
Neural network for solving SOCQP and SOCCVI based on two
discrete-type classes of SOC complementarity functions

Juhe Sun 1

School of Science

Shenyang Aerospace University

Shenyang 110136, China

E-mail: juhesun@163.com

Xiao-Ren Wu

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

E-mail: cantor0968@gmail.com

B. Saheya 2

College of Mathematical Science

Inner Mongolia Normal University

Hohhot 010022, Inner Mongolia, China

E-mail: saheya@imnu.edu.cn

Jein-Shan Chen 3

Department of Mathematics

National Taiwan Normal University

Taipei 11677, Taiwan

E-mail: jschen@math.ntnu.edu.tw

Chun-Hsu Ko

Department of Electrical Engineering

I-Shou University

Kaohsiung 840, Taiwan

E-mail: chko@isu.edu.tw

November 15, 2018

(revised on January 19, 2019)

1This work is supported by National Natural Science Foundation of China (Grant No.11301348).
2The author’s work is supported by Natural Science Foundation of Inner Mongolia (Award Number:

2017MS0125) and research fund of IMNU (Award Number: 2017YJRC003)
3Corresponding author. The author’s work is supported by Ministry of Science and Technology,

Taiwan.

1

Abstract. This paper focuses on solving the quadratic programming problems with

second-order cone constraints (SOCQP) and the second-order cone constrained varia-

tional inequality (SOCCVI) by using the neural network. More specifically, a neural

network model based on two discrete-type families of SOC complementarity functions

associated with second-order cone is proposed to deal with the Karush-Kuhn-Tucker

(KKT) conditions of SOCQP and SOCCVI. The two discrete-type SOC complementar-

ity functions are newly explored. The neural network uses the two discrete-type families

of SOC complementarity functions to achieve two unconstrained minimizations which are

the merit functions of the Karuch-Kuhn-Tucker equations for SOCQP and SOCCVI. We

show that the merit functions for SOCQP and SOCCVI are Lyapunov functions and this

neural network is asymptotically stable. The main contribution of this paper lies on its

simulation part because we observe a different numerical performance from the existing

one. In other words, for our two target problems, more effective SOC complementarity

functions, which work well along with the proposed neural network, are discovered.

Keywords. Second-order cone, quadratic programming, variational inequality, comple-

mentarity function, neural network, Lyapunov stable.

1 Introduction

In optimization community, it is well known that there are many computational ap-

proaches to solve the optimization problems such as linear programming, nonlinear pro-

gramming, variational inequalities, and complementarity problems, see [2, 3, 5, 8, 12, 31]

and references therein. These approaches include the method using merit function, inte-

rior point method, Newton method, nonlinear equation method, projection method and

its variant versions. All the aforementioned methods rely on iterative schemes and usu-

ally only provide “approximate” solution(s) to the original optimization problems and do

not offer real-time solutions. However, real-time solutions are eager in many applications,

such as force analysis in robot grasping and control applications. Therefore, the tradi-

tional optimization methods may not be suitable for these applications due to stringent

computational time requirements.

The neural network approach has an advantage in solving real-time optimization prob-

lems, which was proposed by Hopfield and Tank [16, 30] in the 1980s. Since then, neural

networks have been applied to various optimization problems, see [1, 4, 9–11, 14, 17–

19, 21, 23, 32–42] and references therein. Unlike the traditional optimization algorithms,

the essence of neural network approach for optimization is to establish a nonnegative Lya-

punov function (or energy function) and a dynamic system that represents an artificial

neural network. This dynamic system usually adopts the form of a first-order ordinary

differential equation and its trajectory is likely convergent to an equilibrium point, which

corresponds to the solution to the considered optimization problem.

2

Following the similar idea, researchers have also developed many continuous-time

neural networks for second-order cone constrained optimization problems. For example,

Ko, Chen and Yang [22] proposed two kinds of neural networks with different SOCCP

functions for solving the second-order cone program; Sun, Chen and Ko [29] gave two

kinds of neural networks (the fist one is based on the Fischer-Burmeister function and

the second one relies on a projection function) to solve the second-order cone constrained

variational inequality (SOCCVI) problem; Miao, Chen and Ko [25] proposed a neural net-

work model for efficiently solving general nonlinear convex programs with second-order

cone constraints. In this paper, we are interested in employing neural network approach

for solving two types of SOC constrained problems, the quadratic programming prob-

lems with second-order cone constraints (SOCQP for short) and the second-order cone

constrained variational inequality (SOCCVI for short), whose mathematical formats are

described as below.

The SOCQP is in the form of

min 1
2
xTQx+ cTx

s.t. Ax = b

x ∈ K
(1)

where Q ∈ Rn×n, A is an m×n matrix with full row rank, b ∈ Rm and K is the Cartesian

product of second-order cones (SOCs), also called Lorentz cones. In other words,

K = Kn1 ×Kn2 × · · · × Knq

where n1, · · · , nq, q are positive integers, n1 + · · ·+ nq = n, and Kni denotes the SOC in

Rni defined by

Kni :=
{
xi = (xi1, xi2) ∈ R×Rni−1

∣∣ ‖xi2‖ ≤ xi1
}
. (2)

with K1 denoting the nonnegative real number set R+. A special case of (2) corresponds

to the nonnegative orthant cone Rn
+, i.e., q = n and n1 = · · · = nq = 1. We assume

that Q is a symmetric positive semi-definite matrix and problem (1) satisfies a suitable

qualification [20], such as the generalized Slater condition that there exists x̂ with strictly

feasibility, then x is a solution to problem (1) if and only if there exists a Lagrange

multiplier (µ, y) ∈ Rm ×Rn such that
Ax− b = 0

c+Qx+ ATµ− y = 0

K 3 y ⊥ x ∈ K
(3)

In Section 3, we will employ two new families of SOC-complementarity functions and use

(3) to build up the neural network model for solving SOCQP.

3

We say a few words about why we assume that Q is a symmetric positive semi-definite

matrix. First, it is clear that the symmetric assumption is reasonable because Q can be

replaced by 1
2
(QT + Q) which is symmetric. Indeed, with Q being symmetric positive

definite matrix, the SOCQP can be recast as a standard SOCP. To see this, we observe

that
1

2
xTQx+ cTx =

1

2

∥∥∥Q 1
2x+Q−

1
2 c
∥∥∥2 − 1

2
cTQ−1c

which is done by completing the square. Then, the SOCQP (with K = Kn) is equivalent

to
min

∥∥∥Q 1
2x+Q−

1
2 c
∥∥∥

s.t. Ax = b

x ∈ Kn

which is also the same as
min ‖ȳ‖
s.t. Q

1
2x− ȳ = −Q− 1

2 c

Ax = b

x ∈ Kn

This formulation is further equivalent to

min y1
s.t. Q

1
2x− ȳ = −Q− 1

2 c

Ax = b

x ∈ Kn
y1 ≥ ‖ȳ‖

(4)

Now, we let y := (y1, ȳ) which says y ∈ Kn+1, and denote

v̂ := (x, y) ∈ Kn ×Kn+1,

ĉ := (0, e) ∈ R2n+1,

Â :=

[
A 0 0

Q
1
2 0 In

]
,

b̂ :=

[
b

Q−
1
2

]
.

Thus, the above reformulation (4) is expressed as a standard SOCP as below:

min (ĉ)T v̂

s.t. Âv̂ = b̂

v̂ ∈ Kn ×Kn+1

(5)

In view of this reformulation (5), we focus on SOCQP with Q being symmetric positive

semi-definite in this paper.

