
Research Article
Neural Network for Solving SOCQP and SOCCVI Based on Two
Discrete-Type Classes of SOC Complementarity Functions

Juhe Sun,1 Xiao-RenWu,2 B. Saheya,3 Jein-Shan Chen ,2 and Chun-Hsu Ko 4

1 School of Science, Shenyang Aerospace University, Shenyang 110136, China
2Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
3College of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
4Department of Electrical Engineering, I-Shou University, Kaohsiung 840, Taiwan

Correspondence should be addressed to Jein-Shan Chen; jschen@ntnu.edu.tw

Received 15 November 2018; Revised 19 January 2019; Accepted 3 February 2019; Published 14 February 2019

Academic Editor: Sabri Arik

Copyright © 2019 Juhe Sun et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper focuses on solving the quadratic programming problems with second-order cone constraints (SOCQP) and the second-
order cone constrained variational inequality (SOCCVI) by using the neural network. More specifically, a neural network model
based on two discrete-type families of SOC complementarity functions associated with second-order cone is proposed to deal
with the Karush-Kuhn-Tucker (KKT) conditions of SOCQP and SOCCVI.The two discrete-type SOC complementarity functions
are newly explored. The neural network uses the two discrete-type families of SOC complementarity functions to achieve two
unconstrained minimizations which are the merit functions of the Karuch-Kuhn-Tucker equations for SOCQP and SOCCVI. We
show that the merit functions for SOCQP and SOCCVI are Lyapunov functions and this neural network is asymptotically stable.
The main contribution of this paper lies on its simulation part because we observe a different numerical performance from the
existing one. In other words, for our two target problems, more effective SOC complementarity functions, which work well along
with the proposed neural network, are discovered.

1. Introduction

In optimization community, it is well known that there are
many computational approaches to solve the optimization
problems such as linear programming, nonlinear program-
ming, variational inequalities, and complementarity prob-
lems; see [1–6] and references therein. These approaches
include the method using merit function, interior point
method, Newton method, nonlinear equation method, pro-
jection method, and its variant versions. All the aforemen-
tioned methods rely on iterative schemes and usually only
provide “approximate” solution(s) to the original optimiza-
tion problems and do not offer real-time solutions. However,
real-time solutions are eager in many applications, such as
force analysis in robot grasping and control applications.
Therefore, the traditional optimization methods may not be
suitable for these applications due to stringent computational
time requirements.

The neural network approach has an advantage in solving
real-time optimization problems, which was proposed by
Hopfield and Tank [7, 8] in the 1980s. Since then, neural
networks have been applied to various optimization prob-
lems; see [9–30] and references therein. Unlike the tradi-
tional optimization algorithms, the essence of neural network
approach for optimization is to establish a nonnegative Lya-
punov function (or energy function) and a dynamic system
that represents an artificial neural network. This dynamic
system usually adopts the form of a first-order ordinary
differential equation and its trajectory is likely convergent to
an equilibrium point, which corresponds to the solution to
the considered optimization problem.

Following the similar idea, researchers have also devel-
oped many continuous-time neural networks for second-
order cone constrained optimization problems. For example,
Ko, Chen and Yang [31] proposed two kinds of neural
networks with different SOCCP functions for solving the

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 4545064, 18 pages
https://doi.org/10.1155/2019/4545064

http://orcid.org/0000-0002-4596-9419
http://orcid.org/0000-0003-0206-211X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/4545064

2 Mathematical Problems in Engineering

second-order cone program; Sun, Chen, and Ko [32] gave
two kinds of neural networks (the first one is based on
the Fischer-Burmeister function and the second one relies
on a projection function) to solve the second-order cone
constrained variational inequality (SOCCVI) problem;Miao,
Chen, and Ko [33] proposed a neural network model for
efficiently solving general nonlinear convex programs with
second-order cone constraints. In this paper, we are interested
in employing neural network approach for solving two types
of SOC constrained problems, the quadratic programming
problems with second-order cone constraints (SOCQP for
short) and the second-order cone constrained variational
inequality (SOCCVI for short), whose mathematical formats
are described as below.

The SOCQP is in the form of

min 12𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥
s.t. 𝐴𝑥 = 𝑏

𝑥 ∈ K

(1)

where𝑄 ∈ R𝑛×𝑛, 𝐴 is an𝑚× 𝑛matrix with full row rank, 𝑏 ∈
R𝑚, and K is the Cartesian product of second-order cones
(SOCs), also called Lorentz cones. In other words,

K = K
𝑛1 ×K

𝑛2 × ⋅ ⋅ ⋅ ×K
𝑛𝑞 (2)

where 𝑛1, . . . , 𝑛𝑞, 𝑞 are positive integers, 𝑛1 + ⋅ ⋅ ⋅ + 𝑛𝑞 = 𝑛, and
K𝑛𝑖 denotes the SOC inR𝑛𝑖 defined by

K
𝑛𝑖 fl {𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2) ∈ R ×R

𝑛𝑖−1 | 𝑥𝑖2 ≤ 𝑥𝑖1} . (3)

with K1 denoting the nonnegative real number set R+. A
special case of (3) corresponds to the nonnegative orthant
cone R𝑛+, i.e., 𝑞 = 𝑛 and 𝑛1 = ⋅ ⋅ ⋅ = 𝑛𝑞 = 1. We assume that 𝑄
is a symmetric positive semidefinite matrix and problem (1)
satisfies a suitable qualification [34], such as the generalized
Slater condition that there exists 𝑥 with strictly feasibility,
then 𝑥 is a solution to problem (1) if and only if there exists a
Lagrange multiplier (𝜇, 𝑦) ∈ R𝑚 ×R𝑛 such that

𝐴𝑥 − 𝑏 = 0
𝑐 + 𝑄𝑥 + 𝐴𝑇𝜇 − 𝑦 = 0

K ∋ 𝑦 ⊥ 𝑥 ∈ K

(4)

In Section 3, we will employ two new families of SOC
complementarity functions and use (4) to build up the neural
network model for solving SOCQP.

We say a few words about why we assume that 𝑄 is a
symmetric positive semidefinite matrix. First, it is clear that
the symmetric assumption is reasonable because 𝑄 can be
replaced by (1/2)(𝑄𝑇 + 𝑄) which is symmetric. Indeed, with𝑄 being symmetric positive definite matrix, the SOCQP can
be recast as a standard SOCP. To see this, we observe that

12𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥 = 12 𝑄1/2𝑥 + 𝑄−1/2𝑐2 − 12𝑐𝑇𝑄−1𝑐 (5)

which is done by completing the square. Then, the SOCQP
(withK = K𝑛) is equivalent to

min 𝑄1/2𝑥 + 𝑄−1/2𝑐
s.t. 𝐴𝑥 = 𝑏

𝑥 ∈ K
𝑛

(6)

which is also the same as

min 𝑦
s.t. 𝑄1/2𝑥 − 𝑦 = −𝑄−1/2𝑐

𝐴𝑥 = 𝑏
𝑥 ∈ K

𝑛

(7)

This formulation is further equivalent to

min 𝑦1
s.t. 𝑄1/2𝑥 − 𝑦 = −𝑄−1/2𝑐

𝐴𝑥 = 𝑏
𝑥 ∈ K

𝑛

𝑦1 ≥ 𝑦

(8)

Now, we let 𝑦 fl (𝑦1, 𝑦) which says 𝑦 ∈ K𝑛+1 and denote

V̂ fl (𝑥, 𝑦) ∈ K
𝑛 ×K

𝑛+1,
𝑐 fl (0, 𝑒) ∈ R

2𝑛+1,
𝐴 fl [𝐴 0 0

𝑄1/2 0 𝐼𝑛] ,

�̂� fl [𝑏
𝑄−1/2] .

(9)

Thus, the above reformulation (8) is expressed as a standard
SOCP as follows:

min (𝑐)𝑇 V̂
s.t. 𝐴V̂ = �̂�

V̂ ∈ K
𝑛 ×K

𝑛+1

(10)

In view of this reformulation (10), we focus on SOCQP with𝑄 being symmetric positive semidefinite in this paper.
The SOCCVI, our another target problem, is to find 𝑥 ∈ 𝐶

satisfying

⟨𝐹 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0 ∀𝑦 ∈ 𝐶, (11)

where the set 𝐶 is finitely representable and is given by

𝐶 = {𝑥 ∈ R
𝑛 | ℎ (𝑥) = 0, −𝑔 (𝑥) ∈ K} . (12)

Mathematical Problems in Engineering 3

Here ⟨⋅, ⋅⟩ denotes the Euclidean inner product, 𝐹 : R𝑛 →
R𝑛, ℎ : R𝑛 → R𝑙, and 𝑔 : R𝑛 → R𝑚 are continuously
differentiable functions, and K is a Cartesian product of
second-order cones (or Lorentz cones), expressed as

K = K
𝑚1 ×K

𝑚2 × ⋅ ⋅ ⋅ ×K
𝑚𝑝 , (13)

with 𝑙 ≥ 0, 𝑚1, 𝑚2, . . . , 𝑚𝑝 ≥ 1, 𝑚1 + 𝑚2 + ⋅ ⋅ ⋅ + 𝑚𝑝 = 𝑚.
When ℎ is affine, an important special case of the SOCCVI
corresponds to the KKT conditions of the convex second-
order cone program (CSOCP):

min 𝑓 (𝑥)
s.t. 𝐴𝑥 = 𝑏

− 𝑔 (𝑥) ∈ K

(14)

where 𝐴 ∈ R𝑙×𝑛 has full row rank, 𝑏 ∈ R𝑙, 𝑔 : R𝑛 →
R𝑚, and 𝑓 : R𝑛 → R. Furthermore, when 𝑓 is a convex
twice continuously differentiable function, problem (14) is
equivalent to the following SOCCVI which is to find 𝑥 ∈ 𝐶
such that

⟨∇𝑓 (𝑥) , 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶, (15)

where
𝐶 = {𝑥 ∈ R

𝑛 | 𝐴𝑥 − 𝑏 = 0, −𝑔 (𝑥) ∈ K} . (16)

In fact, the SOCCVI can be solved by analyzing its KKT
conditions:

𝐿 (𝑥, 𝜇, 𝜆) = 0,
⟨𝑔 (𝑥) , 𝜆⟩ = 0, − 𝑔 (𝑥) ∈ K, 𝜆 ∈ K,

ℎ (𝑥) = 0,
(17)

where 𝐿(𝑥, 𝜇, 𝜆) = 𝐹(𝑥) + ∇ℎ(𝑥)𝜇 + ∇𝑔(𝑥)𝜆 is the variational
inequality Lagrangian function, 𝜇 ∈ R𝑙 and 𝜆 ∈ R𝑚.
We also point out that the neural network approach for
SOCCVI was already studied in [32]. Here we revisit the
SOCCVI with different neural models. More specifically,
in our earlier work [32], we had employed neural network
approach to the SOCCVI problem (11) and (13), in which
the neural networks were aimed at solving system (17) whose
solutions are candidates of SOCCVI problem (11) and (13).
There were two neural networks considered in [32]. The first
one is based on the smoothed Fischer-Burmeister function,
while the other one is based on the projection function. Both
neural networks possess asymptotical stability under suitable
conditions. In Section 4, in light of (17) again, we adopt new
and different SOC complementarity functions to construct
our new neural networks.

