
J Glob Optim (2015) 62:459–480
DOI 10.1007/s10898-014-0252-5

On the existence of saddle points for nonlinear
second-order cone programming problems

Jinchuan Zhou · Jein-Shan Chen

Received: 8 October 2013 / Accepted: 27 October 2014 / Published online: 6 November 2014
© Springer Science+Business Media New York 2014

Abstract In this paper, we study the existence of local and global saddle points for nonlinear
second-order cone programming problems. The existence of local saddle points is developed
by using the second-order sufficient conditions, in which a sigma-term is added to reflect the
curvature of second-order cone. Furthermore, by dealing with the perturbation of the primal
problem, we establish the existence of global saddle points, which can be applicable for the
case of multiple optimal solutions. The close relationship between global saddle points and
exact penalty representations are discussed as well.
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1 Introduction

Recall that the second-order cone (SOC), also called the Lorentz cone or ice-cream cone, in
IRm+1 is defined as

Km+1 = {(x1, x2) ∈ IR × IRm | ‖x2‖ ≤ x1},
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where ‖ · ‖ denotes the Euclidean norm. The order relation induced by this pointed closed
convex cone Km+1 is given by

x �Km+1 0 ⇐⇒ x ∈ IRm+1, x1 ≥ ‖x2‖.
In this paper, we consider the following nonlinear second-order cone programming (NSOCP)

min f (x)

s.t. g j (x) �Km j +1 0, j = 1, 2, . . . , J,

h(x) = 0,

(1)

where f : IRn → IR, h : IRn → IRl , g j : IRn → IRm j +1 are twice continuously differen-
tiable functions, and Km j +1 is the second-order cone in IRm j +1 for j = 1, 2, . . . , J .

For a given nonlinear programming problem,we can define another programming problem
associatedwith it by using traditional Lagrangian functions. The original problem is called the
primal problem, and the latter one is called the dual problem. Since the weak duality property
always holds, our concern is on how to obtain the strong duality property (or zero duality
gap property). In other words, we want to know when the primal and dual problems have the
same optimal values, which provides the theoretical foundation for many primal-dual type
methods. However, if we employ the traditional Lagrangian functions, then some convexity is
necessary for achieving strong duality property. To overcome this drawback, we need to resort
to the augmented Lagrangian functions, whose main advantage is ensuring the strong duality
propertywithout requiring convexity. In addition, the zero duality gap property coincideswith
the existence of global saddle points, provided that the optimal solution sets of the primal and
dual problems are nonempty, respectively. Many researchers have studied the properties of
augmented Lagrangian and the existence of saddle points. For example, Rockafellar andWets
[13] proposed a class of augmented Lagrangian where augmented function is required to be
convex functions. This was extended by Huang and Yang [6] where convexity condition is
replaced by level-boundedness, and it was further generalized by Zhou and Yang [21] where
level-boundedness condition is replaced by so-called valley-at-zero property; see also [14]
for more details. These important works give an unified frame for the augmented Lagrangian
function and its duality theory.Meanwhile, Floudas and Jongen [5] pointed out the crucial role
of saddle points for the minimization of smooth functions with a finite number of stationary
points. Thenecessary and/or sufficient conditions to ensure the existenceof local and/or global
saddle points were investigated by many researchers. For example, the existence of local and
global saddle points of Rockafellar’s augmented Lagrangian function was studied in [12].
Local saddle points of the generalized Mangasarian’s augmented Lagrangian were analyzed
in [19]. The existences of local and global saddle points of pth power nonlinear Lagrangian
were discussed in [7,8,18]. For more references, please see [9,10,14,16,17,20,22].

All the results mentioned above are focused on either the standard nonlinear programming
or the generalized minimizing problems [13]. The main purpose of this paper is to establish
the existences of local and global saddle points of NSOCP (1) by sufficiently exploiting the
special structure of SOC. As shown in nonlinear programming, the positive definiteness of
∇2

xx L over the critical cone is a sufficient condition for the existence of local saddle points.
However, this classical result cannot be extended trivially to NSOCP (1) and the analysis
is more complicated because IRn+ is polyhedral, whereas Km+1 is non-polyhedral. Hence,
we particulary study the sigma-term [4], which in some extend stands for the curvature
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of second-order cone. Our result shows that the local saddle point exists provided that the
sum of ∇2

xx L and H is positive definite even if ∇2
xx L is indefinite (see Theorem 2.3). This

undoubtedly clarifies the essential role playedby the sigma-term.Moreover, bydeveloping the
perturbation of the primal problem, we establish the existence of global saddle points without
restricting the optimal solution being unique, as required in [12,16]. Furthermore, we study
another important concept, exact penalty representation, and develop its new necessary and
sufficient conditions. The close relationship between global saddle points and exact penalty
representations is established as well.

To end this section, we introduce some basic concepts which will be needed for our
subsequent analysis. Let IRn be n-dimensional real vector space. For x, y ∈ IRn , the inner
product is denoted by xT y or 〈x, y〉. Given a convex subset A ⊆ IRn and a point x ∈ A, the
normal cone of A at x , denoted by NA(x), is defined as

NA(x) := {v ∈ IRn | 〈v, z − x〉 ≤ 0, ∀z ∈ A},
and the tangent cone, denoted by TA(x), is defined as

TA(x) := NA(x)◦,

where NA(x)◦ means the polar cone of NA(x). Given d ∈ TA(x), the outer second order
tangent set is defined as

T 2
A(x, d) =

{
w ∈ IRn

∣∣ ∃ tn ↓ 0 such that dist
(
x + tnd + 1

2
t2n w, A

) = o(t2n )
}
.

The support function of A is

σ(x | A) := sup{〈x, z〉 | z ∈ A}.
We also write cl(A), int(A), and ∂(A) to stand for the closure, interior, and boundary of A,
respectively. For the simplicity of notations, let us write K j to stand for Km j +1 and K be the
Cartesian product of these second-order cones, i.e., K := K1 ×K2 × · · ·KJ . In addition, we
denote g(x) := (g1(x), g2(x), . . . , gJ (x)), p := ∑J

j=1(m j + 1), and S∗ means the solution
set of NSOCP (1). According to [13, Exercise 11.57], the augmented Lagrangian function
for NSOCP (1) is written as

Lc(x, λ, μ, c) := f (x) + 〈μ, h(x)〉 + c

2
‖h(x)‖2

+ c

2

J∑
j=1

[
dist2

(
g j (x) − λ j

c
,K j

)
−
∥∥∥∥
λ j

c

∥∥∥∥
2
]

. (2)

Here c ∈ IR++ := {ζ ∈ IR | ζ > 0} and (x, λ, μ) ∈ IRn × IRp × IRl with λ =
(λ1, λ2, . . . , λJ ) ∈ IRm1+1 × IRm2+1 × · · · × IRm J +1.

Definition 1.1 Let Lc be given as in (2) and (x∗, λ∗, μ∗) ∈ IRn × IRp × IRl .

(a) The triple (x∗, λ∗, μ∗) is said to be a local saddle point of Lc for some c > 0 if there
exists δ > 0 such that

Lc(x∗, λ, μ) ≤ Lc(x∗, λ∗, μ∗) ≤ Lc(x, λ∗, μ∗), ∀x ∈ B(x∗, δ), (λ, μ) ∈ IRp × IRl ,

(3)

whereB(x∗, δ) denotes the δ-neighborhood of x∗, i.e.,B(x∗, δ) := {x ∈ IRn | ‖x−x∗‖ ≤
δ}.
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(b) The triple (x∗, λ∗, μ∗) is said to be a global saddle point of Lc for some c > 0 if

Lc(x∗, λ, μ) ≤ Lc(x∗, λ∗, μ∗) ≤ Lc(x, λ∗, μ∗), ∀x ∈ IRn, (λ, μ) ∈ IRp × IRl . (4)

2 On local saddle points

In this section, we focus on the necessary and sufficient conditions for the existence of local
saddle points. For simplicity, we let Q stand for a second-order cone without emphasizing its
dimension, while using the notation Q ⊂ IRm+1 to indicate that Q is regarded as a second-
order cone in IRm+1. In other words, the result holding for Q is also applicable to Ki for
i = 1, . . . , J in the subsequent analysis. According to [13, Example 6.16] we know for
a ∈ Q,

− b ∈ NQ(a) ⇐⇒ �Q(a − b) = a

⇐⇒ dist(a − b,Q) = ‖b‖
⇐⇒ a ∈ Q, b ∈ Q, aT b = 0, (5)

where the last equivalence comes from the fact that Q is a self-dual cone, i.e., (Q)◦ = −Q.

