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Abstract In this paper, we propose two new smooth support vector machines for
ε-insensitive regression. According to these two smooth support vector machines, we
construct two systems of smooth equations based on two novel families of smoothing
functions, from which we seek the solution to ε-support vector regression (ε-SVR).
More specifically, using the proposed smoothing functions, we employ the smoothing
Newton method to solve the systems of smooth equations. The algorithm is shown to
be globally and quadratically convergent without any additional conditions. Numerical
comparisons among different values of parameter are also reported.
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1 Introduction

Support vector machine (SVM) is a popular and important statistical learning technol-
ogy [1,7,8,16–19]. Generally speaking, there are two main categories for support
vector machines (SVMs): support vector classification (SVC) and support vector
regression (SVR). The model produced by SVR depends on a training data set
S = {(A1, y1), . . . , (Am, ym)} ⊆ IRn × IR, where Ai ∈ IRn is the input data and
yi ∈ IR is called the observation. The main goal of ε-insensitive regression with the
idea of SVMs is to find a linear or nonlinear regression function f that has at most ε
deviation from the actually obtained targets yi for all the training data, and at the same
time is as flat as possible. This problem is called ε-support vector regression (ε-SVR).

For pedagogical reasons, we begin with the linear case, in which the regression
function f (�) is defined as

f (�) = � T x + b with x ∈ IRn, b ∈ IR. (1)

Flatness in the case of (1) means that one seeks a small x . One way to ensure this is to
minimize the norm of x , then the problem ε-SVR can be formulated as a constrained
minimization problem:

min 1
2 x

T x + C
∑m

i=1(ξi + ξ∗
i )

s.t.

⎧
⎪⎨

⎪⎩

yi − AT
i x − b ≤ ε + ξi

AT
i x + b − yi ≤ ε + ξ∗

i

ξi , ξ
∗
i ≥ 0, i = 1, . . . ,m

(2)

The constant C > 0 determines the trade-off between the flatness of f and the
amount up to which deviations larger than ε are tolerated. This corresponds to dealing
with a so called ε-insensitive loss function |ξ |ε described by

|ξ |ε = max{0, |ξ | − ε}.

The formulation (2) is a convex quadratic minimization problem with n + 1 free
variables, 2m nonnegative variables, and 2m inequality constraints, which enlarges
the problem size and could increase computational complexity.

In fact, the problem (2) can be reformulated as an unconstrained optimization
problem:

min
(x,b)∈IRn+1

1

2

(
xT x + b2

)
+ C

2

m∑

i=1

∣
∣
∣AT

i x + b − yi
∣
∣
∣
2

ε
(3)

This formulation has been proposed in active set support vector regression [11] and
solved in its dual form. The objective function is strongly convex, hence, the problem
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has a unique global optimal solution. However, according to the fact that the objective
function is not twice continuously differentiable, Newton-type algorithms cannot be
applied to solve (3) directly.

Lee, Hsieh and Huang [7] apply a smooth technique for (3). The smooth function

fε(x, α) = x + 1

α
log(1 + e−αx ), (4)

which is the integral of the sigmoid function 1
1+e−αx , is used to smooth the plus func-

tion [x]+. More specifically, the smooth function fε(x, α) approaches to [x]+, when α

goes to infinity. Then, the problem (3) is recast to a strongly convex unconstrainedmin-
imization problem with the smooth function fε(x, α) and a Newton-Armijo algorithm
is proposed to solve it. It is proved that when the smoothing parameter α approaches
to infinity, the unique solution of the reformulated problem converges to the unique
solution of the original problem [7, Theorem 2.2]. However, the smoothing parameter
α is fixed in the proposed algorithm, and in the implementation of this algorithm, α
cannot be set large enough.

In this paper, we introduce two smooth support vector machines for ε-insensitive
regression. For the first smooth support vector machine, we reformulated ε-SVR to
a strongly convex unconstrained optimization problem with one type of smoothing
functions φε(x, α). Then, we define a new function Hφ , which corresponds to the
optimality condition of the unconstrained optimization problem. From the solution
of Hφ(z) = 0, we can obtain the solution of ε-SVR. For the second smooth support
vector machine, we smooth the optimality condition of the strongly convex uncon-
strained optimization problem of (3) with another type of smooth functions ψε(x, α).
Accordingly we define the function Hψ , which also possesses the same properties as
Hφ does. For either Hφ = 0 or Hψ = 0, we consider the smoothing Newton method
to solve it. The algorithm is shown to be globally convergent, specifically, the iterative
sequence converges to the unique solution to (3). Furthermore, the algorithm is shown
to be locally quadratically convergent without any assumptions.

The paper is organized as follows. In Sects. 2 and 3, we introduce two smooth
support vectormachine reformulations by two types of smoothing functions. In Sect. 4,
we propose a smoothing Newton algorithm and study its global and local quadratic
convergence. Numerical results and comparisons are reported in Sect. 5. Throughout
this paper, K := {1, 2, . . .}, all vectors will be column vectors. For a given vector
x = (x1, . . . , xn)T ∈ IRn , the plus function [x]+ is defined as

([x]+)i = max{0, xi }, i = 1, . . . , n.

For a differentiable function f , we denote by ∇ f (x) and ∇2 f (x) the gradient and the
Hessian matrix of f at x , respectively. For a differentiable mapping G : IRn → IRm ,
we denote by G ′(x) ∈ IRm×n the Jacabian of G at x . For a matrix A ∈ IRm×n , AT

i is
the i-th row of A. A column vector of ones and identity matrix of arbitrary dimension
will be denoted by 1 and I , respectively. We denote the sign function by
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sgn(x) =
⎧
⎨

⎩

1 if x > 0,
[−1, 1] if x = 0,
−1 if x < 0.

2 The first smooth support vector machine

As mentioned in [7], it is known that ε-SVR can be reformulated as a strongly convex
unconstrained optimization problem (3). Denote ω := (x, b) ∈ IRn+1, Ā := (A, 1)
and ĀT

i is the i-th row of Ā, then the smooth support vector regression (3) can be
rewritten as

min
ω

1

2
ωTω + C

2

m∑

i=1

∣
∣
∣ ĀT

i ω − yi
∣
∣
∣
2

ε
. (5)

Note that | · |2ε is smooth, but not twice differentiable, which means the objective
function is not twice continuously differentiable. Hence, the Newton-type method
cannot be applied to solve (5) directly.

In view of this fact, we propose a family of twice continuously differentiable func-
tions φε(x, α) to replace |x |2ε . The family of functions φε(x, α) : IR × IR+ → IR+ is
given by

φε(x, α) =

⎧
⎪⎪⎨

⎪⎪⎩

(|x | − ε)2 + 1
3α

2 if |x | − ε ≥ α,

1
6α (|x | − ε + α)3 if ||x | − ε| < α,

0 if |x | − ε ≤ −α,

(6)

where 0 < α < ε is a smooth parameter. The graphs of φε(x, α) are depicted in
Fig. 1. From this geometric view, it is clear to see that φε(x, α) is a class of smoothing
functions for |x |2ε .

Besides the geometric approach, we hereat show that φε(x, α) is a class of smooth-
ing functions for |x |2ε by algebraic verification. To this end, we compute the partial
derivatives of φε(x, α) as below:

∇xφε(x, α) =

⎧
⎪⎪⎨

⎪⎪⎩

2(|x | − ε)sgn(x) if |x | − ε ≥ α,

1
2α (|x | − ε + α)2sgn(x) if

∣
∣|x | − ε

∣
∣ < α,

0 if |x | − ε ≤ −α.

