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Abstract In this paper, we consider a type of cone-constrained convex program in
finite-dimensional space, and are interested in characterization of the solution set of
this convex program with the help of the Lagrange multiplier. We establish necessary
conditions for a feasible point being an optimal solution. Moreover, some necessary
conditions and sufficient conditions are establishedwhich simplifies the corresponding
results in Jeyakumar et al. (J Optim Theory Appl 123(1), 83–103, 2004). In particular,
when the cone reduces to three specific cones, that is, the p-order cone, L p cone and
circular cone, we show that the obtained results can be achieved by easier ways by
exploiting the special structure of those three cones.
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1434 X.-H. Miao, J.-S. Chen

1 Introduction

Consider the cone-constrained convex programming problem as follows:

min f (x)
s.t. Ax = b,

−g(x) ∈ K,

(1)

where A ∈ Rm×n , b ∈ Rm , K is a closed convex cone in Rr , f : Rn → R is a
convex function, and g : Rn → Rr is a continuous K-convex mapping which means
for every x, y ∈ Rn and each t ∈ [0, 1],

tg(x) + (1 − t)g(y) − g (t x + (1 − t)y) ∈ K.

One important issue for such optimization problem is to characterize the solution set
which is also a fundamental topic formanymathematical programmingproblems.With
the help of the characterization of the solution set, wewill have a deeper understanding
for several important optimization problems including bi-level programming, goal
programming and multiple objective programming, and so on. Moreover, it is also
essential for understanding the behavior of solution methods for solving mathematical
programming problems, see [3,8,13,14]. This is the main motivation to investigate
characterizations of the solution set of optimization problems.

In [14], Mangasarian provides a characterization of the solution set of a convex
programming problem with differentiable functions. Subsequently, Burke and Ferris
[3] present another more specific characterization for the solution set. Recently, char-
acterizations of the solution set of problem (1) where g = 0 and f is pseudolinear
have been presented in [13]. Jeyakumar et al. [11] describe characterizations of the
solution set of a general cone-constrained convex programming problem. Wu and Wu
[16] characterize the solution set of a general convex program on a normed vector
space.

For the problem (1), the purpose of this paper is to characterize its solution set (see
Theorem 3.3) which simplifies the conclusions in [11]. Moreover, when K reduces to
p-order cone, L p cone or circular cone, the obtained characterizations can be reached
by other ways via exploiting the special structures of these three specific cones.

Finally, we say a few words about notations which will be used in this paper.
Let R denote the space of real numbers, R+(R++) denote the set consisting of the
nonnegative (positive) reals, and Rn mean the n-dimensional real vector space. For
the set K ⊆ Rn , int K denotes the interior of the set K and ∂K denotes the boundary
of K. Moreover, we write B(x, ε) to mean the open sphere with center x ∈ Rn and
radius ε > 0. For the function f : Rn → R, the convex subdifferential of the function
f at x ∈ Rn is denoted by ∂ f (x). We denote by ‖x‖ the 2-norm of x which induced
by the inner product 〈·.·〉, i.e., ‖x‖ = √〈x, x〉, where 〈x, y〉 means the inner product
of x and y. We use ‖x‖p to mean the p-norm of x with 1 ≤ p < ∞ which is defined

as ‖x‖p = (
∑n

i=1 |xi |p)
1
p for any x := (x1, x2, . . . , xn)T ∈ Rn .
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Characterizations of solution sets… 1435

2 Preliminaries

In this section, we briefly review some basic concepts and background materials about
three specific closed convex cones, which will be extensively used in subsequent
analysis. More details can be found in [6,9,10,17].

For problem (1), let F and S be the feasible set and the solution set, respectively,
that is,

F := {
x ∈ Rn | Ax = b, −g(x) ∈ K}

and

S := {x ∈ F | f (x) ≤ f (y), ∀y ∈ F}.

The subdifferential of the function f at x is defined as

∂ f (x) := {
ξ ∈ Rn | f (y) − f (x) ≥ 〈ξ, y − x〉, ∀y ∈ Rn}.

If C is a convex set, the normal cone NC (x) of C at x ∈ C is defined by

NC (x) := {
ξ ∈ Rn | 〈ξ, y − x〉 ≤ 0, ∀y ∈ C

}
.

It is well known that the subdifferential of the indicator function associated with the
convex set C at x ∈ C is the normal coneNC (x). Moreover, if the convex set C is the
special convex set C = {x ∈ Rn | Ax = b}, it is easy to verify that, for any x ∈ C , the
normal cone NC (x) of C at x is

NC (x) =
{
AT y | y ∈ Rm

}
.

