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Abstract. In this paper, we deal with the semi-infinite complementarity prob-

lems (SICP), in which several important issues are covered, such as solvability,

semismoothness of residual functions, and error bounds. In particular, we char-

acterize the solution set by investigating the relationship between SICP and the

classical complementarity problem. Furthermore, we show that the SICP can

be equivalently reformulated as a typical semi-infinite min-max programming

problem by employing NCP functions. Finally, we study the concept of error

bounds and introduce its two variants, ε-error bounds and weak error bounds,

where the concept of weak error bounds is highly desirable in that the solution

set is not restricted to be nonempty.

1. Introduction. The classical nonlinear complementarity problem (NCP) is to

find an x ∈ Rn such that

x ≥ 0, F (x) ≥ 0, xTF (x) = 0,
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where F is a mapping from Rn into itself. Extensive references to the developments

in this subject and their historical backgrounds can be found in Facchinei and Pang

[12] and Harker and Pang [15].

Roughly speaking, the classical complementarity problem has been extended in

two ways. The first one is generalizing the nonnegative orthant Rn+ to various other

convex cone, such as second-order cone [1], semi-definiteness cone [16], or more gen-

erally, symmetric cone [27, 28]. An implicit assumption shared by these problems is

that the data of the problem, such as the mapping F and the cone involved, are all

fixed and completely independent of other parameters. Unfortunately, this is not

always the case in reality. For example, in optimal control or engineering design

fields [5], the data of the problem involves a time parameter; in non-cooperative

games (e.g., generalized Nash equilibrium [11]), the strategy of each player is de-

pendent on those of others. To address the problem of this type, we need to consider

another generalized form as follows: find a vector x ∈ Rn such that

x ≥ 0, F (x,w) ≥ 0, xTF (x,w) = 0, w ∈ Ω, (1.1)

where Ω is a set in Rm and F is a mapping from Rn×Ω into Rn. As the parameter

w is a random variable with certain probability distribution, the above problem

is said to be stochastic complementarity problem. Results of this type were first

treated by Chen and Fukushima [6], and subsequent investigations were carried out

by other authors; see [8, 13, 18, 17, 19]. By using stochastic approach, they could

obtain a solution in the probability sense, which, however, is not a real solution to

the original problem (1.1). Two most natural questions to ask are: (a) How to deal

with the case in which the parameter w is not a random variable; (b) Under which

conditions can we find an exact solution of (1.1).

Depending on the role played by the parameter w, the problem (1.1) is divided

into two classes and the corresponding techniques are completely different. One,

as mentioned above, is the stochastic complementarity problem, provided that w is

regarded as a random variable. Otherwise, to avoid the confusion, it is preferable

to refer to the problem (1.1) as a semi-infinite complementarity problem (SICP for

short), because it shares the characterizations of semi-infinite programming and

complementarity problem, i.e., the design vector x is finite-dimensional, but the

number of the complementarity problems involved in (1.1) is infinite. In addition, if

F (·, ·) is an affine function with respect to x, i.e., F (x,w) = M(w)x+ q(w), where

M(w) ∈ Rn×n and q(w) ∈ Rn, then problem (1.1) is called a semi-infinite linear

complementarity problem, abbreviated as SILCP(q(w),M(w),Ω). Similarly, denote

by SINCP(F (·, w),Ω) for the case where F is nonlinear with respect to x. Here it

is worth mentioning that the relation between SICP and NCP is a different with

that between SIP (semi-infinite programming) and NLP (nonlinear programming).

In fact, SIP can reduce to NLP when the number of constraint functions is finite,

but this is not shared by SICP and NCP except for Ω consisting of a single point.

In this paper, we begin with developing the solvability and feasibility of the semi-

infinite complementarity problem. In particular, for the nonlinear case, we show

that the solution set S∗ coincides precisely with the intersection of the solution sets

of two classical nonlinear complementarity problems NCP(Fmax) and NCP(Fmin),

i.e., S∗ = SOL(Fmax) ∩ SOL(Fmin). However, for the linear case, the equation will

fail if we only replace Fmax(x) by Mmaxx+ qmax and Fmin(x) by Mminx+ qmin. In
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other words, for the semi-infinite linear complementarity problem, we have S∗ ⊆
SOL(qmax,Mmax) ∩ SOL(qmin,Mmin), and the inclusion can be strict unless some

assumptions are made on the structure of the expansive matrix (M(w), q(w)), as

will be illustrated by Theorem 2.3 and Example 2.4. Furthermore, we transform

the semi-infinite complementarity problem into an equivalent semi-infinite min-max

programming problem by utilizing NCP functions. This offers another explanation

of why we call the problem (1.1) as semi-infinite complementarity problem. The

semismoothness of residual functions are discussed as well.

The theory of error bounds provides a useful aid for understanding the connection

between a residual function and the actual distance to the solution set, and hence

plays an important role in convergence analysis and stopping criteria for many

iterative algorithms; for comprehensive surveys of this topic, please refer to [23]

and references therein. In the latter part of this paper, we discuss error bounds and

introduce its two variants, ε-error bounds and weak error bounds. Specifically, we

show that the ε-error bounds can be obtained by using the well-known error bounds

for the classical complementarity problem LCP(q(w),M(w)), where the parameter

ε represents the degree of the approximation between S∗ and SOL(q(w),M(w)).

Nevertheless, it should be realized that the existence of a vector x satisfying the

complementarity conditions for all w ∈ Ω may be more restrictive, that is, the

solution set S∗ may be empty. This makes the utility of error bounds be somewhat

limited, because in many situations it is possible to find a vector x such that the

complementarity condition holds true for some w but not for others. As a remedy

of this difficulty, we introduce the concept of weak error bounds, which makes sense

even if the solution set is empty. Example 5.4 illustrates that the weak error bounds

can be readily derived from error bounds, but the converse is not necessarily true.

