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© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Let A = (V, ◦, 〈·, ·〉) be an n-dimensional Euclidean Jordan
algebra (see Section 2 for the definition) andK be the symmetric
cone inV. We consider the following symmetric cone complemen-
tarity problem (SCCP) which is to find a vector ζ ∈ V such that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ),G(ζ )〉 = 0, (1)

where F and G are the differentiable mappings from V to V. This
class of problems provides a unified framework for the nonlinear
complementarity problem (NCP) over the nonnegative orthant
cone in Rn, the second-order cone complementarity problem
(SOCCP) and the semidefinite complementarity problem (SDCP),
and becomes one of the main research interests in the current
optimization field; see, e.g., [5,10,14,16,17,19].
Recently, there are active studies for merit functions (or com-

plementarity functions) for the SCCP. For example, Liu, Zhang and
Wang [14] extended a class of merit functions proposed in [8] for
the NCP to the SCCP; Kong, Tuncel and Xiu [11] studied the implicit
Lagrangian merit function for the SCCP; Kong, Sun and Xiu [10]
proposed a regularized smoothing method by use of the natu-
ral residual complementarity function associated with symmet-
ric cones; and Huang and Ni [6] developed a smoothing algorithm
with the regularized CHKS smoothing function over symmetric
cones. Along this line, we also extended the one-parametric class
of merit functions in [7] to the SCCP [15]. Specifically, a function
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ψ : V × V → R+ is called a merit function associated with the
coneK if

ψ(x, y) = 0⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0. (2)

With such a function, the SCCP can be reformulated as an
unconstrained minimization

min
ζ∈V

Ψ (ζ ) := ψ(F(ζ ),G(ζ )), (3)

in the sense that ζ ∗ solves (1) if and only if it is a solution of
(3) with zero optimal value. Then, the effective unconstrained
minimization methods can be applied for solving it.
A popular choice for ψ is the Fischer–Burmeister (FB) merit

function ψFB defined as

ψFB(x, y) :=
1
2
‖φFB(x, y)‖

2
∀x, y ∈ V (4)

where φFB : V × V → V is the FB complementarity function
associated withK , given by

φFB(x, y) = (x
2
+ y2)1/2 − (x+ y) (5)

with x2 = x ◦ x denoting the Jordan product of x and itself,
and x1/2 the unique square root of x ∈ K , i.e., x1/2 ◦ x1/2 =
x. The function ψFB was first proved to be differentiable in [14],
and later the authors of [12,15] independently showed that it is
continuously differentiable everywhere with Lipschitz continuous
gradients. However, it has been an open question: under what
conditions every stationary point of the minimization problem

min
ζ∈V

ΨFB(ζ ) := ψFB(F(ζ ),G(ζ )) (6)
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is guaranteed to be a solution of (1). Themain difficulty to establish
such results is described in [15]. The study for stationary point
conditions is extremely important in the merit function approach
since, when applying effective gradient-type methods for solving
the minimization reformulation problems, one at most expects
to get a stationary point due to the nonconvexity of the merit
functions.
The main purpose of this paper is to settle down this open

problem. By exploiting the classification of a simple Euclidean
Jordan algebra and extending a weaker result than the first
implication of [4, Prop. 3.4] to the setting of symmetric cones, we
show that each stationary point of theminimization problem (6) is
a solution to (1) if the gradient operators∇F and−∇G are column
monotone. If the operator ∇G is invertible, this condition can be
relaxed to the one that ∇G−1∇F has the Cartesian P0-property.

2. Preliminaries

This section recalls some results on Euclidean Jordan algebras
that will be used in the subsequent section. More detailed
expositions of Euclidean Jordan algebras can be found in Koecher’s
lecture notes [9] and the monograph by Faraut and Korányi [3].
A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉V) where

(V, 〈·, ·〉V) is a finite-dimensional inner product space over the real
number field R and (x, y) 7→ x ◦ y : V × V → V is a bilinear
mapping satisfying the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 = x ◦ x;
(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y, z ∈ V.