(7)

∇2
xxφε(x, α) =

⎧
⎪⎪⎨

⎪⎪⎩

2 if |x | − ε ≥ α

|x |−ε+α
α

if
∣
∣|x | − ε

∣
∣ < α,

0 if |x | − ε ≤ −α.

(8)

∇2
xαφε(x, α) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |x | − ε ≥ α,

(|x |−ε+α)(α−|x |+ε)

2α2 sgn(x) if
∣
∣|x | − ε

∣
∣ < α,

0 if |x | − ε ≤ −α.

(9)
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Fig. 1 Graphs of φε(x, α) with ε = 0.1 and α = 0.03, 0.06, 0.09

With the above, the following lemma shows some basic properties of φε(x, α).

Lemma 2.1 Let φε(x, α) be defined as in (6). Then, the following hold.

(a) For 0 < α < ε, there holds 0 ≤ φε(x, α) − |x |2ε ≤ 1
3α

2.
(b) The function φε(x, α) is twice continuously differentiable with respect to x for

0 < α < ε.
(c) lim

α→0
φε(x, α) = |x |2ε and lim

α→0
∇xφε(x, α) = ∇(|x |2ε).

Proof (a) To complete the arguments, we need to discuss four cases.
(i) For |x | − ε ≥ α, it is clear that φε(x, α) − |x |2ε = 1

3α
2.

(ii) For 0 < |x | − ε < α, i.e., 0 < x − ε < α or 0 < −x − ε < α, there have two
subcase.
If 0 < x − ε < α, letting f (x) := φε(x, α)−|x |2ε = 1

6α (x − ε +α)3 − (x − ε)2 gives

{
f ′(x) = (x−ε+α)2

2α − 2(x − ε), ∀x ∈ (ε, ε + α),

f ′′(x) = x−ε+α
α

− 2 < 0, ∀x ∈ (ε, ε + α).

This indicates that f ′(x) is monotone decreasing on (ε, ε +α), which further implies

f ′(x) ≥ f ′(ε + α) = 0, ∀x ∈ (ε, ε + α).

Thus, we obtain that f (x) is monotone increasing on (ε, ε + α). With this, we have
f (x) ≤ f (ε + α) = 1

3α
2, which yields

φε(x, α) − |x |2ε ≤ 1

3
α2, ∀x ∈ (ε, ε + α).
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If 0 < −x − ε < α, the arguments are similar as above, and we omit them.
(iii) For −α < |x |− ε ≤ 0, it is clear that φε(x, α)−|x |2ε = 1

6α (|x |− ε +α)3 ≤ α3

6α ≤
α2

3 .

(iv) For |x | − ε ≤ −α, we have φε(x, α) − |x |2ε = 0. Then, the desired result follows.
(b) To prove the twice continuous differentiability of φε(x, α), we need to check
φε(·, α), ∇xφε(·, α) and ∇2

xxφε(·, α) are all continuous. Since they are piecewise
functions, it suffices to check the junction points.

First, we check that φε(·, α) is continuous.
(i) If |x | − ε = α, then φε(x, α) = 4

3α
2, which implies φε(·, α) is continuous.

(ii) If |x | − ε = −α, then φε(x, α) = 0. Hence, φε(·, α) is continuous.
Next, we check ∇xφε(·, α) is continuous.
(i) If |x | − ε = α, then ∇xφε(x, α) = 2α sgn(x).
(ii) If |x | − ε = −α, then ∇xφε(x, α) = 0. From the above, it clear to see that
∇xφε(·, α) is continuous.
Now we show that ∇2

xxφε(·, α) is continuous.
(i) If |x | − ε = α, ∇2

xxφε(x, α) = 2.
(ii) |x | − ε = −α then ∇2

xxφε(x, α) = 0. Hence, ∇2
xxφε(·, α) is continuous.

(c) It is clear that lim
α→0

φε(x, α) = |x |2ε holds by part(a). It remains to verify

lim
α→0

∇xφε(x, α) = ∇(|x |2ε). First, we compute that

∇(|x |2ε) =
{
2(|x | − ε)sgn(x) if |x | − ε ≥ 0,
0 if |x | − ε < 0.

(10)

In light of (10), we proceed the arguments by discussing four cases.
(i) For |x | − ε ≥ α, we have ∇xφε(x, α) − ∇(|x |2ε) = 0. Then, the desired result
follows.
(ii) For 0 < |x | − ε < α, we have

∇xφε(x, α) − ∇(|x |2ε) = 1

2α
(|x | − ε + α)2sgn(x) − 2(|x | − ε)sgn(x)

which yields

lim
α→0

(∇xφε(x, α) − ∇(|x |2ε)) = lim
α→0

(|x | − ε + α)2 − 4α(|x | − ε)

2α
sgn(x).

We notice that |x | → ε when α → 0, and hence (|x |−ε+α)2−4α(|x |−ε)
2α → 0

0 . Then,
applying L’hopital rule yields

lim
α→0

(|x | − ε + α)2 − 4α(|x | − ε)

2α
= lim

α→0
(α − (|x | − ε)) = 0.

This implies lim
α→0

(∇xφε(x, α) − ∇(|x |2ε)) = 0, which is the desired result.
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(iii) For−α < |x |−ε ≤ 0, we have∇xφε(x, α)−∇(|x |2ε) = 1
2α (|x |−ε+α)2sgn(x).

Then, applying L’hopital rule gives

lim
α→0

(|x | − ε + α)2

2α
= lim

α→0
(|x | − ε + α) = 0.

Thus, we prove that lim
α→0

(∇xφε(x, α) − ∇(|x |2ε)) = 0 under this case.

(iv) For |x | − ε ≤ −α, we have ∇xφε(x, α) − ∇(|x |2ε) = 0. Then, the desired result
follows clearly. ��

Now, we use the family of smoothing functions φε to replace the square of ε-
insensitive loss function in (5) to obtain the first smooth support vector regression. In
other words, we consider

min
ω

Fε,α(ω) := 1

2
ωTω + C

2
1T	ε

(
Āω − y, α

)
. (11)

where ω := (x, b) ∈ IRn+1, and 	ε (Ax + 1b − y, α) ∈ IRm is defined by

	ε(Ax + 1b − y, α)i = φε (Ai x + b − yi , α) .

This is a strongly convex unconstrained optimization with the twice continuously
differentiable objective function. Noting lim

α→0
φε(x, α) = |x |2ε , we see that

min
ω

Fε,0(ω) := lim
α→0

Fε,α(ω) = 1

2
ωTω + C

2

m∑

i=1

∣
∣
∣ ĀT

i ω − yi
∣
∣
∣
2

ε
(12)

which is exactly the problem (5).
The following Theorem shows that the unique solution of the smooth problem (11)

approaches to the unique solution of the problem (12) as α → 0. Indeed, it plays as
the same role as [7, Theorem 2.2].

Theorem 2.1 Let Fε,α(ω) and Fε,0(ω) be defined as in (11) and (12), respectively.
Then, the following hold.

(a) There exists a unique solution ω̄α to min
ω∈IRn+1

Fε,α(ω) and a unique solution ω̄ to

min
ω∈IRn+1

Fε,0(ω).