The paper is organized as follows. In Section 2, we characterize the solution set

and provide criteria for the feasibility of the SICP. In Section 3, we reformulate

the SICP as typical semi-infinite min-max programming problems and address the

semismoothness of residual functions. The concept of error bounds and its one

variant, ε-error bounds, are treated in Section 4, whereas another variant, weak

error bound, is discussed in Section 5. Some conclusions are drawn in Section 6.

A few words about our notations. All vectors are column vectors and superscript

T denotes transpose. We denote by Rn the n-dimensional real vector space, by

Rn×n the space of n×n real matrices, and by B the unit ball. For a vector x ∈ Rn,

x+ will denote the orthogonal projection on the nonnegative orthant Rn+, that is,

(x+)i = max{xi, 0} for all i = 1, 2, · · · , n. The diameter of a set A, denoted by

diam(A), is defined as the maximum distance between any pair of points in this set,

that is, diam(A) = max
x,y∈A

‖x− y‖. Let S∗ be the solution of the problem (1.1). For

any fixed w ∈ Ω, we denote by SOL(F (·, w)) the solution set of the classic nonlinear

complementarity problem NCP(F (·, w)), and by SOL(q(w),M(w)) the solution set

of the classic linear complementarity problem LCP(q(w),M(w)). It is well known

that various matrix classes have played a key role in all aspects of the classical

linear complementarity problem; see [10] for the details. For example, a matrix M

is called (i) an S-matrix if there exists a vector z > 0 such that Mz > 0; (ii) a

copositive matrix if x ≥ 0 implies that xTMx ≥ 0; (iii) an R0-matrix if

x ≥ 0, Mx ≥ 0, xTMx = 0 =⇒ x = 0.
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A function f : Rn → R is said to be semismooth at x if f is locally Lipschitzian at

x and the limit

lim
V ∈∂f(x+th′)

h′→h,t↓0

{V h′}

exists for any h ∈ Rn, where ∂f denotes the generalized Jacobian defined by Clarke

[9]. Recall also that f is said to be semidifferentiable at x if the limit

lim
h′→h
t↓0

f(x+ th′)− f(x)

t

exists for any h ∈ Rn; see [26, Chapter 7] for more details.

2. Solution properties. The main aim of this section is to present the charac-

terization of the solution set and provide criteria for the feasibility of SICP. Our

analysis is based on relating SICP to two classical complementarity problems as

defined, respectively, in (2.2) for the nonlinear case and in (2.4) for the linear case.

Theorem 2.1. Consider the SILCP(q(w),M(w),Ω). Then

S∗ =
⋂
w∈Ω

SOL(q(w),M(w)). (2.1)

Moreover, if M(w0) is an R0-Matrix for some w0 ∈ Ω, then S∗ 6= ∅ if and only if
p⋂
i=1

SOL(q(wi),M(wi)) 6= ∅ for any finite many points w1, · · · , wp ∈ Ω. Furthermore,

if M(w) is a column sufficient matrix for each w ∈ Ω, then at most n+1 points are

needed to consider.

Proof. First, from definition, (2.1) is trivial. If M(w0) is an R0-matrix, then the

set SOL(q(w0),M(w0)) is bounded [10, Proposition 3.9.23], which in turn implies

the boundedness of S∗. On the other hand, since SOL(q(w),M(w)) is closed for

each w, so is S∗. Thus S∗ is compact. Applying the finite intersection theorem of

compact sets, we obtain the first part of the theorem. The column sufficiency of

M(w) implies that SOL(q(w),M(w)) is convex by [10, Theorem 3.5.8]. Hence, the

second part follows from Helly’s Theorem [25, Corollary 21.3.2]. 2

It is easy to see that the identity S∗ =
⋂
w∈Ω

SOL(F (·, w)) remains true for the

nonlinear case SINCP(F (·, w),Ω). However, it is not suggested the ripe possibilities,

because we have to solve all of the classical complementarity problems one by one.

To overcome this drawback, we assume that the set Ω is compact and the mapping F

is continuous on Rn×Ω, which ensure the well-definedness of the following function

Fmax(x) =


max
w∈Ω

F1(x,w)

...

max
w∈Ω

Fn(x,w)

 and Fmin(x) =


min
w∈Ω

F1(x,w)

...

min
w∈Ω

Fn(x,w)

 . (2.2)

The following result shows that the solution set S∗ coincides with the intersection

of the solution sets of two classical nonlinear complementarity problems NCP(Fmax)

and NCP(Fmin).
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Theorem 2.2. Consider the SINCP(F (·, w),Ω). If Ω is compact and F is contin-

uous on Rn × Ω, then S∗ = SOL(Fmax) ∩ SOL(Fmin).

Proof. Suppose x∗ ∈ S∗. Then Fmax(x∗) ≥ 0 by definition. Note that (x∗)TF (x∗, w)

= 0 is equivalent to x∗iFi(x
∗, w) = 0 for all i = 1, 2, · · · , n. Taking the pointwise

supremum yields that x∗i (Fmax(x∗))i = 0. Hence, x∗ ∈ SOL(Fmax). Similarly,

we can argue that x∗ ∈ SOL(Fmin), which says S∗ ⊆ SOL(Fmax) ∩ SOL(Fmin).