Let A = (V, ◦, 〈·, ·〉V) denote a Euclidean Jordan algebra. We
assume that there is an element e ∈ V (called the unit element)
such that x ◦ e = x for all x ∈ V. By [3, Theorem III. 2.1], the
set of squares K :=

{
x2 | x ∈ V

}
is a symmetric cone. We write

x�K y (respectively, x�K y) to mean x − y ∈ K (respectively,
x− y ∈ intK).
For x ∈ V, let m(x) := min{k : {e, x, x2, . . . , xk} are linearly

dependent} and define the rank of A by r := max{m(x) : x ∈ V}.
Recall that an element c ∈ V is idempotent if c2 = c , and it
is a primitive idempotent if it is nonzero and cannot be written
as a sum of two nonzero idempotents. One says that a finite set
{c1, c2, . . . , ck} of primitive idempotents in V is a Jordan frame if

cj ◦ ci = 0 if j 6= i for all j, i = 1, 2, . . . , k, and
k∑
j=1

cj = e.

Now we may state the second version of the spectral decomposi-
tion theorem.

Theorem 2.1 ([3, Theorem III. 1.2]). Let A be a Euclidean Jordan
algebra with rank r. Then for every x ∈ V, there exist a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1(x), . . . , λr(x), arranged in the
decreasing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x), such that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr .

The numbers λj(x) (counting multiplicities), which are uniquely
determined by x, are called the eigenvalues of x, and tr(x) =∑r
j=1 λj(x) is called the trace of x.

Since, by [3, Prop. III.1.5], a Jordan algebra (V, ◦) with a unit
element e ∈ V is Euclidean if and only if the symmetric bilinear
form tr(x ◦ y) is positive definite, we may define another inner
product on V by

〈x, y〉 := tr(x ◦ y) ∀x, y ∈ V. (7)

The inner product 〈·, ·〉 is associative by [3, Prop. II.4.3], i.e., 〈x, y ◦
z〉 = 〈y, x ◦ z〉 for any x, y, z ∈ V. For any given x ∈ V, letL(x) be
the Lyapunov operator defined by

L(x)y := x ◦ y ∀y ∈ V.
Then,L(x) is symmetric with respect to the inner product 〈·, ·〉 in
the sense that

〈L(x)y, z〉 = 〈y,L(x)z〉 ∀y, z ∈ V.
In what follows, we let ‖ ·‖ be the norm onV induced by this inner
product, i.e.,

‖x‖ :=
√
〈x, x〉 =

√
tr(x2) =

(
r∑
j=1

λ2j (x)

)1/2
∀x ∈ V. (8)

This definition implies that the unit element e in this paper has a
length equal to

√
r .

Unless otherwise stated, in the rest of this paper, we assume
that A = (V, ◦, 〈·, ·〉) is a simple Euclidean Jordan algebra of rank
r and dimension n. By [3, Theorem V.3.7], r ≥ 2.
Let x ∈ V have the spectral decomposition x =

∑r
j=1

λj(x)cj, where λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) are the eigenvalues
of x and {c1, c2, . . . , cr} is the corresponding Jordan frame. By [3,
Lemma IV. 1.3], the operators L(cj), j = 1, 2, . . . , r commute and
admit a simultaneous diagonalization. For all i, j ∈ {1, 2, . . . , r},
define the subspaces

Vii := Rci = {x ∈ V | x ◦ ci = x} ,

Vij :=
{
x ∈ V | x ◦ ci =

1
2
x = x ◦ cj

}
when i 6= j,

and let Cij(x) be the orthogonal projection operator onto Vij. The
following lemma gives the spectral decomposition of the operator
L(x), whose proof can be found in [9].

Lemma 2.1. Let x ∈ V have the spectral decomposition x =∑r
j=1 λj(x)cj. Then the linear symmetric operator L(x) has the

spectral decomposition

L(x) =
r∑
j=1

λj(x)Cjj(x)+
∑
1≤j<l≤r

1
2

(
λj(x)+ λl(x)

)
Cjl(x) (9)

with the spectrum σ(L(x)) consisting of all distinct 12 (λj(x)+ λl(x))
for j, l = 1, . . . , r.

To close this section, we recall the smoothness of FB merit
function ψFB defined by (4) and (5), whose proof can be found
in [14, Lemma 12] and [15, Prop. 4.3].

Lemma 2.2. Let ψFB be defined by (4) and (5). Then, ψFB is
continuously differentiable everywhere. Furthermore, ∇xψFB(0, 0) =
∇yψFB(0, 0) = 0; and if (x, y) 6= (0, 0),

∇xψFB(x, y) =
[
L(x)L−1(z)− I

]
φFB(x, y),

∇yψFB(x, y) =
[
L(y)L−1(z)− I

]
φFB(x, y),

where z = (x2 + y2)1/2, and I denotes the identity operator from V
to V.