4

The SOCCVI, our another target problem, is to find x ∈ C satisfying

〈F (x), y − x〉 ≥ 0 ∀y ∈ C, (6)

where the set C is finitely representable and is given by

C = {x ∈ Rn |h(x) = 0, −g(x) ∈ K} .

Here 〈·, ·〉 denotes the Euclidean inner product, F : Rn → Rn, h : Rn → Rl and

g : Rn → Rm are continuously differentiable functions; and K is a Cartesian product of

second-order cones (or Lorentz cones), expressed as

K = Km1 ×Km2 × · · · × Kmp , (7)

with l ≥ 0, m1,m2, · · · ,mp ≥ 1, m1 + m2 + · · · + mp = m. When h is affine, an

important special case of the SOCCVI corresponds to the KKT conditions of the convex

second-order cone program (CSOCP):

min f(x)

s.t. Ax = b

−g(x) ∈ K
(8)

where A ∈ Rl×n has full row rank, b ∈ Rl, g : Rn → Rm, and f : Rn → R. Furthermore,

when f is a convex twice continuously differentiable function, problem (8) is equivalent

to the following SOCCVI which is to find x ∈ C such that

〈∇f(x), y − x〉 ≥ 0, ∀y ∈ C,

where

C = {x ∈ Rn |Ax− b = 0, −g(x) ∈ K} .

In fact, the SOCCVI can be solved by analyzing its KKT conditions:
L(x, µ, λ) = 0,

〈g(x), λ〉 = 0, −g(x) ∈ K, λ ∈ K,
h(x) = 0,

(9)

where L(x, µ, λ) = F (x) + ∇h(x)µ + ∇g(x)λ is the variational inequality Lagrangian

function, µ ∈ Rl and λ ∈ Rm. We also point out that the neural network approach for

SOCCVI was already studied in [29]. Here we revisit the SOCCVI with different neural

models. More specifically, in our earlier work [29], we had employed neural network ap-

proach to the SOCCVI problem (6)-(7), in which the neural networks were aimed to solve

the system (9) whose solutions are candidates of SOCCVI problem (6)-(7). There were

two neural networks considered in [29]. The first one is based on the smoothed Fischer-

Burmeister function, while the other one is based on the projection function. Both neural

5

networks possess asymptotical stability under suitable conditions. In Section 4, in light

of (9) again, we adopt new and different SOC-complementarity functions to construct

our new neural networks.

As mentioned earlier, this paper studies neural networks by using two new classes

of SOC-complementarity functions to efficiently solve SOCQP and SOCCVI. Although

the idea and the stability analysis for both problems are routine, we emphasize that the

main contribution of this paper lies on its simulations. More specifically, from numerical

performance and comparison, we observe a new phenomenon different from the existing

one in the literature. This may suggest update choices of SOC complementarity functions

to work with neural network approach.

2 Preliminaries

Consider the first order differential equations (ODE):

ẇ(t) = H(w(t)), w(t0) = w0 ∈ Rn, (10)

where H : Rn → Rn is a mapping. A point w∗ = w(t∗) is called an equilibrium point

or a steady state of the dynamic system (10) if H(w∗) = 0. If there is a neighborhood

Ω∗ ⊆ Rn of w∗ such that H(w∗) = 0 and H(w) 6= 0 ∀w ∈ Ω∗ \ {w∗}, then w∗ is called an

isolated equilibrium point.

Lemma 2.1. Suppose that H : Rn → Rn is a continuous mapping. Then, for any t0 > 0

and w0 ∈ Rn, there exists a local solution w(t) to (10) with t ∈ [t0, τ) for some τ > t0.

If, in addition, H is locally Lipschitz continuous at x0, then the solution is unique; if H

is Lipschitz continuous in Rn, then τ can be extended to ∞.

Let w(t) be a solution to dynamic system (10). An isolated equilibrium point w∗ is

Lyapunov stable if for any w0 = w(t0) and any ε > 0, there exists a δ > 0 such that

‖w(t)−w∗‖ < ε for all t ≥ t0 and ‖w(t0)−w∗‖ < δ. An isolated equilibrium point w∗ is

said to be asymptotic stable if in addition to being Lyapunov stable, it has the property

that w(t) → w∗ as t → ∞ for all ‖w(t0) − w∗‖ < δ. An isolated equilibrium point w∗

is exponentially stable if there exists a δ > 0 such that arbitrary point w(t) of (10) with

the initial condition w(t0) = w0 and ‖w(t0) − w∗‖ < δ is well defined on [0,+∞) and

satisfies

‖w(t)− w∗‖ ≤ ce−ωt‖w(t0)− w∗‖ ∀t ≥ t0,

where c > 0 and ω > 0 are constants independent of the initial point.

6

Let Ω ⊆ Rn be an open neighborhood of w̄. A continuously differentiable function

V : Rn → R is said to be a Lyapunov function at the state w̄ over the set Ω for equation

(10) if {
V (w̄) = 0, V (w) > 0, ∀w ∈ Ω \ {w̄},
V̇ (w) ≤ 0, ∀w ∈ Ω \ {w̄}.

The Lyapunov stability and asymptotical stability can be verified by using Lyapunov

function, which is a useful tool for analysis.

Lemma 2.2. (a) An isolated equilibrium point w∗ is Lyapunov stable if there exists a

Lyapunov function over some neighborhood Ω∗ of w∗.

(b) An isolated equilibrium point w∗ is asymptotically stable if there exists a Lyapunov

function over some neighborhood Ω∗ of w∗ such that V̇ (w) < 0, ∀w ∈ Ω∗ \ {w∗}.

For more details, please refer to any usual ODE textbooks, e.g. [26].

Next, we briefly recall some concepts associated with SOC, which are helpful for un-

derstanding the target problems and our analysis techniques. We start with introducing

the Jordan product and SOC-complementarity function. For any x = (x1, x2) ∈ R×Rn−1

and y = (y1, y2) ∈ R×Rn−1, we define their Jordan product associated with Kn as

x ◦ y =

[
xTy

y1x2 + x1y2

]
.

The Jordan product ◦, unlike scalar or matrix multiplication, is not associative, which is

a main source of complication in the analysis of SOC constrained optimization. There ex-

ists an identity element under this product, which is denoted by e := (1, 0, · · · , 0)T ∈ Rn.

Note that x2 means x ◦ x and x+ y means the usual componentwise addition of vectors.

It is known that x2 ∈ Kn for all x ∈ Rn. Moreover, if x ∈ Kn, then there exists a

unique vector in Kn, denoted by x1/2, such that (x1/2)2 = x1/2 ◦x1/2 = x. We also denote

|x| := (x2)1/2.

A vector-valued function φ : Rn × Rn → Rn is called an SOC-complementarity

function if it satisfies

φ(x, y) = 0 ⇐⇒ x ◦ y = 0, x ∈ Kn, y ∈ Kn.

There have been many SOC-complementarity functions studied in the literature, see

[6, 7, 13, 15, 27] and references therein. Among them, two popular ones are the Fischer-

Burmeister function φ
FB

and the natural residual function φ
NR

, which are given by

φ
FB

(x, y) = (x2 + y2)1/2 − (x+ y),

φ
NR

(x, y) = x− (x− y)+.