Now we show the reverse inclusion. Let x∗ ∈ SOL(Fmax) ∩ SOL(Fmin). Because

Fmin(x∗) ≥ 0 and x∗ ≥ 0, we know for any w ∈ Ω and i = 1, 2, · · · , n that

Fi(x
∗, w) ≥ 0 and x∗iFi(x

∗, w) ≥ 0. (2.3)

On the other hand, since x∗ ∈ SOL(Fmax), we have x∗i (Fmax(x∗))i = 0, which in

turn implies that x∗iFi(x
∗, w) ≤ 0. Combing this and (2.3) yields x∗iFi(x

∗, w) = 0

for any w ∈ Ω and i = 1, 2, · · · , n. This completes the proof. 2

The above result makes it possible to characterize the solution of semi-infinite

complementarity problem by checking two classical complementarity problems. We

now turn our attention to the linear case SILCP(q(w),M(w),Ω). Let aij(w) denote

the (i, j)-entry of a matrix M(w). Define

Mmax =


max
w∈Ω

a11(w) · · · max
w∈Ω

a1n(w)

...

max
w∈Ω

an1(w) · · · max
w∈Ω

ann(w)

 , (2.4)

Mmin =


min
w∈Ω

a11(w) · · · min
w∈Ω

a1n(w)

...

min
w∈Ω

an1(w) · · · min
w∈Ω

ann(w)

 ,

and

qmax =


max
w∈Ω

q1(w)

...

max
w∈Ω

qn(w)

 , qmin =


min
w∈Ω

q1(w)

...

min
w∈Ω

qn(w)

 .

Motivated by Theorem 2.2, it is natural to speculate whether S∗ = SOL(Fmax)∩
SOL(Fmin) remains true if we replace Fmax(x) by Mmaxx + qmax and Fmin(x) by

Mminx + qmin, i.e., does S∗ equal SOL(qmax,Mmax) ∩ SOL(qmin,Mmin)? Unfortu-

nately, the equality may fail unless some additional assumptions are made. The

following theorem and example will elaborate more about this point.

Theorem 2.3. Consider the SILCP(q(w),M(w),Ω). If Ω is compact and M(w)

and q(w) are continuous on Ω, then

S∗ ⊇ SOL(qmax,Mmax) ∩ SOL(qmin,Mmin).

Furthermore, suppose in each row of the expansive matrix (M(w), q(w)), the min-

imum (and maximum) is attained by a common ŵ (and w̄), i.e., for each i =

1, 2, . . . , n, there exist ŵi, w̄i ∈ Ω such that (Mmin, qmin)i =
(
M(ŵi), q(ŵi)

)
i

and
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(Mmax, qmax)i =
(
M(w̄i), q(w̄i)

)
i

where the subscript i denotes the i-th row vector.

Then the equality holds, i.e.,

S∗ = SOL(qmax,Mmax) ∩ SOL(qmin,Mmin).

Proof. According to the rules of calculation dealing with maximization and mini-

mization [26, Exercise 1.36], we have

max
w∈Ω

(M(w)x+ q(w)) ≤ Mmaxx+ qmax

min
w∈Ω

(M(w)x+ q(w)) ≥ Mminx+ qmin
(2.5)

for all x ≥ 0. By applying (2.5) and following an argument similar to that for

Theorem 2.2, we obtain the first part of the theorem. Noting that (2.5) holds as

equality by invoking the hypothesis, the second part follows readily. 2

Example 2.4. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
1− 2w − 1

0 − w

)
, q(w) =

(
1

w

)
, and Ω = [0, 1].

From a simple calculation, we have S∗ = {(0, 0)T , (0, 1)T }. On the other hand,

Mmax =

(
1 − 1

0 0

)
, qmax =

(
1

1

)
;

and

Mmin =

(
−1 − 1

0 − 1

)
, qmin =

(
1

0

)
.

Then, SOL(qmax,Mmax) = {(0, 0)T } and SOL(qmin,Mmin) = {(0, 0)T , (1, 0)T }.
Thus, S∗ ! SOL(qmax,Mmax) ∩ SOL(qmin,Mmin), i.e., the inclusion is strict. Now

we show that the equality holds true if q(w) is replaced by a constant vector

q̃ = (1, 1)T , i.e., q(w) = q̃ for all w ∈ Ω. Actually, in this case, only one entry

in every row of the expansive matrix (M(w), q) is dependent on w, and hence the

hypothesis in Theorem 2.3 holds. By direct calculation again, we have S∗ = {(0, 0)},
SOL(q,Mmax) = {(0, 0)T }, and SOL(q,Mmin) = {(0, 0)T , (1, 0)T , (0, 1)T } under this

case. Therefore, S∗ = SOL(q,Mmax) ∩ SOL(q,Mmin).

Along the same lines as that in Theorems 2.2 and 2.3, we present a set of de-

scriptions of the solution set S∗.

Corollary 2.5. The following statements hold.

(a): Consider the SINCP(F (·, w),Ω). If Ω is compact and F (x, ·) is continuous

on Ω for each x, then

S∗ = SOL(αFmin + βFmax) ∩ {x|Fmin(x) ≥ 0}
= SOL(Fmin) ∩ {x|xTFmax(x) ≤ 0}

where α ≥ 0 and β > 0.

(b): Consider the SILCP(q(w),M(w),Ω). If Ω is compact and M(w) and q(w)

are continuous on Ω, then

S∗ ⊇ SOL(αqmin + βqmax, αMmin + βMmax) ∩ {x|Mminx+ qmin ≥ 0}
= SOL(qmin,Mmin) ∩ {x|xT (Mmaxx+ qmax) ≤ 0}
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where α ≥ 0 and β > 0. Furthermore, if in each row of the expansive matrix

(M(w), q(w)), the minimum (and maximum) is attained by a common ŵ (and

w̄), then the equality holds.

Proof. As mentioned, the arguments are similar to those for Theorems 2.2 and 2.3.