(b) For all 0 < α < ε, we have the following inequality:

‖ω̄α − ω̄‖2 ≤ 1

6
Cmα2. (13)

Moreover, ω̄α converges to ω̄ as α → 0 with an upper bound given by (13).
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Proof (a) In view of φε(x, α) − |x |2ε ≥ 0 in Lemma 2.1(a), we see that the level sets

Lv(Fε,α(ω)) :=
{
ω ∈ IRn+1 | Fε,α(ω) ≤ v

}

Lv(Fε,0(ω)) :=
{
ω ∈ IRn+1 | Fε,0(ω) ≤ v

}

satisfy

Lv(Fε,α(ω)) ⊆ Lv(Fε,0(ω)) ⊆
{
ω ∈ IRn+1 | ωTω ≤ 2v

}
(14)

for any v ≥ 0. Hence, we obtain that Lv(Fε,α(ω)) and Lv(Fε,0(ω)) are compact
(closed and bounded) subsets in IRn+1. Then, by the strong convexity of Fε,0(ω) and
Fε,α(ω) with α > 0, each of the problems min

ω∈IRn+1
Fε,α(ω) and min

ω∈IRn+1
Fε,0(ω) has a

unique solution.
(b) From the optimality condition and strong convexity of Fε,0(ω) and Fε,α(ω) with
α > 0, we know that

Fε,0(ω̄α) − Fε,0(ω̄) ≥ ∇Fε,0(ω̄α − ω̄) + 1

2
‖ω̄α − ω̄‖2 ≥ 1

2
‖ω̄α − ω̄‖2, (15)

Fε,α(ω̄) − Fε,α(ω̄α) ≥ ∇Fε,α(ω̄ − ω̄α) + 1

2
‖ω̄ − ω̄α‖2 ≥ 1

2
‖ω̄ − ω̄α‖2. (16)

Note that Fε,α(ω) ≥ Fε,0(ω) because φε(x, α) − |x |2ε ≥ 0. Then, adding up (15) and
(16) along with this fact yield

‖ω̄α − ω̄‖2 ≤ (Fε,α(ω̄) − Fε,0(ω̄)) − (Fε,α(ω̄α) − Fε,0(ω̄α))

≤ Fε,α(ω̄) − Fε,0(ω̄)

= C

2
1T	ε( Āω̄ − y, α) − C

2

m∑

i=1

∣
∣
∣ ĀT

i ω̄ − yi
∣
∣
∣
2

ε

= C

2

m∑

i=1

φε( Āi ω̄ − yi , α) − C

2

m∑

i=1

∣
∣
∣ ĀT

i ω̄ − yi
∣
∣
∣
2

ε

≤ 1

6
Cmα2,

where the last inequality is due to Lemma 2.1(a). It is clear that ω̄α converges to ω̄ as
α → 0 with an upper bound given by the above. Then, the proof is complete. ��

Next, we focus on the optimality condition of theminimization problem (11), which
is indeed sufficient and necessary for (11) and has the form of

∇ωFε,α(ω) = 0.
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With this, we define a function Hφ : IRn+2 → IRn+2 by

Hφ(z) =
[

α

∇ωFε,α(ω)

]

=
[

α

ω + C
∑m

i=1 ∇xφε( ĀT
i ω − yi , α) Āi

]

(17)

where z := (α, ω) ∈ IRn+2. From Lemma 2.1 and the strong convexity of Fε,α(ω),
it is easy to see that if Hφ(z) = 0, then α = 0 and ω solves (11); and for any
z ∈ IR++ × IRn+1, the function Hφ is continuously differentiable. In addition, the
Jacobian of Hφ can be calculated as below:

H ′
φ(z) =

[
1 0

∇2
ωαFε,α(ω) ∇2

ωωFε,α(ω)

]

(18)

where

∇2
ωαFε,α(ω) = C

m∑

i=1

∇2
xαφε

(
ĀT
i ω − yi , α

)
Āi ,

∇2
ωωFε,α(ω) = I + C

m∑

i=1

∇2
xxφε

(
ĀT
i ω − yi , α

)
Āi Ā

T
i .

From (8), we can see ∇2
xxφε(x, α) ≥ 0, which implies C

∑m
i=1 ∇2

xxφε( ĀT
i ω −

yi , α) Āi ĀT
i is positive semidefinite. Hence, ∇2

ωωFε,α(ω) is positive definite. This
helps us to prove that H ′

φ(z) is invertible at any z ∈ IR++ × IRn+1. In fact, if there

exists a vector d := (d1, d2) ∈ IR × IRn+1 such that H ′
φ(z)d = 0, then we have

[
d1

d1∇2
ωαFε,α(ω) + ∇2

ωωFε,α(ω)d2

]

= 0.

This implies that d = 0, and hence H ′
φ(z) is invertible at any z ∈ IR++ × IRn+1.

3 The second smooth support vector machine

In this section, we consider another type of smoothing functions ψε,p(x, α) : IR ×
IR+ → IR+, which is defined by

ψε,p(x, α) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ |x | ≤ ε − α,

α
p−1

[
(p−1)(|x |−ε+α)

pα

]p
if ε − α < |x | < ε + α

p−1 ,

|x | − ε if |x | ≥ ε + α
p−1 .

(19)

here p ≥ 2. The graphs of ψε,p(x, α) are depicted in Fig. 2, which clearly verify that
ψε,p(x, α) is a family of smoothing functions for |x |ε.

As in Lemma 3.1, we verify that ψε,p(x, α) is a family of smoothing functions for
|x |ε, hence, ψ2

ε,p(x, α) is also a family of smoothing functions for |x |2ε . Then, we can

123



W. Gu et al.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

|x|

,p
(x, 0.03)

,p
(x, 0.06)

,p
(x, 0.09)

Fig. 2 Graphs of ψε,p(x, α) with ε = 0.1, α = 0.03, 0.06, 0.09 and p = 2
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Fig. 3 Graphs of |x |2ε , φε(x, α) and ψ2
ε,p(x, α) with ε = 0.1, α = 0.06, 0.09 and p = 2

employψ2
ε,p to replace the square of ε-insensitive loss function in (5) as the same way

done in Sect. 2. The graphs of ψ2
ε,p(x, α) with comparison to φε(x, α) are depicted

in Fig. 3. In fact, there is a relation between ψ2
ε,p(x, α) and φε(x, α) shown as in

Proposition 3.1.
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In otherwords, we obtain an alternative strongly convex unconstrained optimization
for (5):

min
ω

1

2
ωTω + C

2

m∑

i=1

ψ2
ε,p

(
ĀT
i ω − yi , α

)
. (20)

However, the smooth function ψ2
ε,p(x, α) is not twice differentiable with respect x ,

and hence the objective function of (20) is not twice differentiable although it smooth.
Then,we still cannot applyNewton-typemethod to solve (20). To conquer this, we take
another smoothing technique. Before presenting the idea of this smoothing technique,
the following two lemmas regarding properties of ψε,p(x, α) are needed. To this end,
we also compute the partial derivative of ψε,p(x, α) as below:

∇xψε,p(x, α) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ |x | ≤ ε − α,

sgn(x)
[

(p−1)(|x |−ε+α)
pα

]p−1
if ε − α < |x | < ε + α

p−1 ,

sgn(x) if |x | ≥ ε + α
p−1 .

∇αψε,p(x, α) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ |x | ≤ ε − α,

(ε−|x |)(p−1)+α
pα

[
(p−1)(|x |−ε+α)

pα

]p−1
if ε − α < |x | < ε + α

p−1 ,

0 if |x | ≥ ε + α
p−1 .

Lemma 3.1 Let ψε,p(x, α) be defined as in (19). Then, we have

(a) ψε,p(x, α) is smooth with respect to x for any p ≥ 2;
(b) lim

α→0
ψε,p(x, α) = |x |ε for any p ≥ 2.