7

Some existing SOC-complementarity functions are indeed variants of φ
FB

and φ
NR

. Re-

cently, Ma, Chen, Huang and Ko [24] explored the idea of “discrete generalization” to

the Fischer-Burmeister function which yields the following class of functions (denoted by

φp
D−FB

):

φp
D−FB

(x, y) =
(√

x2 + y2
)p
− (x+ y)p, (11)

where p > 1 is a positive odd integer. Applying similar idea, they also extended φ
NR

to

another family of SOC-complementarity functions, φp
NR

: Rn ×Rn → Rn, whose formula

is as below

φp
NR

(x, y) = xp − [(x− y)+]p, (12)

where p > 1 is a positive odd integer and (·)+ means the projection onto Kn. The func-

tions φp
D−FB

and φp
NR

are continuously differentiable SOC-complementarity functions with

computable Jacobian, which can be found in [24].

3 Neural networks for SOCQP

In this section, we first show how we achieve the neural network model for SOCQP and

prove various stabilities for it accordingly. Then, numerical experiments are reported to

demonstrate the effectiveness of the proposed neural network.

3.1 The model and stability analysis

As mentioned in Section 2, the KKT conditions are expressed in (3). With the system

(3) and using a given SOC-complementarity function φ : Rn × Rn → Rn, it is clear to

see that the system (3) is equivalent to

H(u) =

 Ax− b
c+Qx+ ATµ− y

φ(x, y)

 = 0,

where u = (x, µ, y) ∈ Rn × Rm × Rn. Moreover, we can specifically describe ∇H(u) as

the following:

∇H(u) =

 AT Q ∇xφ

0 A 0

0 −I ∇yφ

 .
Here φ is a continuously differentiable SOC-complementarity function such as φp

D−FB
and

φp
NR

introduced in Section 2. It is clear that if u∗ solves H(u) = 0, then u∗ solves

∇
(
1
2
‖H(u)‖2

)
= 0. Accordingly, we consider a specific first order ordinary differential

8

equation as below:  du(t)

dt
= −ρ∇

(
1
2
‖H(u)‖2

)
,

u(t0) = u0,
(13)

where ρ > 0 is a time scaling factor. In fact, if letting τ = ρt, then du(t)
dt

= ρdu(τ)
dτ

.

Hence, it follows from (13) that du(τ)
dτ

= −∇(1
2
‖H(u∗)‖2). In view of this, we set ρ = 1 in

the subsequent analysis. Next, we show that the equilibrium of the neural network (13)

corresponds to the solution to the system (3).

Lemma 3.1. Let u∗ be a equilibrium of the neural network (13) and suppose that ∇H(u∗)

is nonsingular. Then u∗ solves the system (3).

Proof. Since ∇(1
2
‖H(u∗)‖2) = ∇H(u∗)H(u∗) and ∇H(u∗) is nonsingular, it is clear to

see that ∇(1
2
‖H(u∗)‖2) = 0 if and only if H(u∗) = 0. 2

Besides, the following results address the existence and uniqueness of the solution

trajectory of the neural network (13).

Theorem 3.1. (a) For any initial point u0 = u(t0), there exists a unique continuously

maximal solution u(t) with t ∈ [t0, τ) for the neural network (13).

(b) If the level set L(u0) := {u | ‖H(u)‖2 ≤ ‖H(u0)‖2} is bounded, then τ can be extended

to ∞.

Proof. This proof is exactly the same as the one in [29, Proposition 3.4], so we omit it

here. 2

Now, we are ready to analyze the stability of an isolated equilibrium u∗ of the neural

network (13), which means ∇(1
2
||H(u∗)||2) = 0 and ∇(1

2
‖H(u)‖2) 6= 0 for u ∈ Ω \ {u∗},

Ω being a neighborhood of u∗.

Theorem 3.2. Let u∗ be an isolated equilibrium point of the neural network (13).

(a) If ∇H(u∗) is nonsingular, then the isolated equilibrium point u∗ is asymptotically

stable, and hence Lypunov stable.

(b) If ∇H(u) is nonsingular for all u ∈ Ω, then the isolated equilibrium point u∗ is

exponentially stable.

Proof. The desired results can be proved by using Lemma 3.1 and mimicking the

arguments as in [29, Theorem 3.1]. 2

9

3.2 Numerical experiments

In order to demonstrate the effectiveness of the proposed neural network, we test three

examples for our neural network (13). The numerical implementation is coded by Mat-

lab 7.0 and the ordinary differential equation solver adopted here is ode23, which uses

Ruge-Kutta (2; 3) formula. As mentioned earlier, in general the parameter ρ is set to be

1. For some special examples, the parameter ρ is set to be another value.

Example 3.1. Consider the following SOCQP problem:

min (x1 − 3)2 + x22 + (x3 − 1)2 + (x4 − 2)2 + (x5 + 1)2

s.t. x ∈ K5

After suitable transformation, it can be recast as an SOCQP with Q = 2I5, c =

[−6, 0,−2,−4, 2]T , A = 0, and b = 0. This problem has an optimal solution x∗ =

[3, 0, 1, 2,−1]T . Now, we use the proposed neural network (13) with two cases φ = φp
D−FB

and φ = φp
NR

respectively to solve the above SOCQP and their trajectories are depicted

in Figures 1-4. For the sake of coding needs and check, the following expressions are

presented.

For case of φ = φp
D−FB

, we have

du(t)

dt
= −ρ∇H(u)H(u), u(t0) = u0

H(u) =

[
c+ 2x− y
φp

D−FB
(x, y)

]
, u = (x, y)

∇H(u) =

[
2I5 ∇xφ

p
D−FB

(u)

−I5 ∇yφ
p
D−FB

(u)

]
∇xφ

p
D−FB

(x, y) = 2Lx∇gsoc(w)− 2L(x+y)∇gsoc(v),

∇yφ
p
D−FB

(x, y) = 2Ly∇gsoc(w)− 2L(x+y)∇gsoc(v).

w(x, y) := x2 + y2 = (w1(x, y), w2(x, y)) = (||x||2 + ||y||2, 2(x1x2 + y1y2)) ∈ R×R4 and

v(x, y) := (x+ y)2 = (||x+ y||2, 2(x1 + y1)(x2 + y2)) ∈ R×R4.

Note that the element w = (w1, w2) ∈ R×R4 can also be expressed as

w := λ1e1 + λ2e2

where λi = w1 + (−1)i||w2|| and ei = 1
2
(1, (−1)i w2

||w2||) (i = 1, 2) if w2 6= 0, otherwise

ei = 1
2
(1, (−1)iν with ν being any vector in R4 satisfying ||ν|| = 1.

10

For case of φ = φp
NR

, we replace φp
D−FB

(x, y) as φp
NR

(x, y), Hence, H(u) and ∇H(u) have

the forms as follows:

H(u) =

[
c+ 2x− y
φp

NR
(x, y)

]
, u = (x, y)

∇H(u) =

[
2I5 ∇xφ

p
NR

(u)

−I5 ∇yφ
p
NR

(u)

]
∇xφ

p
NR

(x, y) = ∇hsoc(x)−∇lsoc(x− y),

∇yφ
p
NR

(x, y) = ∇lsoc(x− y).

0 2 4 6 8 10 12
Time (ms)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3
x4
x5

Figure 1: Transient behavior of the neural network with φp
D−FB

function (p = 3) in

Example 3.1.

Figure 1 and Figure 3 show the transient behaviors of Example 3.1 for neural network

model (13) based on smooth SOC-complementarity functions φp
D−FB

and φp
NR

with initial

states x0 = [0, 0, 0, 0, 0]T respectively. In Figure 2, we see the convergence comparison

of the neural network model using φp
D−FB

function with different values of p = 3, 5, 7.