In view of this, we only provide sketch proof. To see part(a), we only need to check

whether

S∗ ⊇ SOL(αFmin + βFmax) ∩ {x|Fmin(x) ≥ 0} =: A

because the reverse inclusion is clear. Suppose x∗ ∈ A which says Fmin(x∗) ≥ 0 and

αFmin(x∗) + βFmax(x∗) ≥ 0, x∗ ≥ 0,
(
αFmin(x∗) + βFmax(x∗)

)T
x∗ = 0.

Then, we have

0 =
(
αFmin(x∗) + βFmax(x∗)

)T
x∗ ≥ (α+ β)Fmin(x∗)Tx∗ ≥ 0

which implies Fmin(x∗)Tx∗ = 0. Plugging it into the first equality above yields

Fmax(x∗)Tx∗ = 0. This means x∗ ∈ SOL(Fmin)∩SOL(Fmax) = S∗ by Theorem 2.2.

The proof for part (b) is not repeated here. 2

We next turn our attention to the feasibility of SICP. The feasibility issue for the

complementarity problem is always important because in some real life applications,

such as in engineering design and economy, the data are restricted in domain region

not whole space. Before proceeding, let us introduce the following concept, which

reduces to that of S-matrix in classical complementarity problem when Ω only

contains a single element.

Definition 2.6. The matrix M(w) is said to be a semi-infinite S-matrix relative

to a set Ω if there exists a vector z > 0 such that M(w)z > 0 for all w ∈ Ω.

With this preparation, the condition that guarantees the feasibility of SICP can

be stated.

Theorem 2.7. Consider the SILCP(q(w),M(w),Ω). Let Ω be compact and M(·)
be continuous on Ω. Then M(w) is a semi-infinite S-matrix relative to Ω if and

only if the SILCP(q(w),M(w),Ω) is feasible for all q ∈ C(Ω), where C(Ω) denotes

all continuous mapping on Ω.

Proof. We first show “only if” part. From the facts that Ω is compact and that

M(w)z > 0 for all w ∈ Ω, there exists a sufficiently small scalar α > 0 such that

M(w)z ≥ αe for all w ∈ Ω where e = (1, 1, · · · , 1)T . Now choose µ > 0 with

µe > −qmin. Letting µ̄ = µ
α , it follows that µ̄z ≥ 0 and M(w)(µ̄z) + qmin ≥ 0.

Therefore, µ̄z is a feasible point. We next show “if” part. Let q(w) := q̃ < 0 for all

w ∈ Ω. The feasibility of SILCP(q(w),M(w),Ω) (i.e. SILCP(q̃,M(w),Ω)) means

the existence of a vector z ≥ 0 such that M(w)z ≥ −q̃ for all w ∈ Ω. Note that

when λ > 0 small enough we have z + λe > 0 and λMmine > q̃. Therefore,

M(w)(z + λe) = M(w)z + λM(w)e

≥ M(w)z + λMmine

> M(w)z + q̃

≥ 0.

This completes the proof. 2
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As a direct consequence of Theorem 2.7, the following result furnishes a simple

criterion for SILCP(q(w),M(w),Ω) to be feasible.

Corollary 2.8. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and

M(w) is continuous on Ω. If Mmin is an S-matrix, then SILCP(q(w),M(w),Ω) is

feasible for all q ∈ C(Ω).

Proof. From (2.4) and the definition of S-matrix, it can be easily verified that if

Mmin is an S-matrix (i.e. Mminz > 0 for some z > 0), then M(w)z > 0 for all

w ∈ Ω, implying that M(w) is a semi-infinite S-matrix. Therefore, Theorem 2.7 is

applicable. 2

For simplicity, we write SILCP(0,M(w),Ω) and LCP(0,M(w)) as SILCP(M(w),

Ω) and LCP(M(w)), respectively. In a similar manner, their corresponding solution

sets are written as SOL(M(w),Ω) and SOL(M(w)), respectively.

Theorem 2.9. Consider the SILCP(M(w),Ω). Suppose Ω is compact and M(w)

is continuous on Ω. If M(w) is a copositive matrix for each w ∈ Ω, then

{x ∈ Rn+|MT
maxx ≤ 0} ⊆ S∗. (2.6)

Proof. Since M(w) is copositive matrix, we have {x ∈ Rn+|M(w)Tx ≤ 0} ⊆
SOL(M(w)) by Theorem 3.8.13 in [10]. Hence

⋂
w∈Ω

{x ∈ Rn+|M(w)Tx ≤ 0} ⊆⋂
w∈Ω

SOL(M(w)). Using the facts that S∗ =
⋂
w∈Ω

SOL(M(w)) by Theorem 2.1 and

that MT
maxx ≥M(w)x for all x ∈ Rn+ and w ∈ Ω, we get the result immediately. 2

The aforementioned result indicates that we can find a solution of SILCP(M(w),

Ω) by checking the left set in (2.6).

3. Equivalent reformulation. In this section, we show that the SICP can be

equivalently reformulated as typical semi-infinite min-max programming problems.

To begin, we recall that a function φ : R2 → R is an NCP function, if it has the

property

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

In the last decade, NCP functions have been used as a powerful tool for dealing with

the classical complementarity problem, because it allows us to reformulate the com-

plementarity problems as equations or minimization problems. Such formulations

are very beneficial for both analytical and computational purpose. Indeed, powerful

theories from classical analysis of systems of equations can be applied to treat the

classical complementarity problem for developing the existence of solutions and for

analyzing these solutions; efficient algorithms for solving equations and optimiza-

tion problems can be employed and extended to solve the classical complementarity

problem. For an excellent study of this topic, please refer to [12].

Analogous to the classical complementarity problem, we obtain the equivalent

formulation of the SICP as a system of equations:

x ∈ S∗ ⇐⇒ Φ(x,w) = 0 ∀w ∈ Ω,
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where Φ : Rn × Ω→ Rn is defined by

Φ(x,w) =

 φ(F1(x,w), x1)
...