As mentioned earlier, this paper studies neural networks
by using two new classes of SOC complementarity functions
to efficiently solve SOCQP and SOCCVI. Although the idea
and the stability analysis for both problems are routine, we
emphasize that the main contribution of this paper lies on its
simulations. More specifically, from numerical performance
and comparison, we observe a new phenomenon different
from the existing one in the literature. This may suggest
update choices of SOC complementarity functions to work
with neural network approach.

2. Preliminaries

Consider the first-order differential equations (ODE):

�̇� (𝑡) = 𝐻 (𝑤 (𝑡)) ,
𝑤 (𝑡0) = 𝑤0 ∈ R

𝑛, (18)

where 𝐻 : R𝑛 → R𝑛 is a mapping. A point 𝑤∗ = 𝑤(𝑡∗) is
called an equilibrium point or a steady state of the dynamic
system (18) if𝐻(𝑤∗) = 0. If there is a neighborhoodΩ∗ ⊆ R𝑛

of 𝑤∗ such that 𝐻(𝑤∗) = 0 and 𝐻(𝑤) ̸= 0 ∀𝑤 ∈ Ω∗ \ {𝑤∗},
then 𝑤∗ is called an isolated equilibrium point.

Lemma 1. Suppose that 𝐻 : R𝑛 → R𝑛 is a continuous
mapping.
en, for any 𝑡0 > 0 and 𝑤0 ∈ R𝑛, there exists a
local solution 𝑤(𝑡) to (18) with 𝑡 ∈ [𝑡0, 𝜏) for some 𝜏 > 𝑡0. If,
in addition, 𝐻 is locally Lipschitz continuous at 𝑥0, then the
solution is unique; if 𝐻 is Lipschitz continuous in R𝑛, then 𝜏
can be extended to∞.

Let𝑤(𝑡) be a solution to dynamic system (18). An isolated
equilibrium point𝑤∗ is Lyapunov stable if for any𝑤0 = 𝑤(𝑡0)
and any 𝜀 > 0, there exists a 𝛿 > 0 such that ‖𝑤(𝑡) − 𝑤∗‖ < 𝜀
for all 𝑡 ≥ 𝑡0 and ‖𝑤(𝑡0) − 𝑤∗‖ < 𝛿. An isolated equilibrium
point𝑤∗ is said to be asymptotic stable if in addition to being
Lyapunov stable, it has the property that 𝑤(𝑡) → 𝑤∗ as 𝑡 →∞ for all ‖𝑤(𝑡0) −𝑤∗‖ < 𝛿. An isolated equilibrium point𝑤∗
is exponentially stable if there exists 𝛿 > 0 such that arbitrary
point 𝑤(𝑡) of (18) with the initial condition 𝑤(𝑡0) = 𝑤0 and‖𝑤(𝑡0) − 𝑤∗‖ < 𝛿 is well defined on [0, +∞) and satisfies

𝑤 (𝑡) − 𝑤∗ ≤ 𝑐𝑒−𝜔𝑡 𝑤 (𝑡0) − 𝑤∗ ∀𝑡 ≥ 𝑡0, (19)

where 𝑐 > 0 and𝜔 > 0 are constants independent of the initial
point.

Let Ω ⊆ R𝑛 be an open neighborhood of 𝑤. A contin-
uously differentiable function 𝑉 : R𝑛 → R is said to be a
Lyapunov function at the state 𝑤 over the setΩ for (18) if

𝑉 (𝑤) = 0,
𝑉 (𝑤) > 0,

∀𝑤 ∈ Ω \ {𝑤} ,
�̇� (𝑤) ≤ 0, ∀𝑤 ∈ Ω \ {𝑤} .

(20)

The Lyapunov stability and asymptotical stability can be
verified by using Lyapunov function, which is a useful tool
for analysis.

Lemma 2. (a) An isolated equilibrium point 𝑤∗ is Lyapunov
stable if there exists a Lyapunov function over some neighbor-
hoodΩ∗ of 𝑤∗.

(b) An isolated equilibrium point 𝑤∗ is asymptotically sta-
ble if there exists a Lyapunov function over some neighborhoodΩ∗ of 𝑤∗ such that �̇�(𝑤) < 0, ∀𝑤 ∈ Ω∗ \ {𝑤∗}.

Formore details, please refer to any usual ODE textbooks,
e.g., [35].

4 Mathematical Problems in Engineering

Next, we briefly recall some concepts associated with
SOC,which are helpful for understanding the target problems
and our analysis techniques. We start with introducing the
Jordan product and SOC complementarity function. For any𝑥 = (𝑥1, 𝑥2) ∈ R × R𝑛−1 and 𝑦 = (𝑦1, 𝑦2) ∈ R × R𝑛−1, we
define their Jordan product associated withK𝑛 as

𝑥 ∘ 𝑦 = [𝑥𝑇𝑦
𝑦1𝑥2 + 𝑥1𝑦2] . (21)

The Jordan product ∘, unlike scalar or matrix multiplication,
is not associative, which is a main source of complication in
the analysis of SOC constrained optimization. There exists an
identity element under this product, which is denoted by 𝑒 fl(1, 0, . . . , 0)𝑇 ∈ R𝑛. Note that 𝑥2 means 𝑥 ∘ 𝑥 and 𝑥+𝑦means
the usual componentwise addition of vectors. It is known that𝑥2 ∈ K𝑛 for all 𝑥 ∈ R𝑛. Moreover, if 𝑥 ∈ K𝑛, then there exists
a unique vector in K𝑛, denoted by 𝑥1/2, such that (𝑥1/2)2 =𝑥1/2 ∘ 𝑥1/2 = 𝑥. We also denote |𝑥| fl (𝑥2)1/2.

A vector-valued function 𝜙 : R𝑛 ×R𝑛 → R𝑛 is called an
SOC complementarity function if it satisfies

𝜙 (𝑥, 𝑦) = 0 ⇐⇒
𝑥 ∘ 𝑦 = 0,

𝑥 ∈ K
𝑛, 𝑦 ∈ K

𝑛.
(22)

There have been many SOC complementarity functions
studied in the literature; see [36–40] and references therein.
Among them, two popular ones are the Fischer-Burmeister
function 𝜙FB and the natural residual function 𝜙NR, which are
given by

𝜙FB (𝑥, 𝑦) = (𝑥2 + 𝑦2)1/2 − (𝑥 + 𝑦) ,
𝜙NR (𝑥, 𝑦) = 𝑥 − (𝑥 − 𝑦)+ .

(23)

Some existing SOC complementarity functions are indeed
variants of 𝜙FB and 𝜙NR. Recently, Ma, Chen, Huang, and
Ko [41] explored the idea of “discrete generalization” to the
Fischer-Burmeister function which yields the following class
of functions (denoted by 𝜙𝑝D−FB):

𝜙𝑝D−FB (𝑥, 𝑦) = (√𝑥2 + 𝑦2)𝑝 − (𝑥 + 𝑦)𝑝 , (24)

where 𝑝 > 1 is a positive odd integer. Applying similar
idea, they also extended 𝜙NR to another family of SOC
complementarity functions, 𝜙𝑝NR : R𝑛 × R𝑛 → R𝑛, whose
formula is as follows:

𝜙𝑝NR (𝑥, 𝑦) = 𝑥𝑝 − [(𝑥 − 𝑦)+]𝑝 , (25)

where 𝑝 > 1 is a positive odd integer and (⋅)+ means
the projection onto K𝑛. The functions 𝜙𝑝D−FB and 𝜙𝑝NR are
continuously differentiable SOC complementarity functions
with computable Jacobian, which can be found in [41].

3. Neural Networks for SOCQP

In this section, we first show how we achieve the neural
network model for SOCQP and prove various stabilities for
it accordingly. Then, numerical experiments are reported
to demonstrate the effectiveness of the proposed neural
network.

