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a b s t r a c t

We present a smooth approximation for the generalized Fischer–Burmeister function
where the 2-norm in the FB function is relaxed to a general p-norm (p > 1), and
establish some favorable properties for it — for example, the Jacobian consistency. With
the smoothing function, we transform the mixed complementarity problem (MCP) into
solving a sequence of smooth system of equations, and then trace a smooth path generated
by the smoothing algorithm proposed by Chen (2000) [28] to the solution set. In particular,
we investigate the influence of p on the numerical performance of the algorithm by solving
all MCPLIP test problems, and conclude that the smoothing algorithm with p ∈ (1, 2] has
better numerical performance than the one with p > 2.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The mixed complementarity problem (MCP) arises in many applications including the fields of economics, engineering,
and operations research [1–4] and has attracted much attention in last decade [5–10]. A collection of nonlinear mixed
complementarity problems called MCPLIB can be found in [11] and the excellent book [12] is a good source for seeking
theoretical backgrounds and numerical methods.
Given a mapping F : [l, u] → Rn with F = (F1, . . . , Fn)T , where l = (l1, . . . , ln)T and u = (u1, . . . , un)T with

li ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞} being given lower and upper bounds satisfying li < ui for i = 1, 2, . . . , n. The
MCP is to find a vector x∗ ∈ [l, u] such that each component x∗i satisfies exactly one of the following implications:

x∗i = li H⇒ Fi(x
∗) ≥ 0,

x∗i ∈ (li, ui) H⇒ Fi(x
∗) = 0,

x∗i = ui H⇒ Fi(x
∗) ≤ 0.

(1)

It is not hard to see that, when li = −∞ and ui = +∞ for all i = 1, 2, . . . , n, the MCP (1) is equivalent to solving the
nonlinear system of equations

F(x) = 0; (2)

whereas when li = 0 and ui = +∞ for all i = 1, 2, . . . , n, it reduces to the nonlinear complementarity problems (NCP)
which is to find a point x ∈ Rn such that

x ≥ 0, F(x) ≥ 0, 〈x, F(x)〉 = 0. (3)
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In fact, from Theorem 2 of [13], the MCP (1) is also equivalent to the famous variational inequality problem (VIP) which is
to find a vector x∗ ∈ [l, u] such that

〈F(x∗), x− x∗〉 ≥ 0 ∀x ∈ [l, u]. (4)
In the rest of this paper, we assume the mapping F to be continuously differentiable.
It is well-known that NCP functions play an important role in the design of algorithms for the MCP (1). Specifically,

φ : R× R→ R is called an NCP function if
φ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (5)

With such a function, the MCP (1) can be reformulated as a nonsmooth system Φ(x) = 0, and consequently nonsmooth
Newton methods or smoothing Newton methods can be applied for solving the systemΦ(x) = 0. Among others, the latter
is based on a smooth approximation of φ. In the past two decades, many smooth approximations and Newton-typemethods
using smoothing NCP functions for complementarity problems have been proposed (see, e.g., [14–18,8,19]). Most of these
methods focus on the Chen–Mangasarian class of smooth approximations of the minimum NCP function or the smoothing
function of the Fischer–Burmeister (FB) NCP function. It is worthwhile to mention that the smoothing Newton method
developed by Chen et al. [19] has global and superlinear (even quadratic) convergence by solving only one linear system of
equations at each iteration.
Recently, an extension of the FB NCP function was considered in [20–22] by two of the authors. Specifically, they define

the generalized FB function as
φp(a, b) := ‖(a, b)‖p − (a+ b) ∀a, b ∈ R, (6)

where p is an arbitrary fixed real number from the interval (1,+∞) and ‖(a, b)‖p denotes the p-norm of (a, b),
i.e., ‖(a, b)‖p = p

√
|a|p + |b|p. In other words, in the function φp, they replace the 2-norm of (a, b) involved in the FB function

by a more general p-norm. The function φp is still an NCP-function — that is, it satisfies the equivalence in (5). Moreover, it
turns out that φp possesses all favorable properties of the FB function; see [20–22]. For example, φp is strongly semismooth
and its square is a continuously differentiable NCP function. In particular, numerical results in [23] for all MCPLIB problems
indicate that the least-square semismooth Newton method with p close to 1 has better performance than the case of p = 2.
Thus, it is natural to ask whether the smoothing Newton method based on φp has similar a numerical performance.
In this paper, we are concerned with the smoothing Newton method [19,28] based on the generalized FB function,

motivated by the inexpensive computationwork of themethod at each iteration, and the fact that there are no corresponding
numerical experiments to verify the effectiveness of this algorithm. We investigate the influence of the parameter p on
the numerical performance of the smoothing method for solving the MCPLIB test problems. Specifically, in Section 3, we
present a smoothing function of the generalized FB function, and studied some of its favorable properties, including the
Jacobian consistency property; in Section 4, we describe the iterative steps of the smoothing algorithm and provide the
corresponding conditions for the global convergence and local superlinear (or quadratic) convergence; in Section 5, we
report the numerical results of the smoothing algorithm for solving the MCPLIB test problems.
Throughout this paper, Rn denotes the space of n-dimensional real column vectors and ei means a unit vector with ith

component being 1 and the others being 0. For a differentiable mapping F , F ′(x) and ∇F(x) to denote the Jacobian of F at x
and the transposed Jacobian of F , respectively. Given an index set I, the notation [F ′(x)]II denotes the submatrix consisting
of the ith row and the jth column with i ∈ I and j ∈ I.

2. Preliminary

In this section, we review some basic concepts and results that will be used in subsequent analysis. We start with
introducing the concept of generalized Jacobian of a mapping. Let G : Rn → Rm be a locally Lipschitz continuous mapping.
Then, G is almost everywhere differentiable by Rademacher’s Theorem (see [24]). In this case, the generalized Jacobian ∂G(x)
of G at x (in the Clarke sense) is defined as the convex hull of the B-subdifferential

∂BG(x) :=
{
V ∈ Rm×n |∃{xk} ⊆ DG : {xk} → x and G′(xk)→ V

}
,

where DG is the set of differentiable points of G. In other words, ∂G(x) = conv∂BG(x). Ifm = 1, we call ∂G(x) the generalized
gradient of G at x. The calculation of ∂G(x) is usually difficult in practice, and Qi [25] proposed so-called C-subdifferential
of G:

∂CG(x)T := ∂G1(x)× · · · × ∂Gm(x) (7)
which is easier to compute than the generalized Jacobian ∂G(x). Here, the right-hand side of (7) denotes the set of matrices
in Rn×m whose i-th column is given by the generalized gradient of the i-th component function Gi. In fact, by Proposition
2.6.2 of [24], ∂G(x)T ⊆ ∂CG(x)T . We assume that the reader is familiar with the concepts of (strongly) semismooth functions,
and refer to [26,27] for details.
We also need the definitions of P-functions and P-matrices in the subsequent sections.

Definition 2.1. Let F = (F1, . . . , Fn)T with Fi : Rn → R for i = 1, 2, . . . , n. Then,
(a) the mapping F is called a P0-function if, for every x and y in Rn with x 6= y, there is an index i ∈ {1, 2, . . . , n} such that

xi 6= yi and (xi − yi)(Fi(x)− Fi(y)) ≥ 0;
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(b) the mapping F is called a P-function if, for every x and y in Rn with x 6= y, there is an index i ∈ {1, 2, . . . , n} such that

xi 6= yi and (xi − yi)(Fi(x)− Fi(y)) > 0.
(c) the mapping F is called a uniform P-function if there exists a positive constant µ > 0 such that, for every x and y in Rn,
there is an index i ∈ {1, 2, . . . , n} such that

(xi − yi)(Fi(x)− Fi(y)) ≥ µ‖x− y‖2.

Definition 2.2. A matrixM ∈ Rn×n is called an
(a) P0-matrix if each of its principal minors is nonnegative.
(b) P-matrix if each of its principal minors is positive.

From Definitions 2.1 and 2.2, it is not hard to see that a continuously differentiable mapping F is a P0-function if and only
if ∇F(x) is P0-matrix for all x ∈ Rn. For the P0-matrix, we also have the following important property.

Lemma 2.1 ([12]). A matrix M ∈ Rn×n is a P0-matrix if and only if for every nonzero vector x, there exists an index i such that
xi 6= 0 and xi(Mx)i ≥ 0.

Next we recall some favorable properties of φp whose proofs can be found in [20–22].

Lemma 2.2. Let φp : R× R→ R be defined by (6). Then, the following results hold.
(a) φp is a strongly semismooth NCP-function.
(b) Given any point (a, b) ∈ R2, each element in the generalized gradient ∂φp(a, b) has the representation (ξ −1, ζ −1)where,
if (a, b) 6= (0, 0),

(ξ , ζ ) =

(
sign(a) · |a|p−1

‖(a, b)‖p−1p
,
sign(b) · |b|p−1

‖(a, b)‖p−1p

)
,

and otherwise (ξ , ζ ) is an arbitrary vector in R2 satisfying |ξ |
p
p−1 + |ζ |

p
p−1 ≤ 1.

(c) The square of φp is a continuously differentiable NCP function.
(d) If {(ak, bk)} ⊆ R2 satisfies (ak → −∞) or (bk → −∞) or (ak →∞ and bk →∞), then we have |φp(ak, bk)| → ∞ as
k→∞.

The following lemma establishes another property of φp, which plays a key role in the nonsmooth system reformulation
of the MCP (1) with the generalized FB function.

Lemma 2.3. Let φp : R× R→ R be defined by (6). Then, the following limits hold.
(a) lim

li→−∞
φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= −φp (ui − xi,−Fi(x)).

(b) lim
ui→∞

φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= φp (xi − li, Fi(x)).