Lemma 2.1 Let Lc be given as in (2). Then, the augmented Lagrangian function Lc(x, λ, μ)

is nondecreasing with respect to c > 0.

Proof See [13, Exercise 11.56]. ��
We now discuss the necessary conditions for local saddle points.

Theorem 2.1 Suppose (x∗, λ∗, μ∗) is a local saddle point of Lc∗ . Then,

(a) −λ∗ ∈ NK(g(x∗));
(b) Lc(x∗, λ∗, μ∗) = f (x∗) for all c > 0;
(c) x∗ is a local optimal solution to NSOCP (1).

Proof We first show that x∗ is a feasible point of NSOCP (1), for which we need to verify
two things: (i) h(x∗) = 0, (ii) g j (x∗) �K j 0 for all j = 1, 2, . . . , J .

(i) Suppose h(x∗) �= 0. Takingμ = γ h(x∗)with γ → ∞, and applying the first inequality
in (3) yields Lc∗(x∗, λ∗, μ∗) = ∞ which is a contradiction. Thus, h(x∗) = 0.

(ii) Suppose g j (x∗) /∈ K j for some j = 1, . . . , J . Then, there exist λ̃ j ∈ K j such that
η := 〈λ̃ j , g j (x∗)〉 < 0. Therefore, for β ∈ IR

dist2
(

g j (x∗) − βλ̃ j

c∗ ,K j

)
−
∥∥∥∥∥
βλ̃ j

c∗

∥∥∥∥∥
2

=
∥∥∥∥∥g j (x∗) − βλ̃ j

c∗ − �K j

(
g j (x∗) − βλ̃ j

c∗

)∥∥∥∥∥
2

−
∥∥∥∥∥
βλ̃ j

c∗

∥∥∥∥∥
2

=
∥∥∥∥∥g j (x∗)−�K j

(
g j (x∗)− βλ̃ j

c∗

)∥∥∥∥∥
2

−2

〈
βλ̃ j

c∗ , g j (x∗)−�K j

(
g j (x∗)− βλ̃ j

c∗

)〉
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≥ dist2
(
g j (x∗),K j

)− 2β

〈
λ̃ j

c∗ , g j (x∗)
〉

= dist2
(
g j (x∗),K j

)− 2β
η

c∗ . (6)

Here the inequality comes from the facts that
∥∥∥∥∥g j (x∗) − �K j

(
g j (x∗) − βλ̃ j

c∗

)∥∥∥∥∥ ≥ ‖g j (x∗) − �K j (g j (x∗))‖ = dist(g j (x∗),K j )

and
〈
λ̃ j ,�K j

(
g j (x∗) − (βλ̃ j/c∗)

)〉
≥ 0

because λ̃ j ∈ K j and �K j

(
g j (x∗) − (βλ̃ j/c∗)

)
∈ K j . Taking β → ∞, it follows from (3)

and (6) that Lc∗(x∗, λ∗, μ∗) is unbounded above which is a contradiction.
Plugging λ = 0 in the first inequality of (3) (i.e., Lc∗(x∗, 0, μ∗) ≤ Lc∗(x∗, λ∗, μ∗)), we
obtain

J∑
j=1

⎡
⎣dist2

(
g j (x∗) − λ∗

j

c∗ ,K j

)
−
∥∥∥∥∥
λ∗

j

c∗

∥∥∥∥∥
2
⎤
⎦ ≥ 0, (7)

where we have used the feasibility of x∗ as shown above.
On the other hand, we have

dist

(
g j (x∗) − λ∗

j

c∗ ,K j

)
≤
∥∥∥∥∥g j (x∗) − λ∗

j

c∗ − g j (x∗)
∥∥∥∥∥ =

∥∥∥∥∥
λ∗

j

c∗

∥∥∥∥∥ ,

where the inequality is due to the fact that g j (x∗) ∈ K j as shown above. This together with
(7) ensures that

dist

(
g j (x∗) − λ∗

j

c∗ ,K j

)
=
∥∥∥∥∥
λ∗

j

c∗

∥∥∥∥∥ . (8)

Combining (5) and (8) yields −λ∗
j ∈ NK j (g j (x∗)) for all j = 1, . . . , J , i.e., −λ∗ ∈

NK(g(x∗)) by [13, Proposition 6.41]. This establishes part (a). Furthermore, it implies

dist

(
g j (x∗) − λ∗

j

c
,K j

)
=
∥∥∥∥∥
λ∗

j

c

∥∥∥∥∥ , ∀c > 0, (9)

because −λ∗
j/c ∈ NK j (g j (x∗)) for all c > 0 (since NK j (g j (x∗)) is a cone). Hence

Lc(x∗, λ∗, μ∗) = f (x∗) for all c > 0. This establishes part (b).
Now, we turn the attention to part (c). Suppose x ∈ B(x∗, δ) is any feasible point of NSOCP
(1). Then, from (3), we know

f (x) ≥ Lc∗(x, λ∗, μ∗) ≥ Lc∗(x∗, λ∗, μ∗) = f (x∗),

where the first inequality comes from the fact that x is feasible. This means x∗ is a local
optimal solution to NSOCP (1). The proof is complete. ��
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For NSOCP (1), we say that Robinson’s constraint qualification holds at x∗ if ∇hi (x∗)
for i = 1, . . . , l are linearly independent and there exists d ∈ IRn such that

∇h(x∗)d = 0 and g(x∗) + ∇g(x∗)d ∈ int(K).

It is known that if x∗ is a local solution to NSOCP (1) and Robinson’s constraint qualification
holds at x∗, then there exists (λ∗, μ∗) ∈ IRp × IRl such that the following Karush-Kuhn-
Tucker (KKT) conditions

∇x L(x∗, λ∗, μ∗) = 0, h(x∗) = 0, −λ∗ ∈ NK(g(x∗)), (10)

or equivalently,

∇x L(x∗, λ∗, μ∗) = 0, h(x∗) = 0, λ∗ ∈ K, g(x∗) ∈ K, (λ∗)T g(x∗) = 0,

where L(x, λ, μ) is the standard Lagrangian function of NSOCP (1), i.e.,

L(x, λ, μ) := f (x) + 〈μ, h(x)〉 − 〈λ, g(x)〉 . (11)

For convenience of subsequent analysis, we denote by �(x∗) all Lagrangian multipliers
(λ∗, μ∗) satisfying (10).

It is well-known that the second order sufficient conditions are utilized to ensure the
existence of local saddle points. In the nonlinear programming, it requires the positive defi-
niteness of ∇2

xx L over the critical cone. However, due to the non-polyhedric of second-order
cone, an additional widely known sigma-term (or σ -term), which stands for the curvature of
second-order cone, is required. In particular, it was noted in [4, page 177] that the σ -term
vanishes when the cone is polyhedral. Due to the important role played by σ -term in the
analysis of second-order cone, before developing the sufficient conditions for the existence
of local saddle points, we shall study some basic properties of σ -term which will be used in
the subsequence analysis. First, based on the arguments given in [1, Theorem 29] we obtain
the following result.

Theorem 2.2 Let x ∈ Q and d ∈ TQ(x). Then, the support function of the outer second
order tangent set T 2

Q(x, d) is

σ
(
y | T 2

Q(x, d)
)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− y1
x1

dT

[
1 0

0 −Im

]
d, for y ∈ NQ(x) ∩ {d}⊥, x ∈ ∂ Q\{0},

0, for y ∈ NQ(x) ∩ {d}⊥, x /∈ ∂ Q\{0},
+∞, for y /∈ NQ(x) ∩ {d}⊥.