Proof (a) To prove the result, we need to check both ψε,p(·, α) and ∇xψε,p(·, α) are
continuous.
(i) If |x | = ε − α, then ψε,p(x, α) = 0.
(ii) If |x | = ε + α

p−1 , then ψε,p(x, α) = α
p−1 . Form (i) and (ii), it is clear to see

ψε,p(·, α) is continuous.
Moreover, (i) If |x | = ε − α, then ∇xψε,p(x, α) = 0.
(ii) If |x | = ε + α

p−1 , then ∇xψε,p(x, α) = sgn(x). In view of (i) and (ii), we see that
∇xψε,p(·, α) is continuous.
(b) To proceed, we discuss four cases.
(1) If 0 ≤ |x | ≤ ε − α, then ψε,p(x, α) − |x |ε = 0. Then, the desired result follows.

(2) If ε − α ≤ |x | ≤ ε, then ψε,p(x, α) − |x |ε = α
p−1

[
(p−1)(|x |−ε+α)

pα

]p
. Hence,

lim
α→0

(

ψε,p(x, α) − |x |ε
)

= lim
α→0

(
α

p − 1

) [
(p − 1)(|x | − ε + α)

pα

]p

= lim
α→0

(
α

p − 1

)

lim
α→0

[
(p − 1)(|x | − ε + α)

pα

]p

.
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It is clear that the first limit is zero, so we only need to show that the second limit is
bounded. To this end, we rewrite it as

lim
α→0

[
(p − 1)(|x | − ε + α)

pα

]p

= lim
α→0

(
p − 1

p

)p [ |x | − ε + α

α

]p

.

We notice that |x | → ε when α → 0 so that |x |−ε+α
α

→ 0
0 . Therefore, by applying

L’hopital’s rule, we obtain

lim
α→0

[ |x | − ε + α

α

]

= 1

which implies that limα→0

(

ψε,p(x, α) − |x |ε
)

= 0 under this case.

(3) If ε ≤ |x | ≤ ε + α
p−1 , then

ψε,p(x, α) − |x |ε = α

p − 1

[
(p − 1)(|x | − ε + α)

pα

]p

− (|x | − ε).

We have shown in case (2) that

lim
α→0

α

p − 1

[
(p − 1)(|x | − ε + α)

pα

]p

= 0.

It is also obvious that limα→0(|x | − ε) = 0. Hence, we obtain limα→0
(
ψε,p(x, α) −

|x |ε
) = 0 under this case.

(4) If |x | ≥ ε+ α
p−1 , the desired result follows since it is clear thatψε,p(x, α)−|x |ε =

0. From all the above, the proof is complete. ��

Lemma 3.2 Let ψε,p(x, α) be defined as in (19). Then, we have

(a) ψε,p(x, α)sgn(x) is smooth with respect to x for any p ≥ 2;
(b) lim

α→0
ψε,p(x, α)sgn(x) = |x |εsgn(x) for any p ≥ 2.

Proof (a) First, we observe that ψε,p(x, α)sgn(x) can be written as

ψε,p(x, α)sgn(x) =

⎧
⎪⎨

⎪⎩

0 if 0 ≤ |x | ≤ ε − α,

α
p−1

[
(p−1)(|x |−ε+α)

pα

]p
sgn(x) if ε − α < |x | < ε + α

p−1 ,

(|x | − ε)sgn(x) if |x | ≥ ε + α
p−1 .

Note that sgn(x) is continuous at x �= 0 and ψε,p(x, α) = 0 at x = 0, then applying
Lemma 3.1(a) yields ψε,p(x, α)sgn(x) is continuous. Furthermore, by simple calcu-
lations, we have
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∇x (ψε,p(x, α)sgn(x)) = ∇xψε,p(x, α)sgn(x)

=

⎧
⎪⎨

⎪⎩

0 if 0 ≤ |x | ≤ ε − α,
[

(p−1)(|x |−ε+α)
pα

]p−1
if ε − α < |x | < ε + α

p−1 ,

1 if |x | ≥ ε + α
p−1 .

(21)

Mimicking the arguments as inLemma3.1(a),we canverify that∇x (ψε,p(x, α)sgn(x))
is continuous. Thus, the desired result follows.
(b) By Lemma 3.1(b), it is easy to see that lim

α→0
ψε,p(x, α)sgn(x) = |x |εsgn(x). Then,

the desired result follows. ��
Note that |x |2ε is smooth with

∇(|x |2ε) = 2|x |εsgn(x) =
{
2(|x | − ε)sgn(x) if |x | > ε,

0 if |x | ≤ ε.

being continuous (but not differentiable). Then, we consider the optimality condition
of (12), that is

∇ωFε,0(ω) = ω + C
m∑

i=1

| ĀT
i ω − yi |εsgn

(
ĀT
i ω − yi

)
Āi = 0, (22)

which is indeed sufficient and necessary for (5). Hence, solving (22) is equivalent to
solving (5).

Using the family of smoothing functions ψε,p to replace ε-loss function of (22)
leads to a system of smooth equations. More specifically, we define a function Hψ :
IRn+2 → IRn+2 by

Hψ(z) = Hψ(α, ω) =
[

α

ω + C
∑m

i=1 ψε

(
ĀT
i ω − yi , α

)
sgn

(
ĀT
i ω − yi

)
Āi

]

where z := (α, ω) ∈ IRn+2. From Lemma 3.1, it is easy to see that if Hψ(z) = 0, then
α = 0 and ω is the solution of the equations (22), i.e., the solution of (12). Moreover,
for any z ∈ IR++ × IRn+1, the function Hψ is continuously differentiable with

H ′
ψ(z) =

[
1 0

E(ω) I + D(ω)

]

(23)

where

E(ω) = C
m∑

i=1

∇αψε

(
ĀT
i ω − yi , α

)
sgn

(
ĀT
i ω − yi

)
Āi ,

D(ω) = C
m∑

i=1

∇xψε

(
ĀT
i ω − yi , α

)
sgn

(
ĀT
i ω − yi

)
Āi Ā

T
i .
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Because ∇xψε( ĀT
i ω − yi , α)sgn( ĀT

i ω − yi ) is nonnegative for any α > 0 from (21),
we see that I+D(x) is positive definite at any z ∈ IR++×IRn+1. Following the similar
arguments as in Sect. 2, we obtain that H ′

ψ(z) is invertible at any z ∈ IR++ × IRn+1.

Proposition 3.1 Let φε(x, α) be defined as in (6) andψε,p(x, α) be defined as in (19).
Then, the following hold.

(a) For p ≥ 2, we have φε(x, α) ≥ ψ2
ε,p(x, α) ≥ |x |2ε.

(b) For p ≥ q ≥ 2, we have ψε,q(x, α) ≥ ψε,p(x, α).

Proof (a) First, we show that φε(x, α) ≥ ψ2
ε,p(x, α) holds. To proceed, we discuss

four cases.
(i) If |x | ≤ ε − α, then φε(x, α) = 0 = ψ2

ε,p(x, α).

(ii) If ε−α < |x | < ε+ α
p−1 , then |x | ≤ ε+ α

p−1 which is equivalent to
1

|x |−ε+α
≥ p−1

αp .
Thus, we have

φε(x, α)

ψ2
ε,p(x, α)

= α2p−3 p2p

6(p − 1)2p−2(|x | − ε + α)2p−3 ≥ p3

6(p − 1)
≥ 1,

which implies φε(x, α) ≥ ψ2
ε,p(x, α).

(iii) For ε + α
p−1 ≤ |x | < ε + α, letting t := |x | − ε ∈ [ α

p−1 , α) yields

φε(x, α) − ψ2
ε,p(x, α) = 1

6α
(t + α)3 − t2 = t

(
1

6α
t2 − 1

2
t + 1

2
α

)

+ 1

6
α2 ≥ 0.

here the last inequality follows from the fact that discriminant of 1
6α t

2 − 1
2 t + 1

2α is
less than 0 and 1

6α > 0. Then, φε(x, α) − ψ2
ε,p(x, α) > 0.