In other words, the normal cone NC (x) is the range space of AT .
From the convexity of the function f , we know that the function f is continuous.

Since g is a continuous K-convex mapping again, it follows that the problem (1) is a
convex optimization problem. If problem (1) satisfies the Slater condition [12], that
is, there exists x̄ ∈ Rn such that Ax̄ = b and −g(x̄) ∈ int K, it is known that a ∈ S
if and only if the element a satisfies the KKT conditions, i.e., a ∈ F and there exists
a Lagrange multiplier λa ∈ Rr such that

0 ∈ ∂ f (a) + ∂
(
λT
a g

)
(a) +

{
AT y | y ∈ Rm

}
, λa ∈ K∗ and λT

a g(a) = 0,

where K∗ denotes the dual cone of K given by

K∗ = {
z ∈ Rr | 〈z, x〉 ≥ 0, ∀x ∈ K}

.

For problem (1), we shall assume throughout that the solution set S is nonempty.
Let a ∈ S. By above analysis, there exists the corresponding Lagrange multiplier λa
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1436 X.-H. Miao, J.-S. Chen

such that (a, λa) satisfying the KKT conditions. More specifically, we consider the
Lagrange function La(·, λa) : Rn → R defined by

La(x, λa) := f (x) + λT
a g(x) for all x ∈ Rn .

From f being convex and g beingK-convex, it follows that for all x, y ∈ Rn and each
β ∈ [0, 1],

La (βx + (1 − β)y, λa) = f (βx + (1 − β)y) + λT
a g (βx + (1 − β)y)

≤ β f (x) + (1 − β) f (y) + βλT
a g(x) + (1 − β)λT

a g(y)

= βLa(x, λa) + (1 − β)La(y, λa).

This demonstrates that the function La(·, λa) is also a convex function.
Next, we review the concepts of three specific closed convex cones and their dual

cones.
(1) p-order cone, see [1]. It is a generalization of the second-order cone [4,5,15]

and expressed as follows:

Kp :=
⎧
⎨

⎩
x ∈ Rn

∣
∣
∣
∣ x1 ≥

(
n∑

i=2

|xi |p
) 1

p

⎫
⎬

⎭
, (1 < p < ∞).

If we write x := (x1, x̄) ∈ R×R(n−1) with x̄ := (x2, . . . , xn)T ∈ R(n−1), the p-order
cone Kp can be expressed as

Kp = {
x ∈ Rn | x1 ≥ ‖x̄‖p

}
, (1 < p < ∞).

Indeed, Kp is a solid (i.e., int Kp �= ∅), closed and convex cone, and its dual cone is
given by

K∗
p =

⎧
⎨

⎩
y ∈ Rn

∣
∣
∣
∣ y1 ≥

(
n∑

i=2

|yi |q
) 1

q

⎫
⎬

⎭

or equivalently

K∗
p =

{
y = (y1, ȳ) ∈ R × R(n−1) | y1 ≥ ‖ȳ‖q

}
= Kq ,

where q satisfies the condition q > 1 and 1
p + 1

q = 1, and ȳ := (y2, y3, . . . , yn)T ∈
R(n−1). Note that the dual cone K∗

p is also a convex cone.
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Characterizations of solution sets… 1437

(2) L p cone, see [10]. Let n ∈ N and p := (p1, p2, . . . , pn)T ∈ Rn with pi > 1.
The L p cone is defined by

L p :=
{

(z, θ, k) ∈ Rn × R+ × R+
∣
∣
∣
∣

n∑

i=1

|zi |pi
piθ pi−1 ≤ k

}

,

where |zi |/0 := ∞ if zi �= 0; 0 if zi = 0. As shown in [10], we know that L p is a
solid, closed and convex cone, and its dual cone is the switched cone Lq

s given by

(w, h, φ) ∈ Lq
s ⇐⇒ (w, φ, h) ∈ Lq ,

where q := (q1, q2, . . . , qn)T ∈ Rn++ such that 1
pi

+ 1
qi

= 1 for each i .
(3) The circular cone Lθ , see [7,18]. The circular cone Lθ is defined as follows:

Lθ :=
{
x = (x1, x̄) ∈ R × R(n−1) | ‖x‖ cos θ ≤ x1

}
,

where θ ∈ (0, π
2 ). Again, as shown in [7,18], we know that Lθ is a solid, closed and

convex cone, and its dual cone L∗
θ is given by

L∗
θ =

{

z = (z1, z̄) ∈ R × R(n−1)
∣
∣
∣
∣ ‖z‖ cos

(π

2
− θ

)
≤ z1

}

= L π
2 −θ .