Proof We know from [4, Proposition 3.34] that

T 2
Q(x, d) + TTQ(x)(d) ⊂ T 2

Q(x, d) ⊂ TTQ(x)(d).

This implies

σ
(
y | T 2

Q(x, d)
)+ σ

(
y | TTQ(x)(d)

) = σ
(
y | T 2

Q(x, d) + TTQ(x)(d)
)

≤ σ
(
y | T 2

Q(x, d)
) ≤ σ

(
y | TTQ(x)(d)

)
. (12)
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Note that

σ
(
y | TTQ (x)(d)

)
< +∞ ⇐⇒ σ

(
y | TTQ(x)(d)

) = 0 (13)

⇐⇒ y ∈ NTQ(x)(d) (14)

⇐⇒ y ∈ (
TQ(x)

)◦ = NQ(x), yT d = 0 (15)

where the first and third equivalences come from the fact that TTQ(x)(d) and TQ(x) are cones,

respectively. Thus, we only need to establish the exact formula of σ
(

y | T 2
Q(x, d)

)
, provided

that (15) holds. In addition, it also indicates from (12) that σ
(

y | T 2
Q(x, d)

)
= ∞ whenever

y /∈ NQ(x) ∩ {d}⊥, since T 2
Q(x, d) is nonempty for x ∈ Q and d ∈ TQ(x) by [1, Lemma

27].
In fact, under condition (15), it follows from (12) and (13) that

σ
(
y | T 2

Q(x, d)
) ≤ σ

(
y | TTQ (x)(d)

) = 0. (16)

Furthermore, in light of condition (15), we discuss the following four cases.

(i) If x = 0, then 0 ∈ T 2
Q(x, d) = TQ(d) where the equality is due to [1, Lemma 27].

Thus,

σ
(
y | T 2

Q(x, d)
) = σ

(
y | TQ(d)

) ≥ 0.

This together with (16) implies σ
(

y | T 2
Q(x, d)

)
= 0.

(ii) If x ∈ int(Q), then it follows from (15) that y = 0. Hence, σ
(

y | T 2
Q(x, d)

)
= 0.

(iii) If x ∈ ∂(Q)\{0} and d ∈ int(TQ(x)), then it follows from (14) that y = 0 since

d ∈ int(TQ(x)). Hence σ
(

y | T 2
Q(x, d)

)
= 0 = −(y1/x1)(d2

1 − ‖d2‖2).
(iv) If x ∈ ∂(Q)\{0} and d ∈ ∂(TQ(x)), then the desired result can be obtained by following

the arguments given in [1, p. 222]. We provide the proof for the sake of completeness.

Note that σ
(

y|T 2
Q(x, d)

)
is to maximize y1w1 + yT

2 w2 over all w satisfying −w1x1 +
wT
2 x2 ≤ d2

1 − ‖d2‖2 (see [1, Lemma 27]). From y ∈ NQ(x), i.e., −y ∈ Q, x ∈ Q, and
xT y = 0, we know −y1 = αx1 and −y2 = −αx2 with α = − y1

x1
≥ 0, see [1, page

208]. Thus,

〈y, w〉 = y1w1+yT
2 w2 = α

(
wT
2 x2−w1x1

)
≤ α

(
d2
1 −‖d2‖2

) = − y1
x1

(
d2
1 −‖d2‖2

)
.

The maximum can be obtained at (w1, w2) = (− d2
1

x1
,−‖d2‖2

‖x2‖2 x2). This establishes the
desired expression. ��

Remark 2.1 Let A be a convex subset in IRm+1. In the proof of Theorem 2.2, we use the
inclusion T 2

A(x, d) ⊂ TTA(x)(d). It is known from [4, page 168] that these two sets are the
same if A is polyhedral. But, for the non-polyhedral cone Q, the following example shows
this inclusion maybe strict.

Example 2.1 For Q ⊂ IR3, let x̄ = (1, 1, 0) and d̄ = (1, 1, 1). Then,

TQ(x̄) = {d = (d1, d2, d3) ∈ IR3 | (d2, d3)
T (x̄2, x̄3) − d1 x̄1 ≤ 0}

= {d = (d1, d2, d3) | d2 − d1 ≤ 0},
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which implies d̄ ∈ ∂TQ(x̄). Hence,

T 2
Q(x̄, d̄) = {w = (w1, w2, w3) | (w2, w3)

T (x̄2, x̄3) − w1 x̄1 ≤ d̄2
1 − ‖(d̄2, d̄3)‖2}

= {w = (w1, w2, w3) | w2 − w1 ≤ −1}.
On the other hand, since TTQ(x̄)(d̄) = cl(RTQ(x̄)(d̄)), whereRTQ(x̄)(d̄) denotes the radical (or
feasible) coneofTQ(x̄) at (d̄), then for eachw ∈ TTQ(x̄)(d̄), there existsw′ ∈ RTQ(x̄)(d̄) → w

such that d̄ + tw′ ∈ TQ(x̄) for some t > 0, i.e.,
(
(d̄2, d̄3) + t (w′

2, w
′
3)
)T

(x̄2, x̄3) − (d̄1 + tw′
1)x̄1 ≤ 0,

which ensures that (w′
2, w

′
3)

T (x̄2, x̄3) − w′
1 x̄1 ≤ 0. Now, taking limit yields w2 − w1 ≤ 0.

Thus, we obtain

TTQ(x̄)(d̄) = {w = (w1, w2, w3) | w2 − w1 ≤ 0}
which says T 2

Q(x̄, d̄) � TTQ(x̄)(d̄). In fact, 0 ∈ TTQ(x̄)(d̄), but 0 /∈ T 2
Q(x̄, d̄).

Corollary 2.1 For x ∈ Q and y ∈ NQ(x), we define


(x, y) := TQ(x) ∩ {y}⊥ = {d | d ∈ TQ(x) and yT d = 0}.
Then, σ

(
y | T 2

Q(x, d)
)

is nonpositive and continuous with respect to d over 
(x, y).

Proof We first show that σ(y | T 2
Q(x, d)) is nonpositive for d ∈ 
(x, y). In fact, we know

from Theorem 2.2 that σ
(

y | T 2
Q(x, d)

)
= 0 when x = 0, or x ∈ int(Q), or x ∈ ∂(Q)\{0}

and d ∈ int(TQ(x)). If x ∈ ∂(Q)\{0} and d ∈ ∂(TQ(x)), then we have x1d1 = xT
2 d2 by the

formula of TQ(x), see [1, Lemma 25]. Hence x1|d1| = |xT
2 d2| ≤ ‖x2‖‖d2‖ which implies

|d1| ≤ ‖d2‖ because x1 = ‖x2‖ > 0. Note that −y1 is nonnegative since −y ∈ Q. Then,

applying Theorem 2.2 yields σ
(

y | T 2
Q(x, d)

)
= −(y1/x1)(d2

1 − ‖d2‖2) ≤ 0. Thus, in any

case, we have verified the nonpositivity of σ
(

y | T 2
Q(x, d)

)
over 
(x, y).

Next, we now show the continuity of σ
(

y | T 2
Q(x, d)

)
with respect to d over 
(x, y).

Indeed, if x = 0 or x ∈ int(Q), then σ
(

y | T 2
Q(x, d)

)
= 0 for all d ∈ 
(x, y) which, of

course, is continuous. If x ∈ ∂ Q\{0}, then σ
(

y | T 2
Q(x, d)

)
= −(y1/x1)(d2

1 − ‖d2‖2) for
d ∈ 
(x, y) which is continuous with respect to d as well. ��
Remark 2.2 For a general closed convex cone �, σ(y | T 2

�(x, d)) can be a discontinuous
function of d; see [4, Page 178] or [15, Page 489]. But, when � is the second order cone Q,
our result shows that this function is continuous.

For a convex subset A in IRm+1, it is well known that the function dist2(x, A) is con-
tinuously differentiable with ∇dist2(x, A) = 2 (x − �A(x)). But, there are very limited
results on second order differentiability unless some additional structure is imposed on A,
for example, second order regularity, see [2,3,15].

