS DEFINED ON THE LORENTZ CONE 1023

Proof. For any s∈V , we denote the spectral decomposition of s as
r

∑
i=1

λici . Since

s �K −e , we obtain that each eigenvalue λi > −1. Then, we have

(e + s)t = (1 + λ1)
tc1 +(1 + λ2)

tc2 + · · ·+(1 + λr)
tcr

�K (1 + tλ1)c1 +(1 + tλ2)c2 + · · ·+(1 + tλr)cr

= e + ts,

where the inequality holds by the real number version of Bernoulli inequality. �

LEMMA 5. Suppose that u(t) : R → R
n is integrable on [a,b] .

(a) If u(t) �
K n 0 for any t ∈ [a,b] , then

∫ b
a u(t)dt �

K n 0 .

(b) If u(t) ≻
K n 0 for any t ∈ [a,b] , then

∫ b
a u(t)dt ≻

K n 0 .

Proof. (a) Consider the partition P = {t0,t1, . . . ,tn} of [a,b] with tk = a + k(b−
a)/n and some t k ∈ [tk−1,tk] , we have

∫ b

a
u(t)dt = lim

n→∞

n

∑
k=1

u( t k)
b−a

n
�

K n 0

because u(t) �
K n 0 and K n is closed.

(b) For convenience, we write u(t) = (u1(t),u2(t)) ∈ R×R
n−1 , and let

u(t) = (‖u2(t)‖,u2(t)) ,

ũ(t) = (u1(t)−‖u2(t)‖,0) .

Then, we have

u(t) = u(t)+ ũ(t) and

{

u(t) �
K n 0,

u1(t)−‖u2(t)‖ > 0.

Note that
∫ b

a ũ(t)dt = (
∫ b

a (u1(t)−‖u2(t)‖)dt,0)≻
K n 0 since u1(t)−‖u2(t)‖> 0. This

together with
∫ b

a u(t)dt �
K n 0 (from (i)) yields that

∫ b

a
u(t)dt =

∫ b

a
u(t)dt +

∫ b

a
ũ(t)dt ≻

K n 0.

Thus, the proof is complete. �

In general, it is not hard to have an extension of Lemma 5 as below.

PROPOSITION 2. Suppose that u(t) : R → R
n and v(t) : R → R

n are integrable

on [a,b] .

(a) If u(t) �
K n v(t) for any t ∈ [a,b] , then

∫ b
a u(t)dt �

K n

∫ b
a v(t) .
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(b) If u(t) ≻
K n v(t) for any t ∈ [a,b] , then

∫ b
a u(t)dt ≻

K n

∫ b
a v(t) .

THEOREM 2. Let A(x,y) , G(x,y) , and L(x,y) be defined as in (7), (10), and (11),

respectively. For any x ≻
K n 0 , y ≻

K n 0 , there holds

G(x,y) �
K n L(x,y) �

K n A(x,y),

and hence L(x,y) is an SOC mean.

Proof. (i) To verify the first inequality, we first note that

G(x,y) = P(x
1
2 )(P(x−

1
2 )y)

1
2 =

∫ 1

0
P(x

1
2 )(P(x−

1
2 )y)

1
2 dt.

Let s = P(x−
1
2 )y = λ1u

(1)
s + λ2u

(2)
s . Then, we have

L(x,y)−G(x,y)

=

∫ 1

0
P(x

1
2 )(P(x−

1
2 )y)t dt −P(x

1
2 )(P(x−

1
2 )y)

1
2

=

∫ 1

0
P(x

1
2 )
(

λ t
1u

(1)
s + λ t

2u
(2)
s

)

dt −P(x
1
2 )
(

√

λ1u
(1)
s +

√

λ2u
(2)
s

)

=

[

∫ 1

0
λ t

1dt

]

P(x
1
2 )u

(1)
s +

[

∫ 1

0
λ t

2dt

]

P(x
1
2 )u

(2)
s −P(x

1
2 )
(

√

λ1u
(1)
s +

√

λ2u
(2)
s

)

=

[

λ1 −1

lnλ1 − ln1
−
√

λ1

]

P(x
1
2 )u

(1)
s +

[

λ2 −1

lnλ2 − ln1
−
√

λ2

]

P(x
1
2 )u

(2)
s

= [L(λ1,1)−G(λ1,1)]P(x
1
2 )u

(1)
s +[L(λ2,1)−G(λ2,1)]P(x

1
2 )u

(2)
s

�
K n 0.

where last inequality holds by (1) and P(x
1
2 )u

(i)
s ∈ K n . Thus, we obtain the first in-

equality.

(ii) To see the second inequality, we let s = P(x−
1
2 )y− e . Then, we have s �

K n

−e , and applying Lemma 4 gives

(

e + P(x−
1
2 )y− e

)t

�
K n e + t

[

P(x−
1
2 )y− e

]

,

which is equivalent to

0 �
K n (1− t)e + t

[

P(x−
1
2 )y
]

−
(

P(x−
1
2 )y
)t

.

Since P(x
1
2 ) is invariant on K n , we have

0 �
K n P(x

1
2 )

(

(1− t)e + t
[

P(x−
1
2 )y
]

−
(

P(x−
1
2 )y
)t
)

= (1− t)x + ty− x#ty
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Hence, by Lemma 5, we obtain

L(x,y) =
∫ 1

0
x#ty dt �

K n

∫ 1

0
[(1− t)x + ty] dt = A(x,y).

The proof is complete. �

Finally, for SOC quadratic mean, it is natural to consider the following

Q(x,y) :=

(

x2 + y2

2

)1/2

.