(c) lim
li→−∞

lim
ui→∞

φp
(
xi − li, φp(ui − xi,−Fi(x))

)
= −Fi(x).

Proof. Let {ak} ⊆ R be any sequence converging to +∞ as k → ∞ and b ∈ R be any fixed real number. We will prove
lim
k→∞

φp(ak, b) = −b, and part (a) then follows by continuity arguments. Without loss of generality, assume that ak > 0 for

each k. Then,

φp(ak, b) = ak
(
1+ (|b|/ak)p

)1/p
− ak − b

= ak
[
1+

1
p

(
|b|
ak

)p
+
1− p
2p2

(
|b|
ak

)2p
+ · · · +

(1− p) · · · (1− pn+ p)
n!pn

(
|b|
ak

)np

+ o
((
|b|
ak

)pn)]
− ak − b

=
1
p
|b|p

(ak)p−1
+
1− p
2p2

|b|2p

(ak)2p−1
+ · · · +

(1− p) · · · (1− pn+ p)
n!pn

|b|np

(ak)np−1
+
(ak)|b|np

(ak)np
o
(
|b|/ak

)pn(
|b|/ak

)pn − b
where the second equality is using the Taylor expansion of the function (1 + t)1/p and the notation o(t) means
limt→0 o(t)/t = 0. Since ak → +∞ as k → ∞, we have

|b|np

(ak)np−1
→ 0 for all n. This together with the last equation

implies limk→∞ φp(ak, b) = −b. This proves part (a). Part (b) and (c) are direct by part (a) and the continuity of φFB . �

To close this section, we summarize the monotonicity of two scalar-valued functions that will be used in the subsequent
section. Since the proof is direct, we omit it here.
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Lemma 2.4. For any fixed 0 ≤ µ1 < µ2, the following functions

f1(t) := (t + µ1)
−
p−1
p − (t + µ2)

−
p−1
p (t > 0)

and

f2(t) := (t + µ2)
p−1
p − (t + µ1)

p−1
p (t ≥ 0)

are decreasing on (0,+∞), and furthermore, f2(t) ≤ f2(0) = µ
(p−1)/p
2 − µ

(p−1)/p
1 .

3. The smoothing function and its properties

For convenience, in the rest of this paper, we adopt the following notations of index sets:

Il := {i ∈ {1, 2, . . . , n} | −∞ < li < ui = +∞} ,
Iu := {i ∈ {1, 2, . . . , n} | −∞ = li < ui < +∞} ,
Ilu := {i ∈ {1, 2, . . . , n} | −∞ < li < ui < +∞} ,
If := {i ∈ {1, 2, . . . , n} | −∞ = li < ui = +∞} .

(8)

With the generalized FB function, we define a operatorΦp : Rn →Rn componentwise as

Φp,i(x) :=


φp(xi − li, Fi(x)) if i ∈ Il,
−φp(ui − xi,−Fi(x)) if i ∈ Iu,
φp(xi − li, φp(ui − xi,−Fi(x))) if i ∈ Ilu,
−Fi(x) if i ∈ If ,

(9)

where the minus sign for i ∈ Iu and i ∈ If is motivated by Lemma 2.3. In fact, all results of this paper would be true without
the minus sign. Using the equivalence in (5), it is not difficult to verify that the following result holds.

Proposition 3.1. x∗ ∈ Rn is a solution of the MCP (1) if and only if x∗ solves the nonlinear system of equationsΦp(x) = 0.

Wewant to point out that, unlike for the nonlinear complementarity problem, when writing the generalized FB function
φp as φp(a, b) = (a+ b)− ‖(a, b)‖p, the conclusion of Proposition 3.1 does not necessarily hold since, if Il = {1, 2, . . . , n},
then x̄ = l satisfies Φp(x̄) = 0, but F(x̄) ≥ 0 does not necessarily hold. Similar phenomenon also appears when replacing
φp by the minimum NCP function.
Since φp is not differentiable at the origin, the system Φp(x) = 0 is nonsmooth. In this paper, we will find a solution of

nonsmooth system Φp(x) = 0 by solving a sequence of smooth approximations Ψp(x, ε) = 0, where ε > 0 is a smoothing
parameter and the operator Ψp : Rn × R++ → Rn is defined componentwise as

Ψp,i(x, ε) :=


ψp(xi − li, Fi(x), ε) if i ∈ Il,
−ψp(ui − xi,−Fi(x), ε) if i ∈ Iu,
ψp
(
xi − li, ψp(ui − xi,−Fi(x), ε), ε

)
if i ∈ Ilu,

−Fi(x) if i ∈ If ,

(10)

with

ψp(a, b, ε) := p
√
|a|p + |b|p + εp − (a+ b). (11)

In what follows, we concentrate on the favorable properties of the smoothing function ψp and the operator Ψp. First, let
us state the favorable properties of ψp.

Lemma 3.1. Let ψp : R3 → R be defined by (11). Then, the following result holds.

(a) For any fixed ε > 0, ψp(a, b, ε) is continuously differentiable at all (a, b) ∈ R2 with

− 2 <
∂ψp(a, b, ε)

∂a
< 0, −2 <

∂ψp(a, b, ε)
∂b

< 0. (12)

(b) For any fixed (a, b) ∈ R2, ψp(a, b, ε) is continuously differentiable, strictly increasing and convex with respect to ε > 0.
Moreover, for any 0 < ε1 ≤ ε2,

0 ≤ ψp(a, b, ε2)− ψp(a, b, ε1) ≤ (ε2 − ε1). (13)

In particular, |ψp(a, b, ε)− φp(a, b)| ≤ ε for all ε ≥ 0.

(c) For any fixed (a, b) ∈ R2, let ψ0p (a, b) :=
(
lim
ε↓0

∂ψp(a,b,ε)
∂a , lim

ε↓0

∂ψp(a,b,ε)
∂b

)
. Then,

lim
h=(h1,h2)→(0,0)

φp(a+ h1, b+ h2)− φp(a, b)− ψ0p (a+ h1, b+ h2)
Th

‖h‖
= 0.
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(d) For any given ε > 0, if p ≥ 2, then ψp(a, b, ε) = 0 H⇒ a > 0, b > 0, 2ab ≤ ε2, and whenever p > 1, ψp(a, b, ε) =
0 H⇒ a > 0, b > 0, min{a, b} ≤ ε

p√2p−2
.

Proof. (a) Using an elementary calculation, we immediately obtain that

∂ψp(a, b, ε)
∂a

=
sign(a)|a|p−1(

p
√
|a|p + |b|p + εp

)p−1 − 1,
∂ψp(a, b, ε)

∂b
=

sign(b)|b|p−1(
p
√
|a|p + |b|p + εp

)p−1 − 1. (14)

For any fixed ε > 0, since ∂ψp(a,b,ε)
∂a and ∂ψp(a,b,ε)

∂b are continuous at all (a, b) ∈ R2, it follows thatψp(a, b, ε) is continuously
differentiable at all (a, b) ∈ R2. Noting that∣∣∣∣∣ sign(a)|a|p−1(

p
√
|a|p + |b|p + εp

)p−1
∣∣∣∣∣ < 1 and

∣∣∣∣∣ sign(b)|b|p−1(
p
√
|a|p + |b|p + εp

)p−1
∣∣∣∣∣ < 1,

we readily get the inequality (12).
(b) For any ε > 0, an elementary calculation yields that

∂ψp(a, b, ε)
∂ε

=
εp−1(

p
√
|a|p + |b|p + εp

)p−1 > 0,
∂2ψp(a, b, ε)

∂ε2
=

(p− 1)εp−2(
p
√
|a|p + |b|p + εp

)p−1 (1− εp

|a|p + |b|p + εp

)
≥ 0.

Therefore, for any fixed (a, b) ∈ R2,ψp(a, b, ε) is continuously differentiable, strictly increasing and convex with respect to
ε > 0. By the mean-value theorem, for any 0 < ε1 ≤ ε2, there exists some ε0 ∈ (ε1, ε2) such that

ψp(a, b, ε2)− ψp(a, b, ε1) =
∂ψp

∂ε
(a, b, ε0)(ε2 − ε1).

Since ∂ψp
∂ε
(a, b, ε0) ≤ 1 by the proof of part (a), inequality (13) holds for all 0 < ε1 ≤ ε2. Letting ε1 ↓ 0, the desired result

then follows.
(c) Using the formula (14), it is easy to calculate that

lim
ε↓0

∂ψp(a, b, ε)
∂a

=


sign(a)|a|p−1(
p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0);

lim
ε↓0

∂ψp(a, b, ε)
∂b

=


sign(b)|b|p−1(
p
√
|a|p + |b|p

)p−1 − 1 if (a, b) 6= (0, 0),

−1 if (a, b) = (0, 0).
(15)

From this, we see that ψ0p (a, b) =
(
∂φp(a,b)
∂a ,

∂φp(a,b)
∂b

)
at (a, b) 6= (0, 0). Therefore, we only need to check the case

(a, b) = (0, 0). The desired result follows by

φp(h1, h2)− φp(0, 0)− ψ0p (h1, h2)
Th = p

√
|h1|p + |h2|p −

|h1|p + |h2|p

( p
√
|h1|p + |h2|p)p−1

=
p
√
|h1|p + |h2|p − p

√
|h1|p + |h2|p

= 0.