Let φ(x) := dist2(x, Q) for Q ⊂ IRm+1. Since Q is second order regular, then according
to [15], φ possesses the following nice property: for any x, d ∈ IRm+1, there holds that

lim
d ′→d

t↓0

φ(x + td ′) − φ(x) − tφ′(x; d ′)
1
2 t2

= V(x, d) (17)
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where V(x, d) is the optimal value of the problem

min
{
2‖d − z‖2 − 2σ

(
x − �Q(x) | T 2

Q(�Q(x), z)
)}

s.t. z ∈ 

(
�Q(x), x − �Q(x)

)
.

(18)

With these preparations, the sufficient conditions for the existence of local saddle points are
given as below.

Theorem 2.3 Suppose x∗ is a feasible point of the NSOCP (1) satisfying the following:

(i) x∗ is a KKT point and (λ∗, μ∗) ∈ �(x∗), i.e.,

∇x L(x∗, λ∗, μ∗) = 0 and − λ∗ ∈ NK(g(x∗)).

(ii) the following second order conditions hold

∇2
xx L(x∗, y∗)(d, d) + dT H(x∗, λ∗)d > 0, ∀d ∈ C(x∗, λ∗)\{0}, (19)

where

C(x∗, λ∗) :=
{

d ∈ IRn | ∇h(x∗)d =0,∇g(x∗)d ∈ TK
(
g(x∗)

)
,
(∇g(x∗)d

)T
(λ∗)=0

}
,

and H(x∗, λ∗) := ∑J
j=1 H j (x∗, λ∗

j ) with

H j
(

x∗, λ∗
j

)
:=

⎧⎪⎪⎨
⎪⎪⎩

− (λ∗
j )1

(g j (x∗))1 ∇g j (x∗)T

[
1 0

0 −Im j

]
∇g j (x∗), g j (x∗) ∈ ∂(K j )\{0},

0, otherwise.

Then, (x∗, λ∗, μ∗) is a local saddle point of Lc for some c > 0.

Proof The first inequality in (3) follows from the fact that Lc(x∗, λ∗, μ∗) = f (x∗) by (5)
since −λ∗ ∈ NK(g(x∗)), and that Lc(x∗, λ, μ) ≤ f (x∗) for all (λ, μ) ∈ IRp × IRl due to
x∗ being feasible.

We will prove the second inequality in (3) by contradiction, i.e., we cannot find c > 0
and δ > 0 such that f (x∗) = Lc(x∗, λ∗, μ∗) ≤ Lc(x, λ∗, μ∗) for all x ∈ B(x∗, δ). In other
words, there exists a sequence cn → ∞ as n → ∞, and each fixed cn , we always find a
sequence {xn

k } (noting that its sequence is dependent on cn) such that xn
k → x∗ as k → ∞

and

f (x∗) > Lcn (xn
k , λ∗, μ∗). (20)

To proceed, we denote tn
k := ‖xn

k −x∗‖ and dn
k := (xn

k −x∗)/‖xn
k −x∗‖. Assume, without

loss of generality, that dn
k → d̃n as k → ∞. First, we observe that

φ

(
g j (xn

k ) − λ∗
j

cn

)

= φ

(
g j (x∗) − λ∗

j

cn
+ tn

k ∇g j (x∗)dn
k + 1

2
(tn

k )2∇2g j (x∗)(dn
k , dn

k ) + o
(
(tn

k )2
))

= φ

(
g j (x∗) − λ∗

j

cn
+ tn

k

[
∇g j (x∗)dn

k + 1

2
tn
k ∇2g j (x∗)(dn

k , dn
k )

])
+ o

(
(tn

k )2
)
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= φ

(
g j (x∗) − λ∗

j

cn

)
+ tn

k φ′
(

g j (x∗) − λ∗
j

cn

)(
∇g j (x∗)dn

k + 1

2
tn
k ∇2g j (x∗)(dn

k , dn
k )

)

+ 1

2
(tn

k )2V
(

g j (x∗) − λ∗
j

cn
,∇g j (x∗)d̃n

)
+ o

(
(tn

k )2
)

(21)

where the second equality follows from the fact of φ being Lipschitz continuous (in
fact, φ is continuously differentiable) and the last step is due to (17). From (18),

V
(

g j (x∗) − λ∗
j/cn,∇g j (x∗)d̃n

)
is the optimal value of the following problem

min

{
2‖∇g j (x∗)d̃n − z‖2 − 2σ

(
− λ∗

j
cn

∣∣∣ T 2
K j

(g j (x∗), z)

)}

s.t. z ∈ 
(g j (x∗),−λ∗
j )

(22)

where we have used the fact that

(

g j (x∗),−λ∗
j/cn

)
= 
(g j (x∗),−λ∗

j ) by definition since

cn �= 0, and �K j

(
gi (x∗) − (λ∗

j/cn)
)

= gi (x∗) because −λ∗
j ∈ NK j (g j (x∗)) by (5).

Note that the optimal value of the above problem (22) is finite since σ is nonpositive by
Corollary 2.1, and that the objective function is strongly convex (because ‖ · ‖2 is strongly
convex and −σ is convex [4, Proposition 3.48]). Hence, the optimal solution of the problem
(22) exists and is unique, say zn

j , i.e.,

V
(

g j (x∗) − λ∗
j

cn
,∇g j (x∗)d̃n

)
= 2

∥∥∥∇g j (x∗)d̃n − zn
j

∥∥∥
2 − 2σ

(
−λ∗

j

cn

∣∣∣ T 2
K j

(g j (x∗), zn
j )

)
,

(23)

where zn
j ∈ 
(g j (x∗),−λ∗

j ). Then, combining (21) and (23) yields

dist2
(

g j (xn
k ) − λ∗

j

cn
,K j

)
−
∥∥∥∥∥
λ∗

j

cn

∥∥∥∥∥
2

= −2tn
k

〈
λ∗

j

cn
,∇g j (x∗)dn

k + 1

2
tn
k ∇2g j (x∗)(dn

k , dn
k )

〉

+ (tn
k )2

[
‖∇g j (x∗)d̃n − zn

j ‖2 − σ

(
−λ∗

j

cn

∣∣∣ T 2
K j

(g j (x∗), zn
j )

)]
+ o((tn

k )2), (24)

where we use the fact that dist
(
g j (x∗) − (λ∗

j/cn),K j
) = ‖λ∗

j/cn‖ and

φ′
(

g j (x∗) − λ∗
j

cn

)
= 2

[
g j (x∗) − λ∗

j

cn
− �K j

(
g j (x∗) − λ∗

j

cn

)]
= −2

λ∗
j

cn
.

Since f (x∗) > Lcn (xn
k , λ∗, μ∗) by (20), applying the Taylor expansion, we obtain from (24)

that

0 > f (xn
k ) − f (x∗) + 〈μ∗, h(xn

k )〉 + cn

2
‖h(xn

k )‖2

+cn

2

J∑
j=1

⎡
⎣dist2

(
g j (xn

k ) − λ∗
j

cn
,K j

)
−
∥∥∥∥∥
λ∗

j

ck

∥∥∥∥∥
2
⎤
⎦
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= tn
k ∇ f (x∗)T dn

k + 1

2
(tn

k )2(dn
k )T ∇2 f (x∗)dn

k + o((tn
k )2) +

〈
μ∗, tn

k ∇h(x∗)dn
k

+1

2
(tn

k )2∇h(x∗)(dn
k , dn

k ) + o((tn
k )2)

〉
+ cn

2
‖tn

k ∇h(x∗)dn
k + o(tn

k )‖2

+cn

2

J∑
j=1

[
− 2tn

k

〈
λ∗

j

cn
,∇g j (x∗)dn

k + 1

2
tn
k ∇2g j (x∗)(dn

k , dn
k )

〉

+ (tn
k )2

(
‖∇g j (x∗)d̃n − zn

j ‖2 − σ

(
−λ∗

j

cn

∣∣∣ T 2
K j

(g j (x∗), zn
j )

))
+ o((tn

k )2)

]
.