(iv) If |x | ≥ ε+α, then it is clear thatφε(x, α) = (|x |−ε)2+ 1
3α

2 ≥ (|x |−ε)2 = ψ2
ε,p.

Now we show that the other part ψε,p(x, α) ≥ |x |ε, which is equivalent to verifying
ψ2

ε,p(x, α) ≥ |x |2ε . Again, we discuss four cases.
(i) If |x | ≤ ε − α, then ψε,p(x, α) = 0 = |x |ε.
(ii) If ε − α < |x | ≤ ε, then ε − α < |x | which says |x | − ε + α > 0. Thus, we have
ψε,p(x, α) ≥ 0 = |x |ε.
(iii) For ε < |x | < ε + α

p−1 , we let t := |x | − ε ∈ (0, α
p−1 ) and define a function as

f (t) = α

p − 1

(
(p − 1)(t + α)

pα

)p

− t,

which is a function on
[
0, α

p−1

]
. Note that f (|x | − ε) = ψε,p(x, α) − |x |ε for |x | ∈

(ε, ε + α
p−1 ) and observe that

f ′(t) =
(

(p − 1)(t + α)

pα

)p−1

− 1 ≤
(

(p − 1)( α
p−1 + α)

pα

)p−1

− 1 = 0.
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This means f (t) is monotone decreasing on (0, α
p−1 ). Since f ( α

p−1 ) = 0, we have
f (t) ≥ 0 for t ∈ (0, α

p−1 ), which implies ψε,p(x, α) ≥ |x |ε for |x | ∈ (ε, ε + α
p−1 ).

(iv) If |x | ≥ ε + α
p−1 , then it is clear that ψε,p(x, α) = |x | − ε = |x |ε.

(b) For p ≥ q ≥ 2, it is obvious to see that

ψε,q(x, α) = ψε,p(x, α) for |x | ∈ [0, ε − α] ∪
[

ε + α

q − 1
,+∞

)

.

If |x | ∈ [ε + α
p−1 , ε + α

q−1 ), then ψε,p(x, α) = |x |ε ≤ ψε,q(x, α) from the above.
Thus, we only need to prove the case of |x | ∈ (ε − α, ε + α

p−1 ).

Consider |x | ∈ (ε − α, ε + α
p−1 ) and t := |x | − ε + α, we observe that α

t ≥ p−1
p .

Then, we verify that

ψε,q(x, α)

ψε,p(x, α)
= (q − 1)q−1 pp

(p − 1)p−1qq
·
(α

t

)p−q

≥ (q − 1)q−1 pp

(p − 1)p−1qq
·
(
p − 1

p

)p−q

=
(
p

q

)q

·
(
q − 1

p − 1

)q−1

=
(
1 + p−q

q

)q

(
1 + p−q

q−1

)q−1

≥ 1,

where the last inequality is due to (1 + p−q
x )x being increasing for x > 0. Thus, the

proof is complete. ��

4 A smoothing Newton algorithm

In Sects. 2 and 3, we construct two systems of smooth equations: Hφ(z) = 0 and
Hψ(z) = 0. We briefly describe the difference between Hφ(z) = 0 and Hψ(z) = 0.
In general, the way we come up with Hφ(z) = 0 and Hψ(z) = 0 is a bit different.
For achieving Hφ(z) = 0, we first use the twice continuously differentiable functions
φε(x, α) to replace |x |2ε in problem (5), and then write out its KKT condition. To the
contrast, for achieving Hψ(z) = 0, we write out the KKT condition of problem (5)
first, then we use the smoothing functionsψε,p(x, α) to replace ε-loss function of (22)
therein. For convenience, we denote H̃(z) ∈ {Hφ(z), Hψ(z)}. In other words, H̃(z)
possesses the property that if H̃(z) = 0, then α = 0 and ω solves (12). In view of
this, we apply some Newton-type methods to solve the system of smooth equations
H̃(z) = 0 at each iteration and letting α → 0 so that the solution to the problem (12)
can be found.

Algorithm 4.1 (A smoothing Newton method)
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Step 0 Choose δ ∈ (0, 1), σ ∈ (0, 1
2 ), and α0 > 0. Take τ ∈ (0, 1) such that

τα0 < 1. Let ω0 ∈ IRn+1 be an arbitrary vector. Set z0 := (α0, ω0). Set
e0 := (1, 0, . . . , 0) ∈ IRn+2.

Step 1 If ‖H̃(zk)‖ = 0, stop.
Step 2 Define function 
, β by


(z) := ‖H̃(zk)‖2 and β(z) := τ min{1, 
(z)}. (24)

Compute �zk := (�αk,�xk) by

H̃
(
zk

)
+ H̃ ′ (zk

)
�zk = α0β

(
zk

)
e0.

Step 3 Let θk be the maximum of the values 1, δ, δ2, · · · such that



(
zk + λk�zk

)
≤ [

1 − 2σ (1 − γα0) θk
]



(
zk

)
. (25)

Step 4 Set zk+1 := zk + θk�zk , and k := k + 1, Go to step 1.

Proposition 4.1 Suppose that the sequence {zk} is generated by Algorithm 4.1. Then,
the following results hold.

(a) {
(zk)} is monotonically decreasing.
(b) {H̃(zk)} and {β(zk)} are monotonically decreasing.
(c) Let N (τ ) := {z ∈ IR+ × IRn+1 : α0β(z) ≤ α}, then zk ∈ N (τ ) for any k ∈ K

and 0 < αk+1 ≤ αk .
(d) The algorithm is well defined.

Proof Since the proof is much similar to [6, Remark 2.1], we omit it here. ��

Lemma 4.1 Let λ̄ := max
{
λi (

∑m
i=1 Āi Āi

T
)
}
. Then, for any z ∈ IR++ × IRn+1, we

have

(a) 1 ≤ λi (H ′
φ(z)) ≤ 1 + 2λ̄, i = 1, · · · , n + 2;

(b) 1 ≤ λi (H ′
ψ(z)) ≤ 1 + λ̄, i = 1, · · · , n + 2.

Proof (a) H ′
φ(z) is continuously differentiable at any z ∈ IR++ × IRn+1, and by (18),

it is easy to see that {1, λ1(∇2
ωωFε,α(ω)), · · · , λn+1(∇2

ωωFε,α(ω))} are eigenvalues of
H ′

φ(z). From the representationof∇2
xxφε in (8),wehave0 ≤ ∇2

xxφε( ĀT
i ω−yi , α) ≤ 2.

As ∇2
ωωFε,α(ω) = I + ∑m

i=1 ∇2
xxφε( ĀT

i ω − yi , α) Āi ĀT
i , then

1 ≤ λi

(
∇2

ωωFε,α(ω)
)

≤ 1 + 2λ̄(i = 1, · · · , n + 1). (26)

Thus the result (i) holds.
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(b) Note that

∇xψε,p(x, α)sgn(x) =

⎧
⎪⎨

⎪⎩

0 0 ≤ |x | ≤ ε − α,
[

(p−1)(|x |−ε+α)
pα

]p−1
ε − α < |x | < ε + α

p−1 ,

1 |x | ≥ ε + α
p−1 ,

which says 0 ≤ ∇xψε,p(x, α) ≤ 1. Then, following the similar arguments as in
part(a), the result of part(b) cab be proved. ��
Proposition 4.2 {H̃(α, ω)} is coercive for any fixed α > 0, i.e., lim‖ω‖→+∞ ‖H̃
(α, ω)‖ = +∞.