(d) From the definition of ψp(a, b, ε), clearly, ψp(a, b, ε) = 0 implies a + b ≥ 0, and hence a ≥ 0 or b ≥ 0. Note that,
whenever a ≥ 0, b ≤ 0 or a ≤ 0, b ≥ 0, there holds that

p
√
|a|p + |b|p + εp > p

√
|a|p + |b|p ≥ max{|a|, |b|} ≥ a+ b,

i.e., ψp(a, b, ε) > 0. Hence, for any given ε > 0, ψp(a, b, ε) = 0 implies a > 0 and b > 0.
(i) If p ≥ 2, using the nonincreasing of p-norm with respect to p leads to

ψp(a, b, ε) = 0 ⇐⇒ a+ b = p
√
|a|p + |b|p + εp ≤

√
|a|2 + |b|2 + ε2

H⇒ (a+ b)2 ≤ a2 + b2 + ε2 H⇒ 2ab ≤ ε2.
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(ii) For p > 1,without loss of generality,we assume0 < a ≤ b. For any fixed a ≥ 0, consider f (t) = (t+a)p−tp−ap−εp (t ≥
0). It is easy to verify that the function f is strictly increasing on [0,+∞). Since ψp(a, b, ε) = 0, we have f (b) = 0 which
says f (a) = (2p − 2)ap − εp ≤ f (b) = 0. From this inequality, we get min{a, b} = a ≤ ε

p√2p−2
. �

Using Lemma 3.1 and the expression of Ψp, we readily obtain the following result.

Proposition 3.2. Let Ψp be defined by (10). Then, the following results hold.
(a) For any fixed ε > 0, Ψp(x, ε) is continuously differentiable on Rn with

∇xΨp(x, ε) = Da(x, ε)+∇F(x)Db(x, ε),

where Da(x, ε) and Db(x, ε) are n × n diagonal matrices with the diagonal elements (Da)ii(x, ε) and (Db)ii(x, ε) defined as
follows:
(a1) For i ∈ Il,

(Da)ii(x, ε) =
sign(xi − li)|xi − li|p−1

‖(xi − li, Fi(x), ε)‖p−1p
− 1,

(Db)ii(x, ε) =
sign(Fi(x))|Fi(x)|p−1

‖(xi − li, Fi(x), ε)‖p−1p
− 1.

(a2) For i ∈ Iu,

(Da)ii(x, ε) =
sign(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1p
− 1,

(Db)ii(x, ε) =
−sign(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1p
− 1.

(a3) For i ∈ Ilu,
(Da)ii(x, ε) = ai(x, ε)+ bi(x, ε)ci(x, ε) and (Db)ii(x, ε) = bi(x, ε)di(x, ε)

with

ai(x, ε) =
sign(xi − li)|xi − li|p−1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p − 1,

bi(x, ε) =
sign(ψp(ui − xi,−Fi(x), ε))|ψp(ui − xi,−Fi(x), ε)|p−1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p − 1,

ci(x, ε) = −
sign(ui − xi)|ui − xi|p−1

‖(ui − xi, Fi(x), ε)‖p−1p
+ 1,

di(x, ε) =
sign(Fi(x))|Fi(x)|p−1

‖(ui − xi, Fi(x), ε)‖p−1p
+ 1.

(a4) For i ∈ If , (Da)ii(x, ε) = 0 and (Db)ii(x, ε) = −1.
Moreover, −2 < (Da)ii(x, ε) < 0 and −2 < (Db)ii(x, ε) < 0 for all i ∈ Il ∪ Iu, and −6 < (Da)ii(x, ε) < 0 and
−4 < (Db)ii(x, ε) < 0 for i ∈ Ilu.

(b) For any given ε1 > 0 and ε2 > 0, we have

‖Ψp(x, ε2)− Ψp(x, ε1)‖ ≤
√
n
(
p√2+ 1

)
|ε2 − ε1|, ∀x ∈ Rn.

Particularly, for any given ε > 0,

‖Ψp(x, ε)− Φp(x)‖ ≤
√
n
(
p√2+ 1

)
ε, ∀x ∈ Rn.

The Jacobian consistency property plays a crucial role in the analysis of local fast convergence of the smoothing
algorithm [19]. To show that the smoothing operator Ψp satisfies the Jacobian consistency property, we need the following
characterization of the generalized Jacobian ∂CΦp(x), which is direct by Lemma 2.2(b).

Proposition 3.3. For any given x ∈ Rn, ∂CΦp(x)T = {Da(x) + ∇F(x)Db(x)}, where Da(x),Db(x) are n × n diagonal matrices
whose diagonal elements are given as below:
(a) For i ∈ Il, if (xi − li, Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sign(xi − li) · |xi − li|p−1

‖(xi − li, Fi(x))‖
p−1
p

− 1,

(Db)ii(x) =
sign(Fi(x)) · |Fi(x)|p−1

‖(xi − li, Fi(x))‖
p−1
p
− 1;
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and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

(b) For i ∈ Iu, if (ui − xi,−Fi(x)) 6= (0, 0), then

(Da)ii(x) =
sign(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖
p−1
p

− 1,

(Db)ii(x) = −
sign(Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖
p−1
p
− 1;

and otherwise

((Da)ii(x), (Db)ii(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

(c) For i ∈ Ilu, (Da)ii(x) = ai(x)+ bi(x)ci(x) and (Db)ii(x) = bi(x)di(x) where, if (xi − li, φp(ui − xi,−Fi(x))) 6= (0, 0), then

ai(x) =
sign(xi − li) · |xi − li|p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1,

bi(x) =
sign

(
φp(ui − xi,−Fi(x))

)
·
∣∣φp(ui − xi,−Fi(x))∣∣p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p − 1,

and otherwise

(ai(x), bi(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
;

and if (ui − xi,−Fi(x)) 6= (0, 0), then

ci(x) =
−sign(ui − xi) · |ui − xi|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

di(x) =
sign (Fi(x)) · |Fi(x)|p−1

‖(ui − xi,−Fi(x))‖p−1p
+ 1,

and otherwise

(ci(x), di(x)) ∈
{
(ξ + 1, ζ + 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

(d) For i ∈ If , (Da)ii(x) = 0 and (Db)ii(x) = −1.

Now we are in a position to establish the Jacobian consistency of the operator Ψp.

Proposition 3.4. Let Ψp be defined by (10). Then, for any fixed x ∈ Rn,

lim
ε↓0
dist(∇xΨp(x, ε)T , ∂CΦp(x)) = 0.

Proof. For the sake of notation, for any given x ∈ Rn, we define the index sets:

β1(x) := {i ∈ Il | (xi − li, Fi(x)) = (0, 0)}, β̄1(x) := Il \ β1(x),

β2(x) := {i ∈ Iu | (ui − xi, Fi(x)) = (0, 0)}, β̄2(x) := Iu \ β2(x), (16)
β3(x) := {i ∈ Ilu |

(
xi − li, φp(ui − xi,−Fi(x))

)
= (0, 0)}, β̄3(x) := Ilu \ β3(x),

β4(x) := {i ∈ β̄3(x) | (ui − xi, Fi(x)) = (0, 0)}, β̄4(x) := β̄3(x) \ β4(x).

We proceed the arguments by the cases i ∈ Il ∪ Iu, i ∈ Ilu and i ∈ If , respectively.
Case 1: i ∈ Il ∪ Iu. When i ∈ β1(x) ∪ β2(x), it is easy to see that

(Da)ii(x, ε) = −1 and (Db)ii(x, ε) = −1.

By Proposition 3.2(a1) and (a2), ∇xΨp,i(x, ε)T = −eTi − F
′

i (x) for all ε > 0. Since

(−1,−1) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
, (17)

from Proposition 3.3(a) and (b) we get ∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x).When i ∈ β̄1(x) ∪ β̄2(x),

lim
ε↓0

(Da)ii(x, ε) = (Da)ii(x) and lim
ε↓0

(Db)ii(x, ε) = (Db)ii(x),
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which together with Proposition 3.2(a1) and (a2) implies that

lim
ε↓0
∇xΨp,i(x, ε)T = (Da)ii(x)eTi + (Db)ii(x)F

′

i (x) ∈ ∂CΦp,i(x).

Since Il ∪ Iu = β1(x) ∪ β2(x) ∪ β̄1(x) ∪ β̄2(x), the last two subcases show that

lim
ε↓0
∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x), ∀i ∈ Il ∪ Iu. (18)

Case 2: i ∈ Ilu. When i ∈ β3(x), we have xi − li = 0, φp(ui − xi,−Fi(x)) = 0, ui − xi > 0 and Fi(x) = 0. Hence, ci(x) = 0 and
di(x) = 1. From Proposition 3.3(c), it follows that

∂CΦp,i(x) = {ai(x)eTi + bi(x)F
′

i (x)} (19)

with

(ai(x), bi(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

On the other hand, since ai(x, ε) = −1, di(x, ε) = 1 and

bi(x, ε) =
|ψp(ui − xi,−Fi(x), ε)|p−1(

|ψp(ui − xi,−Fi(x), ε)|p + εp
) p−1
p
− 1,

ci(x, ε) = 1−
|ui − xi|p−1

(|ui − xi|p + εp)(p−1)/p
,

from Proposition 3.2(a3) it follows that

∇xΨp,i(x, ε)T = (−1+ bi(x, ε)ci(x, ε))eTi + bi(x, ε)F
′

i (x). (20)

Taking

ξ = 0 and ζ =
|ψp(ui − xi,−Fi(x), ε)|p−1(

|ψp(ui − xi,−Fi(x), ε)|p + εp
) p−1
p
,

it is not hard to verify that |ξ |
p
p−1 + |ζ |

p
p−1 ≤ 1, and consequently

−eTi + bi(x, ε)F
′

i (x) ∈ ∂CΦp,i(x).

Noting that

lim
ε↓0

∥∥∇xΨp,i(x, ε)T − (−eTi + bi(x, ε)F ′i (x))∥∥ = lim
ε↓0
‖bi(x, ε)ci(x, ε)eTi ‖ = 0,

it then follows that

lim
ε↓0
dist

(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
= 0, i ∈ β3(x).