Dividing by (tn
k )2/2 on both sides and taking limits as k → ∞ give

0 ≥ ∇2
xx L(x∗, λ∗, μ∗)(d̃n, d̃n) + cn‖∇h(x∗)d̃n‖2 (25)

+ cn

J∑
j=1

[
‖∇g j (x∗)d̃n − zn

j ‖2 − σ

(
−λ∗

j

cn

∣∣ T 2
K j

(g j (x∗), zn
j )

)]

where we use the fact that ∇x L(x∗, λ∗, μ∗) = 0, the first equality in KKT conditions (10).
Since −λ∗

j ∈ NK j (g j (x∗)) from (10) and zn
j ∈ 
(g j (x∗),−λ∗

j ), applying Corollary 2.1
yields

σ

(
−λ∗

j

cn

∣∣∣ T 2
K j

(g j (x∗), zn
j )

)
= 1

cn
σ
(
−λ∗

j

∣∣ T 2
K j

(g j (x∗), zn
j )
)

≤ 0

where the equality is due to the positive homogeneity of the support function, see [11]. Thus,
it follows from (25) that

0 ≥ ∇2
xx L(x∗, λ∗, μ∗)(d̃n, d̃n) + cn‖∇h(x∗)d̃n‖2 + cn

J∑
j=1

‖∇g j (x∗)d̃n − zn
j ‖2.

Due to ‖d̃n‖ = 1 for all n, we may assume, taking a subsequence if necessary, that d̃n → d̃.
Because cn can bemade sufficiently large as n → ∞, we obtain from the above inequality that
∇h(x∗)d̃n → 0 and ∇g j (x∗)d̃n − zn

j → 0. Therefore, ∇h(x∗)d̃ = limn→∞ ∇h(x∗)d̃n = 0
and

dist
(
∇g j (x∗)d̃,
(g j (x∗),−λ∗

j )
)

= lim
n→∞ dist

(
∇g j (x∗)d̃n,
(g j (x∗),−λ∗

j )
)

≤ lim
n→∞ ‖∇g j (x∗)d̃n − zn

j ‖ = 0

which implies ∇g j (x∗)d̃ ∈ 
(g j (x∗),−λ∗
j ) for all j = 1, 2, . . . , J . Thus, we have d̃ ∈

C(x∗, λ∗). In addition, it follows from (25) again that

0 ≥ ∇2
xx L(x∗, λ∗, μ∗)(d̃n, d̃n) − cn

J∑
j=1

σ

(
−λ∗

j

cn

∣∣∣ T 2
K j

(
g j (x∗), zn

j

))

= ∇2
xx L(x∗, λ∗, μ∗)(d̃n, d̃n) −

J∑
j=1

σ
(
−λ∗

j

∣∣∣ T 2
K j

(
g j (x∗), zn

j

))
.
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Note that σ
(
−λ∗

j

∣∣ T 2
K j

(g j (x∗),∇g j (x∗)d̃
)

= −d̃T H j (x∗, λ∗
j )d̃ by Theorem 2.2. Taking

the limits on both sides as n → ∞, using the continuity of σ by Corollary 2.1, and zn
j →

∇g j (x∗)d̃ (since ∇g j (x∗)d̃n − zn
j → 0), we obtain

0 ≥ ∇2
xx L(x∗, λ∗, μ∗)(d̃, d̃) −

J∑
j=1

σ
(
−λ∗

j

∣∣ T 2
K j

(g j (x∗),∇g j (x∗)d̃
)

= ∇2
xx L(x∗, λ∗, μ∗)(d̃, d̃) +

J∑
j=1

d̃T H j (x∗, λ∗
j )d̃

= ∇2
xx L(x∗, λ∗, μ∗)(d̃, d̃) + d̃T H(x∗, λ∗)d̃

which contradicts (19) since d̃ ∈ C(x∗, λ∗) and d̃ �= 0. Thus, the proof is complete. ��

For convex nonlinear programming, the saddle point has a close relation to the KKT
point. Their relationship has been found in [4] by using the traditional Lagrangian func-
tions (11). Here we further discuss their relationship for NSOCP via augmented Lagrangian
functions (2).

Definition 2.1 The problem NSOCP (1) is said to be convex if the objective function f is a
convex function, h is an affine mapping, and g is a convex mapping with respect to the set
−K, i.e., for any x, y ∈ IRn and t ∈ [0, 1], we have

g (t x + (1 − t)y) �−K tg(x) + (1 − t)g(y). (26)

It is easy to see that g is convex with respect to−K if and only if g j is convex with respect
to−K j for all j = 1, 2, . . . , J . In general, the square of a convex functionmay not be convex,
for example, (x2 − 1)2 is not convex although x2 − 1 is convex. Nonetheless, the square
of the distance function is still convex, i.e., dist2(x, Q) is convex. In fact, dist2(x, Q) =
inf{‖x − y‖2 + δQ(y)| y ∈ IRm+1} = ‖ · ‖2�δQ , where � is the infimal convolution and δ is
the indicator function [11]. This conclusion can be also obtained by noting that a differentiable
function is convex if and only if its gradient is monotone, see [13]. Hence, it only need to
show that ∇ dist2(x, Q) = 2(x − �Q(x)) is monotone, which is ensured by

〈∇ dist2(x, Q) − ∇ dist2(y, Q), x − y
〉

= 2
〈
x − y − (

�Q(x) − �Q(y)
)
, x − y

〉

≥ 2‖x − y‖2 − 2
∥∥�Q(x) − �Q(y)

∥∥ · ‖x − y‖
= 2‖x − y‖ ·

[
‖x − y‖ − ∥∥�Q(x) − �Q(y)

∥∥ ]

≥ 0

where in the last step we use the fact that the metric projection is non-expansive, i.e.,∥∥�Q(x) − �Q(y)
∥∥ ≤ ‖x − y‖. ��

The following lemma shows that the function −dist(·, Q) behaves like a monotone func-
tion.

Lemma 2.2 If x �Q y, then dist(x, Q) ≤ dist(y, Q).
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Proof Given x, y with x �Q y, i.e., x − y ∈ Q. Note that Q + Q = Q because Q is a convex
cone, see [11]. Hence, we know Q + (x − y) ⊂ Q since x − y ∈ Q. Then, the desired result
follows by

dist(x, Q) = inf
z∈Q

‖x − z‖

≤ inf
z∈Q+(x−y)

‖x − z‖ u:=z−x+y�������� inf
u∈Q

‖y − u‖
= dist(y, Q).

��
The converse of Lemma 2.2 fails, which is illustrated by the following example.

Example 2.2 Consider K2 = {(x1, x2) | x1 ≥ |x2|}. Then, for x = (1, 2) and y = (−1,−1),
we have

dist(x,K2) = √
2/2 <

√
2 = dist(y,K2).

But, we see x �K2 y since x − y = (2, 3) /∈ K2.

We next show that if the problem NSOCP (1) is convex, then the augmented Lagrangian
is also convex.

Theorem 2.4 If NSOCP (1) is convex, then Lc(x, λ, μ) is convex with respect to x for all
(c, λ, μ) ∈ IR++ × IRp × IRl .

Proof Since h : IRn → IRl is an affine mapping, then there exists a matrix M ∈ IRl×n and
q ∈ IRl such that h(x) = Mx + q . Thus, we know

〈μ, h(x)〉 + (c/2)‖h(x)‖2
= 〈μ, Mx + q〉 + (c/2)〈Mx + q, Mx + q〉
= (c/2)〈x, MT Mx〉 + 〈MT μ + cMT q, x〉 + 〈μ + (c/2)q, q〉

is convex due to MT M being positive semi-definite. In view of the expression of Lc(x, λ, μ)

given in (2), it remains to show the convexity of dist2
(

g j (x) − λ j
c ,K j

)
. In fact, since g j is

convex with respect to −K j , it follows from (26) that

g j (t x + (1 − t)y) − λ j

c
�K j (t)

[
g j (x) − λ j

c

]
+ (1 − t)

[
g j (y) − λ j

c

]
.