Figure 4 depicts the influence of the parameter p on the value of norm of error for neural

network model using φp
NR

function.

Example 3.2. Consider the following SOCQP problem:

min 4x21 + 10x22 + 4x23 + 4x1x2 + 12x2x3 − x1 + x2 + 5x3
s.t. 2x1 + x2 − 7 = 0

3x2 + 2x3 − 1 = 0

x ∈ K3

11

0 20 40 60 80 100 120 140 160 180
Time (ms)

10-5

10-4

10-3

10-2

10-1

100

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 2: Convergence comparison of φp
D−FB

function with different p value for Example

3.1.

For this SOCP, we have

Q =

 8 4 0

4 20 12

0 12 8

 , c =

−1

1

5

 , b =

[
7

1

]
, and A =

[
2 1 0

0 3 2

]
.

This problem has an approximate solution x∗ = (2.6529, 1.6943,−2.0414)T . Note that

the precise solution is
(

22−
√
37

6
, −2+2

√
37

6
, 6−3

√
37

6

)T
. Indeed, we have

H(u) =

 Ax− b
c+Qx+ ATµ− y

φ(x, y)

 , u = (x, µ, y),

and

∇H(u) =

 AT Q ∇xφ(x, y)

0 A 0

0 −I ∇yφ(x, y)

 .
We also report numerical experiments for two cases when φ = φp

D−FB
and φ = φp

NR
, see

Figures 5-8.

Figure 5 and Figure 7 show the transient behaviors of Example 3.2 for neural network

model (13) based on φp
D−FB

and φp
NR

with initial states x0 = [0, 0, 0]T , respectively. Figure

6 provides the convergence comparison by using φp
D−FB

function with different values of

p = 3, 5, 7. Figure 8 shows the convergence of neural network model using φp
NR

function,

which indicates that this class of φp
NR

functions performs not well for this problem.

12

0 2 4 6 8 10 12
Time (ms)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3
x4
x5

Figure 3: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

3.1.

Example 3.3. Consider the following SOCQP problem:

min 5
2
x21 + 2x22 + 5

2
x23 + 3x1x2 − 2x2x3 − x1x3 − 47x1 − 35x2 + 2x3

s.t. x ∈ K3

Here, we have

Q =

 5 3 −1

3 4 −2

−1 −2 5

 , c = [−47,−35, 2]T ,

and A = 0, b = 0. This problem has an optimal solution x∗ = (7, 5, 3)T .

Figure 9 and 11 show the transient behaviors of Example 3.3 for neural network

model (13) based on φp
D−FB

and φp
NR

with initial states x0 = [0, 0, 0], respectively. Figure

10 shows that there are no difference between the neural networks using φp
D−FB

function

with p = 3, 5. Figure 12 elaborates that when p = 5 the neural network based on φp
NR

function produces fast decrease of norm of error. We point out that the neural network

does not converge when p = 7 for both cases.

4 Neural networks for SOCCVI

This section is devoted to another type of SOC constrained problem, SOCCVI. Like

what we have done for SOCQP, in this section, we first show how we build up the

neural network model for SOCCVI and prove various stabilities for it accordingly. Then,

13

0 50 100 150 200
Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

NR,p=3
NR,p=5
NR,p=7

Figure 4: Convergence comparison of φp
NR

function with different p value for Example

3.1.

numerical experiments are reported to demonstrate the effectiveness of the proposed

neural network.

4.1 The model and stability analysis

Let φ(x, y) be a SOC-complementarity function like φp
D−FB

and φp
NR

defined as in (11)

and (12), respectively. Mimicking the arguments described as in [28], we can verify that

the KKT system (9) is equivalent to the following unconstrained smooth minimization

problem:

min Ψ(z) :=
1

2
‖S(z)‖2 , (14)

where z = (x, µ, λ) ∈ Rn+l+m and S(z) is given by

S(z) =


L(x, µ, λ)

−h(x)

φ(−gm1(x), λm1)
...

φ(−gmq(x), λmq)

 ,

with gmi
(x), λmi

∈ Rmi . In other words, Ψ(z) is a smooth merit function for the KKT

system (9). Hence, based on the above smooth minimization problem (14), it is natural

14

0 10 20 30 40 50 60
Time (ms)

-3

-2

-1

0

1

2

3

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 5: Transient behavior of the neural network with φp
D−FB

function (p = 3) in

Example 3.2.

to propose a neural network for solving the SOCCVI as below: dz(t)

dt
= −ρ∇Ψ(z(t)),

z(t0) = z0,
(15)

where ρ > 0 is a scaling factor. To prove the stability of neural network (15), we need to

present some properties of Ψ(·).

Proposition 4.1. Let Ψ : Rn+l+m → R+ be defined as in (14). Then, Ψ(z) ≥ 0 for

z = (x, µ, λ) ∈ Rn+l+m. Moreover, Ψ(z) = 0 if and only if (x, µ, λ) solves the KKT

system (9).

Proof. The proof is straightforward. 2

Proposition 4.2. Let Ψ : Rn+l+m → R+ be defined as in (14). Then, the following

results hold.

(a) The function Ψ is continuously differentiable everywhere with

∇Ψ(z) = ∇S(z)S(z),

where

∇S(z) =

∇xL(x, µ, λ)T −∇h(x) −∇g(x) diag{∇gmi
φ(−gmi

(x), λmi
)}qi=1

∇h(x)T 0 0

∇g(x)T 0 diag{∇λmi
φ(−gmi

(x), λmi
)}qi=1

 .
15

0 10 20 30 40 50 60
Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 6: Convergence comparison of φp
D−FB

function with different p value for Example

3.2.

(b) If ∇S(z) is nonsingular, then for any stationary point (x, µ, λ) ∈ Rn+l+m of Ψ,

(x, µ, λ) ∈ Rn+l+m is a KKT triple of the SOCCVI problem.

(c) Ψ(z(t)) is nonincreasing with respect to t.

Proof. (a) It follows from the chain rule immediately.

(b) From ∇Ψ(z) = ∇S(z)S(z) and the matrix ∇S(z) is nonsingular, it is clear that

∇Ψ(z) = 0 if and only if S(z) = 0. Hence, we see that (x, µ, λ) ∈ Rn+l+m is a KKT

triple of the SOCCVI problem provided (x, µ, λ) ∈ Rn+l+m is a stationary point of Ψ.

(c) From the definition of Ψ(z) and (15), it is easy to verify that

dΨ(z(t))

dt
= ∇Ψ(z(t))T

dz(t)

dt
= −ρ ‖∇Ψ(z(t))‖2 ≤ 0, (16)

which says Ψ(z(t)) is a monotonically decreasing function with respect to t. 2

Now, we are ready to analyze the behavior of the solution trajectory of neural network

(15) and establish three kinds of stabilities for an isolated equilibrium point.

Proposition 4.3. (a) If (x, µ, λ) ∈ Rn+l+m is a KKT triple of the SOCCVI problem,

then (x, µ, λ) ∈ Rn+l+m is an equilibrium point of neural network (15).

(b) If ∇S(z) is nonsingular and (x, µ, λ) ∈ Rn+l+m is an equilibrium point of (15), then

(x, µ, λ) ∈ Rn+l+m is a KKT triple of the SOCCVI problem.

16

0 500 1000 1500 2000 2500 3000
Time (ms)

-3

-2

-1

0

1

2

3

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 7: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

3.2.