When i ∈ β̄3(x), we have limε↓0 ai(x, ε) = ai(x) and limε↓0 bi(x, ε) = bi(x). Also,

ci(x, ε) = 1, di(x, ε) = 1 for i ∈ β4(x)

and

lim
ε↓0
ci(x, ε) = ci(x), lim

ε↓0
di(x, ε) = di(x) for i ∈ β̄4(x).

Using Proposition 3.3(c) and noting that

(1, 1) ∈
{
(ξ + 1, ζ + 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
,

we get limε↓0 ∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x) for i ∈ β̄3(x). Along with the above discussions,

lim
ε↓0
∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x) for i ∈ Ilu. (21)

Case 3: i ∈ If . By Proposition 3.2(a4) and Proposition 3.3(d), it is obvious that

lim
ε↓0
∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x) for i ∈ If . (22)

Now the desired result follows from (18)–(22) and {1, 2, . . . , n} = If ∪ Il ∪ Iu ∪ Ilu. �
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Proposition 3.4 implies that for any δ > 0, there exists an ε(x, δ) > 0 such that

dist
(
∇xΨp(x, ε)T , ∂CΦp(x)

)
≤ δ for all 0 < ε ≤ ε(x, δ).

The following lemma gives a way to choose such ε(x, δ), whose proof is seen in Appendix.

Lemma 3.2. Let Ψp be defined by (10). Suppose that x is not a solution of (1). Let

α(x) := min {α1(x), α2(x), α3(x)} > 0, γ (x) := max {γ1(x), γ2(x), γ3(x)} ≥ 0

with

α1(x) := min
i∈β̄1(x)

|xi − li|p + |Fi(x)|p,

α2(x) := min
i∈β̄2(x)∪β̄4(x)

|ui − xi|p + |Fi(x)|p,

α3(x) := min
i∈β̄4(x)∪{i||xi−li|6=0}

|xi − li|p + |φp(ui − xi,−Fi(x))|p

γ1(x) := max
i∈β̄1(x)

∥∥sign(xi − li)|xi − li|p−1ei + sign(Fi(x))|Fi(x)|p−1∇Fi(x)∥∥
γ2(x) := max

i∈β̄2(x)

∥∥sign(Fi(x))|Fi(x)|p−1∇Fi(x)− sign(ui − xi)|ui − xi|p−1ei∥∥
γ3(x) := max

i∈β̄4(x)
|ui − xi|p−1 + |Fi(x)|p−1.

Then, for any δ > 0, there exists an ε(x, δ) > 0 such that

dist
(
∇xΨp(x, ε)T , ∂CΦp(x)

)
≤ δ for all 0 < ε ≤ ε(x, δ), (23)

where

ε(x, δ) := min

{
ε0(x, δ), ε1(x, δ), ε2(x, δ), ε3(x, δ),

(
δ

√
nM(x)

) p−1
p
}

with

ε0(x, δ) := min
i∈β3(x)

[
|ui − xi|p−1

(1− δ/
√
n)

p
p−1
− |ui − xi|p

]1/p
, ε2(x, δ) := min

i∈β4(x)

1
2
|xi − li|,

ε1(x, δ) :=


1 if

(√
nγ (x)
δ

) p
p−1

− α(x) ≤ 0,

α(x)2/p
(√
nγ (x)
δ

)(p/(p−1)−α(x))−1/p
otherwise,

ε3(x, δ) :=

{
1 if φp(ui− xi,−Fi(x)) ≥ 0,

1
2

[
(ui− xi −Fi(x))p − |ui− xi|p −|Fi(x)|p

]1/p otherwise.

4. Smoothing algorithm and convergence results

In this section,we describe the iteration steps of the smoothing algorithmbased on the smooth approximationΨp(x, ε) =
0 ofΦp(x) = 0, and then present the global and local convergence results of the algorithm. To this end,we need the following
merit functions:

Θp(x) :=
1
2
‖Φp(x)‖2

and

Hp(x, ε) :=
1
2
‖Ψp(x, ε)‖2.

The algorithm follows the same line as the one proposed by Chen et al. [19].

Algorithm 4.1 (Smoothing Algorithm).
(S.0) Given a starting point x0 ∈ Rn, the parameters ρ, α, η ∈ (0, 1) and ν ∈ (0,+∞). Choose σ ∈ (0, (1 − α)/2). Let

β0 = ‖Φp(x0)‖ and ε0 := α

2
√
n . Set k := 0.
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(S.1) Solve the following linear system of equations

Φp(xk)+ Ψp(xk, εk)d = 0,

and denote its solution by dk.
(S.2) Letmk be the smallest nonnegative integerm such that

Hp(xk + ρmdk, εk)− Hp(xk, εk) ≤ −2σρmΘp(xk).

Set tk := ρmk and xk+1 := xk + tkdk.
(S.3) If ‖Φp(xk+1)‖ = 0, then terminate. If

0 < ‖Φp(xk+1)‖ ≤ max
{
ηβk, α

−1
‖Φp(xk+1)− Ψ (xk+1, εk)‖

}
, (24)

let βk+1 = ‖Φp(xk+1)‖ and choose an εk+1 satisfying

0 < εk+1 ≤ min
{
αβk+1

2
√
n
,
εk

2

}
(25)

and

dist
(
∇xΨp(xk+1, εk+1), ∂CΦp(xk+1)

)
≤ βk+1ν. (26)

If ‖Φp(xk+1)‖ > 0 but (24) does not hold, then let βk+1 = βk and εk+1 = εk.
(S.4) Set k := k+ 1, and go to (S.1).

In Algorithm 4.1, the parameter σ chosen from (0, (1−α)/2) has twofold purposes: one is to guarantee the existence of
mk in (S.2), and the other is to lend itself to the superlinear convergence analysis of the algorithm, the initial β0 and ε0 are
chosen as ‖Φp(x0)‖ and α

2
√
n , respectively, just for the global convergence analysis of the algorithm. Such choices for these

parameters are also used in the numerical experiments of Section 5. Algorithm 4.1 has inexpensive computation work and
only a system of linear equations is solved at each iteration. Since the operator Ψp has the Jacobian consistency property,
we can find an εk+1 > 0 such that (25) and (26) hold by the definition, and moreover, Lemma 3.2 shows how to choose an
εk+1 > 0 satisfying (25) and (26) for the MCP (1).

Lemma 4.1. For any fixed ε > 0, the Jacobian matrix of Ψp at any x ∈ Rn is nonsingular if F is a P0-function and the submatrix
[F ′(x)]If If is nonsingular. Particularly, if If = ∅, the Jacobian matrix of Ψp at any x ∈ Rn is nonsingular if and only if F is a
P0-function.

Proof. For any given ε > 0, the Jacobian matrix of Ψp at any x ∈ Rn is given by

∇xΨp(x, ε)T = Da(x, ε)+ Db(x, ε)F ′(x)

where Da(x, ε) and Db(x, ε) are n × n diagonal matrices whose diagonal elements (Da)ii(x, ε) and (Db)ii(x, ε) are negative
for i ∈ Il ∪ Iu ∪ Ilu, and (Da)ii(x, ε) = 0, (Db)ii(x, ε) = −1 for i ∈ If . Now suppose that ∇xΨp(x, ε)T z = 0. Then,

zi = −
(Db)ii(x, ε)
(Da)ii(x, ε)

(
F ′(x)z

)
i , for i ∈ Il ∪ Iu ∪ Ilu (27)

and (
F ′(x)z

)
i = 0, for i ∈ If . (28)

Since F is a continuously differentiable P0-function, F ′(x) is a P0-matrix. From Lemma 2.1, we get zi = 0 for i ∈ Il ∪ Iu ∪ Ilu.
Substituting this into (28), we obtain

[F ′(x)If If ]zIf = 0,

where zIf is a vector consisting of zi with i ∈ If . This along with the nonsingularity of [F
′(x)]If If implies zi = 0 for i ∈ If .

Thus, we prove z = 0, and consequently the first part of the conclusions follows. The second part is implied by the above
arguments. �

Remark 4.1. We want to point out when p → +∞, the diagonal elements (Da)ii(x, ε) and (Db)ii(x, ε) for i ∈ Il ∪ Iu ∪ Ilu
will tend to 0, though (Da)ii(x, ε)+ (Db)ii(x, ε) < 0. This implies that for a larger p the nonsingularity of ∇Ψp(x, ε) actually
requires stronger conditions than those given by Lemma 4.1.

By Lemma 4.1 and Lemma 3.1 of [19], Algorithm 4.1 is well-defined under the conditions that F is a P0 function and
[F ′(x)]If If is nonsingular. The following lemma provides a condition to guarantee that the merit functionΘp(x) has bounded
level sets.
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Lemma 4.2. The level setsL(γ ) :=
{
x ∈ Rn | ‖Φp(x)‖ ≤ γ

}
are bounded for all γ > 0 if one of the following two conditions is

satisfied:

(a) l and u are both bounded.
(b) F is a uniform P-function.

Proof. Under the condition (a), we have {1, 2, . . . , n} = Ilu. The result is clear by the definition of Φp and Lemma 2.2(d).
Next we prove the boundedness of L(γ ) under the condition (b). Suppose that there exists some γ > 0 such that L(γ ) is
unbounded, i.e., there exists a sequence {xk} ⊆ L(γ ) such that ‖xk‖ → ∞. Define the index set

J :=
{
i ∈ {1, 2, . . . , n} | {xki } is unbounded

}
.

Then J 6= ∅. We choose a bounded sequence yk with

yki =
{
0 if i ∈ J,
xki otherwise.