φ(Fn(x,w), xn)

 .

A straightforward choice of a residual function is

r(x) = max
w∈Ω
‖Φ(x,w)‖2.

Clearly, to solve the semi-infinite complementarity problem is the same as to find

a root of r(x) = 0, or equivalently, to find an optimal solution of the following

minimization problem with zero objective value:

min
x∈Rn

max
w∈Ω
‖Φ(x,w)‖2.

Noting that this minimization problem is a typical semi-infinite min-max program-

ming problem [24] (also called min-max programming in some literature), it offers

another explanation of why we call the problem (1.1) as semi-infinite complemen-

tarity problem. Note also that the residual functions involved for semi-infinite

complementarity problem are expressed by pointwise supremum of a family of func-

tions. Although such functions fail to preserve smoothness, they enjoy some other

nice properties, such as semidifferentiable and semismoothness. Toward this end,

let us introduce the following concept.

Definition 3.1. We say that the semi-infinite strict complementarity condition

holds at x if min{Fi(x,w), xi} = 0 and max{Fi(x,w), xi} > 0 for all w ∈ Ω and

i = 1, 2, · · · , n.

In the case of Ω consisting of a single element, the definition reduces to the strict

complementarity condition for the classical complementarity problem. Here we list

several NCP-functions which we will focus on:

φ1(a, b) = min(a, b),

φ2(a, b) =
√
a2 + b2 − (a+ b),

φ3(a, b) =
√
{[φ2(a, b)]+}2 + α[(ab)+]2, α > 0,

φ4(a, b) = φ2(a, b)− αa+b+, α > 0,

φ5(a, b) =
√

[φ2(a, b)]2 + α(a+b+)2, α > 0,

φ6(a, b) =
√

[φ2(a, b)]2 + α[(ab+)]4, α > 0

φ7(a, b) =
√

[φ2(a, b)]2 + α[(ab)+]2, α > 0,

and the corresponding residual functions constructed via φi is denoted by ri for

i = 1, 2, · · · , 7. The semismoothness of the residual functions ri for i = 1, 2, · · · , 7
are given in Theorem 3.3 for which the following lemma is needed.

Lemma 3.2. [26, Theorem 10.31] and [21, Theorem 3.2] Let Y be a compact subset

in Rm. Consider the max-function θ(x) = max
y∈Y

g(x, y). If the gradient ∇xg(·, ·) is

continuous on Rn × Y , then θ is semidifferentiable and semismooth.

Theorem 3.3. Consider the SINCP(F (·, w),Ω). Suppose Ω is compact and F is

continuously differentiable on Rn × Ω. Then, the following conclusions hold.
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(a): If the strictly semi-infinite complementarity condition holds at every point

in a certain neighborhood of x, then r1 is semidifferentiable and semismooth

at x.

(b): The function ri for i = 2, 3, · · · , 7 is semidifferentiable and semismooth.

Proof. The desired results follow from Lemma 3.2 and the facts of (φi)
2 for i =

2, 3, · · · , 7 being continuously differentiable [29] as well as (φ1)2 being continuously

differentiable in the presence of the strict complementarity condition [12]. 2

4. Error bounds. We say that a residual function r(x) is a global (local) error

bound for SICP if there exists some constant c > 0 (and ε > 0) such that for each

x ∈ Rn (when r(x) ≤ ε)
dist(x, S∗) ≤ cr(x), (4.1)

where dist(x, S∗) = inf{‖x − x∗‖ | x∗ ∈ S∗}. The theory of error bounds has a

wide range of applications in different areas, for example, sensitivity analysis and

the convergence analysis of the numerical methods; see [23], which presents an

excellent survey of the theory of error bound and its relations to other issues. In

particular, the question about the error bounds for the classical complementarity

problem has been answered elegantly; see [12, Chapter 6]. Taking this fact into

account, it is not difficult to treat the case where S∗ happens to be SOL(F (·, w))

for some w ∈ Ω. For any fixed w ∈ Ω, denote by r(x,w) the residual function of

NCP(F (·, w)).

Theorem 4.1. Consider the SINCP(F (·, w),Ω). Suppose the solution set S∗ is

nonempty and S∗ = SOL(F (·, w0)) for some w0 ∈ Ω. If r(x,w0) is a global (or

local) error bound for the NCP(F (·, w0)), then r(x) = max
w∈Ω

r(x,w) is a global (or

local) error bound for the SINCP(F (·, w),Ω).

Proof. When r(x,w0) is a global error bound, there exists c > 0 such that

dist(x, SOL(F (·, w0))) ≤ cr(x,w0) ∀x ∈ Rn,

which, together with the identity S∗ = SOL(F (·, w0)) by hypothesis, implies that

dist(x, S∗) = dist(x, SOL(F (·, w0))) ≤ cr(x,w0) ≤ cr(x), ∀x ∈ Rn.

This completes the proof. 2

To deal with the general case, we introduce the concept of ε-error bounds: Given

ε ≥ 0, we say that a residual function r(x) is an ε-error bound for SICP if there

exists c > 0 such that

dist(x, S∗) ≤ cr(x) + ε ∀x ∈ Rn.

Obviously, if ε = 0, this definition reduces to the error bound defined by (4.1).