By direct calculation or reference to [18], the circular cone Lθ and its dual cone L∗
θ

can also be expressed as follows, respectively,

Lθ =
{
x = (x1, x̄) ∈ R × R(n−1) | ‖x̄‖ cot θ ≤ x1

}

and

L∗
θ =

{
z = (z1, z̄) ∈ R × R(n−1) | ‖z̄‖ tan θ ≤ z1

}
.

Remark 2.1 (a) When p = 2, Kp is exactly the second-order cone which says that
p-order cone is a generalization of the second-order cone.

(b) When pi = 2 for all i , we have that the L p cone is the hyperbolic or rotated
second-order cone which is a transformation of the standard second-order cone.

(c) Clearly, the circular cone Lθ includes second-order cone as a special case when
the rotation angle is 45◦.

3 Characterizations of solution set with Lagrange multiplier

In this section, we will establish some results which characterizes the solution set of
problem (1) in terms of Lagrangemultiplier of a solution and subgradients of Lagrange
function for the problem (1). we first show a necessary condition for the solution set
of problem (1). Then, whenK reduces to the aforementioned specific cones, we show
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1438 X.-H. Miao, J.-S. Chen

the same results can be obtained by other ways by exploiting the special structure of
those three cones.

Theorem 3.1 For problem (1), let a ∈ S. Suppose that the corresponding Lagrange
multiplier λa ∈ Rr satisfies the conditions:

0 ∈ ∂La(a, λa) + {AT y | y ∈ Rm}, λa ∈ K∗, and λT
a g(a) = 0. (2)

Then, the following hold.

(a) If λa = 0, then, for each x ∈ S, there exists y ∈ Rm such that

−AT y ∈ ∂ f (x).

(b) If λa �= 0, then, for each x ∈ S and g(x) �= 0, we have

−g(x) ∈ ∂K, λa ∈ ∂K∗, and λT
a g(x) = 0.

Proof (a) When λa = 0, since the Lagrange multiplier λa satisfies the condition
0 ∈ ∂La(a, λa) + {AT y | y ∈ Rm}, there exists y ∈ Rm such that

−AT y ∈ ∂La(a, λa) = ∂ f (a) + ∂(λT
a g)(a) = ∂ f (a).

Applying the properties of convex functions, for each x ∈ S and every z ∈ Rn , it
follows that

f (z) − f (x) = f (z) − f (a)

≥ −(AT y)T (z − a)

= −(AT y)T (z − x + x − a)

= −(AT y)T (z − x) − (AT y)T (x − a)

= −(AT y)T (z − x),

where the first and last equalities respectively follow from f (x) = f (a) and Ax =
Aa = b due to x, a ∈ S, which implies that −AT y ∈ ∂ f (x).

(b) When λa �= 0, from the conditions (2), i.e.,

0 ∈ ∂La(a, λa) +
{
AT y | y ∈ Rm

}
, λa ∈ K∗, and λT

a g(a) = 0,

we know there exists y ∈ Rm such that

−AT y ∈ ∂La(a, λa).
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Characterizations of solution sets… 1439

Because f is convex and g is K-convex, the function La(·, λa) is convex as shown
earlier in Section 2. Therefore, for every x ∈ S, we have

f (x) + λT
a g(x) = La(x, λa)

≥ La(a, λa) − (AT y)T (x − a)

= La(a, λa)

= f (a) + λT
a g(a). (3)

This together with f (x) = f (a) and λT
a g(a) = 0 yield λT

a g(x) ≥ 0. On the other
hand, noting that for every x ∈ S, λa ∈ K∗ and −g(x) ∈ K, by the definition of the
dual cone K∗, we obtain λT

a g(x) ≤ 0. Hence, this together with λT
a g(x) ≥ 0 give

λT
a g(x) = 0.
Next, we argue that λa ∈ ∂K∗ and −g(x) ∈ ∂K for every x ∈ S and g(x) �= 0.