Since F is a uniform P-function, there is a constant µ > 0 such that

µ‖xk − yk‖2 ≤ max
1≤i≤n

(xki − y
k
i )(Fi(x

k)− Fi(yk))

= max
i∈J
(xki )(Fi(x

k)− Fi(yk))

≤ |xkj0 ||Fj0(x
k)− Fj0(y

k)|

where j0 is an index from {1, 2, . . . , n} for which themaximum is attained, andwithout loss of generality it is assumed to be
independent of k. Clearly, j0 ∈ J , which means that {xkj0} is unbounded. Consequently, there exists a subsequence, assumed
to be {xkj0}without loss of generality, such that |x

k
j0
| → ∞. Notice that

‖xk − yk‖2 ≥ |xkj0 − y
k
j0 |
2
= |xkj0 |

2 for each k.

Therefore, µ|xkj0 |
2
≤ |xkj0 ||Fj0(x

k)− Fj0(y
k)| and

µ|xkj0 | ≤ |Fj0(x
k)− Fj0(y

k)| ≤ |Fj0(x
k)| + |Fj0(y

k)|,

which in turn implies |Fj0(x
k)| → ∞ as |xkj0 | → ∞. Thus, we prove that

|xkj0 | → +∞ and |Fj0(x
k)| → +∞. (29)

On the other hand, we notice that (29) implies that

|xkj0 − li| → +∞ and |Fj0(x
k)| → +∞.

Combining the last two equationswith Lemma 2.2(d), we have |Φp,j0(x
k)| → +∞ from the definition ofΦp. This contradicts

the fact that {xk} ⊆ L(γ ). �

Using Lemmas 4.1 and 4.2 and following the same arguments as in [19], we have the following global and local
convergence results.

Theorem 4.1. Suppose that F is a uniform P-function. Then the iteration sequence {xk} generated by Algorithm 4.1 is well defined
and converges to the unique solution x∗ of the MCP (1) superlinearly. Furthermore, if F ′ is locally Lipschitz continuous around x∗,
then the convergence rate is quadratic.

5. Numerical experiments

We implemented Algorithm 4.1 in MATLAB 7.0 for solving the MCPLIB test problem collection [11]. The actual
implementation is same as the description of Algorithm 4.1 except that in Step 3 we choose εk+1 satisfying (25) only
whenever the inequality (24) holds. Although the condition in (26) is crucial for the superlinear convergence analysis of
Algorithm4.1, numerical results reported in Table 1indicate that Algorithm4.1without (26) seems to possess the superlinear
convergence.
All experiments were done with a PC of Intel Pentium Dual CPU E2200 and 2047MB memory. The parameters of

Algorithm 4.1 were chosen as follows:

ρ = 0.5, σ = 10−2, α = 0.5, η = 0.01. (30)
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Table 1
Numerical results for the MCPLIB problems with different p.

Problem p = 1.001 p = 1.1 p = 2 p = 1000
It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖

badfree 8 39 6.23e−11 41 607 1.57e−11 56 626 2.87e−12 53 934 1.22e−12
bertsekas(1) 35 101 8.30e−11 22 58 6.20e−12 27 122 2.21e−11 – – –
bertsekas(2) 45 154 8.53e−11 29 97 3.05e−11 30 137 2.33e−11 – – –
bertsekas(3) 60 212 8.95e−11 29 87 3.56e−11 28 146 1.07e−14 – – –
bert-oc 61 273 9.49e−11 15 20 4.44e−11 18 40 2.40e−13 8 20 3.08e−14
bratu 61 283 8.23e−12 16 21 1.94e−12 10 15 1.69e−14 – – –
billups – – – – – – 241 5759 0 33 715 1.00e−12
choi 14 38 4.51e−11 12 13 5.43e−13 6 7 8.30e−11 6 7 2.14e−14
colvdual(1) – – – – – – – – – – – –
colvdual(2) 51 371 3.07e−12 – – – – – – – – –
colvnlp(1) 123 2305 7.49e−11 23 53 2.02e−11 19 41 3.91e−11 – – –
colvnlp(2) 14 23 5.54e−12 16 27 4.38e−11 19 42 6.86e−12 – – –
cycle 24 50 7.68e−11 8 12 6.44e−11 4 6 0 4 6 0
degen 5 6 1.77e−13 8 9 4.35e−12 6 7 1.11e−16 3 4 0
duopoly – – – – – – – – – – – –
ehl-k40 – – – – – – – – – – – –
ehl-k60 22 45 2.36e−12 25 54 1.28e−12 21 43 1.96e−12 – – –
ehl-k80 29 76 3.41e−12 25 49 8.83e−12 27 71 5.21e−11 56 334 3.12e−12
ehl-kost 26 59 1.85e−11 29 61 1.03e−11 34 97 4.47e−12 – – –
electric – – – – – – – – – – – –
explcp 31 117 1.28e−13 31 96 3.68e−12 20 47 0 19 54 0
forcebsm – – - 53 281 8.35e−11 – – – – – –
forceda – – – – – – – – – – – –
freebert(1) 61 418 6.86e−11 27 105 1.07e−12 24 115 5.67e−12 – – –
freebert(2) 63 418 5.77e−11 68 336 9.04e−11 24 108 8.70e−12 – – –
freebert(3) 16 35 1.55e−13 17 33 1.19e−12 19 69 1.28e−14 – – –
freebert(4) 18 75 5.01e−11 26 97 1.24e−12 23 126 1.12e−14 – – –
freebert(5) 62 386 5.81e−11 70 346 3.19e−12 11 21 1.01e−14 – – –
freebert(6) 21 58 2.56e−11 20 52 1.90e−11 18 72 1.23e−14 – – –
gafni(1) 24 75 6.75e−11 16 30 2.54e−13 11 22 2.10e−15 17 64 3.83e−15
gafni(2) 28 70 5.66e−11 13 26 6.51e−11 14 35 5.55e−15 13 45 1.42e−15
gafni(3) 28 67 6.71e−11 15 32 3.79e−11 15 38 3.76e−15 15 53 3.56e−15
games 11 17 8.87e−12 13 23 2.76e−11 – – – – – –
hanskoop(1) 33 60 5.15e−13 30 57 4.96e−11 28 55 4.19e−16 – – –
hanskoop(2) 32 59 3.47e−12 14 21 4.32e−12 11 16 1.51e−14 – – –
hanskoop(3) 34 61 8.52e−13 32 59 2.31e−12 47 266 1.89e−14 2 4 6.80e−17
hanskoop(4) 34 61 7.80e−12 32 59 2.14e−12 30 57 9.90e−14 – – –
hanskoop(5) 44 116 6.83e−11 36 74 9.42e−11 96 743 2.36e−16 – – –
hydroc06 9 15 4.06e−12 9 13 2.93e−12 5 7 4.15e−12 5 7 1.06e−12
hydroc20 16 31 1.34e−12 – – – 9 12 5.04e−11 9 11 9.77e−14
jel 7 9 9.58e−11 11 13 8.52e−13 23 88 4.56e−12 10 19 1.59e−14
josephy(1) 24 47 6.88e−11 10 12 5.93e−11 9 13 1.02e−12 12 24 1.78e−15
josephy(2) 25 51 6.27e−11 10 15 3.41e−11 8 13 0 8 16 1.07e−13
josephy(3) 28 55 7.01e−11 15 25 8.10e−12 – – – 13 25 1.78e−15
josephy(4) 6 7 4.86e−11 8 9 4.42e−12 5 6 1.48e−11 4 5 1.83e−15
josephy(5) 7 8 9.31e−14 9 10 9.19e−13 6 7 8.22e−14 4 5 3.24e−12
josephy(6) 30 85 9.19e−11 14 24 4.14e−12 7 10 0 7 11 0
kojshin(1) 26 52 5.37e−11 11 14 9.23e−12 11 20 5.28e−14 10 21 5.35e−13
kojshin(2) 28 64 7.59e−11 16 30 1.74e−11 11 24 2.17e−11 8 15 1.78e−15
kojshin(3) 31 71 6.17e−11 19 35 3.38e−13 12 16 5.32e−13 11 22 5.35e−13
kojshin(4) 29 61 9.97e−11 20 37 7.73e−12 11 16 7.09e−13 10 16 8.88e−16
kojshin(5) 7 8 4.74e−13 8 9 1.26e−11 11 17 2.44e−13 6 8 0
kojshin(6) – – – 14 22 2.86e−12 9 15 1.98e−11 7 12 8.88e−16
lincont 56 447 2.01e−10 33 119 2.37e−10 – – – – – –
mathinum(1) 5 6 2.75e−12 7 8 2.77e−11 5 6 4.35e−14 6 12 0
mathinum(2) 7 8 1.41e−13 9 10 4.43e−12 6 7 1.83e−12 6 7 0
mathinum(3) 7 9 6.36e−12 10 12 1.31e−12 7 9 0 7 12 0
mathinum(4) 7 8 1.80e−11 10 11 1.12e−12 8 9 4.44e−16 7 8 8.88e−16
mathisum(1) 7 9 1.19e−12 11 16 7.39e−12 9 13 0 – – –
mathisum(2) 8 12 1.31e−11 12 18 1.51e−12 7 9 4.45e−13 5 8 0
mathisum(3) 7 9 2.54e−11 9 10 1.15e−12 5 6 1.48e−11 4 6 0
mathisum(4) 10 20 1.34e−11 13 22 7.80e−13 8 10 4.44e−16 6 9 0
methan08 7 8 5.80e−13 8 9 3.56e−12 4 5 1.17e−11 4 5 7.87e−12
nash(1) 8 9 5.00e−13 10 11 9.73e−11 8 9 4.50e−14 9 16 6.31e−14
nash(2) 14 32 6.14e−12 15 28 2.65e−12 13 28 5.54e−14 14 42 8.20e−14
ne-hard 35 92 4.10e−11 35 92 4.10e−11 35 92 4.10e−11 35 92 4.10e−11
obstacle 47 226 2.63e−11 14 18 7.24e−12 9 12 3.37e−15 8 16 3.25e−15
opt-cont 52 214 2.64e−11 14 18 3.91e−11 9 10 3.93e−15 11 16 2.63e−15
opt-cont31 49 168 3.18e−11 15 20 4.11e−12 10 13 6.09e−15 12 29 5.87e−15
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Table 1 (continued)