Theorem 4.2. Consider the SILCP(q(w),M(w),Ω). Suppose the solution set S∗

is nonempty. If M(w0) is an R0-matrix for some w0 ∈ Ω, then there exist c > 0

and ε > 0 with ε ≤ diam
(
SOL(q(w0),M(w0))

)
such that

dist(x, S∗) ≤ cr(x) + ε

where r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖.
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Proof. Since M(w0) is an R0-matrix, SOL(q(w0),M(w0)) is bounded. This means

the existence of ε > 0 such that SOL(q(w0),M(w0)) ⊆ S∗ + εB. Consequently,

dist(x, S∗) ≤ dist(x,SOL(q(w0),M(w0))) + ε, ∀x ∈ Rn. (4.2)

Noting that S∗ ⊆ SOL(q(w0),M(w0)), a simple upper bound of ε is the diameter

of the set SOL(q(w0),M(w0)). For the classical linear complementarity problem

LCP(q(w0),M(w0)), by [20, Theorem 2.1], there exists c > 0 such that

dist(x, SOL(q(w0),M(w0))) ≤ c ‖min
(
x,M(w0)x+ q(w0)

)
‖ ∀x ∈ Rn,

from which and (4.2) the desired result follows. 2

As evident from the above proof, the parameter ε represents the degree of ap-

proximation of the sets S∗ and SOL(q(w0),M(w0)). This is illustrated by Example

4.3 below.

Example 4.3. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
1 w − 1

w − 1 w

)
, q(w) =

(
1− w

0

)
, and Ω = [0, 1].

It is easy to see that SOL(qmax,Mmax) = SOL(qmin,Mmin) = SOL(q(1),M(1)) =

{(0, 0)} and SOL(q(0),M(0)) = {(x1, x2)|x1 = 0, 0 ≤ x2 ≤ 1}. From Theorem 2.3,

we have {(0, 0)} = SOL(qmax,Mmax)∩SOL(qmin,Mmin) ⊆ S∗ ⊆ SOL(q(1),M(1)) =

{(0, 0)}, which in turn means that S∗ = {(0, 0)}. Clearly, we have diam(SOL(q(0),

M(0))) = 1 and hence SOL(q(0),M(0)) ⊆ S∗ + B. On the other hand, it can

be easily verified that M(0) is an R0-matrix, and hence LCP(q(0),M(0)) has a

global error bound. By simple calculation, we get dist(x, SOL(q(0),M(0))) ≤√
3‖min

(
x,M(0)x + q(0)

)
‖ for all x ∈ R2. In summary, the inequality in Theo-

rem 4.2 holds true by taking c =
√

3 and ε = 1.

Theorem 4.4. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and

M(w) is continuous on Ω. If the solution set S∗ is nonempty, then

r(x) ≤ cdist(x, S∗) ∀x ∈ Rn,

where r(x) = max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖ and c = 2 + max

w∈Ω
‖M(w)‖.

Proof. Letting x ∈ Rn be arbitrary and x̄ be a projection of x onto S∗, we get

r(x)

= max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖

= max
w∈Ω
‖min

(
x,M(w)x+ q(w)

)
−min

(
x̄,M(w)x̄+ q(w)

)
‖

= max
w∈Ω
‖x−

(
x−M(w)x− q(w)

)
+
− x̄+

(
x̄−M(w)x̄− q(w)

)
+
‖

≤ ‖x− x̄‖+ max
w∈Ω
‖
(
x−M(w)x− q(w)

)
+
−
(
x̄−M(w)x̄− q(w)

)
+
‖

≤ 2‖x− x̄‖+ max
w∈Ω
‖M(w)(x− x̄)‖

≤ (2 + max
w∈Ω
‖M(w)‖)‖x− x̄‖,

where the second inequality follows from the nonexpansivity of the projection map-

ping [26, Corollary 12.20]. 2
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The foregoing theorem shows that the order of the distance from any point x

to the solution set S∗ is at least as big as r(x). Therefore, in order to be an error

bound, a residual function must bound r(x). More precisely, we know from Theorem

4.4 that

r(x) ≤ c1dist(x, S∗), for some c1 > 0. (4.3)

Hence if other residual function, say η(x), is an error bound (i.e., dist(x, S∗) ≤
c2η(x)), we must have

r(x) ≤ c1dist(x, S∗) ≤ c1c2η(x).

This means that in order to be an error bound, other residual function must bound

r(x). In addition, if r(x) is an error bound (i.e., dist(x, S∗) ≤ c3r(x)), then it follows

from (4.3) that
1

c1
r(x) ≤ dist(x, S∗) ≤ c3r(x).

Hence r(x) can be used as an estimate to the distance dist(x, S∗) since the latter is

non-computable (or difficult) in some cases.

Theorem 4.5. Consider the SILCP(q(w),M(w),Ω). Suppose the matrices Mmax

and Mmin are both positive semidefinite and one of them is an R0-matrix. If

SOL(qmin,Mmin) ∩ SOL(qmax,Mmax) 6= ∅, then there exist ε > 0 and c > 0 such

that

dist(x, S∗) ≤ c(rmin(x) + rmax(x)) ∀x satisfying rmin(x) + rmax(x) ≤ ε,

where rmin(x) = ‖min
(
x,Mminx+qmin

)
‖ and rmax(x) = ‖min

(
x,Mmaxx+qmax

)
‖.

