Addendum to Theorem 3.3 of
Characterizations of solution sets of cone-constrained convex programming problems

- On page 1441, for the statement of Theorem 3.3(b), it is better to write the set S in the following way:

$$S = \left\{ x \in F \mid \lambda_a^T g(x) = 0, \partial L_a(a, \lambda_a) \cap \{-A^T y \mid y \in \mathbb{R}^m\} \neq \emptyset \right\}.$$

Accordingly, the corresponding place in line 6 of page 1443 should be modified.

- On page 1442, from line -10 to line -3, the proof of Theorem 3.3(b) is revised a bit as below.

From “Moreover, we get holds due to $a, x \in S \subset F.$”

should be “For any $z \in \mathbb{R}^n$, it follows that

$$L_a(z, \lambda_a) - L_a(a, \lambda_a)$$

$$= L_a(z, \lambda_a) - L_a(x, \lambda_a)$$

$$\geq -(A^T y)^T (z - x)$$

$$= -(A^T y)^T (z - a) - (A^T y)^T (a - x)$$

$$= -(A^T y)^T (z - a),$$

where the third equality holds due to $a, x \in S \subset F.$”