Problem p = 1.001 p = 1.1 p = 2 p = 1000
It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖ It NF ‖Φp(xf )‖

opt-cont127 61 243 1.16e−11 21 31 1.27e−12 16 36 1.52e−11 30 136 1.08e−14
opt-cont255 73 277 1.95e−11 16 29 1.79e−11 15 32 1.54e−14 39 241 1.62e−14
pgvon106(1) 100 584 5.40e−11 – – – – – – – – –
pgvon106(2) 80 364 9.81e−11 42 107 7.66e−11 – – – – – –
pgvon106(3) 36 70 1.61e−13 287 2334 8.04e−11 – – – – – –
pies 59 676 1.24e−11 17 31 4.60e−12 16 46 7.29e−12 – – –
powell(1) – – – 13 30 9.43e−11 – – – – – –
powell(2) 120 1285 8.51e−11 17 48 8.67e−11 – – – – – –
powell(3) 17 86 9.36e−11 20 46 6.03e−11 12 33 8.99e−12 – – –
powell(4) 63 883 2.65e−13 – – – – – – – – –
powell-mcp(1) 6 7 6.46e−12 6 7 6.46e−12 6 7 6.46e−12 6 7 6.46e−12
powell-mcp(2) 7 8 2.17e−12 7 8 2.17e−12 7 8 2.17e−12 7 8 2.17e−12
powell-mcp(3) 9 10 5.43e−15 9 10 5.43e−15 9 10 5.43e−15 9 10 5.43e−15
powell-mcp(4) 8 9 1.98e−14 8 9 1.98e−14 8 9 1.98e−14 8 9 1.98e−14
qp 7 9 6.51e−14 8 9 3.66e−12 6 7 8.88e−16 3 4 0
scarfanum(1) 37 90 7.69e−14 39 92 8.97e−12 40 76 5.13e−11 – – –
scarfanum(2) 36 89 2.73e−13 38 91 8.35e−12 38 71 3.20e−15 – – –
scarfanum(3) – – – – – – 118 676 2.28e−15 39 124 1.67e−12
scarfasum(1) 52 79 2.28e−13 58 85 1.43e−12 14 21 9.49e−15 – – –
scarfasum(2) 51 78 2.77e−11 60 88 9.08e−11 14 20 3.16e−15 – – –
scarfasum(3) 34 107 6.32e−11 13 17 4.18e−12 40 70 5.71e−13 – – –
scarfbsum(1) 63 251 7.90e−12 50 174 5.52e−12 34 168 5.45e−11 – – –
scarfbsum(2) 28 72 1.35e−12 89 370 2.28e−12 24 142 5.52e−11 – – –
simple-red 12 13 7.94e−13 14 15 3.29e−12 12 13 1.87e−15 12 13 1.15e−15
simple-ex 196 3321 3.50e−13 – – – – – – – – –
sppe(1) 13 18 5.92e−12 11 13 5.99e−11 6 7 1.11e−12 – – –
sppe(2) 7 8 3.71e−12 9 10 1.49e−12 7 9 9.98e−14 – – –
shubik 49 207 1.87e−11 64 225 9.12e−11 – – – – – –
tinloi 23 83 2.19e−11 17 33 3.43e−11 14 26 3.77e−15 19 93 2.32e−15
tobin(1) 16 70 1.91e−12 12 21 1.14e−11 9 12 3.48e−14 16 28 8.27e−13
tobin(2) 13 23 2.47e−11 13 18 1.49e−11 9 12 2.04e−14 11 16 1.25e−12
trafelas 50 233 9.96e−11 27 62 6.22e−11 – – – – – –

We started Algorithm 4.1 with the standard starting point provided by the MCPLIB collection, and terminated the iteration
if one of the following conditions is satisfied

‖Φp(x)‖ ≤ 10−10 or k > 300.
The numerical results corresponding to p = 1.001, p = 1.1, p = 2 and p = 1000, respectively, are summarized in

Table 1. In these tables, the first column gives the names of problems, and the number after each problem specifies which
starting point from the library is used; Iter denotes the number of iterations; NFmeans the number of function evaluations
for the mapping F , and ‖Φp(xf )‖ column denotes the values of ‖Φp(x)‖ at the final iterate x = xf .
Table 1 show that Algorithm 4.1 based on the smoothing approximation Ψp(x, ε) with p ∈ (1, 2] was able to solve

almost all MCPLIB test problems, including a number of examples known to be very bad. Among 55 test problems, there are
7 problems failure for p = 1.001, which are billups, duopoly, ehl-k40, electric, forcebsm, forceda, simple-ex; there are 8
problems failure for p = 1.1, which are billups, colvdual, duopoly, ehl-k40, electric, forceda, hydroc20, simple-ex; and
there 12 problems failure for p = 2, which are billups, colvdual, duopoly, ehl-k40, electric, forcebsm, forceda, lincont,
simple-ex, games, shubik, trafelas. It is known that the problems such as ‘‘duopoly, forcebsm, electric, shubik’’ are also
very difficult for other Newton-type methods in the literature. Unlike the least-square semismooth Newton method based
on φp (see [23]), Algorithm 4.1 with p = 1000 fails for most of test problems due to the singularity of∇xΨp(xk, εk). This also
coincides with the observations in Remark 4.1.
From Table 1, we see that Algorithm 4.1 with a smaller p, to say p < 2, has better robustness than a larger p (>2), but

when p is closer to 1, Algorithm 4.1 generally requires more iterations. Therefore, we conclude that Algorithm 4.1 with p
chosen from [1.1, 2] should be desirable. In addition, we want to point out that the value of α will give an influence on
numerical performance of Algorithm 4.1, and the favorable α should be chosen from the interval [0.3, 0.7].

6. Conclusions

In this paper, we have studied the smoothing Newton method [19] based on the smooth approximation ψp of the
generalized FB function. The smooth operator Ψp is shown to possess the Jacobian consistency property, which implies
the fast convergence of this smoothing algorithm. Numerical experiments indicate that the algorithm with p ∈ (1, 2]
has better numerical performance than the one with p > 2, and it has better robustness when p is closer to 1. Further
numerical experiments are needed to check whether imposing the condition (26) on εk+1 may improve the performance of
Algorithm 4.1.
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Appendix. The proof of Lemma 3.2

From Eq. (15), clearly, the index set {1, 2, . . . , n} can be partitioned as

If ∪ β1(x) ∪ β̄1(x) ∪ β2(x) ∪ β̄2(x) ∪ β3(x) ∪ β4(x) ∪ β̄4(x).

In view of this, we proceed the proof by the following several cases.
Case 1: i ∈ If . From Proposition 3.2(a4) and Proposition 3.3(d), we have

∇xΨp,i(x, ε)T = −F ′i (x) and ∂CΦp,i(x) = −F ′i (x),

which implies that

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
= 0 for all ε > 0. (31)

Case 2: i ∈ β1(x) ∪ β2(x). From Proposition 3.2(a1) and (a2), it follows that

∇xΨp,i(x, ε)T = −eTi − F
′

i (x).

In addition, by Proposition 3.3(a) and (b), we have ∇xΨp,i(x, ε)T ∈ ∂Φp,i(x) since

(−1,−1) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

Therefore,

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
= 0 for all ε > 0. (32)

Case 3: i ∈ β3(x). Under this case, xi − li = 0, φp(ui − xi,−Fi(x)) = 0, ui − xi > 0 and Fi(x) = 0. Hence, ci(x) = 0 and
di(x) = 1. From Proposition 3.3(c), it follows that

∂CΦp,i(x) = {ai(x)eTi + bi(x)F
′

i (x)} (33)

with

(ai(x), bi(x)) ∈
{
(ξ − 1, ζ − 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

On the other hand, since ai(x, ε) = −1, di(x, ε) = 1 and

bi(x, ε) =
|ψp(ui − xi,−Fi(x), ε)|p−1(

|ψp(ui − xi,−Fi(x), ε)|p + εp
) p−1
p
− 1,

ci(x, ε) = 1−
|ui − xi|p−1

(|ui − xi|p + εp)(p−1)/p
,

from Proposition 3.2(a3) it follows that

∇xΨp,i(x, ε)T = (−1+ bi(x, ε)ci(x, ε))eTi + bi(x, ε)F
′

i (x). (34)

Taking

ξ = 0 and ζ =
|ψp(ui − xi,−Fi(x), ε)|p−1(

|ψp(ui − xi,−Fi(x), ε)|p + εp
) p−1
p
,

we can verify that |ξ |
p
p−1 + |ζ |

p
p−1 ≤ 1, and consequently−eTi + bi(x, ε)F

′

i (x) ∈ ∂CΦp,i(x). Using the definition of ε0(x, δ),
it is easy to verify that, for all ε ≤ ε0(x, δ),∥∥∇xΨp,i(x, ε)T − (−eTi + bi(x, ε)F ′i (x))∥∥ = ‖bi(x, ε)ci(x, ε)eTi ‖ ≤ |ci(x, ε)| ≤ δ

√
n
.