3.1.
e model and Stability Analysis. As mentioned in Sec-
tion 2, the KKT conditions are expressed in (4). With system
(4) and using a given SOC complementarity function 𝜙 :
R𝑛 ×R𝑛 → R𝑛, it is clear to see that system (4) is equivalent
to

𝐻(𝑢) = [[[
[

𝐴𝑥 − 𝑏
𝑐 + 𝑄𝑥 + 𝐴𝑇𝜇 − 𝑦

𝜙 (𝑥, 𝑦)
]]]
]

= 0, (26)

where 𝑢 = (𝑥, 𝜇, 𝑦) ∈ R𝑛 × R𝑚 × R𝑛. Moreover, we can
specifically describe ∇𝐻(𝑢) as the following:

∇𝐻 (𝑢) = [[[
[

𝐴𝑇 𝑄 ∇𝑥𝜙0 𝐴 0
0 −𝐼 ∇𝑦𝜙

]]]
]
. (27)

Here 𝜙 is a continuously differentiable SOC complementarity
function such as 𝜙𝑝D−FB and 𝜙𝑝NR introduced in Section 2.
It is clear that if 𝑢∗ solves 𝐻(𝑢) = 0, then 𝑢∗ solves∇((1/2)‖𝐻(𝑢)‖2) = 0. Accordingly, we consider a specific
first-order ordinary differential equation as follows:

𝑑𝑢 (𝑡)𝑑𝑡 = −𝜌∇(12 ‖𝐻 (𝑢)‖2) ,
𝑢 (𝑡0) = 𝑢0,

(28)

where 𝜌 > 0 is a time scaling factor. In fact, letting 𝜏 = 𝜌𝑡,
then 𝑑𝑢(𝜏)/𝑑𝜏 = 𝜌(𝑑𝑢(𝜏)/𝑑𝜏). Hence, it follows from (28)
that 𝑑𝑢(𝜏)/𝑑𝜏 = −∇((1/2)‖𝐻(𝑢∗)‖2). In view of this, we set𝜌 = 1 in the subsequent analysis. Next, we show that the
equilibrium of the neural network (28) corresponds to the
solution to system (4).

Lemma3. Let 𝑢∗ be an equilibrium of the neural network (28)
and suppose that ∇𝐻(𝑢∗) is nonsingular.
en 𝑢∗ solves system
(4).

Proof. Since∇((1/2)‖𝐻(𝑢∗)‖2) = ∇𝐻(𝑢∗)𝐻(𝑢∗) and∇𝐻(𝑢∗)
is nonsingular, it is clear to see that ∇((1/2)‖𝐻(𝑢∗)‖2) = 0 if
and only if𝐻(𝑢∗) = 0.

Besides, the following results address the existence and
uniqueness of the solution trajectory of the neural network
(28).

Theorem 4. (a) For any initial point 𝑢0 = 𝑢(𝑡0), there exists a
unique continuously maximal solution 𝑢(𝑡) with 𝑡 ∈ [𝑡0, 𝜏) for
the neural network (28).

(b) If the level set L(𝑢0) fl {𝑢 | ‖𝐻(𝑢)‖2 ≤ ‖𝐻(𝑢0)‖2} is
bounded, then 𝜏 can be extended to∞.

Mathematical Problems in Engineering 5

Proof. This proof is exactly the same as the one in [32,
Proposition 3.4], so we omit it here.

Now, we are ready to analyze the stability of an isolated
equilibrium 𝑢∗ of the neural network (28), which means∇((1/2)‖𝐻(𝑢∗)‖2) = 0 and ∇((1/2)‖𝐻(𝑢)‖2) ̸= 0 for 𝑢 ∈Ω \ {𝑢∗}, with Ω being a neighborhood of 𝑢∗.
Theorem 5. Let 𝑢∗ be an isolated equilibrium point of the
neural network (28).

(a) If∇𝐻(𝑢∗) is nonsingular, then the isolated equilibrium
point 𝑢∗ is asymptotically stable and hence Lypunov
stable.

(b) If ∇𝐻(𝑢) is nonsingular for all 𝑢 ∈ Ω, then the isolated
equilibrium point 𝑢∗ is exponentially stable.

Proof. The desired results can be proved by using Lemma 3
and mimicking the arguments as in [32, Theorem 3.1].

3.2. Numerical Experiments. In order to demonstrate the
effectiveness of the proposed neural network, we test three
examples for our neural network (28). The numerical imple-
mentation is coded byMatlab 7.0 and the ordinary differential
equation solver adopted here is ode23, which uses Ruge-Kutta(2; 3) formula. Asmentioned earlier, in general the parameter𝜌 is set to be 1. For some special examples, the parameter 𝜌 is
set to be another value.

Example 6. Consider the following SOCQP problem:

min (𝑥1 − 3)2 + 𝑥22 + (𝑥3 − 1)2 + (𝑥4 − 2)2
+ (𝑥5 + 1)2

s.t. 𝑥 ∈ K
5

(29)

After suitable transformation, it can be recast as an
SOCQP with 𝑄 = 2𝐼5, 𝑐 = [−6, 0, −2, −4, 2]𝑇, 𝐴 = 0, and 𝑏 =0. This problem has an optimal solution 𝑥∗ = [3, 0, 1, 2, −1]𝑇.
Now, we use the proposed neural network (28) with two cases𝜙 = 𝜙𝑝D−FB and 𝜙 = 𝜙𝑝NR, respectively, to solve the above
SOCQP and their trajectories are depicted in Figures 1–4. For
the sake of coding needs and check, the following expressions
are presented.

For case of 𝜙 = 𝜙𝑝D−FB, we have
𝑑𝑢 (𝑡)𝑑𝑡 = −𝜌∇𝐻 (𝑢)𝐻 (𝑢) ,
𝑢 (𝑡0) = 𝑢0
𝐻(𝑢) = [𝑐 + 2𝑥 − 𝑦

𝜙𝑝D−FB (𝑥, 𝑦)] , 𝑢 = (𝑥, 𝑦)

∇𝐻 (𝑢) = [2𝐼5 ∇𝑥𝜙𝑝D−FB (𝑢)−𝐼5 ∇𝑦𝜙𝑝D−FB (𝑢)]

x1
x2
x3

x4
x5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Tr
aj

ec
to

rie
s o

f x
(t)

2 4 6 8 10 120
Time (ms)

Figure 1: Transient behavior of the neural network with 𝜙𝑝D−FB
function (𝑝 = 3) in Example 6.

∇𝑥𝜙𝑝D−FB (𝑥, 𝑦) = 2𝐿𝑥∇𝑔soc (𝑤) − 2𝐿 (𝑥+𝑦)∇𝑔soc (V) ,
∇𝑦𝜙𝑝D−FB (𝑥, 𝑦) = 2𝐿𝑦∇𝑔soc (𝑤) − 2𝐿 (𝑥+𝑦)∇𝑔soc (V) .

𝑤 (𝑥, 𝑦) fl 𝑥2 + 𝑦2 = (𝑤1 (𝑥, 𝑦) , 𝑤2 (𝑥, 𝑦))
= (‖𝑥‖2 + 𝑦2 , 2 (𝑥1𝑥2 + 𝑦1𝑦2))
∈ R ×R

4,
V (𝑥, 𝑦) fl (𝑥 + 𝑦)2

= (𝑥 + 𝑦2 , 2 (𝑥1 + 𝑦1) (𝑥2 + 𝑦2))
∈ R ×R

4.
(30)

Note that the element 𝑤 = (𝑤1, 𝑤2) ∈ R × R4 can also be
expressed as

𝑤 fl 𝜆1𝑒1 + 𝜆2𝑒2 (31)

where 𝜆𝑖 = 𝑤1 + (−1)𝑖‖𝑤2‖ and 𝑒𝑖 = (1/2)(1, (−1)𝑖(𝑤2/‖𝑤2‖)) (𝑖 = 1, 2) if 𝑤2 ̸= 0; otherwise 𝑒𝑖 = (1/2)(1, (−1)𝑖]
with] being any vector inR4 satisfying ‖]‖ = 1.

For case of 𝜙 = 𝜙𝑝NR, we replace 𝜙𝑝D−FB(𝑥, 𝑦) as 𝜙𝑝NR(𝑥, 𝑦),
Hence,𝐻(𝑢) and ∇𝐻(𝑢) have the forms as follows:

𝐻(𝑢) = [𝑐 + 2𝑥 − 𝑦
𝜙𝑝NR (𝑥, 𝑦)] , 𝑢 = (𝑥, 𝑦)

∇𝐻 (𝑢) = [2𝐼5 ∇𝑥𝜙𝑝NR (𝑢)−𝐼5 ∇𝑦𝜙𝑝NR (𝑢)]

6 Mathematical Problems in Engineering

0 20 40 60 80 100 120 140 160 180
Time (ms)

FB,p=3
FB,p=5
FB,p=7

10−5

10−4

10−3

10−2

10−1

100

N
or

m
 o

f e
rr

or

Figure 2: Convergence comparison of 𝜙𝑝D−FB function with different𝑝 value for Example 6.

0 2 4 6 8 10 12
Time (ms)

x1
x2
x3

x4
x5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 3: Transient behavior of the neural network with 𝜙𝑝NR
function (𝑝 = 3) in Example 6.

∇𝑥𝜙𝑝NR (𝑥, 𝑦) = ∇ℎsoc (𝑥) − ∇𝑙soc (𝑥 − 𝑦) ,
∇𝑦𝜙𝑝NR (𝑥, 𝑦) = ∇𝑙soc (𝑥 − 𝑦) .

(32)

Figures 1 and 3 show the transient behaviors of Example 6
for neural network model (28) based on smooth SOC
complementarity functions 𝜙𝑝D−FB and 𝜙𝑝NR with initial states𝑥0 = [0, 0, 0, 0, 0]𝑇, respectively. In Figure 2, we see the
convergence comparison of the neural network model using𝜙𝑝D−FB function with different values of 𝑝 = 3, 5, 7. Figure 4

0 50 100 150 200
Time (ms)

NR,p=3
NR,p=5
NR,p=7

10−5

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or
Figure 4: Convergence comparison of 𝜙𝑝NR function with different𝑝 value for Example 6.

depicts the influence of the parameter 𝑝 on the value of norm
of error for neural network model using 𝜙𝑝NR function.

Example 7. Consider the following SOCQP problem:

min 4𝑥21 + 10𝑥22 + 4𝑥23 + 4𝑥1𝑥2 + 12𝑥2𝑥3 − 𝑥1 + 𝑥2
+ 5𝑥3

s.t. 2𝑥1 + 𝑥2 − 7 = 0
3𝑥2 + 2𝑥3 − 1 = 0
𝑥 ∈ K

3

(33)

For this SOCP, we have

𝑄 = [[
[
8 4 0
4 20 12
0 12 8

]]
]
,

𝑐 = [[
[
−1
1
5
]]
]
,

𝑏 = [71] ,

𝐴 = [2 1 0
0 3 2] .