It is easy to verify A(x,y) �
K n Q(x,y) . However, Q(x,y) does not satisfy the property

(ii) mentioned in the definition of SOC mean. Indeed, taking x =





31

10

−20



 ∈ K
n and

y =





10

9

0



 ∈ K n, it is obvious that x ≻
K n y . In addition, by simple calculation, we

have
(

x2 + y2

2

)1/2

=





s
400
2s−620
2s



≈





24.30

8.23

−12.76



 ,

where s =

√

1
2

(

821 +
√

8212 − (4002 + 6202)
)

≈ 24.30. However,

x∨ y−
(

x2 + y2

2

)1/2

≈





6.7
1.77

−7.24





is not in K
n . Hence, this definition of Q(x,y) cannot officially serve as a SOC mean.

To sum up, we already have the following inequalities

x∧ y �
K n H(x,y) �

K n G(x,y) �
K n L(x,y) �

K n A(x,y) �
K n x∨ y,

but we do not have SOC quadratic mean. Nevertheless, we still can generalize all

the means inequalities as in (1) to SOC setting when the dimension is 2. To see this,

the Jordan product on second-order cone of order 2 satisfies the associative law and

closedness such that the geometric mean

G(x,y) = x1/2 ◦ y1/2

and the logarithmic mean

L(x,y) =

∫ 1

0
x1−t ◦ yt dt

are well-defined (note this is true only when n = 2) and coincide with the definition

(10), (11). Then, the following inequalities

x∧ y �
K 2

H(x,y) �
K 2

G(x,y) �
K 2

L(x,y) �
K 2

A(x,y) �
K 2

Q(x,y) �
K 2

x∨ y.

hold as well.
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4. Two trace inequalities

In this section, we build up two trace inequalities based on the aforementioned

SOC means. To this end, we recall a technical lemma, which is explored in [12].

LEMMA 6. ([12, Proposition 2.1]) For any x,y ∈ R
n , the following hold.

(a) If x �
K n y, then tr(x) 6 tr(y) .

(b) tr(x◦ y) 6 λ1(x)λ1(y)+ λ2(x)λ2(y) .

By applying Lemma 6(i), we immediately obtain one trace inequality for SOC

mean.

THEOREM 3. Let A(x,y) , H(x,y) , G(x,y) and L(x,y) be defined as in (7)–(8),

(10)–(11), respectively. For any x ≻
K n 0 , y ≻

K n 0 , there holds

tr(x∧ y) 6 tr(H(x,y)) 6 tr(G(x,y)) 6 tr(L(x,y)) 6 tr(A(x,y)) 6 tr(x∨ y).

At the end of this section, we establish the SOC trace version of Young’s inequal-

ity. In 1995, Ando [1] showed the singular value version of Young’s inequality that

s j(AB) 6 s j

(

Ap

p
+

Bq

q

)

for all 1 6 j 6 n,

where A and B are positive definite matrices, and 1/p+1/q = 1. Originally, we try to

derive the eigenvalue version of Young’s inequality in the setting of second-order cone:

λ j(x◦ y) 6 λ j

(

xp

p
+

yq

q

)

, j = 1,2.

But, it is very complicated to derive and prove the inequalities directly. Eventually, we

give up. Instead, we establish that SOC trace version of Young’s inequality as below.

THEOREM 4. For any x,y ∈ R
n , there holds tr(x◦ y) 6 tr

( |x|p
p

+
|y|q
q

)

.

Proof. First, we note x◦y =
(

x1y1 + xT
2 y2,x1y2 + y1x2

)

and
|x|p

p
+
|y|q
q

= (w1,w2)

where

w1 =
|λ1(x)|p + |λ2(x)|p

2p
+

|λ1(y)|q + |λ2(y)|q
2q

,

w2 =
|λ2(x)|p −|λ1(x)|p

2p

x2

‖x2‖
+

|λ2(y)|q −|λ1(y)|q
2q

y2

‖y2‖
.
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Then, the desired result follows by

tr(x◦ y) 6 λ1(x)λ1(y)+ λ2(x)λ2(y)

6 |λ1(x)λ1(y)|+ |λ2(x)λ2(y)|

6

( |λ1(x)|p
p

+
|λ1(y)|q

q

)

+

( |λ2(x)|p
p

+
|λ2(y)|q

q

)

= tr

( |x|p
p

+
|y|q
q

)

,

where the last inequality holds by Young’s inequality on real number. �
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[20] A. KORÁNYI, Monotone functions on formally real Jordan algebras, Mathematische Annalen 269

(1984), 73–76.

[21] H. LEE AND Y. LIM, Metric and spectral geometric means on symmetric cones, Kyungpook Mathe-

matical Journal 47, 1 (2007), 133–150.



1028 Y.-L. CHANG, C.-H. HUANG, J.-S. CHEN AND C.-C. HU

[22] Y. LIM, Geometric means on symmetric cones, Archiv der Mathematik 75, 1 (2000), 39–45.

[23] Y. LIM, Applications of geometric means on symmetric cones, Mathematische Annalen 319, 3 (2001),

457–468.

[24] E. NEUMAN, The weighted logarithmic mean, Journal of Mathematical Analysis and Applications,

188, 3 (1994), 885–900.

(Received May 15, 2017) Yu-Lin Chang

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

e-mail: ylchang@math.ntnu.edu.tw

Chien-Hao Huang

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

e-mail: qqnick0719@yahoo.edu.tw

Jein-Shan Chen

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

e-mail: jschen@math.ntnu.edu.tw

Chu-Chin Hu

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

e-mail: cchu@ntnu.edu.tw

Mathematical Inequalities & Applications

www.ele-math.com

mia@ele-math.com


	Introduction
	Preliminary
	Main results
	Two trace inequalities