Therefore, for all 0 < ε ≤ ε0(x, δ),

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤

δ
√
n
. (35)
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Case 4: i ∈ β̄1(x). From Proposition 3.3(a) and Proposition 3.2(a1), it follows that

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
=
∥∥∇xΨp,i(x, ε)T −∇Φp,i(x)T∥∥

=

(
1

‖(xi − li, Fi(x))‖
p−1
p
−

1
‖(xi − li, Fi(x), ε)‖p−1p

)
∥∥sign(xi − li)|xi − li|p−1ei + sign(Fi(x))|Fi(x)|p−1∇Fi(x)∥∥

≤

(
α1(x)

1−p
p − (α1(x)+ εp)

1−p
p
)
γ1(x)

≤

(
α(x)

1−p
p − (α(x)+ εp)

1−p
p
)
γ (x)

=
(α(x)+ εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x)+ εp)]
p−1
p

γ (x)

≤
εp−1

[α(x)(α(x)+ εp)]
p−1
p
γ (x) (36)

where the inequalities are using Lemma 2.4 and the definition of α(x) and γ (x). Now using Eq. (36), it is not hard to verify
that for all 0 < ε ≤ ε1(x, δ)

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤

δ
√
n
. (37)

Indeed, if γ (x) = 0, this inequality obviously holds for all ε > 0. Suppose that γ (x) > 0. Then, a simple calculation shows
that

εp−1γ (x)

[α(x)(α(x)+ εp)]
p−1
p
≤

δ
√
n
⇐⇒ α(x)2 ≥ εp

((√
nγ (x)
δ

)p/(p−1)
− α(x)

)
.

Clearly, the inequality on the right hand side holds for all 0 < ε ≤ ε1(x, δ). Consequently, the result in (37) follows from
the above equivalence and (36).
Case 5: i ∈ β̄2(x). From Proposition 3.3(b) and Proposition 3.2(a2), it follows that

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
=

(
1

‖(ui − xi, Fi(x))‖
p−1
p
−

1
‖(ui − xi, Fi(x), ε)‖p−1p

)∥∥sign(Fi(x))|Fi(x)|p−1∇Fi(x)− sign(ui − xi)|ui − xi|p−1ei∥∥
≤

(
α2(x)

1−p
p − (α2(x)+ εp)

1−p
p
)
γ2(x)

≤

(
α(x)

1−p
p − (α(x)+ εp)

1−p
p
)
γ (x).

where the inequalities are using Lemma 2.4 and the definition of α(x) and γ (x). Using the same arguments as Case 4, we
can prove that for all 0 < ε ≤ ε1(x, δ),

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤

δ
√
n
. (38)

Case 6: i ∈ β4(x). Since (ui − xi,−Fi(x)) = (0, 0), we necessarily have

xi − li > 0, φp(ui − xi,−Fi(x)) = 0 and ψp(ui − xi,−Fi(x), ε) = ε, (39)

which in turn implies ai(x) = 0 and bi(x) = −1. By Proposition 3.3(c),

∂CΦp,i(x) =
{
−ci(x)eTi − di(x)F

′

i (x)
}

with

(ci(x), di(x)) ∈
{
(ξ + 1, ζ + 1) ∈ R2 | |ξ |

p
p−1 + |ζ |

p
p−1 ≤ 1

}
.

In addition, we notice that under this case ci(x, ε) = 1, di(x, ε) = 1 and

ai(x, ε) =
|xi − li|p−1(

p
√
|xi − li|p + 2εp

)p−1 − 1, bi(x, ε) =
εp−1(

p
√
|xi − li|p + 2εp

)p−1 − 1.
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Therefore, from Proposition 3.2(a3), it follows that

∇xΨp,i(x, ε)T = (ai(x, ε)+ bi(x, ε))eTi + bi(x, ε)di(x, ε)F
′

i (x)

= −

(
1−

|xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1 + 1
)
eTi −

(
−

εp−1(
p
√
|xi − li|p + 2εp

)p−1 + 1
)
F ′i (x).

We next want to prove that for any 0 < ε ≤ ε2(x, δ),∣∣∣∣∣1− |xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1
∣∣∣∣∣
p
p−1

+

∣∣∣∣∣ εp−1(
p
√
|xi − li|p + 2εp

)p−1
∣∣∣∣∣
p
p−1

≤ 1, (40)

and consequently ∇xΨp,i(x, ε)T ∈ ∂CΦp,i(x). It is easily verified that the function

h1(ε) =
|xi − li|p−1 + εp−1

( p
√
|xi − li|p + 2εp )p−1

is increasing on [0, ε2(x, δ)]. Since h1(0) = 1, we have h1(ε) ≥ 1 on [0, ε2(x, δ)]. Therefore,∣∣∣∣∣1− |xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1
∣∣∣∣∣
p
p−1

+

∣∣∣∣∣ εp−1(
p
√
|xi − li|p + 2εp

)p−1
∣∣∣∣∣
p
p−1

=

(
|xi − li|p−1 + εp−1(
p
√
|xi − li|p + 2εp

)p−1 − 1
) p
p−1

+
εp

|xi − li|p + 2εp

:= h2(ε).

We can verify that h2(ε) is strictly increasing on [0, ε2(x, δ)] and

h2(ε2(x, δ)) = h2(|xi − li|/2) ≤

[(
1+

1
2p−1

)1/p
− 1

] p
p−1

+ 1/2

≤

[
1+ (1/2)

p−1
p − 1

] p
p−1
+ 1/2 ≤ 1,

where the second inequality is since (1 + t)1/p ≤ 1 + t1/p for t ≥ 0. The last two equations imply that the inequality (40)
holds. Consequently,

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤

δ
√
n
for all 0 < ε ≤ ε2(x, δ). (41)

Case 7: i ∈ β̄4(x). Since (ui − xi,−Fi(x)) 6= (0, 0), by Proposition 3.3(c) and Proposition 3.2(a3),

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
= ‖(ai(x, ε)− ai(x)) ei + (bi(x, ε)ci(x, ε)− bi(x)ci(x)) ei + (bi(x, ε)di(x, ε)− bi(x)ci(x))∇Fi(x)‖
= ‖(ai(x, ε)− ai(x)) ei + (bi(x, ε)− bi(x)) ci(x)ei + (bi(x, ε)− bi(x)) di(x)∇Fi(x)
+ bi(x, ε) (ci(x, ε)− ci(x)) ei + bi(x, ε) (di(x, ε)− di(x))∇Fi(x)‖ . (42)

In what follows, we will successively estimate the value of |ai(x, ε) − ai(x)|, |bi(x, ε) − bi(x)|, |ci(x, ε) − ci(x)| and
|di(x, ε) − di(x)| for 0 < ε < ε3(x, δ). Note that ψp(ui − xi,−Fi(x), ε) and φp(ui − xi,−Fi(x)) have the same sign for
all 0 < ε ≤ ε3(x, δ). Indeed, if φp(ui − xi,−Fi(x)) ≥ 0, then ψp(ui − xi,−Fi(x), ε) > 0 clearly holds. Otherwise, since

ψp(ui − xi,−Fi(x), ε) < 0 ⇐⇒ |ui − xi|p + |Fi(x)|p + εp < (ui − xi − Fi(x))p,

⇐⇒ ε <
(
(ui − xi − Fi(x))p − |ui − xi|p − |Fi(x)|p

)1/p
,

the definition of ε3(x, δ) implies that ψp(ui − xi,−Fi(x), ε) < 0 for all 0 < ε ≤ ε3(x, δ).
Step 1: To estimate |ai(x, ε)− ai(x)|. For 0 < ε ≤ ε3(x, δ), we first estimate

r(x, ε) :=

∣∣∣∣∣∣ 1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p −
1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p

∣∣∣∣∣∣ .
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Let

g1(ε) := |ψp(ui − xi,−Fi(x), ε)|p − |φp(ui − xi,−Fi(x))|p

and

∆(ε) := ψp(ui − xi,−Fi(x), ε)− φp(ui − xi,−Fi(x))

for 0 < ε ≤ ε3(x, δ). If φp(ui − xi,−Fi(x)) ≥ 0, then ψp(ui − xi,−Fi(x), ε) > 0, and hence g1(ε) > 0. In addition, applying
the mean-value theorem and Lemma 3.1(c), we have,

g1(ε) = ψp(ui − xi,−Fi(x), ε)p − φp(ui − xi,−Fi(x))p

= p
[
φp(ui − xi,−Fi(x))+ t1∆(ε)

]p−1
∆(ε) for some t1 ∈ (0, 1)

≤ p
[
φp(ui − xi,−Fi(x))+ ε3(x, δ)

]p−1
ε. (43)

Under this case, taking into account the definition of α3(x) and a(x), we have

r(x, ε) =
1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p −

1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p
≤

[
α3(x)

−
p−1
p − (α3(x)+ g1(ε)+ εp)

−
p−1
p
]

≤

[
α(x)−

p−1
p − (α(x)+ g1(ε)+ εp)

−
p−1
p
]

=
(α(x)+ g1(ε)+ εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x)+ g1(ε)+ εp)]
p−1
p

≤
(g1(ε)+ εp)

p−1
p

α(x)
2(p−1)
p

≤ M1(x)ε
p−1
p

where the first three inequalities are due to Lemma 2.4, the last one is by (43), and

M1(x) :=

[
p
[
φp(ui − xi,−Fi(x))+ ε3(x, δ)

]p−1
+ ε3(x, δ)p−1

α(x)2/p

]p−1
. (44)

If φp(ui − xi,−Fi(x)) < 0, then ψp(ui − xi,−Fi(x), ε) < 0, and hence g1(ε) < 0. Now,

r(x, ε) ≤
1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p −

1∥∥(xi − li, φp(ui − xi,−Fi(x)), ε)∥∥p−1p
+

∣∣∣∣∣∣ 1∥∥(xi − li, φp(ui − xi,−Fi(x)), ε)∥∥p−1p −
1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p