(34)

Mathematical Problems in Engineering 7

This problem has an approximate solution 𝑥∗ = (2.6529,1.6943, −2.0414)𝑇. Note that the precise solution is ((22 −√37)/6, (−2 + 2√37)/6, (6 − 3√37)/6)𝑇. Indeed, we have

𝐻(𝑢) = [[[
[

𝐴𝑥 − 𝑏
𝑐 + 𝑄𝑥 + 𝐴𝑇𝜇 − 𝑦

𝜙 (𝑥, 𝑦)
]]]
]
, 𝑢 = (𝑥, 𝜇, 𝑦) ,

∇𝐻 (𝑢) = [[[
[

𝐴𝑇 𝑄 ∇𝑥𝜙 (𝑥, 𝑦)
0 𝐴 0
0 −𝐼 ∇𝑦𝜙 (𝑥, 𝑦)

]]]
]
.

(35)

We also report numerical experiments for two caseswhen𝜙 =𝜙𝑝D−FB and 𝜙 = 𝜙𝑝NR; see Figures 5–8.
Figures 5 and 7 show the transient behaviors of Example 7

for neural network model (28) based on 𝜙𝑝D−FB and 𝜙𝑝NR with
initial states 𝑥0 = [0, 0, 0]𝑇, respectively. Figure 6 provides
the convergence comparison by using 𝜙𝑝D−FB function with
different values of 𝑝 = 3, 5, 7. Figure 8 shows the convergence
of neural network model using 𝜙𝑝NR function, which indicates
that this class of 𝜙𝑝NR functions performs not well for this
problem.

Example 8. Consider the following SOCQP problem:

min 52𝑥21 + 2𝑥22 + 52𝑥23 + 3𝑥1𝑥2 − 2𝑥2𝑥3 − 𝑥1𝑥3
− 47𝑥1 − 35𝑥2 + 2𝑥3

s.t. 𝑥 ∈ K
3

(36)

Here, we have

𝑄 = [[
[

5 3 −1
3 4 −2
−1 −2 5

]]
]
,

𝑐 = [−47, −35, 2]𝑇 ,
(37)

and 𝐴 = 0, 𝑏 = 0. This problem has an optimal solution 𝑥∗ =(7, 5, 3)𝑇.
Figures 9 and 11 show the transient behaviors of Example 8

for neural network model (28) based on 𝜙𝑝D−FB and 𝜙𝑝NR with
initial states 𝑥0 = [0, 0, 0], respectively. Figure 10 shows that
there are no difference between the neural networks using𝜙𝑝D−FB function with 𝑝 = 3, 5. Figure 12 elaborates that when𝑝 = 5 the neural network based on 𝜙𝑝NR function produces
fast decrease of norm of error. We point out that the neural
network does not converge when 𝑝 = 7 for both cases.

4. Neural Networks for SOCCVI

This section is devoted to another type of SOC constrained
problem, SOCCVI. Like what we have done for SOCQP,
in this section, we first show how we build up the neural
network model for SOCCVI and prove various stabilities

0 10 20 30 40 50 60
Time (ms)

x1
x2
x3

−3

−2

−1

0

1

2

3

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 5: Transient behavior of the neural network with 𝜙𝑝D−FB
function (𝑝 = 3) in Example 7.

0 10 20 30 40 50 60
Time (ms)

FB,p=3
FB,p=5
FB,p=7

10−5

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

Figure 6: Convergence comparison of 𝜙𝑝D−FB function with different𝑝 value for Example 7.

for it accordingly. Then, numerical experiments are reported
to demonstrate the effectiveness of the proposed neural
network.

4.1.
e Model and Stability Analysis. Let 𝜙(𝑥, 𝑦) be a SOC
complementarity function like 𝜙𝑝D−FB and 𝜙𝑝NR defined as
in (24) and (25), respectively. Mimicking the arguments
described as in [42], we can verify that the KKT system

8 Mathematical Problems in Engineering

−3

−2

−1

0

1

2

3

Tr
aj

ec
to

rie
s o

f x
(t)

x1
x2
x3

500 1000 1500 2000 2500 30000
Time (ms)

Figure 7: Transient behavior of the neural network with 𝜙𝑝NR
function (𝑝 = 3) in Example 7.

NR,p=3
NR,p=5
NR,p=7

10−1

100

101

N
or

m
 o

f e
rr

or

500 1000 1500 2000 2500 30000
Time (ms)

Figure 8: Convergence comparison of 𝜙𝑝NR function with different𝑝 value for Example 7.

(17) is equivalent to the following unconstrained smooth
minimization problem:

min Ψ (𝑧) fl 12 ‖𝑆 (𝑧)‖2 , (38)

0 1 2 3 4 5 6 7 8
Time (ms)

x1
x2
x3

0

1

2

3

4

5

6

7

8

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 9: Transient behavior of the neural network with 𝜙𝑝D−FB
function (𝑝 = 3) in Example 8.

0 5 10 15 20 25
Time (ms)

FB,p=3
FB,p=5
FB,p=7

10−5

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

Figure 10: Convergence comparison of 𝜙𝑝D−FB function with differ-
ent 𝑝 value for Example 8.

where 𝑧 = (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 and 𝑆(𝑧) is given by

𝑆 (𝑧) =
[[[[[[[[[[
[

𝐿 (𝑥, 𝜇, 𝜆)
−ℎ (𝑥)

𝜙 (−𝑔𝑚1 (𝑥) , 𝜆𝑚1)...
𝜙 (−𝑔𝑚𝑞 (𝑥) , 𝜆𝑚𝑞)

]]]]]]]]]]
]

, (39)

Mathematical Problems in Engineering 9

with 𝑔𝑚𝑖(𝑥), 𝜆𝑚𝑖 ∈ R𝑚𝑖 . In other words, Ψ(𝑧) is a smooth
merit function for the KKT system (17). Hence, based on
the above smooth minimization problem (38), it is natural to
propose a neural network for solving the SOCCVI as follows:

𝑑𝑧 (𝑡)𝑑𝑡 = −𝜌∇Ψ (𝑧 (𝑡)) ,
𝑧 (𝑡0) = 𝑧0,

(40)

where 𝜌 > 0 is a scaling factor. To prove the stability of neural
network (40), we need to present some properties of Ψ(⋅).

Proposition 9. Let Ψ : R𝑛+𝑙+𝑚 → R+ be defined as in (38).

en,Ψ(𝑧) ≥ 0 for 𝑧 = (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚. Moreover,Ψ(𝑧) = 0
if and only if (𝑥, 𝜇, 𝜆) solves the KKT system (17).

Proof. The proof is straightforward.

Proposition 10. Let Ψ : R𝑛+𝑙+𝑚 → R+ be defined as in (38).

en, the following results hold.

(a)
e function Ψ is continuously differentiable every-
where with

∇Ψ (𝑧) = ∇𝑆 (𝑧) 𝑆 (𝑧) , (41)

where

∇𝑆 (𝑧) = [[[[
[

∇𝑥𝐿 (𝑥, 𝜇, 𝜆)𝑇 −∇ℎ (𝑥) −∇𝑔 (𝑥) diag {∇𝑔𝑚𝑖𝜙 (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1∇ℎ (𝑥)𝑇 0 0
∇𝑔 (𝑥)𝑇 0 diag {∇𝜆𝑚𝑖𝜙 (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1

]]]]
]
. (42)

(b) If ∇𝑆(𝑧) is nonsingular, then for any stationary point(𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 of Ψ, (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is a KKT
triple of the SOCCVI problem.

(c) Ψ(𝑧(𝑡)) is nonincreasing with respect to 𝑡.
Proof. (a) It follows from the chain rule immediately.(b) From ∇Ψ(𝑧) = ∇𝑆(𝑧)𝑆(𝑧) and the fact that matrix∇𝑆(𝑧) is nonsingular, it is clear that ∇Ψ(𝑧) = 0 if and only
if 𝑆(𝑧) = 0. Hence, we see that (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is a KKT
triple of the SOCCVI problem provided (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is
a stationary point of Ψ.(c) From the definition ofΨ(𝑧) and (40), it is easy to verify
that

𝑑Ψ (𝑧 (𝑡))𝑑𝑡 = ∇Ψ (𝑧 (𝑡))𝑇 𝑑𝑧 (𝑡)𝑑𝑡 = −𝜌 ‖∇Ψ (𝑧 (𝑡))‖2
≤ 0,

(43)

which says Ψ(𝑧(𝑡)) is a monotonically decreasing function
with respect to 𝑡.

Now, we are ready to analyze the behavior of the solution
trajectory of neural network (40) and establish three kinds of
stabilities for an isolated equilibrium point.

Proposition 11. (a) If (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is a KKT triple of the
SOCCVI problem, then (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is an equilibrium
point of neural network (40).

(b) If ∇𝑆(𝑧) is nonsingular and (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is an
equilibrium point of (40), then (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is a KKT
triple of the SOCCVI problem.

Proof. (a) From Proposition 9 and (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 being a
KKT triple of SOCCVI problem, it is clear that 𝑆(𝑥, 𝜇, 𝜆) = 0,
which implies ∇Ψ(𝑥, 𝜇, 𝜆) = 0. Besides, by Proposition 10,
we know that ∇Ψ(𝑥, 𝜇, 𝜆) ̸= 0. This shows that (𝑥, 𝜇, 𝜆) is an
equilibrium point of neural network (40).(b) It follows from (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 being an equilib-
rium point of neural network (40) that ∇Ψ(𝑥, 𝜇, 𝜆) = 0. In
other words, (𝑥, 𝜇, 𝜆) is the stationary point of Ψ. Then, the
result is a direct consequence of Proposition 10(b).

Proposition 12. (a) For any initial state 𝑧0 = 𝑧(𝑡0), there exists
exactly one maximal solution 𝑧(𝑡) with 𝑡 ∈ [𝑡0, 𝜏(𝑥0)) for the
neural network (40).