Proof. (a) From Proposition 4.1 and (x, µ, λ) ∈ Rn+l+m being a KKT triple of SOCCVI

problem, it is clear that S(x, µ, λ) = 0, which implies ∇Ψ(x, µ, λ) = 0. Besides, by

Proposition 4.2, we know that∇Ψ(x, µ, λ) 6= 0. This shows that (x, µ, λ) is an equilibrium

point of neural network (15).

(b) It follows from (x, µ, λ) ∈ Rn+l+m being an equilibrium point of neural network (15)

that ∇Ψ(x, µ, λ) = 0. In other words, (x, µ, λ) is the stationary point of Ψ. Then, the

result is a direct consequence of Proposition 4.2(b). 2

Proposition 4.4. (a) For any initial state z0 = z(t0), there exists exactly one maximal

solution z(t) with t ∈ [t0, τ(x0)) for the neural network (15).

(b) If the level set L(z0) =
{
z ∈ Rn+l+m |Ψ(z) ≤ Ψ(z0)

}
is bounded, then τ(x0) = +∞.

Proof. (a) Since S(·) is continuous differentiable, it says that ∇S(·) is continuous. This

means∇S(·) is bounded on a local compact neighborhood of z, which implies that∇Ψ(z)

is locally Lipschitz continuous. Thus, applying Lemma 2.1 leads to the desired result.

(b) This proof is similar to the proof of Case(i) in [4, Proposition 4.2], so we omit it.

2

Remark 4.1. A natural question arises here. When are the level sets

L(Ψ, γ) :=
{
z ∈ Rn+l+m |Ψ(z) ≤ γ

}
17

0 500 1000 1500 2000 2500 3000
Time (ms)

10-1

100

101

N
or

m
 o

f e
rr

or

NR,p=3
NR,p=5
NR,p=7

Figure 8: Convergence comparison of φp
NR

function with different p value for Example

3.2.

bounded for all γ ∈ R? For the time being, we are not able to answer this question yet.

We suspect that there needs more subtle properties of F , h and g to finish it.

Next, we investigate the convergence of the solution trajectory and stability of neural

network (15), which are the main results of this section.

Theorem 4.1. (a) Let z(t) with t ∈ [t0, τ(z0)) be the unique maximal solution to the

neural network (15). If τ(z0) = +∞ and {z(t)} is bounded, then limt→∞∇Ψ(z(t)) =

0.

(b) If ∇S(z) is nonsingular and (x, µ, λ) ∈ Rn+l+m is the accumulation point of the

trajectory z(t), then (x, µ, λ) ∈ Rn+l+m is a KKT triple of the SOCCVI problem.

Proof. With Proposition 4.2(b) and (c) and Proposition 4.4, the arguments are exactly

the same as those for [23, Corollary 4.3]. Thus, we omit them. 2

Theorem 4.2. Let z∗ be an isolated equilibrium point of the neural network (15). Then,

the following results hold.

(a) z∗ is asymptotically stable, and hence is also Lyapunov stable..

(b) If ∇S(z) is nonsingular, then it is exponentially stable.

18

0 1 2 3 4 5 6 7 8
Time (ms)

0

1

2

3

4

5

6

7

8

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 9: Transient behavior of the neural network with φp
D−FB

function (p = 3) in

Example 3.3

Proof. Again, the arguments are similar to those in [29, Theorem 3.1] and we omit

them. 2

To study the conditions for nonsingularity based on ψp
D−FB

and φp
NR

, we need the

following assumptions.

Assumption 4.1. (a) The gradients {∇hj(x) | j = 1, · · · , l} ∪ {∇gi(x) | i = 1, · · · ,m}
are linear independent.

(b) ∇xL(x, µ, λ) is positive definite on the null space of the gradients {∇hj(x) | j =

1, · · · , l}.

When SOCCVI problem corresponds to the KKT conditions of a convex second-order

cone program (CSOCP) problem as (8) where both h and g are linear, the above As-

sumption 4.1(b) is indeed equivalent to the well-used condition of ∇2f(x) being positive

definite, e.g., [34, Corollary 1].

Assumption 4.2. Let α := w
p
2
mi and β := v

p
2
mi, where wmi

= g2mi
+ λ2mi

and vmi
=

(gmi
+ λmi

)2. For gmi
(x), λmi

∈ Kmi, we have

(a) L2
gmi
− LβL−1α L2

gmi
L−1α Lβ � 0 or LαL

−1
β L2

gmi
L−1β Lα − L2

gmi
� 0;

(b) L2
λmi
− LβL−1α L2

λmi
L−1α Lβ � 0 or LαL

−1
β L2

λmi
L−1β Lα − L2

λmi
� 0.

19

0 5 10 15 20 25
Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 10: Convergence comparison of φp
D−FB

function with different p value for Example

3.3

Theorem 4.3. Suppose −gmi
+ λmi

∈ intKmi for i = 1, 2, · · · , p and that Assumption

4.1 and 4.2 hold. Then, the matrix

∇S(z) =

∇xL(x, µ, λ)T −∇h(x) −∇g(x) diag{∇gmi
ψp

D−FB
(−gmi

(x), λmi
)}qi=1

∇h(x)T 0 0

∇g(x)T 0 diag{∇λmi
ψp

D−FB
(−gmi

(x), λmi
)}qi=1


is nonsingular.

Proof. We know that ∇S(z) is nonsingular if and only if the following equation only

has zero solution:

∇S(z)

 u

v

t

 = 0, where (u, v, t) ∈ Rn ×Rl ×Rm. (17)

To reach the conclusion, we need to prove u = 0, v = 0, t = 0. First, plugging the

components of ∇S(z) into (17), we have

(∇xL)Tu− (∇h(x))v −∇g(x)(L−g+λL−1β − L−gL
−1
α)t = 0 (18)

(∇h(x))Tu = 0 (19)

(∇g(x))Tu+ (L−g+λL−1β − LλL
−1
α)t = 0 (20)

20

0 1 2 3 4 5 6 7 8
Time (ms)

0

1

2

3

4

5

6

7

8

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 11: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

3.3

where

Lg+λ = diag
{
L−gm1+λm1

, L−gm2+λm2
, . . . , L−gmq+λmq

}
Lβ = diag

{
∇gsoc(vm1),∇gsoc(vm2),∇gsoc(vmq)

}
L−g = diag

{
L−gm1

, L−gm2
, · · · , L−gmq

}
Lα = diag

{
∇gsoc(wm1),∇gsoc(wm2),∇gsoc(wmq)

}
Lλ = diag

{
Lλm1

, Lλm2
, · · · , Lλmq

}
α = diag

{
αm1 , αm2 , · · · , αmq

}
αmi

= (vmi
)
p
2 = (−gmi

+ λmi
)p, i = 1, 2, · · · , q

β = diag
{
βm1 , βm2 , · · · , βmq

}
βmi

= (wmi
)
p
2 = (−g2mi

+ λ2mi
)
p
2 , i = 1, 2, · · · , q

From equations (18) and (19), we see that

uT (∇xL)Tu− uT∇g(x)(L−g+λL−1β − L−gL
−1
α)t = 0, (21)

while from equation (20), we have

tT
(
L−g+λL−1β − L−gL

−1
α

)T (∇g(x))Tu+ tT (L−g+λL−1β − L−gL
−1
α

)T (L−g+λL−1β − LλL−1α) t = 0

(22)

Next, we will claim that

tT (L−g+λL−1β − L−gL
−1
α)T (L−g+λL−1β − LλL

−1
α)t ≥ 0 (23)

21

0 1 2 3 4 5 6 7 8
Time (ms)

10-5

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

NR,p=3
NR,p=5

Figure 12: Convergence comparison of φp
NR

function with different p value for Example

3.3

To see this, we note that(
L−g+λL−1β − L−gL

−1
α

)T (L−g+λL−1β − LλL−1α)
= diag

{(
L−gm1+λm1

L−1βm1
− L−gm1

L−1αm1

)T (
L−gm1+λm1

L−1βm1
− Lλm1

L−1αm1

)
, · · · ,(

L−gmq+λmq
L−1βmq

− L−gmq
L−1αmq

)T (
L−gmq+λmq

L−1βmq
− Lλmq

L−1αmq

)}
.