We prove −g(x) ∈ ∂K only. Similar arguments will apply to the case of λa ∈ ∂K∗.
Indeed, we will prove it by contradiction. Suppose that −g(x) ∈ int K. Then, there
exists ε > 0 such that the open ball B(−g(x), ε) ⊂ K. Thus, for any y ∈ Rr , there
exists α > 0 such that −g(x) + αy ∈ B(−g(x), ε) ⊂ K, which gives

〈−g(x) + αy, λa〉 ≥ 0.

Then, it follows from 〈λa,−g(x)〉 = −λT
a g(x) = 0 that α 〈y, λa〉 ≥ 0. By the

arbitrariness of y in Rr , we see that λa = 0. This contradicts the condition λa �= 0.
Thus, −g(x) ∈ ∂K. ��
Remark 3.1 (i) By Theorem 3.1, for every x, y ∈ S, we have

f (x) + λT
a g(x) = f (a) + λT

a g(a) = f (y) + λT
a g(y).

This explains that Lagrange function La(·, λa) is constant on the solution set S of
problem (1).

(ii) By Theorem 3.1, for every a, x ∈ S, the Lagrange multiplier λa and the vector
−g(x) solve the complementarity problem [9]:

−g(x) ∈ K, λa ∈ K∗, λT
a g(x) = 0.

Now, we show that Theorem 3.1(b) can be verified by other ways when K reduces
to the p-order cone, L p cone or the circular cone. We present the three cases as below.

(1) For the case where K is the p-order cone Kp, let 0 �= −g(x) := (h1, h̄) ∈
Kp ⊂ R+ ×Rr−1 and 0 �= λa := (λ1, λ̄) ∈ Kq ⊂ R+ ×Rr−1. Note that h1 > 0 and
λ1 > 0. By the definitions of Kp and its dual cone Kq , we have

h1 ≥ ‖h̄‖p and λ1 ≥ ‖λ̄‖q .

123



1440 X.-H. Miao, J.-S. Chen

Hence, it follows from λT
a g(x) = 0 that

0 = h1λ1 + h̄T λ̄

≥ ‖h̄‖p‖λ̄‖q + h̄T λ̄

≥ 0,

where the last inequality follows by Hölder’s inequality. This leads to h1 = ‖h̄‖p and
λ1 = ‖λ̄‖q due to h1λ1 > 0, which says λa ∈ ∂K∗

p and −g(x) ∈ ∂Kp.
(2) For the case where K is the L p cone, let 0 �= −g(x) := (z, θ, k) ∈ L p ⊂

Rr−2 × R+ × R+ and 0 �= λa := (w, h, φ) ∈ Lq
s ⊂ Rr−2 × R+ × R+. By the

definitions of L p cone and its dual cone Lq
s , we obtain that

r−2∑

i=1

|zi |pi
piθ pi−1 ≤ k and

r−2∑

i=1

|wi |qi
qiφqi−1 ≤ h.

We discuss two subcases.
Case 1: θ = 0 or φ = 0. If θ = 0, then by definition, z = 0 follows. Then

λT
a g(x) = 0 becomes kφ = 0, and hence φ = 0 because −g(x) = (0, 0, k) �= 0.

Also, φ = 0 yields w = 0, so that λa = (0, h, 0). Therefore, −g(x) ∈ ∂L p and
λa ∈ ∂Lq

s .
Case 2: θ > 0 and φ > 0. Then, λT

a g(x) = 0 that

0 = zTw + θh + kφ

≥ zTw + θ

r−2∑

i=1

|wi |qi
qiφqi−1 + φ

r−2∑

i=1

|zi |pi
piθ pi−1

= zTw + θφ

r−2∑

i=1

(
1

qi
|wi

φ
|qi + 1

pi
| zi
θ

|pi
)

≥ zTw + θφ

r−2∑

i=1

∣
∣
∣
∣
wi

φ

∣
∣
∣
∣ ·

∣
∣
∣
zi
θ

∣
∣
∣

≥ zTw −
r−2∑

i=1

wi zi

= 0,

where the second inequality follows from Young’s inequality. This implies
∑r−2

i=1|zi |pi
pi θ pi−1 = k and

∑r−2
i=1

|wi |qi
qiφqi−1 = h, which says λa ∈ ∂Lq

s and −g(x) ∈ ∂L p.