3. Main result

First of all, we present a new representation for the elements
in V. Let Ve denote the subspace generated by the unit element e,
and V⊥e the orthogonal complementarity of Ve. Note that the unit
element e ofA is unique. Hence, any x ∈ V can be uniquely written
as λxe + xe with λx ∈ R and xe ∈ V⊥e . Moreover, we have the
following result.

Lemma 3.1. For z = λze + ze ∈ V with λz ∈ R and ze ∈ V⊥e , the
following results hold.
(a) tr(z) = rλz and ‖z‖2 = rλ2z + ‖ze‖

2.
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(b) If z ∈ K , then
√
r2 − rλz ≥ ‖ze‖. If in addition z 6= 0, then

λz > 0 and ‖ze‖ > 0.
(c) When r = 2, tr(L2(ze)) = ‖ze‖2.

Proof. (a) The result is direct by the definition of 〈·, ·〉 and the fact
that ‖e‖2 = r .
(b) Since z ∈ K , we have tr(z) ≥ ‖z‖. This by part (a) implies
(r2−r)λ2z ≥ ‖ze‖

2, and the first part then follows. Since r ≥ 2, from
the inequality

√
r2 − rλz ≥ ‖ze‖ we obtain λz ≥ 0, and ‖ze‖ = 0

whenever λz = 0. This shows λz > 0 and ‖ze‖ > 0 if 0 6= z ∈ K .
(c) Since L(e) = I, we haveL(z) = λzI + L(ze), which together
with Lemma 2.1 implies

L(ze) =
r∑
j=1

(λj(z)− λz)Cjj(z)

+

∑
1≤j<l≤z

1
2

(
λj(z)+ λl(z)− 2λz

)
Cjl(z).

Since Cjl(z) for all j, l = 1, 2, . . . , r are orthogonal projection
operators, we have

L2(ze) =
r∑
j=1

(λj(z)− λz)2Cjj(z)

+

∑
1≤j<l≤r

1
4

(
λj(z)+ λl(z)− 2λz

)2
Cjl(z).

Note that when r = 2, part (a) implies λ1(z) + λ2(z) − 2λz = 0,
and therefore we have

tr(L2(ze)) = (λ1(z)− λz)2 + (λ2(z)− λz)2

= ‖z‖2 − 2tr(z)λz + 2λ2z
= ‖z‖2 − 2λ2z = ‖ze‖

2

where the last equality is due to part (a). Thus, the proof is
complete. �

To achieve the main result of this paper, the key is to establish
the implication that

z2�K x2 + y2 H⇒ c [L(z)−L(x)] [L(z)−L(y)]

� [L(z)−L(x)−L(y)]2 (10)

for all x, y ∈ V and z�K 0, where c > 0 is a constant, and for the
operators G,H : V → V,G � H means 〈x, (G − H)x〉V > 0 for
any 0 6= x ∈ V andG � H means 〈x, (G−H)x〉V ≥ 0 for any x ∈ V.
The following proposition tries to establish such an implication.

Proposition 3.1. For any x = λxe + xe, y = λye + ye ∈ V and
z = λze + ze ∈ intK , if rλ2z ≥ ‖ze‖

2 and tr[L2(ze) − L2(xe) −
L2(ye)] ≥ r−1(‖ze‖2 − ‖xe‖2 − ‖ye‖2), then

z2�K x2 + y2 H⇒ L2(z)−L2(x)−L2(y) � 0 (11)

which is equivalent to saying that

z2�K x2 + y2 H⇒ 2 [L(z)−L(x)] [L(z)−L(y)]

� [L(z)−L(x)−L(y)]2 . (12)

Moreover, the two implications remain true when ‘‘�’’ is replaced by
‘‘�’’.

Proof. We adopt the proof technique of [4, Prop. 3.4]. First,
consider the case where z = (x2 + y2 + δe)1/2 for some δ > 0. Fix
any x, y ∈ Vwith x = λxe+ xe and y = λye+ ye where λx, λy ∈ R
and xe, ye ∈ V⊥e . From z

2
= x2+ y2+ δe and z = λze+ ze, we have

λ2z e+ 2λzze + z
2
e = λ

2
xe+ 2λxxe + x

2
e + λ

2
ye+ 2λyye + y

2
e + δe.
Noting that z2e , x
2
e , y

2
e ∈ Ve and xe, ye, ze ∈ V⊥e , we obtain from the

last equality that

λzze = λxxe + λyye and

λ2z e+ z
2
e = λ

2
xe+ x

2
e + λ

2
ye+ y

2
e + δe.