(b) If the level setL(𝑧0) = {𝑧 ∈ R𝑛+𝑙+𝑚 | Ψ(𝑧) ≤ Ψ(𝑧0)} is
bounded, then 𝜏(𝑥0) = +∞.

Proof. (a) Since 𝑆(⋅) is continuous differentiable, it says that∇𝑆(⋅) is continuous. This means ∇𝑆(⋅) is bounded on a local
compact neighborhood of 𝑧, which implies that ∇Ψ(𝑧) is
locally Lipschitz continuous. Thus, applying Lemma 1 leads
to the desired result.(b) This proof is similar to the proof of Case(i) in [10,
Proposition 4.2], so we omit it.

Remark 13. Anatural question arises here.When are the level
sets

L (Ψ, 𝛾) fl {𝑧 ∈ R
𝑛+𝑙+𝑚 | Ψ (𝑧) ≤ 𝛾} (44)

bounded for all 𝛾 ∈ R? For the time being, we are not able
to answer this question yet. We suspect that there needs more
subtle properties of 𝐹, ℎ, and 𝑔 to finish it.

10 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8
Time (ms)

0

1

2

3

4

5

6

7

8

Tr
aj

ec
to

rie
s o

f x
(t)

x1
x2
x3

Figure 11: Transient behavior of the neural network with 𝜙𝑝NR function (𝑝 = 3) in Example 8.

0 1 2 3 4 5 6 7 8
Time (ms)

NR,p=3
NR,p=5

10−5

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

Figure 12: Convergence comparison of 𝜙𝑝NR function with different𝑝 value for Example 8.

Next, we investigate the convergence of the solution
trajectory and stability of neural network (40), which are the
main results of this section.

Theorem 14. (a) Let 𝑧(𝑡) with 𝑡 ∈ [𝑡0, 𝜏(𝑧0)) be the unique
maximal solution to the neural network (40). If 𝜏(𝑧0) = +∞
and {𝑧(𝑡)} is bounded, then lim𝑡→∞ ∇Ψ(𝑧(𝑡)) = 0.

(b) If ∇𝑆(𝑧) is nonsingular and (𝑥, 𝜇, 𝜆) ∈ R𝑛+𝑙+𝑚 is the
accumulation point of the trajectory 𝑧(𝑡), then (𝑥, 𝜇, 𝜆) ∈
R𝑛+𝑙+𝑚 is a KKT triple of the SOCCVI problem.

Proof. With Proposition 10(b) and 10(c) and Proposition 12,
the arguments are exactly the same as those for [19, Corollary
4.3]. Thus, we omit them.

Theorem 15. Let 𝑧∗ be an isolated equilibrium point of the
neural network (40).
en, the following results hold.

(a) 𝑧∗ is asymptotically stable and hence is also Lyapunov
stable.

(b) If ∇𝑆(𝑧) is nonsingular, then it is exponentially stable.

Proof. Again, the arguments are similar to those in [32,
Theorem 3.1] and we omit them.

To study the conditions for nonsingularity based on𝜓𝑝D−FB and 𝜙𝑝NR, we need the following assumptions.

Assumption 16. (a) The gradients {∇ℎ𝑗(𝑥) | 𝑗 = 1, . . . , 𝑙} ∪{∇𝑔𝑖(𝑥) | 𝑖 = 1, . . . , 𝑚} are linear independent.(b) ∇𝑥𝐿(𝑥, 𝜇, 𝜆) is positive definite on the null space of the
gradients {∇ℎ𝑗(𝑥) | 𝑗 = 1, . . . , 𝑙}.

When SOCCVI problem corresponds to the KKT con-
ditions of a convex second-order cone program (CSOCP)
problem as (14) where both ℎ and 𝑔 are linear, the above
Assumption 16(b) is indeed equivalent to the well-used con-
dition of ∇2𝑓(𝑥) being positive definite, e.g., [22, Corollary
1].

Assumption 17. Let 𝛼 fl 𝑤𝑝/2𝑚𝑖 and 𝛽 fl V𝑝/2𝑚𝑖 , where 𝑤𝑚𝑖 =𝑔2𝑚𝑖 + 𝜆2𝑚𝑖 and V𝑚𝑖 = (𝑔𝑚𝑖 + 𝜆𝑚𝑖)2. For 𝑔𝑚𝑖(𝑥), 𝜆𝑚𝑖 ∈ K𝑚𝑖 , we
have

(a) 𝐿2𝑔𝑚𝑖 − 𝐿𝛽𝐿−1𝛼 𝐿2𝑔𝑚𝑖𝐿−1𝛼 𝐿𝛽 ⪰ 0 or 𝐿𝛼𝐿−1𝛽 𝐿2𝑔𝑚𝑖𝐿−1𝛽 𝐿𝛼 −𝐿2𝑔𝑚𝑖 ⪰ 0;

Mathematical Problems in Engineering 11

(b) 𝐿2𝜆𝑚𝑖 − 𝐿𝛽𝐿−1𝛼 𝐿2𝜆𝑚𝑖𝐿−1𝛼 𝐿𝛽 ⪰ 0 or 𝐿𝛼𝐿−1𝛽 𝐿2𝜆𝑚𝑖𝐿−1𝛽 𝐿𝛼 −𝐿2𝜆𝑚𝑖 ⪰ 0.
Theorem 18. Suppose −𝑔𝑚𝑖 +𝜆𝑚𝑖 ∈ intK𝑚𝑖 for 𝑖 = 1, 2, . . . , 𝑝
and that Assumptions 16 and 17 hold.
en, the matrix

∇𝑆 (𝑧) = [[[[
[

∇𝑥𝐿 (𝑥, 𝜇, 𝜆)𝑇 −∇ℎ (𝑥) −∇𝑔 (𝑥) diag {∇𝑔𝑚𝑖𝜓𝑝D−FB (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1∇ℎ (𝑥)𝑇 0 0
∇𝑔 (𝑥)𝑇 0 diag {∇𝜆𝑚𝑖𝜓𝑝D−FB (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1

]]]]
]

(45)

is nonsingular.

Proof. We know that ∇𝑆(𝑧) is nonsingular if and only if the
following equation only has zero solution:

∇𝑆 (𝑧)[[
[
𝑢
V

𝑡
]]
]

= 0, where (𝑢, V, 𝑡) ∈ R
𝑛 ×R
𝑙 ×R
𝑚. (46)

To reach the conclusion, we need to prove 𝑢 = 0, V = 0, 𝑡 = 0.
First, plugging the components of ∇𝑆(𝑧) into (46), we have

(∇𝑥𝐿)𝑇 𝑢 − (∇ℎ (𝑥)) V
− ∇𝑔 (𝑥) (L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼) 𝑡 = 0 (47)

(∇ℎ (𝑥))𝑇 𝑢 = 0 (48)

(∇𝑔 (𝑥))𝑇 𝑢 + (L−𝑔+𝜆L−1𝛽 −L𝜆L
−1
𝛼) 𝑡 = 0 (49)

where

L𝑔+𝜆 = diag {𝐿−𝑔𝑚1+𝜆𝑚1 , 𝐿−𝑔𝑚2+𝜆𝑚2 , . . . , 𝐿−𝑔𝑚𝑞+𝜆𝑚𝑞}
L𝛽 = diag {∇𝑔𝑠𝑜𝑐 (V𝑚1) , ∇𝑔𝑠𝑜𝑐 (V𝑚2) , ∇𝑔𝑠𝑜𝑐 (V𝑚𝑞)}
L−𝑔 = diag {𝐿−𝑔𝑚1 , 𝐿−𝑔𝑚2 , . . . , 𝐿−𝑔𝑚𝑞}
L𝛼

= diag {∇𝑔𝑠𝑜𝑐 (𝑤𝑚1) , ∇𝑔𝑠𝑜𝑐 (𝑤𝑚2) , ∇𝑔𝑠𝑜𝑐 (𝑤𝑚𝑞)}
L𝜆 = diag {𝐿𝜆𝑚1 , 𝐿𝜆𝑚2 , . . . , 𝐿𝜆𝑚𝑞 }
𝛼 = diag {𝛼𝑚1 , 𝛼𝑚2 , . . . , 𝛼𝑚𝑞}
𝛼𝑚𝑖 = (V𝑚𝑖)𝑝/2 = (−𝑔𝑚𝑖 + 𝜆𝑚𝑖)𝑝 , 𝑖 = 1, 2, . . . , 𝑞
𝛽 = diag {𝛽𝑚1 , 𝛽𝑚2 , . . . , 𝛽𝑚𝑞}
𝛽𝑚𝑖 = (𝑤𝑚𝑖)𝑝/2 = (−𝑔2𝑚𝑖 + 𝜆2𝑚𝑖)𝑝/2 , 𝑖 = 1, 2, . . . , 𝑞

(50)

From (47) and (48), we see that

𝑢𝑇 (∇𝑥𝐿)𝑇 𝑢 − 𝑢𝑇∇𝑔 (𝑥) (L−𝑔+𝜆L−1𝛽 −L−𝑔L
−1
𝛼) 𝑡

= 0, (51)

while from (49), we have

𝑡𝑇 (L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼)𝑇 (∇𝑔 (𝑥))𝑇 𝑢
+ 𝑡𝑇 (L−𝑔+𝜆L−1𝛽 −L−𝑔L

−1
𝛼)𝑇

⋅ (L−𝑔+𝜆L−1𝛽 −L𝜆L
−1
𝛼) 𝑡 = 0

(52)

Next, we will claim that

𝑡𝑇 (L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼)𝑇
⋅ (L−𝑔+𝜆L−1𝛽 −L𝜆L

−1
𝛼) 𝑡 ≥ 0 (53)

To see this, we note that

(L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼)𝑇 (L−𝑔+𝜆L−1𝛽 −L𝜆L
−1
𝛼)

= diag {(𝐿−𝑔𝑚1+𝜆𝑚1𝐿−1𝛽𝑚1 − 𝐿−𝑔𝑚1𝐿−1𝛼𝑚1)
𝑇

⋅ (𝐿−𝑔𝑚1+𝜆𝑚1𝐿−1𝛽𝑚1 − 𝐿𝜆𝑚1𝐿−1𝛼𝑚1) , . . . ,
(𝐿−𝑔𝑚𝑞+𝜆𝑚𝑞𝐿−1𝛽𝑚𝑞 − 𝐿−𝑔𝑚𝑞𝐿−1𝛼𝑚𝑞)

𝑇

⋅ (𝐿−𝑔𝑚𝑞+𝜆𝑚𝑞𝐿−1𝛽𝑚𝑞 − 𝐿𝜆𝑚𝑞𝐿−1𝛼𝑚𝑞)} .