In view of this, to prove inequality (23), it suffices to show that

tTi

(
L−gmi+λmi

L−1βmi
− L−gmi

L−1αmi

)T (
L−gmi+λm1

L−1βmi
− Lλmi

L−1αmi

)
ti ≥ 0, (24)

for i = 1, 2, . . . , q. For convenience, we denote X := −gmi
, Y := λmi

, A := αmi
, and

B := βmi
. With these notations, we have(

L−gmi+λmi
L−1βmi

− L−gmi
L−1αmi

)T (
L−gmi+λm1

L−1βmi
− Lλmi

L−1αmi

)
=

(
LX+YL

−1
B − LXL

−1
A

)T (
LX+YL

−1
B − LYL

−1
A

)
= L−1B

(
LX+Y − LBL−1A LX

) (
LX+Y − LYL−1A LB

)
L−1B ,

which says that it is enough to show M := (LX+Y − LBL−1A LX)(LX+Y − LYL−1A LB) is

22

semipositive definite in order to prove inequality (24). To this end, we compute that

1
2

[(
LX+Y − LBL−1A LX

) (
LX+Y − LYL−1A LB

)
+
(
(LX+Y − LBL−1A LX)(LX+Y − LYL−1A LB)

)T]
= 1

2

[
2L2

X+Y − L2
X+YL

−1
A LB − LBL−1A L2

X+Y + LBL
−1
A (LXLY + LYLX)L−1A LB

]
= 1

2

[(
I − LBL−1A

)
L2
X+Y

(
I − L−1A LB

)
+ L2

X+Y

−LBL−1A L2
X+YL

−1
A LB + LBL

−1
A (LXLY + LYLX)L−1A LB

]
= 1

2

[(
I − LBL−1A

)
L2
X+Y

(
I − L−1A LB

)
+ L2

X+Y − LBL−1A (L2
X + L2

Y)L−1A LB

]
= 1

2

[(
I − LBL−1A

)
L2
X+Y

(
I − L−1A LB

)
+
(
L2
X − LBL−1A (L2

X)L−1A LB
)

+
(
L2
Y − LBL−1A (L2

Y)L−1A LB
)

+ (LXLY + LYLX)

]
.

(25)

It can be verified that L2
X+Y and LXLY + LYLX are positive semidefinite. Then, from

Assumption 4.2 and (25), we conclude that M := (LX+Y −LBL−1A LX)(LX+Y −LYL−1A LB)

is semipositive definite; and hence inequality (24) holds. Thus, the inequality (23) also

holds accordingly. Now, tt follows from (21), (22), and (23) that uT (∇xL)Tu = 0 which

implies that u = 0. Then, equations (18) and (19) become

∇h(x)v +∇g(x)
(
L−g+λL−1β − L−gL

−1
α

)
t = 0 (26)(

L−g+λL−1β − LλL
−1
α

)
t = 0 (27)

In light of Assumption 4.1(a) and (26), we know

v = 0 and
(
L−g+λL−1β − L−gL

−1
α

)
t = 0. (28)

Combining (27) and (28) together, it is clear to obtain

L−gL−1α t = LλL−1α t

Note that −g and λ are strict complementary. Hence, it yields t = 0. In summary, from

equation (17), we deduce u = v = t = 0, which says the matrix ∇S(z) is nonsingular.

2

Theorem 4.4. Suppose Assumption 4.1 holds and

∇gmi
φp

NR
(−gmi

(x), λmi
) · ∇λmi

φp
NR

(−gmi
(x), λmi

) � 0.

23

Then, the matrix

∇S(z) =

∇xL(x, µ, λ)T −∇h(x) −∇g(x) diag{∇gmi
φp

NR
(−gmi

(x), λmi
)}qi=1

∇h(x)T 0 0

∇g(x)T 0 diag{∇λmi
φp

NR
(−gmi

(x), λmi
)}qi=1


is nonsingular.

Proof. The proof can be done by following the similar arguments as in Theorem 4.3.

2

To close this subsection, we say a few words about the complexity of the proposed

neural network. Since SOCQP can be transformed into an SOCCVI problem, we only

take SOCCVI as an example to illustrate the complexity of the proposed neural network

model. In light of the main ideas for constructing neural network (see [37] for details),

we establish a specific first order ordinary differential equation, i.e., an artificial neural

network. More specifically, based on the gradient of the objective function, we employ the

neural network for solving the KKT system (9) of SOCCVI with the differential equation

(15), where ρ > 0 is a time scaling factor. In fact, if τ = ρt, then dz(t)
dt

= ρdz(τ)
dτ

. Hence, it

follows from (15) that dz(τ)
dτ

= −∇Ψ(u). In view of this, for simplicity and convenience,

we set ρ = 1 in this paper. Indeed, the dynamic system (15) can be realized by an

architecture with the two discrete-type classes of SOC complementarity functions φp
D−FB

and φp
NR

shown in Figure 13. Moreover, the architecture of this artificial neural networks

is categorized as a ”recurrent” neural network according to the classifications of artificial

neural networks as in [37]. The circuit for (15) requires n+ l +m integrators, n proces-

sors for F (x), m processors for g(x), mn processors for ∇g(x), ln processors for ∇h(x),

(l2+m2+m+ l)n processors for ∇xL(x, µ, λ), 1 processor for φp
D−FB

and φp
NR

, n processors

for ∇xφ
p
D−FB

and ∇xφ
p
NR

, m processors for ∇λφ
p
D−FB

and ∇λφ
p
NR

, n2 +4ln+3mn+m2 +m

connection weights and some summers.

4.2 Numerical experiments

In this subsection, to demonstrate effectiveness of the proposed neural networks, some

illustrative SOCCVI problems are tested. The numerical implementation is coded by

Matlab 2014b and the ordinary differential equation solver adopted is ode23, which uses

Runge-Kutta (2; 3) formula. In the subsequent tests, the parameter ρ in neural networks

of Example 4.3 is set to be 10 and others are set to be 1.

Example 4.1. Consider the SOCCVI problem where

F (x) = [2x1 − 4, ex1 − 1, 2x3 − 4,− sin(x4)]
T ,

24

Figure 13: Block diagram of the proposed neural network with φ (φ is φp
D−FB

or φp
NR

).

and

C =
{
x ∈ R5 | − g(x) = x ∈ K5

}
.

This problem has an approximate solution x∗ =
[
2, 0, 1.3333, 0, 0

]T
. Figure 14 and 16

show the transient behaviors of Example 4.1 for neural network model (15) based on

φp
D−FB

and φp
NR

with initial states x0 = [0, 0, 0, 0, 0]T , respectively. Figure 15 depicts the

convergence comparison of the neural network model using φp
D−FB

function with different

values of p = 3, 5, 7. From this, we see that the performance of p = 3 is significantly

better than in other cases. Figure 17 depicts the influence of the parameter p on the

value of norm of error for neural network model using φp
NR

function. Again, when p = 3,

the neural network based on φp
NR

function produces fast decrease of norm of error.