(3) For the case whereK is the circular cone Lθ , let 0 �= −g(x) := (h1, h̄) ∈ Lθ ⊂
R+ × Rr−1 and 0 �= λa := (λ1, λ̄) ∈ L∗

θ ⊂ R+ × Rr−1. By the expressions of the
circular cone Lθ and its dual cone L+

θ , we have

‖h̄‖ cot θ ≤ h1 and ‖λ̄‖ tan θ ≤ λ1.
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Then, from λT
a g(x) = 0, we have

0 = h1λ1 + h̄T λ̄

≥ ‖h̄‖ cot θ · ‖λ̄‖ tan θ + h̄T λ̄

= ‖h̄‖‖λ̄‖ + h̄T λ̄

≥ 0.

This leads to ‖h̄‖ cot θ = h1 and ‖λ̄‖ tan θ = λ1, which yields λa ∈ ∂L∗
θ and−g(x) ∈

∂Lθ .
From [16, Theorem 3.1], we have the following theorem which will give the form

of the solution set of problem (1) in terms of subgradients.

Theorem 3.2 For problem (1), let a ∈ S. Then

S = {x ∈ F | 〈ξ, x − a〉 = 0, ∃ ξ ∈ ∂ f (x) ∩ ∂ f (a)}
= {x ∈ F | 〈ξ, x − a〉 = 0, ∃ ξ ∈ ∂ f (x)}
= {x ∈ F | 〈ξ, x − a〉 ≤ 0, ∃ ξ ∈ ∂ f (x)}.

Proof Let C1,C5 and C6 be the following sets, respectively,

C1 := {x ∈ F | 〈ξ, x − a〉 = 0, ∃ ξ ∈ ∂ f (x) ∩ ∂ f (a)},
C5 := {x ∈ F | 〈ξ, x − a〉 = 0, ∃ ξ ∈ ∂ f (x)}

and

C6 := {x ∈ F | 〈ξ, x − a〉 ≤ 0, ∃ ξ ∈ ∂ f (x)}.

Then, the sets C1,C5 and C6 correspond to those in [16, Theorem 3.1], from which
the results follow immediately. ��
Theorem 3.3 For problem (1), let a ∈ S and let λa be the corresponding Lagrange
multiplier satisfying the conditions:

0 ∈ ∂La(a, λa) +
{
AT y | y ∈ Rm

}
, λa ∈ K∗, and λT

a g(a) = 0.

(a) If λa = 0, then

S =
{
x ∈ F | ∂ f (a) ∩

{
−AT y | y ∈ Rm

}
= ∂ f (x) ∩

{
−AT y | y ∈ Rm

}}
.

(b) If λa �= 0, then

S =
{
x ∈ F | λT

a g(x) = 0, 0 ∈ ∂La(a, λa) ∩
{
−AT y | y ∈ Rm

}}
.
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1442 X.-H. Miao, J.-S. Chen

Proof (a) For convenience, we denote

S̄ =
{
x ∈ F | ∂ f (a) ∩

{
−AT y | y ∈ Rm

}
= ∂ f (x) ∩

{
−AT y | y ∈ Rm

}}
.

Then, we need to argue that S = S̄ as below.
We first verify the direction S ⊂ S̄. Let C := {x | Ax = b}. By the analysis

of section 2, we know that NC (x) = {AT y | y ∈ Rm}. If λa = 0, it follows that
La(x, λa) = f (x). Then, we have ∂La(x, λa) = ∂ f (x). Hence, for any x ∈ S, by
proposition 2.1 of [11] again, it is easy to obtain that

∂ f (a) ∩
{
−AT y | y ∈ Rm

}
= ∂ f (x) ∩

{
−AT y | y ∈ Rm

}
.

This yields S ⊂ S̄.
Conversely, let x ∈ S̄. Then, we know that x ∈ F and

∂ f (a) ∩
{
−AT y | y ∈ Rm

}
= ∂ f (x) ∩

{
−AT y | y ∈ Rm

}
.

Since a ∈ S and its corresponding Lagrange multiplier λa satisfy the condition

0 ∈ ∂La(a, λa) +
{
AT y| y ∈ Rm

}
,

we have

−AT y ∈ ∂ f (a) ∩
{
−AT y | y ∈ Rm

}
= ∂ f (x) ∩

{
−AT y | y ∈ Rm

}
,

for some y ∈ Rm . Then, it is easy to see that −yT A(x − a) = 0. This together with
Theorem 3.2 implies x ∈ S. Hence, the conclusion holds.