This together with Lemma 2.2 implies

dist

(
g j (t x+(1−t)y)− λ j

c
,K j

)
≤ dist

(
t

[
g j (x)− λ j

c

]
+ (1−t)

[
g j (y)− λ j

c

]
,K j

)
,

and hence

dist2
(

g j (t x + (1 − t)y) − λ j

c
,K j

)

≤ dist2
(

t

[
g j (x) − λ j

c

]
+ (1 − t)

[
g j (y) − λ j

c

]
,K j

)

≤ t dist2
(

g j (x) − λ j

c
,K j

)
+ (1 − t)dist2

(
g j (y) − λ j

c
,K j

)
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where the last step is due to the convexity of dist2(x,K j ) as the arguments following (26).
��

For convex NSOCP (1), the following result states the relationship between global saddle
points and KKT points.

Theorem 2.5 Suppose that NSOCP (1) is convex. Then, the following hold.

(a) If (x∗, λ∗, μ∗) satisfies the KKT conditions, then (x∗, λ∗, μ∗) is a global saddle point
of Lc for all c > 0.

(b) If (x∗, λ∗, μ∗) is a global saddle point of Lc for some c > 0, then (x∗, λ∗, μ∗) satisfies
KKT conditions.

Proof Note first that when x is feasible and −λ ∈ NK(g(x)), we have

∇xLc(x, λ, μ) = ∇ f (x) + ∇h(x)T μ + c∇h(x)T h(x)

+ c
J∑

j=1

∇g j (x)T
(

g j (x) − λ j

c
− �K j (g j (x) − λ j

c
)

)

= ∇ f (x) + ∇h(x)T μ −
J∑

j=1

∇g j (x)T λ j

= ∇ f (x) + ∇h(x)T μ − ∇g(x)T λ

= ∇x L(x, λ, μ), (27)

where in the second equality we use the facts that x is feasible and �K j

(
g j (x) − (λ j/c)

) =
g j (x) due to −λ j ∈ NK j (g j (x)) by (5).

(a) Suppose (x∗, λ∗, μ∗) satisfies the KKT conditions. For any c > 0, since ∇x L(x∗, λ∗,
μ∗) = 0 from (10), then we know ∇xLc(x∗, λ∗, μ∗) = 0 by (27). Besides, Lc in x is
convex by Theorem 2.4 under the hypothesis, therefore we must have x∗ being a global
optimal solution of Lc(x, λ∗, μ∗) over IRn , i.e., Lc(x∗, λ∗, μ∗) ≤ Lc(x, λ∗, μ∗) for all
x ∈ IRn . This establishes the second inequality in (4).

On the other hand, we have Lc(x∗, λ, μ) ≤ f (x∗) for all (λ, μ) ∈ IRp × IRl since x∗
is a feasible point, and Lc(x∗, λ∗, μ∗) = f (x∗) by (9). Hence, Lc(x∗, λ, μ) ≤ f (x∗) =
Lc(x∗, λ∗, μ∗) for all (λ, μ) ∈ IRp × IRl . This is the first equality in (4).

(b) Suppose that (x∗, λ∗, μ∗) is a global saddle point of Lc for some c > 0. Then, Theorem
2.1 says that x∗ is a feasible point and −λ∗ ∈ NK(g(x∗)). These means the second
and third conditions in (10) hold. In addition, from the second inequality in (4), x∗
is an optimal solution of Lc(x, λ∗, μ∗) over IRn , and hence is a stationary point, i.e.,
∇xLc(x∗, λ∗, μ∗) = 0. This together with (27) ensures that ∇x L(x∗, λ∗, μ∗) = 0,
which is just the first condition in (10). ��

3 On global saddle points

In this section, we turn our attention to the existence of global saddle point ofLc for which we
need to address the perturbation of NSOCP (1) for subsequent analysis. Given α ∈ IR+ :=
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{ζ ∈ IR | ζ ≥ 0}, we define
�(α) := {

x ∈ IRn | ‖h(x)‖ ≤ α, dist(g(x),K) ≤ α
}

(28)

and

ϒ(α) := {x ∈ IRn | f (x) ≤ p(0) + α} where p(α) := inf
x∈�(α)

f (x). (29)

It is clear that �(0) ∩ ϒ(0) = S∗ and p(0) coincides with the optimal value of NSOCP (1).
In the sequel, we always assume that f is bounded below over IRn .

Lemma 3.1 For any ε > 0 and (λ, μ) ∈ IRp × IRl , we have
{

x ∈ IRn |Lc(x, λ, μ) ≤ p(0)
} ⊆ �(ε),

whenever c > 0 being sufficiently large.

Proof We prove it by contradiction. Suppose on the contrary that there exists (λ, μ) ∈
IRp × IRl , ε0 > 0, ck → ∞ as k → ∞, and {xk} such that Lck (xk, λ, μ) ≤ p(0), but
xk /∈ �(ε0). Since xk /∈ �(ε0), from (28), there have two possible cases: (i) ‖h(xk)‖ > ε0,
or (ii) dist

(
g(xk),K) > ε0. Hence, we discuss these two cases, respectively.

(i) If ‖h(xk)‖ > ε0, then as k is large enough, we have

1

2
‖h(xk)‖ − ‖μ‖

ck
>

1

4
ε0. (30)

Therefore, we obtain

p(0) ≥ f (xk) +
〈
μ, h(xk)

〉
+ ck

2
‖h(xk)‖2

+ck

2

J∑
j=1

[
dist2

(
g j (xk) − λ j

ck
, K j

)
−
∥∥∥∥
λ j

ck

∥∥∥∥
2
]

≥ f (xk) − ‖μ‖ · ‖h(xk)‖ + ck

2
‖h(xk)‖2 − ck

2

J∑
j=1

∥∥∥∥
λ j

ck

∥∥∥∥
2

= f (xk) + ck‖h(xk)‖
(
1

2
‖h(xk)‖ − ‖μ‖

ck

)
− ‖λ‖2

2ck

≥ f (xk) + 1

4
ε20ck − ‖λ‖2

2ck

→ ∞ as k → ∞,

where the last inequality follows from (30), and the last step comes from ‖λ‖2/ck → 0,
and the boundedness of f from below. This gives rise to a contradiction.

(ii) If dist
(
g(xk),K) > ε0, then there must exist j0 such that dist

(
g j0(xk), K j0

)
> ε0√

J
for

all k, since dist2(g(xk),K) = ∑J
j=1 dist

2(g j (xk),K j ). Thus, as k large enough

dist

(
g j0(xk) − λ j0

ck
, K j0

)
≥ dist

(
g j0(xk), K j0

)
− ‖λ j0‖

ck
≥ ε0

2
√

J
,

where the first inequality is due to the fact that the distance function is Lipschitz con-
tinuous with modulus one. With this, we further obtain
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p(0) ≥ f (xk) + ck

2

(
‖h(xk)‖2 + 2

ck
〈μ, h(xk)〉

)

+ck

2

J∑
j=1

[
dist2

(
g j (xk) − λ j

ck
, K j

)
−
∥∥∥∥
λ j

ck

∥∥∥∥
2
]

≥ f (xk) + ck

2

(∥∥∥∥h(xk) + μ

ck

∥∥∥∥
2

−
∥∥∥∥

μ

ck

∥∥∥∥
2
)

+ck

2
dist2

(
g j0(xk) − λ j0

ck
, K j0

)
− 1

2

J∑
j=1

‖λ j‖2
ck

≥ f (xk) − ‖μ‖2 + ‖λ‖2
2ck

+ 1

8J
ckε

2
0

→ ∞ as k → ∞,

which is a contradiction again. ��
Lemma 3.2 For any ε > 0 and (λ, μ) ∈ IRp × IRl , we have

{
x ∈ IRn |Lc(x, λ, μ) ≤ p(0)

} ⊆ ϒ(ε)

whenever c > 0 being sufficiently large.