Proof. The positive semidefiniteness of the matrices Mmax and Mmin implies the

polyhedron of the solution sets SOL(qmin,Mmin) and SOL(qmax,Mmax), see [10,

Theorem 3.1.7]. Since the intersection of these two sets is nonempty, it follows from

[3, Corollary 3, pp.147] that the collection set {SOL(qmin,Mmin),SOL(qmax,Mmax)}
is bounded linear regularity, that is, for every bounded subset D, there exists k > 0

such that, for any x ∈ D,

dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax))

≤ kmax{dist(x,SOL(qmin,Mmin)),dist(x, SOL(qmax,Mmax))}. (4.4)

We know from [20] that the positive semidefiniteness of Mmin implies the existence

of ε1 > 0 and c1 > 0 such that

dist(x, SOL(qmin,Mmin)) ≤ c1rmin(x) ∀x satisfying rmin(x) ≤ ε1. (4.5)

Similarly, for the matrix Mmax, there exist ε2 > 0 and c2 > 0 such that

dist(x, SOL(qmax,Mmax)) ≤ c2rmax(x) ∀x satisfying rmax(x) ≤ ε2. (4.6)

Suppose, without loss of generality, that the matrix Mmin is an R0-matrix. Thus,

the level set {x|rmin(x) ≤ ε} is bounded (see e.g., [12, Proposition 9.1.26]) which

further implies the boundedness of the set {x|rmin(x) + rmax(x) ≤ ε}. Letting

ε = min{ε1, ε2}, c = kmax{c1, c2} and specializing D as {x|rmin(x)+ rmax(x) ≤ ε},
we obtain from (4.4)-(4.6) that

dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax)) ≤ c(rmin(x) + rmax(x))
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for all x satisfying rmin(x)+rmax(x) ≤ ε. Since SOL(qmin,Mmin)∩SOL(qmax,Mmax)

⊆ S∗ by Theorem 2.3, it follows that

dist(x, S∗) ≤ dist(x, SOL(qmin,Mmin) ∩ SOL(qmax,Mmax)) ∀x ∈ Rn.

Combing the last two inequalities yields the desired result. 2

5. Weak error bounds. So far, we have studied several fundamental issues in

the study of SICP. Needless to say, most of the results involve the assumption

that the solution set is nonempty. In this section, we will introduce the con-

cept of weak error bounds, which makes sense even if the solution set is empty.

First, however, we consider the level-boundedness of the residual function r(x) =

max
w∈Ω
‖min

(
x,M(w)x + q(w)

)
‖2; that is, the level set {x|r(x) ≤ ε} is bounded for

every ε ≥ 0. This property is very flexible in providing a criterion for the existence

of the solutions, and is crucial to the applications of many algorithms because the

convergence of the iterative algorithms usually occurs in a limiting sense.

Definition 5.1. The matrix M(w) is said to be a semi-infinite R0-matrix relative

to a set Ω if the SILCP(M(w),Ω) has zero as its unique solution, that is,

x ≥ 0, M(w)x ≥ 0, xTM(w)x = 0, ∀w ∈ Ω =⇒ x = 0.

In particular, if Ω is a singleton, the definition reduces to the standard definition

of R0-matrix for the classical complementarity problem. At first glance, the above

definition may seem a bit artificial and restrictive. However, the following result

shows the failure of this recognition.

Theorem 5.2. Consider the SILCP(q(w),M(w),Ω). If M(w0) is an R0-matrix

for some w0 ∈ Ω, then M(w) is a semi-infinite R0-matrix relative to Ω.

Proof. Since M(w0) is an R0-matrix, we have SOL(M(w0)) = {0}, from which and

the fact S∗ ⊆
⋂
w∈Ω

SOL(M(w),Ω) ⊆ SOL(M(w0)) the desired result follows. 2

Theorem 5.3 below asserts that the matrix being a semi-infinite R0-matrix is a

necessary and sufficient condition for the residual function r(x) to be level-bounded.

Theorem 5.3. Consider the SILCP(q(w),M(w),Ω). Suppose Ω is compact and

M(w) and q(w) are continuous. Then, r(x) = max
w∈Ω
‖min

(
x,M(w)x + q(w)

)
‖2 is

level-bounded if and only if the matrix M(w) is a semi-infinite R0-matrix relative

to Ω.

Proof. We first prove the sufficiency. Suppose on the contrary that there exists a

sequence ‖xn‖ → ∞ as n→∞, but {r(xn)} is bounded. We can assume, by passing

to a subsequence if necessary, that xn

‖xn‖ converge to the limit x0 with ‖x0‖ = 1.

Taking into account the continuity of q(·) and M(·) and the compactness of Ω, we

see that r(x) is continuous (see e.g., [24, Corollay 5.4.2]) and q(w) is bounded on

Ω. Hence, lim
n→∞

r(xn)
‖xn‖ = 0 and lim

n→∞
q(w)
‖xn‖ = 0 for all w ∈ Ω. Since

r(xn)

‖xn‖2
= max

w∈Ω
‖min

( xn
‖xn‖

,
M(w)xn + q(w)

‖xn‖
)
‖2,
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taking the limit gives

max
w∈Ω
‖min

(
x0,M(w)x0

)
‖2 = 0.

This means that the SILCP(M(w),Ω) has x0, a nonzero vector, as a solution,

contracting the definition of the semi-infinite R0-matrix.

Now let us show the necessity. Suppose on the contrary that the SILCP(M(w),Ω)

has a nonzero vector x as a solution. Let I(x) = {i|xi = 0} and J(x) = {i|xi > 0}.
The compactness of Ω and the continuity of q ensure that q(w) is bounded on Ω.

Thus there exists a scalar K > 0 such that, for any k ≥ K,

kxi ≥ qi(w) for all w ∈ Ω and i ∈ J(x). (5.1)

Given any k ≥ K, we have

r(kx) = max
w∈Ω
‖min

(
kx, kM(w)x+ q(w)

)
‖2

≤
n∑
i=1

max
w∈Ω

[
min

(
kxi, (kM(w)x)i + qi(w)

)]2
. (5.2)

We now consider the following two cases.

Case 1. If i ∈ J(x), then (M(w)x)i = 0. It follows from (5.1) that

max
w∈Ω

[
min

(
kxi, k(M(w)x)i + qi(w)

)]2
= max

w∈Ω
qi(w)2. (5.3)

Case 2. If i ∈ I(x), then, by a simple calculation, we have[
min

(
kxi, k(M(w)x)i + qi(w)

)]2
= 0 if k(M(w)x)i + qi(w) ≥ 0,

and [
min

(
kxi, k(M(w)x)i + qi(w)

)]2 ≤ qi(w)2 if k(M(w)x)i + qi(w) < 0,

where the inequality in the latter case comes from the fact that

qi(w) ≤ k(M(w)x)i + qi(w) < 0.