Example 4.2. Consider the problem where

min
x∈C

f(x) = 2(x1 − 3)2 + sin(x1 − 3) sinx2 + 2x22 + x23,

and

C =
{
x ∈ R5 | − g(x) = x ∈ K5

}
.

25

0 2 4 6 8 10 12
Time (ms)

0

0.5

1

1.5

2

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3
x4
x5

Figure 14: Transient behavior of neural network with φp
D−FB

function (p = 3) in Example

4.1.

This problem has an approximate solution x∗ =
[
3, 0, 0

]T
. In light of the analysis of

previous section, this CSOCP in Example 4.2 can be transformed into an SOCCVI. We

use the proposed neural networks to solve the problem with the trajectory obtained by

it shown in Figure 18 - Figure 21.

Figure 18 and 20 show the transient behaviors of Example 4.2 for neural network

model (15) based on φp
D−FB

and φp
NR

with initial states x0 = [0, 0, 0, 0, 0]T , respectively.

From Figure 19, we see the convergence comparison of the neural network model using

φp
D−FB

function with p = 3, 5, 7. There is no significant difference when perturbing the

values of p. Figure 21 depicts the influence of the parameter p on the value of norm of

error for neural network model using φp
NR

function.

Example 4.3. We consider the following SOCCVI problem:

〈Dx, y − x〉 ≥ 0, ∀y ∈ C

where

C =
{
x ∈ R10 |Ax− a = 0, Bx− b � 0

}
,

D is an 10× 10 symmetric matrix and

D = (Dij)10×10, where Dij =


2, i = j

1, |i− j| = 1

0, otherwise

,

A =
[
I5×5 05×5

]
5×5, B =

[
05×5 I5×5

]
5×10, a = 05×5, b = [1, 0, 1, 0, 0]T ∈ K2 × K3.

Clearly, A and B are full row rank and rank([AT BT]) = 10.

26

0 10 20 30 40 50 60 70
Time (ms)

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 15: Convergence comparison of φp
D−FB

function with different p value for Example

4.1.

The problem has an solution x∗ = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T . It can be verified that the

Lagrangian function for this example is

L(x, µ, λ) = Dx+ ATµ+BTλ.

Note that ∇xL(x, µ, λ) is positive definite.

Figure 22 and 24 show the transient behaviors of Example 4.3 for neural network

model (15) based on φp
D−FB

and φp
NR

with initial states x0 = [0, 0, 0, 0, 0]T , respectively.

Figure 23 and Figure 25 depict the influence of the parameter p on the value of norm

of error for neural network model based on φp
D−FB

and φp
NR

functions. We see that the

influence of perturbing parameter p is tiny.

We summarize some observations based on the above experiments. First, we provide

the simulation diagrams of convergence comparison of φp
D−FB

and φp
NR

functions with dif-

ferent p value for 6 examples. It can be seem from the Figure 2, Figure 4, Figure 6,

Figure 8, Figure 10, Figure 12, Figure 15, Figure 17 and Figure 21 that the convergence

speed is the fastest when p = 3. Under the same calculation time, the norm error in the

case of p = 3 is generally smaller than that in the cases of p = 5 and p = 7. But from

Figure 19, Figure 23 and Figure 25, we find that the convergence of case p = 3, p = 5

and p = 7 is similar. In other words, we observe that for our examples, p = 3 is basically

the best choice. However, the theoretical evidence is not clear yet, which will be left for

future study.

27

0 1 2 3 4 5 6 7 8 9
Time (ms)

0

0.5

1

1.5

2

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3
x4
x5

Figure 16: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

4.1.

5 Conclusions

In this paper, we propose a unified neural network model for solving two types of second-

order cone optimization problems. We implement the neural network model with two

classes of SOC complementarity functions φp
D−FB

and φp
NR

, which are freshly discovered.

Overall, when p is larger, the performance of the neural network based on φp
D−FB

and

φp
NR

gets poorer. This suggests that the parameter p = 3 is the best choice to work with

the neural network no matter φp
D−FB

or φp
NR

is employed. On the other hand, we observe

that the neural network using the family of φp
D−FB

functions performs better than the

one using φp
NR

, in general. This is an very interesting phenomenon and new discovery,

which is different from the observation in [22]. Note that in [22], for standard SOCP

(second-order cone progarm), it was observed that the neural network based on the NR

function has better performance than the one based on the FB function in most cases

(except for some oscillating cases). Our numerical experiments show that for SOCQP

and SOCCVI, the family of φp
D−FB

(a variant of FB function) may be considered to be

employed in the neural network approach.

Another point that we want to clarify is the significance of this paper. By using

two new SOC complementarity functions, this paper can be viewed as a follow-up of

our previous works (ref. [22, 29]). From the natural feature of neural network, we pay

more attention to the convergence path. This kind of convergence path varies with

different SOC complementarity functions. In engineering, an important application of

neural network is the design of robot arm. Therefore, compared with previous works,

28

0 5 10 15 20 25
Time (ms)

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

NR p=3
NR p=5
NR p=7

Figure 17: Convergence comparison of φp
NR

function with different p value for Example

4.1.

we achieve different convergence paths and the convergence paths are very good. In

addition, we provide more detailed graphs regarding error analysis in this paper.

References

[1] Y.-L. Chang, J.-S. Chen, and C.-Y. Yang, Symmetrization of generalized nat-

ural residual function for NCP, Operations Research Letters, 43(2015), 354–358.

[2] J.-S. Chen, The semismooth-related properties of a merit function and a decent

method for the nonlinear complementarity problem, Journal of Global Optimization,

36(2006), 565–580.

[3] J.-S. Chen, H.-T. Gao, and S.-H. Pan, A derivative-free R-linear convergent al-

gorithm based on the generalized Fischer-Burmeister merit function, Journal of Com-

putational and Applied Mathematics, 232(2009), 455–471.

[4] J.-S. Chen, C.-H. Ko, and S.-H. Pan, A neural network based on the generalized

Fischer-Burmeister function for nonlinear conplementarity problems, Information Sci-

ences, 180(2010), 697–711.

[5] J.-S. Chen and S.-H. Pan, A family of NCP functions and a descent method for the

nonlinear complementarity problem, Computational Optimization and Applications,

40(2008), 389–404.

29

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (ms)

0

0.5

1

1.5

2

2.5

3

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 18: Transient behavior of neural network with φp
D−FB

function (p = 3) in Example

4.2.

[6] J.-S. Chen and S.-H. Pan, A survey on SOC complementarity functions and so-

lution methods for SOCPs and SOCCPs, Pacific Journal of Optimization, 8(2012),

33–74.

[7] J.-S. Chen and P. Tseng, An unconstrained smooth minimization reformula-

tion of the second-order cone complementarity problem, Mathematical Programming,

104(2005), 293–327.

[8] X. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing

Newton method and its application to general box constrained variational inequalities,

Mathematics of Computation, 67(1998), 519–540.

[9] C. Dang, Y. Leung, X. Gao, and K. Chen, Neural networks for nonlinear and

mixed complementarity problems and their applications, Neural Networks, 17(2004),

271–283.

[10] S. Effati, A. Ghomashi, and A. R. Nazemi, Applocation of projection neural

network in solving convex programming problems, Applied Mathematics and Compu-

tation, 188(2007), 1103–1114.