Proof We first claim that {Hφ(α, ω)} is coercive for any fixed α > 0. By the definition
of Hφ(α, ω) in (17), ‖Hφ(α, ω)‖2 = α2 + ‖∇ωFε,α(ω)‖2. Then for any fixed α > 0,

lim‖ω‖→+∞ ‖Hφ(α, ω)‖ = +∞ ⇔ lim‖ω‖→+∞ ‖∇ωFε,α(ω)‖ = +∞.

By (26), we have ‖∇2
ωωFε,α(x, b)‖ ≥ 1. For any ω0 ∈ IRn+1,

‖∇ωFε,α(ω)‖ + ‖∇ωFε,α(ω0)‖ ≥ ‖∇ωFε,α(ω) − ∇ωFε,α(ω0)‖
= ‖∇2

ωωFε,α(ω̂)(ω − ω0)‖
≥ ‖ω − ω0‖,

where ω̂ between ω0 and ω, then lim‖ω‖→+∞ ‖∇ωFε,α(ω)‖ = +∞.
By a similar proof, we can get {Hψ(α, ω)} is coercive for any fixed α > 0.
From the above, H̃(α, ω) ∈ {Hφ(α, ω), Hψ(α, ω)} is coercive for any fixed

α > 0. ��
Lemma 4.2 Let� ⊆ IRn+1 be a compact set and 
(α, ω) be defined as in (24). Then,
for every ς > 0, there exists a ᾱ > 0 such that

|
(α, ω) − 
(0, ω)| ≤ ς

for all ω ∈ � and all α ∈ [0, ᾱ].
Proof The function
(α, ω) defined as in (24) is continuous on the compact set [0, ᾱ]×
�. The lemma is then an immediate consequence of the fact that every continuous
function on a compact set is uniformly continuous there. ��
Lemma 4.3 (Mountain Pass Theorem [12, Theorem 9.2.7]) Suppose that g : IRm →
IR is a continuously differentiable and coercive function. Let � ⊂ IRm be a nonempty
and compact set and ξ be the minimum value of g on the boundary of �, i.e., ξ :=
miny∈∂� g(y). Assume that there exist points a ∈ � and b /∈ � such that g(a) < ξ

and g(b) < ξ . Then, there exists a point c ∈ IRm such that ∇g(c) = 0 and g(c) ≥ ξ .
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Theorem 4.1 Suppose the sequence {zk} is generated by Algorithm 4.1. Then, the
sequence {zk} is bounded, and ωk = (xk, bk) converges to the unique solution ωsol =
(xsol , bsol) of problem (12).

Proof (a) We first show that the sequence {zk} is bounded. It is clear from Proposition
4.1(c) that the sequence {αk} is bounded. In the following two cases, by assuming
that {ωk} is unbounded, we will derive a contradiction. By passing to subsequence if
necessary, we assume ‖ωk‖ → +∞ as k → +∞. Then, we discuss two cases.

(i) Ifα∗ = lim
k→+∞ αk > 0, applying Proposition 4.1(b) yields that

{
H̃(zk)

}
is bounded.

In addition, by Proposition 4.2, we have

lim
k→+∞ H̃(α∗, ωk) = lim

‖ωk‖→+∞
H̃(α∗, ωk) = +∞. (27)

Hence, a contradiction is reached.
(ii) If α∗ = lim

k→+∞ αk = 0, by assuming that {ωk} is unbounded, there exists a compact

set � ⊂ IRn with
ωsol /∈ � (28)

for all k sufficiently large. Since

m̄ := min
ω∈∂�


(0, ω) > 0,

we can apply Lemma 4.2 with ς := m̄/4 and conclude that



(
αk, ω

sol
)

≤ 1

4
m̄ (29)

and

min
ω∈∂�


(αk, ω) ≥ 3

4
m̄

for all k sufficiently large. Since αk → 0 in this case, combining (24) and Proposition
4.1(c) gives



(
αk, ω

k
)

= β
(
αk, ω

k
)

≤ αk/α0.

Hence,



(
αk, ω

k
)

≤ 1

4
m̄ (30)

for all k sufficiently large. Now let us fix an index k such that (29) and (30) hold.
Applying the Mountain Pass Theorem 4.3 with a := ωsol and b := ωk , we obtain the
existence of a vector c ∈ IRn+1 such that

∇ω
(αk, c) = 0 and 
(αk, c) ≥ 3

4
m̄ > 0. (31)
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To derive a contradiction, we need to show that c is a global minimizer of 
(αk, ω).
Since 
(αk, ω) ≥ α2, it is sufficient to show 
(αk, c) = α2. We discuss this in two
cases:

• If H̃ = Hp, then

∇ω
(αk, c) = 2∇2
ωωFε,αk (c)H̄p(αk, c)

where H̄p is the last n+1 components of Hφ , i.e., H̄p = Hp(2 : n+2). Then, using
(31) and the fact that∇2

ωωFε,αk (c) is invertible for αk > 0, we have H̄p(αk, c) = 0.
Furthermore,


(αk, c) = ‖H(αk, c)‖2 = α2.

• If H̃ = Hψ , then

∇ω
(αk, c) = 2(I + D(ω))H̄ψ(αk, c)

where I + D(ω) is given by (23) and H̄ψ is the last n + 1 components of Hψ .
Since I +D(ω) is invertible for αk > 0, we obtain that 
(αk, c) = α2 by the same
way as in the above case.

(b) From Proposition 4.1, we know that sequences {H̃(zk)} and {
(zk)} are non-
negative and monotone decreasing, and hence they are convergent. In addition, by
using the first result of this theorem, we obtain that the sequence {zk} is bounded.
Passing to subsequence if necessary, we may assume that there exists a point z∗ =
(α∗, ω∗)IR++ × IRn+1 such that limk→+∞ zk = z∗, and hence,

lim
k→+∞ ‖H(zk)‖ = ‖H(z∗)‖ and lim

k→+∞ 
(zk) = 
(z∗).

For H(z∗) = 0, by a simple continuity discussion, we obtain that ω∗ is a solution
to problem (12). For the case of H(z∗) > 0, and hence α∗ > 0, we will derive a
contradiction. First, by the assumption that H(z∗) > 0, we have limk→+∞ θk = 0.
Thus, for any sufficiently large k, the stepsize θ̂k := θk/δ does not satisfy the line
search criterion (25), i.e.,



(
zk + θ̂k�zk

)
>

[
1 − 2σ(1 − γα0)θ̂k

]



(
zk

)
,

which implies that



(
zk + θ̂k�zk

)
− 
(zk)

θ̂k
> −2σ(1 − γα0)


(
zk

)
.

Since α∗ > 0, it follows that 
(zk) is continuously differentiable at z∗. Letting k →
+∞ in the above inequality gives
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−2σ(1 − γα0)
(z∗)
≤ 2H̃

(
z∗

)T
H̃ ′ (z∗

) �z∗ = 2H̃
(
z∗

)T
(
−H̃

(
z∗

) + α0β
(
z∗

)
e0

)

= −2H̃
(
z∗

)T
H̃

(
z∗

) + 2α0β
(
z∗

)
H̃

(
z∗

)T
e0

≤ 2 (−1 + γα0) 

(
z∗

)
.

This indicates that −1 + γα0 + σ(1 − γα0) ≥ 0, which contradicts the fact that
γα0 < 1. Thus, there should be H̃(z∗) = 0.

Because the unique solution to problem (12) is ωsol , we have z∗ = (0, ωsol) and
the whole sequence {zk} converge to z∗, that is,

lim
k→+∞ z∗ =

(
0, ωsol

)
.