(54)

In view of this, to prove inequality (53), it suffices to show that

𝑡𝑇𝑖 (𝐿−𝑔𝑚𝑖+𝜆𝑚𝑖𝐿−1𝛽𝑚𝑖 − 𝐿−𝑔𝑚𝑖𝐿−1𝛼𝑚𝑖)
𝑇

⋅ (𝐿−𝑔𝑚𝑖+𝜆𝑚1𝐿−1𝛽𝑚𝑖 − 𝐿𝜆𝑚𝑖𝐿−1𝛼𝑚𝑖) 𝑡𝑖 ≥ 0, (55)

for 𝑖 = 1, 2, . . . , 𝑞. For convenience, we denote 𝑋 fl −𝑔𝑚𝑖 ,𝑌 fl 𝜆𝑚𝑖 , 𝐴 fl 𝛼𝑚𝑖 , and 𝐵 fl 𝛽𝑚𝑖 . With these notations, we
have

(𝐿−𝑔𝑚𝑖+𝜆𝑚𝑖𝐿−1𝛽𝑚𝑖 − 𝐿−𝑔𝑚𝑖𝐿−1𝛼𝑚𝑖)
𝑇

⋅ (𝐿−𝑔𝑚𝑖+𝜆𝑚1𝐿−1𝛽𝑚𝑖 − 𝐿𝜆𝑚𝑖𝐿−1𝛼𝑚𝑖)
= (𝐿𝑋+𝑌𝐿−1𝐵 − 𝐿𝑋𝐿−1𝐴)𝑇 (𝐿𝑋+𝑌𝐿−1𝐵 − 𝐿𝑌𝐿−1𝐴)
= 𝐿−1𝐵 (𝐿𝑋+𝑌 − 𝐿𝐵𝐿−1𝐴 𝐿𝑋) (𝐿𝑋+𝑌 − 𝐿𝑌𝐿−1𝐴 𝐿𝐵) 𝐿−1𝐵 ,

(56)

12 Mathematical Problems in Engineering

Σ

−

+

Σ

−

−+

∫

∫

∇ℎ (x) ℎ (x)

∇2f (x) + ∇2ℎ (x) +
m

∑
i=1

∇
2
gi(x)

(, −g(x))

∇x(, −g(x))

∇(, −g(x))

∇g (x)T L(x, ,)

L(x, ,)

x

＆(x)

∇g(x)

g(x)

∇ℎ (x)T L(x, ,)

Σ
−

−

∫

∫

Figure 13: Block diagram of the proposed neural network with 𝜙 (𝜙 is 𝜙𝑝D−FB or 𝜙𝑝NR).

which says that it is enough to show 𝑀 fl (𝐿𝑋+𝑌 −𝐿𝐵𝐿−1𝐴 𝐿𝑋)(𝐿𝑋+𝑌 − 𝐿𝑌𝐿−1𝐴 𝐿𝐵) is semipositive definite in order
to prove inequality (55). To this end, we compute that

12 [(𝐿𝑋+𝑌 − 𝐿𝐵𝐿−1𝐴 𝐿𝑋) (𝐿𝑋+𝑌 − 𝐿𝑌𝐿−1𝐴 𝐿𝐵)
+ ((𝐿𝑋+𝑌 − 𝐿𝐵𝐿−1𝐴 𝐿𝑋) (𝐿𝑋+𝑌 − 𝐿𝑌𝐿−1𝐴 𝐿𝐵))𝑇]
= 12 [2𝐿2𝑋+𝑌 − 𝐿2𝑋+𝑌𝐿−1𝐴 𝐿𝐵 − 𝐿𝐵𝐿−1𝐴 𝐿2𝑋+𝑌
+ 𝐿𝐵𝐿−1𝐴 (𝐿𝑋𝐿𝑌 + 𝐿𝑌𝐿𝑋) 𝐿−1𝐴 𝐿𝐵]
= 12 [(𝐼 − 𝐿𝐵𝐿−1𝐴) 𝐿2𝑋+𝑌 (𝐼 − 𝐿−1𝐴 𝐿𝐵) + 𝐿2𝑋+𝑌
− 𝐿𝐵𝐿−1𝐴 𝐿2𝑋+𝑌𝐿−1𝐴 𝐿𝐵

+ 𝐿𝐵𝐿−1𝐴 (𝐿𝑋𝐿𝑌 + 𝐿𝑌𝐿𝑋) 𝐿−1𝐴 𝐿𝐵]
= 12 [(𝐼 − 𝐿𝐵𝐿−1𝐴) 𝐿2𝑋+𝑌 (𝐼 − 𝐿−1𝐴 𝐿𝐵) + 𝐿2𝑋+𝑌
− 𝐿𝐵𝐿−1𝐴 (𝐿2𝑋 + 𝐿2𝑌) 𝐿−1𝐴 𝐿𝐵]
= 12 [(𝐼 − 𝐿𝐵𝐿−1𝐴) 𝐿2𝑋+𝑌 (𝐼 − 𝐿−1𝐴 𝐿𝐵)
+ (𝐿2𝑋 − 𝐿𝐵𝐿−1𝐴 (𝐿2𝑋) 𝐿−1𝐴 𝐿𝐵)
+ (𝐿2𝑌 − 𝐿𝐵𝐿−1𝐴 (𝐿2𝑌) 𝐿−1𝐴 𝐿𝐵) + (𝐿𝑋𝐿𝑌 + 𝐿𝑌𝐿𝑋)] .

(57)

It can be verified that 𝐿2𝑋+𝑌 and 𝐿𝑋𝐿𝑌 + 𝐿𝑌𝐿𝑋 are positive
semidefinite. Then, from Assumption 17 and (57), we con-
clude that 𝑀 fl (𝐿𝑋+𝑌 − 𝐿𝐵𝐿−1𝐴 𝐿𝑋)(𝐿𝑋+𝑌 − 𝐿𝑌𝐿−1𝐴 𝐿𝐵) is
semipositive definite; and hence inequality (55) holds. Thus,

Mathematical Problems in Engineering 13

inequality (53) also holds accordingly. Now, tt follows from
(51), (52), and (53) that 𝑢𝑇(∇𝑥𝐿)𝑇𝑢 = 0 which implies that𝑢 = 0. Then, (47) and (48) become

∇ℎ (𝑥) V + ∇𝑔 (𝑥) (L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼) 𝑡 = 0 (58)

(L−𝑔+𝜆L−1𝛽 −L𝜆L
−1
𝛼) 𝑡 = 0 (59)

In light of Assumption 16(a) and (58), we know

V = 0,
(L−𝑔+𝜆L−1𝛽 −L−𝑔L−1𝛼) 𝑡 = 0. (60)

Combining (59) and (60) together, it is clear to obtain

L−𝑔L−1𝛼 𝑡 = L𝜆L
−1
𝛼 𝑡 (61)

Note that −𝑔 and 𝜆 are strict complementary. Hence, it yields𝑡 = 0. In summary, from equation (46), we deduce 𝑢 = V =𝑡 = 0, which says the matrix ∇𝑆(𝑧) is nonsingular.
Theorem 19. Suppose Assumption 16 holds and

∇𝑔𝑚𝑖𝜙𝑝NR (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖) ⋅ ∇𝜆𝑚𝑖𝜙𝑝NR (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)
⪰ 0. (62)

en, the matrix

∇𝑆 (𝑧) = [[[[
[

∇𝑥𝐿 (𝑥, 𝜇, 𝜆)𝑇 −∇ℎ (𝑥) −∇𝑔 (𝑥) diag {∇𝑔𝑚𝑖𝜙𝑝NR (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1∇ℎ (𝑥)𝑇 0 0
∇𝑔 (𝑥)𝑇 0 diag {∇𝜆𝑚𝑖𝜙𝑝NR (−𝑔𝑚𝑖 (𝑥) , 𝜆𝑚𝑖)}𝑞𝑖=1

]]]]
]

(63)

is nonsingular.

Proof. The proof can be done by following the similar
arguments as in Theorem 18.

To close this subsection, we say a few words about the
complexity of the proposed neural network. Since SOCQP
can be transformed into an SOCCVI problem, we only take
SOCCVI as an example to illustrate the complexity of the
proposed neural network model. In light of the main ideas
for constructing neural network (see [25] for details), we
establish a specific first-order ordinary differential equation,
i.e., an artificial neural network. More specifically, based on
the gradient of the objective function, we employ the neural
network for solving the KKT system (17) of SOCCVI with the
differential equation (40), where 𝜌 > 0 is a time scaling factor.
In fact, if 𝜏 = 𝜌𝑡, then 𝑑𝑧(𝑡)/𝑑𝑡 = 𝜌(𝑑𝑧(𝜏)/𝑑𝜏). Hence, it
follows from (40) that𝑑𝑧(𝜏)/𝑑𝜏 = −∇Ψ(𝑢). In view of this, for
simplicity and convenience, we set𝜌 = 1 in this paper. Indeed,
the dynamic system (40) can be realized by an architecture
with the two discrete-type classes of SOC complementarity
functions 𝜙𝑝D−FB and 𝜙𝑝NR shown in Figure 13. Moreover, the
architecture of this artificial neural network is categorized as
a “recurrent” neural network according to the classifications
of artificial neural networks as in [25]. The circuit for (40)
requires 𝑛 + 𝑙 + 𝑚 integrators, 𝑛 processors for 𝐹(𝑥), 𝑚
processors for 𝑔(𝑥), 𝑚𝑛 processors for ∇𝑔(𝑥), 𝑙𝑛 processors
for ∇ℎ(𝑥), (𝑙2 + 𝑚2 + 𝑚 + 𝑙)𝑛 processors for ∇𝑥𝐿(𝑥, 𝜇, 𝜆), 1
processor for 𝜙𝑝D−FB and 𝜙𝑝NR, 𝑛 processors for ∇𝑥𝜙𝑝D−FB and∇𝑥𝜙𝑝NR,𝑚 processors for∇𝜆𝜙𝑝D−FB and ∇𝜆𝜙𝑝NR, 𝑛2+4𝑙𝑛+3𝑚𝑛+𝑚2 + 𝑚 connection weights, and some summers.