Thus,

max
w∈Ω

[
min

(
kxi, k(M(w)x)i + qi(w)

)]2 ≤ max
w∈Ω

qi(w)2. (5.4)

Putting the facts (5.2),(5.3), and (5.4) together, it follows that

r(kx) ≤
n∑
i=1

max
w∈Ω

qi(w)2 <∞

for all k ≥ K. This contradicts the level-boundedness of r(x). 2

As shown in our previous discussion, solving the semi-infinite complementarity

problem is equivalent to finding a vector x such that x ∈ SOL(F (·, w)) for all

w ∈ Ω. However, in many situations, it is possible to find a vector x such that

x ∈ SOL(F (·, w)) for some w but not for others. In this case, it is necessary and

interesting to give a quantitative measure of the closeness of each x ∈ Rn to each

individual set SOL(F (·, w)) in terms of residual functions. In other words, we wish

to find c > 0 such that

dist(x, SOL(F (·, w))) ≤ cr(x) ∀w ∈ Ω, ∀x ∈ Rn,
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or equivalently,

max
w∈Ω

dist(x, SOL(F (·, w))) ≤ cr(x) ∀x ∈ Rn, (5.5)

which is referred as weak error bounds. The importance of introducing this concept

is twofold. First, in (5.5), the solution set S∗ is not assumed to be nonempty, as

required in (4.1). Second, the weak error bound can be easily derived from the error

bound because we always have

max
w∈Ω

dist(x,SOL(F (·, w))) ≤ dist(x, S∗) ∀x ∈ Rn, (5.6)

due to S∗ ⊆ SOL(F (·, w)) for all w ∈ Ω. However, the converse is not necessarily

true unless some more restrictive conditions are imposed, for example, the linear

regularity of the collection {SOL(F (·, w))|w ∈ Ω}; for further details on this subject,

see [2, 3, 4, 22, 30]. In addition, the inequality in (5.6) can also be strict. The

following example illustrates this point.

Example 5.4. Consider the SILCP(q(w),M(w),Ω) with

M(w) =

(
w 1− 2w

−w 1− w

)
, q(w) =

(
w

0

)
, and Ω = {0, 1}.

Clearly, we have SOL(q(0),M(0)) = {(x1, x2)|x1 ≥ 0, x2 = 0} and SOL(q(1),M

(1)) = {(x1, x2)|x1 = 0, 0 ≤ x2 ≤ 1}, and hence S∗ = {(0, 0)}, according to the

identity that S∗ = SOL(q(0),M(0)) ∩ SOL(q(1),M(1)). Letting x = (1, 1) yields

max{dist(x, SOL(q(0),M(0))),dist(x,SOL(q(1),M(1)))}
= 1 <

√
2 = dist(x, S∗).

Given d = (d1, · · · , dn) ∈ Rn, we write d ∈ [0, 1]n to means di ∈ [0, 1] for all

i = 1, 2, · · · , n. It is known that a matrix A is an P -Matrix if and only if I−D+DA

is nonsingular for any diagonal matrix D = diag(d) with 0 ≤ di ≤ 1, see [14]. This

fact will be used in the proof for the following theorem which gives a significant

refinement of [8, Theorem 3.2], because not only the finiteness of the index set Ω is

dropped but also the error bounds constant is computable.

Theorem 5.5. Consider the SILCP(q(w),M(w),Ω). Suppose M(w) is continuous

and Ω is compact. For each w ∈ Ω, let M(w) be an P -matrix and denote by x∗(w)

the unique solution to LCP(q(w),M(w)). Then,

max
w∈Ω
‖x− x∗(w)‖ ≤ cmax

w∈Ω
‖min

(
x,M(w)x+ q(w)

)
‖ ∀x ∈ Rn,

where c = max
d∈[0,1]n

w∈Ω

‖(I −D +DM(w))−1‖ and D = diag(d1, d2, · · · , dn).

Proof. Given any w ∈ Ω, it follows from [7] that

‖x− x∗(w)‖
≤ max

d∈[0,1]n
‖(I −D +DM(w))−1‖‖min

(
x,M(w)x+ q(w)

)
‖, ∀x ∈ Rn.

Since M(w) is continuous over the compact set Ω, and M(w) is an P -Matrix by

hypothesis, then c = max
d∈[0,1]n

w∈Ω

‖(I − D + DM(w))−1‖ is well defined. The desired

conclusion follows by taking the pointwise supremum over the index set Ω. 2
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6. Conclusions. Several fundamental issues have been discussed in this paper.

The emphasis is on the solvability, feasibility, semismoothness of residual functions,

and error bounds. Overall speaking, the present work makes the following contri-

butions. First, we characterize the solution set by investigating its relationship to

the solution sets of two classical complementarity problems, rather than resorting

to the fact S∗ =
⋂
w∈Ω SOL(F (·, w)) (see Theorems 2.2 and 2.3 ). Second, we in-

troduce the concept of weak error bounds, which has particularly attractive in the

case where the solution set is empty. In addition, some important concepts in the

study of classical complementarity problem have been extended to the context of

semi-infinite complementarity problem (see Definitions 2.6, 3.1, and 5.1). Several

questions merit further investigation: (a) Under which conditions the solution set

S∗ is nonempty? (b) How can we propose an efficient algorithm for solving SICP by

using the differentiability properties of the residual functions? (c) How can we give

an upper bound for the parameter ε as tight as possible in the concept of ε-error

bounds?
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