Proof For ε > 0, denote α := ε
2(‖μ‖+1) . According to Lemma 3.1, we can choose c > 0

large enough to ensure ‖λ‖2/c ≤ ε and

{x ∈ IRn |Lc(x, λ, μ) ≤ p(0)} ⊆ �(α). (31)

This implies

f (x) = Lc(x, λ, μ) − 〈μ, h(x)〉

− c

2
‖h(x)‖2 − c

2

J∑
j=1

[
dist2

(
g j (x) − λ j

c
, K j

)
−
∥∥∥∥
λ j

c

∥∥∥∥
2
]

≤ p(0) + ‖μ‖ · ‖h(x)‖ + ‖λ‖2
2c

≤ p(0) + ε,

where the last inequality is due to ‖h(x)‖ ≤ α since x ∈ �(α) by (31). Then, from the
definition of (29), the desired result follows. ��

With the above, we now state the existence of global saddle points of NSOCP as below.

Theorem 3.1 Suppose that S∗ is nonempty and �(ε0) ∩ ϒ(ε0) is bounded for some ε0 > 0.
Suppose also that there exists (λ∗, μ∗) ∈ IRp × IRl such that for each x∗ ∈ S∗, the triple
(x∗, λ∗, μ∗) is a local saddle point of Lc for some c > 0. Then, (x, λ∗, μ∗) with x ∈ S∗ is a
global saddle point of Lc as c > 0 sufficiently large.

Proof Choose x̄ ∈ S∗ arbitrarily. Since (x̄, λ∗, μ∗) is a local saddle point by hypothesis,
there exists c1 > 0 and δ1 > 0 such that

Lc1(x̄, λ, μ) ≤ Lc1(x̄, λ∗, μ∗) ≤ Lc1(x, λ∗, μ∗), ∀(x, λ, μ) ∈ B(x̄, δ1) × IRp × IRl .
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To complete the proof, we only need to show that the second inequality holds for all x /∈
B(x̄, δ1) as c > 0 sufficiently large because the first inequality holds due to Lc(x̄, λ, μ) ≤
f (x̄) = Lc(x̄, λ∗, μ∗) for all (λ, μ) ∈ IRp × IRl and c > 0 by Theorem 2.1.
Suppose on the contrary that we can find ck → ∞ and xk /∈ B(x̄, δ1) such that

Lck (xk, λ∗, μ∗) < Lck (x̄, λ∗, μ∗) = f (x̄) = p(0). (32)

Take ε ∈ (0, ε0). According to Lemmas 3.1-3.2, we obtain from (32) that

xk ∈ �(ε) ∩ ϒ(ε) ⊆ �(ε0) ∩ ϒ(ε0)

as k large enough. Hence, {xk} is bounded.We assumewithout loss of generality that xk → x̃ ,
i.e., x̃ ∈ �(ε) ∩ ϒ(ε) since �(ε) and ϒ(ε) are both closed (due to the continuity of f, h, and
g). Since ε > 0 is taken arbitrarily, it further implies that x̃ ∈ �(0) ∩ ϒ(0) = S∗ (which can
be also obtained by using the upper semi-continuity of the set-valued mapping �(·) ∩ ϒ(·)).
Thus, we obtain from the hypothesis that (x̃, λ∗, μ∗) is also a local saddle point of Lc for
some c, say c2, i.e., there exists δ2 > 0 such that

Lc2(x̃, λ, μ) ≤ Lc2(x̃, λ∗, μ∗) ≤ Lc2(x, λ∗, μ∗), (x, λ, μ) ∈ B(x̃, δ2) × IRp × IRl .

Since xk → x̃ , we know xk ∈ B(x̃, δ2) as k sufficiently large. Therefore,

Lck (xk, λ∗, μ∗) ≥ Lc2(xk, λ∗, μ∗) ≥ Lc2(x̃, λ∗, μ∗) = f (x̃) = f (x̄),

where the first inequality is due to themonotonicity ofLc in c by Lemma 2.1, the first equality
follows from Theorem 2.1, and the second equality comes from the fact that x̄, x̃ ∈ S∗ (i.e.,
f (x̄) = f (x̃) = p(0)). This contradicts (32). ��
Remark 3.1 In [16], the authors develop the existence of global saddle points by requiring the
solution set to be unique. This is a condition imposed on the solution set, while our assumption
is imposed on the perturbation set. Indeed, these two assumptions are independent. This is
illustrated by the following two examples. The first one shows that the set ϒ(ε) ∩ �(ε) may
be unbounded even if the solution to NSOCP (1) is unique.

Example 3.1 Consider the following NSOCP:

min f (x) = x2

s.t. g(x) = x �K2 0

h(x) = x1(x1x2 − 1) = 0.

The optimal solution is unique, i.e., x∗ = (0, 0). But, for any ε > 0, the set ϒ(ε) ∩ �(ε) is
unbounded because (n, 1/n) ∈ ϒ(ε) ∩ �(ε) whenever n > [1/ε].

The second example shows that the solution set is not necessary unique even if the per-
turbation set ϒ(ε) ∩ �(ε) is bounded. Moreover, it also shows that our result is applicable
for multiple solutions.

Example 3.2 Consider the following NSOCP:

min f (x) = ex31−x22

s.t. g(x) =
[

x1

x22

]
�K2 0

h(x) = x42 − 1 = 0.
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The optimal solution are x∗ = (1, 1) and (1,−1). Note that, for all ε > 0, the sets ϒ(ε)

and �(ε) are both unbounded, but their intersection ϒ(ε) ∩ �(ε) is bounded. According to
the KKT condition (10), we know λ∗ = (3,−3) and μ∗ = −1 is a common Lagrangian
multipliers at (1, 1) and (1,−1). However, for either x∗ = (1, 1) or x∗ = (1,−1), we always
have

∇2
xx L(x∗, λ∗, μ∗) =

[
15 −6x∗

2

−6x∗
2 −4

]

and

H(x∗, λ∗) = −λ∗
1

x∗
1

[
1 0

0 2x∗
2

]T [
1 0

0 −1

][
1 0

0 2x∗
2

]
=
[−3 0

0 12

]
.

Even though ∇2
xx L(x∗, λ∗, μ∗) is indefinite,

∇2
xx L(x∗, λ∗, μ∗) + H(x∗, λ∗) =

[
12 −6x∗

2

−6x∗
2 8

]

is positive definite and hence (x∗, λ∗, μ∗) is a local saddle point of Lc for some c > 0 by
Theorem 2.3.

This example again clarifies the importance of the sigma-term involved in second-order
conditions in NSOCP.

4 Exact penalty representation

In this section, we further study another important concept, exact penalty representation. We
show that this concept has close relationship to global saddle points. First, we introduce what
exact penalty representation means.

Definition 4.1 A pair (λ∗, μ∗) ∈ IRp × IRl is said to support an exact penalty representation
in the framework of Lc if there exists c∗ > 0 such that

p(0) = inf
x∈IRn

Lc(x, λ∗, μ∗) ∀c ≥ c∗ (33)

S∗ = arg min
x∈IRn

Lc(x, λ∗, μ∗) ∀c ≥ c∗. (34)

Proposition 4.1 A pair (λ∗, μ∗) supports an exact penalty representation in the framework
of Lc if and only if there exists c∗ > 0 such that

p(0) = inf
x∈IRn

Lc∗(x, λ∗, μ∗) (35)

S∗ = arg min
x∈IRn

Lc∗(x, λ∗, μ∗). (36)

Proof We only need to show the sufficiency because the necessity is trivial. Let c > c∗. For
any ε > 0, there must exist a feasible point x0 such that f (x0) ≤ p(0) + ε. Hence,

p(0) = inf
x∈IRn

Lc∗(x, λ∗, μ∗) ≤ inf
x∈IRn

Lc(x, λ∗, μ∗)

≤ Lc(x0, λ
∗, μ∗) ≤ f (x0) ≤ p(0) + ε, (37)
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where the first equality follows from (35), the first inequality comes from the monotonicity
of Lc with respect to c, and the third inequality is due to the feasibility of x0. Since ε > 0
is arbitrary, we obtain from (37) that p(0) = inf x∈IRn Lc(x, λ∗, μ∗) for all c ≥ c∗, which
establishes (33).

To show the validity of (34), we consider the following two cases.