4.2. Numerical Experiments. In this subsection, to demon-
strate effectiveness of the proposed neural networks, some

illustrative SOCCVI problems are tested. The numerical
implementation is coded by Matlab 2014b and the ordinary
differential equation solver adopted is ode23, which uses
Runge-Kutta (2; 3) formula. In the subsequent tests, the
parameter 𝜌 in neural networks of Example 22 is set to be 10
and others are set to be 1.

Example 20. Consider the SOCCVI problem where

𝐹 (𝑥) = [2𝑥1 − 4, 𝑒𝑥1 − 1, 2𝑥3 − 4, − sin (𝑥4)]𝑇 ,
𝐶 = {𝑥 ∈ R

5 | −𝑔 (𝑥) = 𝑥 ∈ K
5} . (64)

This problem has an approximate solution 𝑥∗ = [2, 0,1.3333, 0, 0]𝑇. Figures 14 and 16 show the transient behaviors
of Example 20 for neural network model (40) based on 𝜙𝑝D−FB
and 𝜙𝑝NR with initial states 𝑥0 = [0, 0, 0, 0, 0]𝑇, respectively.
Figure 15 depicts the convergence comparison of the neural
network model using 𝜙𝑝D−FB function with different values of𝑝 = 3, 5, 7. From this, we see that the performance of 𝑝 = 3 is
significantly better than in other cases. Figure 17 depicts the
influence of the parameter 𝑝 on the value of norm of error
for neural network model using 𝜙p

NR function. Again, when𝑝 = 3, the neural network based on 𝜙𝑝NR function produces
fast decrease of norm of error.

Example 21. Consider the problem where

min
𝑥∈𝐶

𝑓 (𝑥) = 2 (𝑥1 − 3)2 + sin (𝑥1 − 3) sin 𝑥2 + 2𝑥22
+ 𝑥23,

𝐶 = {𝑥 ∈ R
5 | −𝑔 (𝑥) = 𝑥 ∈ K

5} .
(65)

14 Mathematical Problems in Engineering

x1
x2
x3

x4
x5

2 4 6 8 10 120
Time (ms)

0

0.5

1

1.5

2

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 14: Transient behavior of neural network with 𝜙𝑝D−FB func-
tion (𝑝 = 3) in Example 20.

FB,p=3
FB,p=5
FB,p=7

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

10 20 30 40 50 60 700
Time (ms)

Figure 15: Convergence comparison of 𝜙𝑝D−FB function with differ-
ent 𝑝 value for Example 20.

This problem has an approximate solution 𝑥∗ = [3, 0, 0]𝑇.
In light of the analysis of previous section, this CSOCP in
Example 21 can be transformed into an SOCCVI. We use
the proposed neural networks to solve the problem with the
trajectory obtained by it shown in Figures 18–21.

Figures 18 and 20 show the transient behaviors of Exam-
ple 21 for neural network model (40) based on 𝜙𝑝D−FB and𝜙𝑝NR with initial states 𝑥0 = [0, 0, 0, 0, 0]𝑇, respectively. From
Figure 19, we see the convergence comparison of the neural
network model using 𝜙𝑝D−FB function with 𝑝 = 3, 5, 7. There
is no significant difference when perturbing the values of 𝑝.

x1
x2
x3

x4
x5

0

0.5

1

1.5

2

Tr
aj

ec
to

rie
s o

f x
(t)

1 2 3 4 5 6 7 8 90
Time (ms)

Figure 16: Transient behavior of the neural network with 𝜙𝑝NR
function (𝑝 = 3) in Example 20.

NR p=3
NR p=5
NR p=7

5 10 15 20 250
Time (ms)

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

Figure 17: Convergence comparison of 𝜙𝑝NR function with different𝑝 value for Example 20.

Figure 21 depicts the influence of the parameter 𝑝 on the
value of norm of error for neural network model using 𝜙𝑝NR
function.

Example 22. We consider the following SOCCVI problem:

⟨𝐷𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶 (66)

where

𝐶 = {𝑥 ∈ R
10 | 𝐴𝑥 − 𝑎 = 0, 𝐵𝑥 − 𝑏 ⪯ 0} , (67)

Mathematical Problems in Engineering 15

x1
x2
x3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80
Time (ms)

0

0.5

1

1.5

2

2.5

3

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 18: Transient behavior of neural network with 𝜙𝑝D−FB func-
tion (𝑝 = 3) in Example 21.

FB,p=3
FB,p=5
FB,p=7

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Time (ms)

Figure 19: Convergence comparison of 𝜙𝑝D−FB function with differ-
ent 𝑝 value for Example 21.

𝐷 is an 10 × 10 symmetric matrix and

𝐷 = (𝐷𝑖𝑗)10×10 , where 𝐷𝑖𝑗 =
{{{{{{{{{

2, 𝑖 = 𝑗
1, 𝑖 − 𝑗 = 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (68)

𝐴 = [𝐼5×5 05×5]5×5, 𝐵 = [05×5 𝐼5×5]5×10, 𝑎 = 05×5, 𝑏 =[1, 0, 1, 0, 0]𝑇 ∈ K2 × K3. Clearly, 𝐴 and 𝐵 are full row rank
and rank([𝐴𝑇 𝐵𝑇]) = 10.

x1
x2
x3

0

0.5

1

1.5

2

2.5

3

Tr
aj

ec
to

rie
s o

f x
(t)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Time (ms)

Figure 20: Transient behavior of the neural network with 𝜙𝑝NR
function (𝑝 = 3) in Example 21.

NR p=3
NR p=5
NR p=7

0.5 1 1.5 2 2.50
Time (ms)

10−4

10−3

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

Figure 21: Convergence comparison of 𝜙𝑝NR functions with different𝑝 value for Example 21.

The problem has an solution 𝑥∗ = [0, 0, 0, 0, 0, 0, 0, 0,0, 0]𝑇. It can be verified that the Lagrangian function for this
example is

𝐿 (𝑥, 𝜇, 𝜆) = 𝐷𝑥 + 𝐴𝑇𝜇 + 𝐵𝑇𝜆. (69)

Note that ∇𝑥𝐿(𝑥, 𝜇, 𝜆) is positive definite.
Figures 22 and 24 show the transient behaviors of Exam-

ple 22 for neural networkmodel (40) based on 𝜙𝑝D−FB and 𝜙𝑝NR
with initial states 𝑥0 = [0, 0, 0, 0, 0]𝑇, respectively. Figures 23
and 25 depict the influence of the parameter 𝑝 on the value
of norm of error for neural network model based on 𝜙𝑝D−FB

16 Mathematical Problems in Engineering

x1
x2
x3
x4
x5

x6
x7
x8
x9
x10

10 20 30 40 50 60 700
Time (ms)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 22: Transient behavior of neural network with 𝜙𝑝D−FB func-
tion (𝑝 = 3) in Example 22.

FB,p=3
FB,p=5
FB,p=7

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

100 200 300 400 500 6000
Time (ms)

Figure 23: Convergence comparison of 𝜙𝑝D−FB functions with differ-
ent 𝑝 value for Example 22.

and 𝜙𝑝NR functions. We see that the influence of perturbing
parameter 𝑝 is tiny.

We summarize some observations based on the above
experiments. First, we provide the simulation diagrams of
convergence comparison of 𝜙𝑝D−FB and 𝜙𝑝NR functions with
different 𝑝 value for 6 examples. It can be seem from the
Figures 2, 4, 6, 8, 10, 12, 15, 17, and 21 that the convergence
speed is the fastest when 𝑝 = 3. Under the same calculation
time, the norm error in the case of 𝑝 = 3 is generally smaller
than that in the cases of 𝑝 = 5 and 𝑝 = 7. But from Figures

x1
x2
x3
x4
x5

x6
x7
x8
x9
x10

100 200 300 400 5000
Time (ms)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Tr
aj

ec
to

rie
s o

f x
(t)

Figure 24: Transient behavior of the neural network with 𝜙𝑝NR
function (𝑝 = 3) in Example 22.

NR p=3
NR p=5
NR p=7

10−2

10−1

100

101

N
or

m
 o

f e
rr

or

100 200 300 400 500 6000
Time (ms)

Figure 25: Convergence comparison of 𝜙𝑝NR functions with different𝑝 value for Example 22.

19, 23, and 25, we find that the convergence of case 𝑝 = 3,𝑝 = 5, and 𝑝 = 7 is similar. In other words, we observe that,
for our examples, 𝑝 = 3 is basically the best choice. However,
the theoretical evidence is not clear yet, which will be left for
future study.

5. Conclusions

In this paper, we propose a unified neural network model
for solving two types of second-order cone optimization

Mathematical Problems in Engineering 17

problems. We implement the neural network model with
two classes of SOC complementarity functions 𝜙𝑝D−FB and𝜙𝑝NR, which are freshly discovered. Overall, when 𝑝 is larger,
the performance of the neural network based on 𝜙𝑝D−FB and𝜙𝑝NR gets poorer. This suggests that the parameter 𝑝 =3 is the best choice to work with the neural network no
matter 𝜙𝑝D−FB or 𝜙𝑝NR is employed. On the other hand, we
observe that the neural network using the family of 𝜙𝑝D−FB
functions performs better than the one using 𝜙𝑝NR, in general.
This is a very interesting phenomenon and new discovery,
which is different from the observation in [31]. Note that
in [31], for standard SOCP (second-order cone program),
it was observed that the neural network based on the NR
function has better performance than the one based on
the FB function in most cases (except for some oscillating
cases). Our numerical experiments show that for SOCQP
and SOCCVI, the family of 𝜙𝑝D−FB (a variant of FB function)
may be considered to be employed in the neural network
approach.