∣∣∣∣∣∣
≤

[
|φp(ui − xi,−Fi(x))|p−1 − |ψp(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p ∥∥(xi − li, φp(ui − xi,−Fi(x)), ε)∥∥p−1p
+

[
α3(x)

−
p−1
p − (α3(x)+ εp)

−
p−1
p
]

≤

[
|φp(ui − xi,−Fi(x))|p−1 − |ψp(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥2p−2p

+

[
α3(x)

−
p−1
p − (α3(x)+ εp)

−
p−1
p
]
. (45)

Notice that

|φp(ui − xi,−Fi(x))|p−1 − |ψp(ui − xi,−Fi(x), ε)|p−1

=
[
−φp(ui − xi,−Fi(x))

]p−1
−
[
−ψp(ui − xi,−Fi(x), ε)

]p−1
= (p− 1)

[
−ψp(ui − xi,−Fi(x), ε)+ t2∆(ε)

]p−2
∆(ε) for some t2 ∈ (0, 1)

≤

{
(p− 1)

[
−φp(ui − xi,−Fi(x))

]p−2
ε if p ≥ 2;

(p− 1)
[
−ψp(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε if 1 < p < 2,

and ∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p ≥ ∥∥(xi − li, ψp(ui − xi,−Fi(x), ε3(x, δ)))∥∥p .
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Therefore,[
|φp(ui − xi,−Fi(x))|p−1 − |ψp(ui − xi,−Fi(x), ε)|p−1

]∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥2p−2p

≤ (p− 1)

[
−φp(ui − xi,−Fi(x))

]p−2
ε +

[
−ψp(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε∥∥(xi − li, ψp(ui − xi,−Fi(x)), ε3(x, δ))∥∥2p−2p

≤ (p− 1)

 [
−φp(ui − xi,−Fi(x))

]p−2∥∥(xi − li, ψp(ui − xi,−Fi(x), ε3(x, δ)))∥∥p−2p + 1

 ε
:= M2(x)ε.

This together with (45) and Lemma 2.4 yields that

r(x, ε) ≤ M2(x)ε +
(α(x)+ εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x)+ εp)]
p−1
p

≤ M2(x)ε +
εp−1

α(x)
2(p−1)
p

≤

{
M3(x)ε if p ≥ 2
M3(x)εp−1 if 1 < p < 2

where

M3(x) :=

M2(x)+
ε3(x, δ)p−2

α(x)
2p−2
p

if p ≥ 2;

M2(x)ε3(x, δ)2−p + α(x)
2−2p
p if 1 < p < 2.

(46)

Summing up the above discussions, it then follows that

r(x, ε) ≤

max
{
M1(x),M3(x)ε3(x, δ)1/p

}
ε
p−1
p if p ≥ 2;

max
{
M1(x),M3(x)ε3(x, δ)

(p+ 1p−2)
}
ε
p−1
p if 1 < p < 2,

≤ M4(x)ε
p−1
p ,

where
M4(x) := max

{
M1(x),M3(x)ε3(x, δ)1/p,M3(x)ε3(x, δ)(p+1/p−2)

}
. (47)

Consequently,

|ai(x, ε)− ai(x)| = r(x, ε)|xi − li|p−1 ≤ M4(x)|xi − li|p−1ε
p−1
p .

Step 2: To estimate |bi(x, ε)− bi(x)|. From the expressions of bi(x, ε) and bi(x),

|bi(x, ε)− bi(x)| =

∣∣∣∣∣∣ sign(ψp(ui − xi,−Fi(x), ε))|ψp(ui − xi,−Fi(x), ε)|
p−1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p

−
sign(φp(ui − xi,−Fi(x)))|φp(ui − xi,−Fi(x))|p−1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p
+
sign(φp(ui − xi,−Fi(x)))|φp(ui − xi,−Fi(x))|p−1∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p
−
sign(φp(ui − xi,−Fi(x)))|φp(ui − xi,−Fi(x))|p−1∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p

∣∣∣∣∣∣
≤

g2(ε)∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p + r(x, ε)|φp(ui − xi,−Fi(x))|p−1, (48)

where r(x, ε) is same as above, and g2(ε) is defined by
g2(ε) :=

∣∣sign(ψp(ui − xi,−Fi(x), ε))|ψp(ui − xi,−Fi(x), ε)|p−1
− sign(φp(ui − xi,−Fi(x)))|φp(ui − xi,−Fi(x))|p−1

∣∣ .
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If φp(ui − xi,−Fi(x)) ≥ 0, then ψp(ui − xi,−Fi(x), ε) > 0, and therefore

g2(ε) = ψp(ui − xi,−Fi(x), ε)p−1 − φp(ui − xi,−Fi(x))p−1

= (p− 1)
[
φp(ui − xi,−Fi(x))+ t3∆(ε)

]p−2
∆(ε) for some t3 ∈ (0, 1)

≤

{
(p− 1)

[
φp(ui − xi,−Fi(x))+ ε3(x, δ)

]p−2
ε if p ≥ 2;

(p− 1)
[
φp(ui − xi,−Fi(x))

]p−2
ε if 1 < p < 2.

If φp(ui − xi,−Fi(x)) < 0, then ψp(ui − xi,−Fi(x), ε) < 0 and

|ψp(ui − xi,−Fi(x), ε)|p−1 < |φp(ui − xi,−Fi(x))|p−1 for 0 < ε ≤ ε3(x, δ).
Consequently,

g2(ε) =
[
−φp(ui − xi,−Fi(x))

]p−1
−
[
−ψp(ui − xi,−Fi(x), ε)

]p−1
= (p− 1)

[
−ψp(ui − xi,−Fi(x), ε)+ t4∆(ε)

]p−2
∆(ε) for some t4 ∈ (0, 1)

≤

{
(p− 1)

[
−φp(ui − xi,−Fi(x))

]p−2
ε if p ≥ 2;

(p− 1)
[
−ψp(ui − xi,−Fi(x), ε3(x, δ))

]p−2
ε if 1 < p < 2.

In addition, if φp(ui − xi,−Fi(x)) ≥ 0, then∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p >
∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p ,

whereas if φp(ui − xi,−Fi(x)) < 0, then for all 0 < ε ≤ ε3(x, δ),∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p ≥ |ψp(ui − xi,−Fi(x), ε)|p−1

≥ |ψp(ui − xi,−Fi(x), ε3(x, δ))|p−1.
The above discussions show that for all 0 < ε ≤ ε3(x, δ), we have

g2(ε)∥∥(xi − li, ψp(ui − xi,−Fi(x), ε), ε)∥∥p−1p ≤ (p− 1)M5(x)ε,

where

M5(x) :=


[
|φp(ui − xi,−Fi(x))| + ε3(x, δ)

]p−2∥∥(xi − li, φp(ui − xi,−Fi(x)))∥∥p−1p if p ≥ 2,

max{|φp(ui − xi,−Fi(x))|p−2, |ψp(ui − xi,−Fi(x), ε3(x, δ))|p−2}
|ψp(ui − xi,−Fi(x), ε3(x, δ))|p−1

if 1 < p < 2.

This along with (48) and the result of Step 1 gives |bi(x, ε)− bi(x)| ≤ M6(x)ε
p−1
p where

M6(x) := (p− 1)M5(x)ε3(x, δ)1/p +M4(x)|φp(ui − xi,−Fi(x))|p−1. (49)
Step 3: To estimate |ci(x, ε)− ci(x)| and |di(x, ε)− di(x)|. Using Lemma 2.4,

|ci(x, ε)− ci(x)| =

∣∣∣∣∣ sign(ui − xi)|ui − xi|p−1‖(ui − xi,−Fi(x), ε)‖
p−1
p
−
sign(ui − xi)|ui − xi|p−1

‖(ui − xi,−Fi(x))‖
p−1
p

∣∣∣∣∣
=

|ui − xi|p−1

‖(ui − xi,−Fi(x))‖
p−1
p
−

|ui − xi|p−1

‖(ui − xi,−Fi(x), ε)‖
p−1
p

≤

[
α2(x)

1−p
p −

(
α2(x)+ εp

) 1−p
p

]
|ui − xi|p−1

≤

[
α(x)

1−p
p −

(
α(x)+ εp

) 1−p
p

]
|ui − xi|p−1

=
(α(x)+ εp)

p−1
p − α(x)

p−1
p

[α(x)(α(x)+ ε)]
p−1
p
|ui − xi|p−1

≤
|ui − xi|p−1εp−1

α(x)
2p−2
p

.

Using the similar arguments, we also have |di(x, ε)− di(x)| ≤
|Fi(x)|p−1εp−1

α(x)
2p−2
p

.
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Now using (42) and the results of the above three steps, and noting that |bi(x, ε)| ≤ 1, |di(x)| ≤ 1 and |ci(x)| ≤ 1, it
follows that for all 0 < ε ≤ ε3(x, δ),

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤ M4(x)|xi − li|ε

p−1
p +M6(x) (1+ ‖∇Fi(x)‖) ε

p−1
p +

|ui − xi|p−1εp−1

α(x)
2p−2
p

+
|Fi(x)|p−1εp−1

α(x)
2p−2
p

≤ M(x)ε
p−1
p

where

M(x) := M4(x)|xi − li| +M6(x) (1+ ‖∇Fi(x)‖)+
γ3(x)

α(x)
2p−2
p
. (50)

Therefore, when i ∈ β̄4(x), we have

dist
(
∇xΨp,i(x, ε)T , ∂CΦp,i(x)

)
≤

δ
√
n
for all 0 < ε ≤

(
δ

√
nM(x)

) p−1
p

. (51)

From the discussions in the above seven cases and the definition of ε(x, δ), we obtain the desired result.
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