(b) Let λa �= 0. By the Remark 3.1, we know that the Lagrange function La(·, λa) is
constant on the solution set S of the problem (1). Hence, for any x ∈ S and a ∈ S, we
have La(x, λa) = La(a, λa) and then for each ξ ∈ ∂La(x, λa) ∩ {−AT y | y ∈ Rm},
there exists y ∈ Rm such that −AT y = ξ . Moreover, we get also that

La(x, λa) − La(a, λa) = 0

= La(a, λa) − La(x, λa)

≥ −(AT y)T (a − x)

= −yT A(a − x)

= 0

= −yT A(x − a),

where the fourth equality holds due to a, x ∈ S ⊂ F . This shows that ξ = −AT y ∈
∂La(a, λa) ∩ {−AT y | y ∈ Rm}. Thus, we have

∂La(x, λa) ∩
{
−AT y | y ∈ Rm

}
⊂ ∂La(a, λa) ∩

{
−AT y | y ∈ Rm

}
.
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Characterizations of solution sets… 1443

Similarly, with the same arguments, we may verify that

∂La(a, λa) ∩
{
−AT y | y ∈ Rm

}
⊂ ∂La(x, λa) ∩

{
−AT y | y ∈ Rm

}
.

Therefore,

∂La(a, λa) ∩
{
−AT y | y ∈ Rm

}
= ∂La(x, λa) ∩

{
−AT y | y ∈ Rm

}
.

Combining with Corollary 2.6 of [11], this implies

S =
{

x ∈ F

∣
∣
∣
∣ λ

T
a g(x) = 0, 0 ∈ ∂La(a, λa) ∩

{
−AT y | y ∈ Rm

}}

,

which is the desired result. ��
Remark 3.2 In the setting of the Banach space and K is a closed convex cone, the
corresponding conclusions of Theorem 3.3 have been obtained, see [11, Corollary 2.5]
and [16, Corollary 3.1]. However, in [11, Corollary 2.5], the expression of the solution
set S̄ ismore complicated than that given in Theorem3.3. Here, we provide a simplified
expression for the solution set S.

Example 3.1 Consider the following nonlinear convex programming problem:

min f (x) =
√
x21 + x22 + x2

s.t. −g(x) =
(−x2

x1

)

∈ Kp,

where x := (x1, x2)T ∈ R2.
Let F and S be the feasible set and the solution set of the considered problem,

respectively. For any x = (x1, x2)T ∈ F , we have

f (x) =
√
x21 + x22 + x2 ≥ |x2| + x2 ≥ 0.

Thus, we know that a = (0, 0)T is a solution of the considered problem, i.e., a ∈ S.
Note that

∂ f (a) = {(0, 1)T } + B,

where B denotes the closed unit ball of Rn , and

∂ f (x) =

⎧
⎪⎨

⎪⎩

⎛

⎝ x1
√
x21 + x22

,
x2

√
x21 + x22

+ 1

⎞

⎠

T
⎫
⎪⎬

⎪⎭

123



1444 X.-H. Miao, J.-S. Chen

for any x �= a. For the solution a = (0, 0)T ∈ S, it is easy to see that the corresponding
Lagrange multiplier λa = (0, 0)T ∈ Kq . Moreover, we also obtain that (0, 0)T ∈
∂La(a, λa) = ∂ f (a). Therefore, it follows that

(0, 0)T ∈ ∂ f (x) ⇐⇒ x1 = 0, x2 ≤ 0.

With this, we see that the solution set can be simplified as

S = {x = (x1, x2)
T ∈ R2 | x1 = 0, x2 ≤ 0}.

To close this section, combining Theorem 3.3, [16, Corollary 3.1] and the contents
of [2, page 267], we immediately obtain the following corollary as a special case.

Corollary 3.1 For problem (1), let a ∈ S. If the K-convex mapping g is an identity
mapping, i.e., g(x) = x for all x ∈ Rn, then the following hold.

(a) If the solution a ∈ int K, then

S = {x ∈ F | ∂ f (x) = ∂ f (a)}.

(b) If the solution a ∈ ∂K, then

S =
{

x ∈ F

∣
∣
∣
∣ ∂ f (x) ∩

[
NC1(x) − {λ | λ ∈ K∗, λT x = 0}

]

= ∂ f (a) ∩
[
NC1(a) − {λa | λa ∈ ∂K∗, λT

a x = 0}
] }

,

where NC1(x) = NC1(a) = {AT y | y ∈ Rm} with C1 = {x ∈ Rn | Ax = b}.
Acknowledgments The authors are very grateful to the referees for their constructive comments, which
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