Another point that we want to clarify is the significance
of this paper. By using two new SOC complementarity
functions, this paper can be viewed as a follow-up of our
previous works (see [31, 32]). From the natural feature of
neural network, we pay more attention to the convergence
path.This kind of convergence path varies with different SOC
complementarity functions. In engineering, an important
application of neural network is the design of robot arm.
Therefore, compared with previous works, we achieve differ-
ent convergence paths and the convergence paths are very
good. In addition, we providemore detailed graphs regarding
error analysis in this paper.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Juhe Sun’s work is supported by National Natural Science
Foundation of China (Grant no. 11301348). B. Saheya’s work is
supported by Natural Science Foundation of Inner Mongolia
(Award no. 2017MS0125) and research fund of IMNU (Award
no. 2017YJRC003). Jein-Shan Chen’s work is supported by
Ministry of Science and Technology, Taiwan.

References

[1] J.-S. Chen, “The semismooth-related properties of a merit func-
tion and a descent method for the nonlinear complementarity
problem,” Journal of GlobalOptimization, vol. 36, no. 4, pp. 565–
580, 2006.

[2] J. Chen, H. Gao, and S. Pan, “A derivative-free R-linear con-
vergent algorithm based on the generalized Fischer-Burmeister

merit function,” Journal of Computational and Applied Mathe-
matics, vol. 232, no. 2, pp. 455–471, 2009.

[3] J.-S. Chen and S.-H. Pan, “A family of NCP functions and a
descent method for the nonlinear complementarity problem,”
Computational Optimization andApplications, vol. 40, no. 3, pp.
389–404, 2008.

[4] X.Chen, L.Qi, andD. Sun, “Global and superlinear convergence
of the smoothing Newton method and its application to
general box constrained variational inequalities,” Mathematics
of Computation, vol. 67, no. 222, pp. 519–540, 1998.

[5] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational
Inequalities and Complementarity Problems, Springer, New
York, NY, USA, 2003.

[6] S. J. Wright, “An infeasible-interior-point algorithm for linear
complementarity problems,” Mathematical Programming, vol.
67, no. 1, pp. 29–51, 1994.

[7] J. J. Hopfield and D.W. Tank, “Neural computation of decisions
in optimization problems,” Biological Cybernetics, vol. 52, no. 3,
pp. 141–152, 1985.

[8] D. W. Tank and J. J. Hopfield, “Simple ‘neural’ optimization
networks: an A/D converter, signal decision circuit, and a
linear programming circuit,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 33, no. 5, pp. 533–541, 1986.

[9] Y.-L. Chang, J.-S. Chen, and C.-Y. Yang, “Symmetrization of
generalized natural residual function for NCP,” Operations
Research Letters, vol. 43, no. 4, pp. 354–358, 2015.

[10] J.-S. Chen, C.-H. Ko, and S. Pan, “A neural network based
on the generalized Fischer-Burmeister function for nonlinear
complementarity problems,” Information Sciences, vol. 180, no.
5, pp. 697–711, 2010.

[11] C. Dang, Y. Leung, X.-B. Gao, and K.-Z. Chen, “Neural
networks for nonlinear and mixed complementarity problems
and their applications,” Neural Networks, vol. 17, no. 2, pp. 271–
283, 2004.

[12] S. Effati, A. Ghomashi, and A. R. Nazemi, “Application of
projection neural network in solving convex programming
problems,” Applied Mathematics and Computation, vol. 188, no.
2, pp. 1103–1114, 2007.

[13] S. Effati and A. R. Nazemi, “Neural network models and
its application for solving linear and quadratic programming
problems,” Applied Mathematics and Computation, vol. 172, no.
1, pp. 305–331, 2006.

[14] Q. Han, L.-Z. Liao, H. Qi, and L. Qi, “Stability analysis of
gradient-based neural networks for optimization problems,”
Journal of Global Optimization, vol. 19, no. 4, pp. 363–381, 2001.

[15] X. Hu and J. Wang, “A recurrent neural network for solving
nonlinear convex programs subject to linear constraints,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 16,
no. 2, pp. 379–386, 2005.

[16] X. Hu and J. Wang, “Solving pseudomonotone variational
inequalities and pseudoconvex optimization problems using
the projection neural network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 17, no. 6, pp. 1487–1499,
2006.

[17] X. Hu and J. Wang, “A recurrent neural network for solving a
class of general variational inequalities,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no.
3, pp. 528–539, 2007.

[18] M. P. Kennedy and L. O. Chua, “Neural networks for nonlinear
programming,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 35, no. 5, pp. 554–562, 1988.

18 Mathematical Problems in Engineering

[19] L.-Z. Liao, H. Qi, and L. Qi, “Solving nonlinear complemen-
tarity problems with neural networks: a reformulation method
approach,” Journal of Computational and Applied Mathematics,
vol. 131, pp. 342–359, 2001.

[20] Y. Xia, H. Leung, and J. Wang, “A projection neural network
and its application to constrained optimization problems,” IEEE
Transactions on Circuits and Systems I: Fundamental
eory and
Applications, vol. 49, no. 4, pp. 447–458, 2002.

[21] Y. Xia and J. Wang, “A general projection neural network for
solvingmonotone variational inequalities and related optimiza-
tion problems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 15, no. 2, pp. 318–328, 2004.

[22] Y. Xia and J. Wang, “A recurrent neural network for solving
nonlinear convex programs subject to linear constraints,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 16,
no. 2, pp. 379–386, 2005.

[23] M. Yashtini and A. Malek, “Solving complementarity and vari-
ational inequalities problems using neural networks,” Applied
Mathematics andComputation, vol. 190, no. 1, pp. 216–230, 2007.

[24] S. H. Zak and V. Upatising, “Solving linear programming
problems with neural networks: a comparative study,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 6,
no. 1, pp. 94–104, 1995.

[25] A. Cichocki and R. Unbehauen,Neural Networks for Optimiza-
tion and Signal Processing, John Wiley, New York, NY, USA,
1993.

[26] Y. Xia and J.Wang, “Robust regression estimation based on low-
dimensional recurrent neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 12, pp. 5935–
5946, 2018.

[27] S. Zhang and Y. Xia, “Solving nonlinear optimization problems
of real functions in complex variables by complex-valued
iterative methods,” IEEE Transactions on Cybernetics, vol. 48,
no. 1, pp. 277–287, 2018.

[28] Y. Xia and J. Wang, “A bi-projection neural network for
solving constrained quadratic optimization problems,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 27,
no. 2, pp. 214–224, 2016.

[29] Y. Xia, H. Leung, and M. S. Kamel, “A discrete-time learning
algorithm for image restoration using a novel L2-norm noise
constrained estimation,” Neurocomputing, vol. 198, pp. 155–170,
2016.

[30] S. Zhang, Y. Xia, and J. Wang, “A complex-valued projection
neural network for constrained optimization of real functions in
complex variables,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 12, pp. 3227–3238, 2015.

[31] C.-H. Ko, J.-S. Chen, and C.-Y. Yang, “Recurrent neural net-
works for solving second-order cone programs,” Neurocomput-
ing, vol. 74, no. 17, pp. 3646–3653, 2011.

[32] J. Sun, J.-S. Chen, and C.-H. Ko, “Neural networks for solving
second-order cone constrained variational inequality problem,”
Computational optimization and applications, vol. 51, no. 2, pp.
623–648, 2012.

[33] X. Miao, J.-S. Chen, and C.-H. Ko, “A smoothed NR neural
network for solving nonlinear convex programs with second-
order cone constraints,” Information Sciences, vol. 268, pp. 255–
270, 2014.

[34] V. Jeyakumar and H. Wolkowicz, “Generalizations of Slater’s
constraint qualification for infinite convex programs,” Mathe-
matical Programming, vol. 57, no. 1, pp. 85–101, 1992.

[35] R. K. Miller and A. N. Michel,Ordinary Differential Equations,
Academic Press, 1982.

[36] J.-S. Chen and S. Pan, “A survey on SOC complementarity
functions and solution methods for SOCPS and SOCCPS,”
Pacific Journal of Optimization. An International Journal, vol. 8,
no. 1, pp. 33–74, 2012.

[37] J.-S. Chen and P. Tseng, “An unconstrained smooth minimiza-
tion reformulation of the second-order cone complementarity
problem,” Mathematical Programming, vol. 104, no. 2-3, Ser. B,
pp. 293–327, 2005.

[38] M. Fukushima, Z.-Q. Luo, and P. Tseng, “Smoothing functions
for second-order-cone complementarity problems,” SIAM Jour-
nal on Optimization, vol. 12, no. 2, pp. 436–460, 2002.

[39] S. Hayashi, N. Yamashita, and M. Fukushima, “A combined
smoothing and regularization method for monotone second-
order cone complementarity problems,” SIAM Journal on Opti-
mization, vol. 15, no. 2, pp. 593–615, 2005.

[40] S. Pan and J.-S. Chen, “A semismooth Newton method for the
SOCCP based on a one-parametric class of SOC complemen-
tarity functions,” Computational optimization and applications,
vol. 45, no. 1, pp. 59–88, 2010.

[41] P.-F. Ma, J.-S. Chen, C.-H. Huang, and C.-H. Ko, “Discovery
of new complementarity functions for NCP and SOCCP,”
Computational & Applied Mathematics, vol. 37, no. 5, pp. 5727–
5749, 2018.

[42] J. Sun and L. Zhang, “A globally convergent method based
on Fischer-Burmeister operators for solving second-order cone
constrained variational inequality problems,” Computers &
Mathematics withApplications. An International Journal, vol. 58,
no. 10, pp. 1936–1946, 2009.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