Case 1: S∗ = ∅. Suppose on the contrary that there exists c̄ > c∗ such that

arg min
x∈IRn

Lc̄(x, λ∗, μ∗) �= ∅.

Then, pick x̄ ∈ argminx∈IRn Lc̄(x, λ∗, μ∗) which leads to

Lc∗(x̄, λ∗, μ∗) ≤ Lc̄(x̄, λ∗, μ∗) = inf
x∈IRn

Lc̄(x, λ∗, μ∗) = p(0) = inf
x∈IRn

Lc∗(x, λ∗, μ∗),

(38)

where the last two steps are due to (33) just shown above. Hence,

x̄ ∈ arg min
x∈IRn

Lc∗(x, λ∗, μ∗) = S∗

by applying (36). This means that S∗ is not empty which is a contradiction.

Case 2: S∗ �= ∅. Take x̄ ∈ S∗. For any c > c∗, we know

Lc(x̄, λ∗, μ∗) ≤ f (x̄) = p(0) = inf
x∈IRn

Lc(x, λ∗, μ∗),

where the first inequality is due to the feasibility of x̄ and the last step comes from (33).
Hence, we obtain

x̄ ∈ arg min
x∈IRn

Lc(x, λ∗, μ∗)

which says S∗ ⊂ argminx∈IRn Lc(x, λ∗, μ∗).
On the other hand, take x̄ ∈ argminx∈IRn Lc(x, λ∗, μ∗). Similar to (38) we obtain

Lc∗(x̄, λ∗, μ∗) ≤ Lc(x̄, λ∗, μ∗) = inf
x∈IRn

Lc(x, λ∗, μ∗) = p(0) = inf
x∈IRn

Lc∗(x, λ∗, μ∗),

i.e., x̄ ∈ argminx∈IRn Lc∗(x, λ∗, μ∗) = S∗, where the equality is due to (36). Hence,
argminx∈IRn Lc(x, λ∗, μ∗) ⊂ S∗. This completes the proof. ��

Remark 4.1 In Definition 4.1, in order to clarify a pair (λ∗, μ∗) to be an exact penalty
representation, we have to check (33) and (34) for all c ≥ c∗. At the first glance, this task is
more difficult and impossible in applications. However, our result shows that it is enough to
only check at some c∗ not all other c > c∗.

The close relationship between global saddle points and exact penalty representations is
described as below.

Theorem 4.1 Suppose that S∗ is nonempty. Then a triple (x∗, λ∗, μ∗) is a global saddle
point of Lc if and only if x∗ ∈ S∗ and (λ∗, μ∗) supports an exact penalty representation in
the framework of Lc.
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Proof (a) Sufficiency. Since x∗ ∈ S∗, it follows from (34) that x∗ ∈ argminx∈IRn

Lc∗(x, λ∗, μ∗) and from (33) that

Lc∗(x∗, λ, μ) ≤ f (x∗) = Lc∗(x∗, λ∗, μ∗) = min
x∈IRn

Lc∗(x, λ∗, μ∗) ≤ Lc∗(x, λ∗, μ∗)

whenever x ∈ IRn and (λ, μ) ∈ IRp × IRl . That is, (x∗, λ∗, μ∗) is a global saddle point
of Lc∗ .

(b) Necessity. Following almost the same argument given in Theorem 2.1, we know that if
(x∗, λ∗, μ∗) is a global saddle point of Lc for some c∗ > 0, then x∗ is a global optimal
solution of (NSOCP) (i.e., x∗ ∈ S∗) and Lc(x∗, λ∗, μ∗) = f (x∗) for all c > 0. Hence
for all c ≥ c∗, we have

p(0) = f (x∗) = Lc∗(x∗, λ∗, μ∗) = inf
x∈IRn

Lc∗(x, λ∗, μ∗)

≤ min
x∈IRn

Lc(x, λ∗, μ∗) ≤ Lc(x∗, λ∗, μ∗) ≤ f (x∗)

= p(0),

where the third equality comes from (4) because (x∗, λ∗, μ∗) is a global saddle point by
hypothesis. Thus, p(0) = minx∈IRn Lc(x, λ∗, μ∗) for all c ≥ c∗. This establishes (33).

Next, let x̄ ∈ S∗. For all c̃ ≥ c∗, we have

Lc̃(x̄, λ∗, μ∗) ≤ f (x̄) = p(0) = inf
x∈IRn

Lc̃(x, λ∗, μ∗),

where the first inequality is due to the feasibility of x̄ . Hence, x̄ ∈ argminx∈IRn Lc̃(x, λ∗, μ∗)
which says S∗ ⊂ argminx∈IRn Lc̃(x, λ∗, μ∗).

On the other hand, let x̄ ∈ argminx∈IRn Lc̃(x, λ∗, μ∗) with c̃ > c∗. Then,

0 = min
x∈IRn

Lc̃(x, λ∗, μ∗) − min
x∈IRn

Lc∗(x, λ∗, μ∗) ≥ Lc̃(x̄, λ∗, μ∗) − Lc∗(x̄, λ∗, μ∗) ≥ 0,

where the first equality comes from (33) and the last inequality is due to the monotonicity of
Lc with respect to c. This further implies

Lc(x̄, λ∗, μ∗) = Lc∗(x̄, λ∗, μ∗) ∀c ∈ [c∗, c̃].
Therefore, ∇cLc(x̄, λ∗, μ∗) = 0 for c ∈ (c∗, c̃). Note that

∇cLc(x̄, λ∗, μ∗) = 1

2
‖h(x̄)‖2 + 1

2

J∑
j=1

⎡
⎣dist2

(
g j (x̄) − λ∗

j

c
,K j

)
−
∥∥∥∥∥
λ∗

j

c

∥∥∥∥∥
2
⎤
⎦

+ c

2

J∑
j=1

[
2

〈
g j (x̄) − λ∗

j

c
− �K j

(
g j (x̄) − λ∗

j

c

)
,
λ∗

j

c2

〉
+ 2

‖λ∗
j‖2

c3

]

= 1

2
‖h(x̄)‖2 + 1

2

J∑
j=1

[ ∥∥∥∥∥g j (x̄) − λ∗
j

c
− �K j

(
g j (x̄) − λ∗

j

c

)∥∥∥∥∥
2

+ 2

〈
g j (x̄) − λ∗

j

c
− �K j

(
g j (x̄) − λ∗

j

c

)
,
λ∗

j

c

〉
+
∥∥∥∥∥
λ∗

j

c

∥∥∥∥∥
2 ]
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= 1

2
‖h(x̄)‖2 + 1

2

J∑
j=1

∥∥∥∥∥

(
g j (x̄) − λ∗

j

c
− �K j

(
g j (x̄) − λ∗

j

c

))
+ λ∗

j

c

∥∥∥∥∥
2

= 1

2
‖h(x̄)‖2 + 1

2

J∑
j=1

∥∥∥∥∥g j (x̄) − �K j

(
g j (x̄) − λ∗

j

c

)∥∥∥∥∥
2

.

Thus h(x̄) = 0 and g j (x̄) = �K j

(
g j (x̄) − (λ∗

j/c)
) ∈ K j . This means that x̄ is feasible and

dist

(
g j (x̄) − λ∗

j

c
,K j

)
=
∥∥∥∥∥g j (x̄) − λ∗

j

c
− �K j

(
g j (x̄) − λ∗

j

c

)∥∥∥∥∥ =
∥∥∥∥∥
λ∗

j

c

∥∥∥∥∥ ,

from which (by letting c → c̃) we have

dist

(
g j (x̄) − λ∗

j

c̃
,K j

)
=
∥∥∥∥∥
λ∗

j

c̃

∥∥∥∥∥ .

Thus, f (x̄) = Lc̃(x̄, λ∗, μ∗) = p(0) where the last step is due to (33). Since x̄ is feasible as
shown above, it ensures that x̄ ∈ S∗ which says argminx∈IRn Lc̃(x, λ∗, μ∗) ⊂ S∗. ��
Acknowledgments We are gratefully indebted to anonymous referees for their valuable suggestions that
help us to essentially improve the presentation of the paper.
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