[11] S. Effati and A. R. Nazemi, Neural network and its application for solving

linear and quadratic programming problems, Applied Mathematics and Computation,

172(2006), 305–331.

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (ms)

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 19: Convergence comparison of φp
D−FB

function with different p value for Example

4.2.

[12] F. Facchinei and J. Pang, Finite-dimensional Variational Inequalities and Com-

plementarity Problems, Springer, New York, 2003.

[13] M. Fukushima, Z.-Q. Luo, and P. Tseng, Smoothing functions for second-

order-cone complimentarity problems, SIAM Journal on Optimization, 12(2002), 436–

460.

[14] Q. Han, L.-Z. Liao, H. Qi, and L. Qi, Stability analysis of gradient-based neural

networks for optimiation problems, Journal of Global Optimization, 19(2001), 363–

381.

[15] S. Hayashi, N. Yamashita, and M. Fukushima, A combined smoothing and reg-

ularization method for monotone second-order cone complementarity problems, SIAM

Journal on Optimization, 15(2005), 593–615.

[16] J. J. Hopfield and D. W. Tank, Neural computation of decision in optimization

problems, Biological Cybernetics, 52(1985), 141–152.

[17] X. Hu and J. Wang, A recurrent neural network for solving nonlinear con-

vex programs subject to linear constraints, IEEE Transactions on Neural net-

work,16(3)(2005), 379–386.

[18] X. Hu and J. Wang, Solving pseudomonotone variational inequalities and pseudo-

convex optimization problems using the projection neural network, IEEE Transactions

on Neural Network, 17(2006), 1487–1499.

31

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (ms)

0

0.5

1

1.5

2

2.5

3

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3

Figure 20: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

4.2.

[19] X. Hu and J. Wang, A recurrent neural network for solving a class of general

variational inequalities, IEEE Transactions on Systems, Man, and Cybernetics-B,

37(2007), 528–539.

[20] V. Jeyakumar and H. Wolkowicz, Generalizations of Slater’s Constraint Quali-

fication for Infinite Convex Programs, Mathematical Programming, 57(1992), 85–101.

[21] M. P. Kennedy and L. O. Chua, Neural network for nonlinear programming,

IEEE Transactions on Circuits and Systems, 35(1988), 554–562.

[22] C.-H. Ko, J.-S. Chen, and C.-Y. Yang, Recurrent neural networks for solving

second-order cone programs, Neurocomputing, 74(2011), 3646-3653.

[23] L.-Z. Liao, H. Qi, and L. Qi, Solving nonlinear complementarity problems with

neural networks: a reformulation method approach, Jorunal of Computational and

Applied Mathematics, 131(2001), 342–359.

[24] P.-F. Ma, J.-S. Chen, C.-H. Huang, and C.-H. Ko, Discovery of new comple-

mentarity functions for NCP and SOCCP, to appear in Computational and Applied

Mathematics, DOI: 10.1007/s40314-018-0660-0, 2018.

[25] X.-H. Miao, J.-S. Chen, and C.-H. Ko, A smoothed NR neural network for

solving nonlinear convex programs with second-order cone constrains, Information

Sciences, 268(2014), 255–270.

32

0 0.5 1 1.5 2 2.5
Time (ms)

10-4

10-3

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

NR p=3
NR p=5
NR p=7

Figure 21: Convergence comparison of φp
NR

functions with different p value for Example

4.2.

[26] R. K. Miller and A. N. Michel, Ordinary Differential Equations, Academic

Press, 1982.

[27] S.-H. Pan and J.-S. Chen, A semismooth Newton method for the SOCCP based

on a one-parametric class of SOC complementarity functions, Computational Opti-

mization and Applications, 45(2010), 59–88.

[28] J.-H. Sun and L.-W. Zhang, A globally convergent method based on Fischer-

Burmeister operators for solving second-order-cone constrained variational inequality

problems, Computers and Mathematics with Applications, 58(2009), 1936–1946.

[29] J.-H. Sun, J.-S. Chen, and C.-H. Ko, Neural networks for solving second-order

cone constrained variational inequality problem, Computational Optimization and Ap-

plications, 51(2012), 623–648.

[30] D. W. Tank and J. J. Hopfield , Simple neural optimization network: an A/D

converter, signal decision circuit, and a linear programming circuit, IEEE Transac-

tions on Circuits and Systems, 33(1986), 533–541.

[31] S.J. Wright, An infeasible-interior-point algorithm for linear complementarity

problems, Mathematical Programming, 67(1994), 29–51.

[32] Y. Xia, H. Leung, and J. Wang, A projection neural network and its application

to constrained optimization problems, IEEE Transactions on Circuits and Systems-I,

49(2002), 447–458.

33

0 10 20 30 40 50 60 70
Time (ms)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
ra

je
ct

or
ie

s
of

 x
(t

)

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

Figure 22: Transient behavior of neural network with φp
D−FB

function (p = 3) in Example

4.3.

[33] Y. Xia, H. Leung, and J. Wang, A general projection neural network for solving

monotone variational inequalities and related optimization problems, IEEE Transac-

tions on Neural Networks, 15(2004), 318–328.

[34] Y. Xia and J. Wang, A recurrent neural network for solving nonlinear convex pro-

grams subject to linear constraints, IEEE Transactions on Neural Networks, 16(2005),

379–386.

[35] M. Yashtini and A. Malek, Solving complementarity and variational inequalities

problems using neural networks, Applied Mathematics and Computation, 190(2007),

216–230.

[36] S. H. Zak, V. Upatising, and S. Hui, Solving linear programming problems

with neural networks: a comparative study, IEEE Transactions on Neural Networks,

6(1995), 94–104.

[37] A. Cichocki, R. Unbehauen, Neural networks for optimization and signal pro-

cessing, john wiley, New York, 1993.

[38] Y. Xia, J. Wang, Robust regression estimation based on low-dimiensional recur-

rent neural network, IEEE Transactions on Neural Networks and Learning Systems,

29(2018), 5935–5946.

34

0 100 200 300 400 500 600
Time (ms)

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

FB,p=3
FB,p=5
FB,p=7

Figure 23: Convergence comparison of φp
D−FB

functions with different p value for Example

4.3.

[39] S. Zhang, Y. Xia, Solving nonlinear optimization problems of real functions in

complex variables by complex-valued iterative methods, IEEE Transactions on Cyber-

netics, 48(2018), 277–287.

[40] Y. Xia, J. Wang, A Bi-projection neural network for solving constrained quadratic

optimization problems, IEEE Transactions on Neural Networks and Learning Systems,

27(2016), 214–224.

[41] Y. Xia, H. Leung, M. S Kamel, A discrete-time learning algorithm for image

restoration using a novel L-2-norm noise constrained estimation, Neurocomputing,

198(2016), 155–170.

[42] S. Zhang, Y. Xia, J. Wang, A complex-valued projection neural network for

constrained optimization of real functions in complex variables, IEEE Transactions

on Neural Networks and Learning Systems, 26(2015), 3227–3238.

35

0 100 200 300 400 500
Time (ms)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
ra

je
ct

or
ie

s
of

 x
(t

)
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10

Figure 24: Transient behavior of the neural network with φp
NR

function (p = 3) in Example

4.3.

0 100 200 300 400 500 600
Time (ms)

10-2

10-1

100

101

N
or

m
 o

f e
rr

or

NR p=3
NR p=5
NR p=7

Figure 25: Convergence comparison of φp
NR

functions with different p value for Example

4.3.

36