Then, the proof is complete. ��
In the following, we discuss the local convergence of Algorithm 4.1. To this end, we

need the concept of semismoothness, which was originally introduced by Mifflin [10]
for functionals and was further extended to the setting of vector-valued functions by
Qi and Sun [14]. A locally Lipschitz continuous function F : IRn → IRm , which has
the generalized Jacobian ∂F(x) in the sense of Clarke [2], is said to be semismooth
(respectively, strongly semismooth) at x ∈ IRn , if F is directionally differentiable at
x and

F(x + h) − F(x) − Vh = o(‖h‖) (= O(‖h‖2), respectively)

holds for any V ∈ ∂F(x + h).

Lemma 4.4 (a) Suppose that the sequence {zk} is generated by Algorithm 4.1. Then,∥
∥
∥H̃ ′(zk)−1

∥
∥
∥ ≤ 1.

(b) H̃(z) is strongly semismooth at any z = (α, ω) ∈ IRn+2.

Proof (a) By Proposition 4.1 (c), we know that αk > 0 for any k ∈ K. This together
with Lemma 4.1 leads to the desired result.
(b) We only provide the proof for the case of H̃(α, ω) = Hφ(α, ω). For the other case
of H̃(α, ω) = Hψ(α, ω), the proof is similar and is omitted. First, we observe that
H ′

φ(z) is continuously differentiable and Lipschitz continuous at z ∈ IR++ × IRn+1 by

Lemma 4.1(a). Thus, Hφ(z) is strongly semismooth at z ∈ IR++ × IRn+1. It remains
to verify that Hφ(z) is strongly semismooth at z ∈ {0} × IRn+1. To see this, we recall
that

∇xφε(x, 0) =
{
2(|x | − ε)sgn(x), |x | − ε ≥ 0;

0, |x | − ε ≤ −α.

It is a piecewise linear function, and hence ∇xφε(x, 0) is a strongly semismooth
function. In summary, Hφ(z) is strongly semismooth at z ∈ {0} × IRn+1. ��
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Theorem 4.2 Suppose that z∗ = (μ∗, x∗) is an accumulation point of {zk} generated
by Algorithm 4.1. Then, we have

(a) ‖zk+1 − z∗‖ = O(‖zk − z∗‖2);
(b) αk+1 = O(α2

k ).

Proof The proof can be done by using Lemma 4.4 and following the similar arguments
in [6, Theorem 3.2]. ��

5 Smooth support vector machines with nonlinear kernel

In this section, we talk about the nonlinear kernel which is traditionally applied to
smooth support vector machines. More specifically, we employ the kernel technique
that has been used extensively in kernel-based learning algorithm. For convenience,
we denote the kernel function by K : IRn ×IRn → IR. There are many popular choices
of K , for example, the linear kernel

K (Ai , A j ) = AT
i A j

where Ai means the i-th input data, and the radial basis function (rbf) kernel

K (Ai , A j ) = exp(−γ ‖Ai − A j‖2)

where γ > 0 is a constant. Other types of nonlinear kernels are the polynomial kernel

K (Ai , A j ) =
(
γ AT

i A j + s
)deg

,

and the sigmoid kernel

K (Ai , A j ) = tanh
(
γ AT

i A j + s
)

.

here, as mentioned in [15], γ = 1/n, s = 0, and deg = 3. Also, a reduced kernel is
proposed recently [5,7].

For our numerical implementation, we definem dimension row vector K (Ai , AT ) :
IRn×1 × IRn×m → IR1×m with

K
(
Ai , A

T
)

j
= K

(
Ai , A

j
)

, j = 1, · · · ,m. (32)

In addition, we denote B̄ = [B, 1], B = [B1, · · · , Bm]T with

Bi = K
(
Ai , A

T
)T

, i = 1, · · · ,m. (33)
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Then, (5) and (11) can be recast as

min(u,b)∈IRm+1
1
2

(
uT u + b2

) + C
2

∑m
i=1 |K (Ai , AT )u + b − yi |2ε

= min(u,b)∈IRm+1
1
2

(
uT u + b2

) + C
2

∑m
i=1 |BT

i u + b − yi |2ε,
(34)

min
υ∈IRm+1

F̂ε,α(υ) := min
υ∈IRm+1

1

2
υTυ + C

2
1T	ε(B̄υ − y, α). (35)

whereυ = (u, b) ∈ IRm+1. The problems (34) and (35) have exactly the same forms as
the problems (5) and (11) except that A is replaced by B and the dimension of variables
is replaced bym+1. Thus, we can directly apply ourmethods for ε-insesitive nonlinear
support vector regression.

6 Numerical results

In this section, we report the numerical results of Algorithm 4.1 for solving the SSVR
(3). All numerical experiments are carried out in MATLAB R2015a 64-bit running
on a PC with Intel Xeon E3 1231 v3 @ 3.40GHz CPU, 16.0GB DDR3 RAM and
Windows 10 64-bit operating system.

In our numerical experiments, the stopping criteria for Algorithm 4.1 is ‖H̃(zk)‖ <

1e − 6. We also stop programs when the number of total iterations is more than 20.
Throughout the computational experiments, the following parameters are used:

ε = 0.1, C = 100, δ = 0.3, σ = 0.03, τ = 0.3.

In each fitting, we randomly choose ω0 and all components are generated indepen-
dently from uniform distribution over [−1, 1].

Table 1 presents eight benchmark datasets that we implement. The first seven are
“abalone”, “bodyfat”,“housing”, “mg”, “mpg”, “pyrim”, “space ga”, and “triazines”,
which come fromLIBSVMData:Regression. The last dataset is “Friedman#1” regres-
sion problem appeared in [4]. The input features x = (x1, x2, · · · , x10) are generated

Table 1 Datasets #Samples #Features

abalone 4177 8

bodyfat 252 14

housing 506 13

mg 1385 6

mpg 392 7

pyrim 74 27

space ga 3107 6

triazines 186 60

Friedman1 2500 10
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Table 2 Numerical results of φε(x, α) when α0 = 1e − 1, 1e − 3, 1e − 5 and 1e − 7

α0 Number of iterations Computing time (in s)

1e−1 1e−3 1e−5 1e−7 1e−1 1e−3 1e−5 1e−7

abalone 20 14.75 5.05 4.1 2.2113 1.4125 0.39054 0.32613

bodyfat 16.7 9.05 8.2 7.7 0.01102 0.0061242 0.0053697 0.00502

housing 16.35 4.85 4.85 3.65 0.022907 0.0061034 0.0062035 0.0046132

mg 20 14.9 11.2 11.7 0.18556 0.12624 0.080191 0.090198

mpg 16.45 4.6 4.25 3.25 0.019591 0.004651 0.0037961 0.0033604

pyrim 20 17.15 14.85 12.75 0.016807 0.015491 0.012851 0.010785

space ga 20 12.75 8.2 7.6 1.159 0.53963 0.31917 0.29891

triazines 20 18.2 13.7 15.2 0.043735 0.041883 0.031706 0.036713

Friedman1 20 8.55 5.15 4.15 2.5858 1.0182 0.59597 0.49187

Table 3 Numerical results of ψε,p(x, α) when α0 = 1e − 1, 1e − 3, 1e − 5 and 1e − 7

α0 Number of iterations Computing time (in s)

1e−1 1e−3 1e−5 1e−7 1e−1 1e−3 1e−5 1e−7

abalone 20 12.1 4.9 4.05 1.9415 1.11 0.37749 0.32293

bodyfat 15.3 8.45 7.85 7.7 0.012084 0.0061134 0.0054757 0.0051973

housing 16.7 4.65 4.2 3.4 0.025137 0.0057001 0.0057374 0.0041698

mg 20 13.55 9.7 10.9 0.17853 0.10258 0.069653 0.078864

mpg 16.05 4.15 4.3 3.1 0.019766 0.0039988 0.0039729 0.0029461

pyrim 20 16.1 15.2 13.55 0.015815 0.014137 0.013878 0.011996

space ga 20 10.6 7.65 7.6 1.0904 0.42223 0.29601 0.29527

triazines 20 17.55 15.25 12.75 0.043612 0.039669 0.034606 0.028883

Friedman1 20 9.1 5.4 4.15 2.6285 1.1139 0.62455 0.48496

independently from uniform distribution over [0, 1]. The output target function is
defined by

y(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + N (0, 1)

where N (0, 1) is the normally distributed noise with mean 0 and variance 1. For
consistency, we linearly scale the last dataset to [−1, 1]. All datasets are transformed
to RBF kernel space with γ = 10. To speed up our smoothing method, if m/10 > n,
we use reduced kernel matrix [9] K (A, AT ) ∈ IRm×m to K (A, ÃT ) ∈ IRm×m̃ where
m̃ = �m/10�. We run each test case 20 times and average the number of iterations
and computing time.

To compare the performance, we consider the the performance profile which is
introduced in [3] as a means. In other words, we regard Algorithm 4.1 corresponding
to a smoothing function φε(x, α) or ψε,p(x, α) with specific parameters as a solver,
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Fig. 4 Performance profile of φε(x, α) when α0 = 1e − 1, 1e − 3, 1e − 5 and 1e − 7

and assume that there are ns solvers and n p test problems from the test set P which
is the datasets mentioned above. We are interested in using the iteration number as
performance measure for Algorithm 4.1 with different settings. For each problem p
and a solver s, let

f p,s = iteration number required to solve problem p by solver s.

We employ the performance ratio

rp,s = f p,s
min{ f p,s | s ∈ S}

where S is the datasets. We assume that a parameter rp,s ≤ rM for all p, s are chosen,
and rp,s = rM if and only if solver s does not solve problem p. In order to obtain an
overall assessment for each solver, we define

ρs(τ ) := 1

n p
size

{
p ∈ P | rp,s ≤ τ

}
,
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Fig. 5 Performance profile of ψε,p when α0 = 1e − 1, 1e − 3, 1e − 5 and 1e − 7

which is called the performance profile of the number of iteration for solver s. Then,
ρs(τ ) is the probability for solver s ∈ S that a performance ratio f p,s is within a factor
τ ∈ IR of the best possible ratio.

We summarize all the comparison results as below.

1. First, we compare the initial values α0 = 1e − 1, 1e − 3, 1e − 5 and 1e − 7 for
φε(x, α) and ψε,p(x, α). The values of p is fixed as 2. The numerical results are
listed in Tables 2 and 3. Figures 4 and 5 are the performance profile of iteration
numbers and computing times of φε(x, α) and ψε,p(x, α). Both figures show that
the case of α0 = 1e− 1 is the worst, while the case of α0 = 1e− 7 performs well.

2. Second, we compare p = 2, 5, 10, 100 for ψε,p(x, α). The values of α0 is fixed
as 1e − 2. The numerical results are listed in Table 4. From Fig. 6, we see that
p = 100 outperforms other values of p.

3. Third, we compare smoothing φε(x, α) and ψε,p(x, α) for p = 2 and 100. The
values of α0 is fixed as 1e−5. The numerical results are listed in Table 5. Figure 7
shows that ψε,p(x, α) with p = 2 or p = 100 performs better than φε(x, α).

4. Finally, we compare smoothing φε(x, α) andψε,p(x, α) for p = 3 with LIBSVM,
which is the most powerful and successful public software for support vector
classification, regression, and distribution estimation. The values of α0 is fixed as
1e−5. The numerical comaprisons are listed inTable 6. FromFig. 8,we see that our
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Table 4 Numerical results of ψε,p(x, α) when p = 2, 5, 10 and 100

p Number of iterations Computing time (in s)

2 5 10 100 1e−1 1e−3 1e−5 1e−7

abalone 19.05 19.3 11.85 5.8 1.9285 1.738 0.9632 0.45631

bodyfat 9.6 9 9.2 8.75 0.007148 0.0069386 0.0073081 0.0063591

housing 7.25 5 4.75 4.5 0.0097576 0.005612 0.0057854 0.0054264

mg 15.05 12.6 11.6 11.5 0.11152 0.092907 0.08445 0.086844

mpg 5.8 5.35 4.45 4.15 0.006003 0.0052232 0.0043621 0.0042389

pyrim 17.75 17.65 17.8 15.05 0.016143 0.015634 0.016047 0.013043

space ga 18.15 12.8 11.35 8.8 0.79167 0.53068 0.4546 0.34446

triazines 19.9 17.75 15.4 14.15 0.0439 0.039515 0.034067 0.03288

Friedman1 11.2 9.7 8.1 5.45 1.3007 1.1126 0.9258 0.63419
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Fig. 6 Performance profile of ψε,p(x, α) when p = 2, 5, 10, 100
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Table 5 Numerical results of φε(x, α) and ψε,p(x, α)

Number of iterations Computing time (in s)

φ(x, α) ψ2(x, α) ψ100(x, α) φ(x, α) ψ2(x, α) ψ100(x, α)

abalone 5.25 5 5 0.41548 0.38232 0.38231

bodyfat 8.35 7.85 7.7 0.0055656 0.0052997 0.0051566

housing 4.75 4.45 4.6 0.0060158 0.0054452 0.0051749

mg 11.05 11.05 10 0.078979 0.080433 0.071441

mpg 4.25 4.1 4.15 0.0041321 0.0040231 0.0039307

pyrim 15.25 14.8 12.5 0.013206 0.013228 0.011089

space ga 8.4 7.6 7.65 0.33463 0.29161 0.29746

triazines 13.1 14.05 15.05 0.029611 0.031629 0.033943

Friedman1 5.25 5.05 5.05 0.59893 0.57985 0.57964

τ

ρ
s (

τ)

0

0.2

0.4

0.6

0.8

1
number of iterations

φ (x,α), α
0
=1e-05

ψ
,p

(x,α), p=2, α
0
=1e-05

ψ
,p

(x,α), p=100, α
0
=1e-05

τ

1 1.05 1.1 1.15 1.2 1.25

1 1.05 1.1 1.15 1.2 1.25

ρ
s (

τ)

0

0.2

0.4

0.6

0.8

1
computing time

φ (x,α), α
0
=1e-05

ψ
,p

(x,α), p=2, α
0
=1e-05

ψ
,p

(x,α), p=100, α
0
=1e-05

Fig. 7 Performance profile of φε(x, α) and ψε,p(x, α) with p = 2, 100
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Table 6 Numerical results of φε(x, α), ψε,p(x, α) and LIBSVM

Computing time (in s)

SSVR FIRST TYPE SSVR SECOND TYPE with p = 3 LIBSVM

abalone 0.38946 0.38636 4.8866

bodyfat 0.0054786 0.0050574 8.8947e−05

housing 0.0052277 0.0054718 0.065959

mg 0.080511 0.083267 0.45638

mpg 0.0037805 0.0041339 0.042289

pyrim 0.013043 0.012822 0.00033134

space ga 0.31607 0.29679 3.1808

triazines 0.033445 0.034838 0.003017

Friedman1 0.59054 0.57585 3.628
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Fig. 8 Performance profile of φε(x, α), ψε,p(x, α) with p = 3 and LIBSVM

smoothing method performs better than LIBSVM for some datasets. In particular,
from Table 6, we see that our method performs much better in large datasets. We
point out that we use reduced kernel and do not compare the training/testing set
correctness.
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