(13)

From the first equality of (13), λzL(ze)− λxL(xe)− λyL(ye) = 0,
which implies that

L2(z)−L2(x)−L2(y) =
(
λ2z − λ

2
x − λ

2
y

)
L(e)

+L2(ze)−L2(xe)−L2(ye).

Thus, to prove (11), it suffices to prove that for any 0 6= h =
λhe+ he ∈ V,(
λ2z − λ

2
x − λ

2
y

)
‖h‖2 + ‖ze ◦ h‖2 − ‖xe ◦ h‖2 − ‖ye ◦ h‖2 > 0,

which, by noting that z2e , x
2
e , y

2
e ∈ Ve, h = λhe+ he and he ∈ V⊥e , is

equivalent to

(λ2z − λ
2
x − λ

2
y)‖h‖

2
+ λ2h(‖ze‖

2
− ‖xe‖2 − ‖ye‖2)

+ (‖ze ◦ he‖2 − ‖xe ◦ he‖2 − ‖ye ◦ he‖2) > 0. (14)

Since λz > 0 by Lemma 3.1(b), from the two equalities in (13) we
have

rλ2z +
‖λxxe + λyye‖2

λ2z
= ‖z‖2 = rλ2x + ‖xe‖

2
+ rλ2y + ‖ye‖

2
+ rδ.

Multiplying the two sides with λ2z and adding λ
2
y‖xe‖

2
+ λ2x‖ye‖

2

simultaneously yields

(λ2x + λ
2
y)(‖xe‖

2
+ ‖ye‖2)+ rλ4z − λ

2
z (rλ

2
x + ‖xe‖

2
+ rλ2y + ‖ye‖

2)

> ‖λyxe − λxye‖2,

which is equivalent to (λ2z−λ
2
x−λ

2
y)(rλ

2
z−‖xe‖

2
−‖ye‖2) > ‖λyxe−

λxye‖2. This means that both λ2z −λ
2
x −λ

2
y and rλ

2
z −‖xe‖

2
−‖ye‖2

are positive or both are negative. If both are negative,wemust have
‖x‖2 + ‖y‖2 > 2rλ2z , which by the assumption rλ

2
z ≥ ‖ze‖

2 yields
the contradiction ‖z‖2 > ‖x‖2 + ‖y‖2 > 2rλ2z ≥ rλ

2
z + ‖ze‖

2
=

‖z‖2. Thus, we get

λ2z > λ2x + λ
2
y and rλ2z > ‖xe‖

2
+ ‖ye‖2. (15)

Using the first equality of (13) and the second inequality of (15),
for any se ∈ V⊥e ,〈
se,
[
L2(ze)−L2(xe)−L2(ye)

]
se
〉

= ‖ze ◦ se‖2 − ‖xe ◦ se‖2 − ‖ye ◦ se‖2

=
‖λxxe ◦ se + λyye ◦ se‖2

λ2z
−
(
‖xe ◦ se‖2 + ‖ye ◦ se‖2

)
=
(λ2x + λ

2
y − λ

2
z )
(
‖xe ◦ se‖2 + ‖ye ◦ se‖2

)
λ2z

−
‖se ◦ (λxye − λyxe)‖2

λ2z
≤ 0.

This shows thatL2(ze)−L2(xe)−L2(ye) is negative semidefinite
on V⊥e . Therefore,

‖ze ◦ he‖2 − ‖xe ◦ he‖2 − ‖ye ◦ he‖2

= 〈he, [L2(ze)−L2(xe)−L2(ye)]he〉
≥ 〈he, tr(L2(ze)−L2(xe)−L2(ye))Ihe〉
≥ r−1‖he‖2(‖ze‖2 − ‖xe‖2 − ‖ye‖2),
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where the last inequality is due to the given assumption. Along
with (15), we have that

(λ2z − λ
2
x − λ

2
y)‖h‖

2
+ λ2h(‖ze‖

2
− ‖xe‖2 − ‖ye‖2)

+ (‖ze ◦ he‖2 − ‖xe ◦ he‖2 − ‖ye ◦ he‖2)
≥ λ2h(‖z‖

2
− ‖x‖2 + ‖y‖2)+ r−1‖he‖2(‖z‖2 − ‖x‖2 − ‖y‖2)

= r−1‖h‖2(‖z‖2 − ‖x‖2 − ‖y‖2) > 0.

This shows that (14) holds, and the implication in (11) is true for
any x, y ∈ V and z = (x2 + y2 + δe)1/2. Using the same arguments
of [4, Prop. 3.4] yields that (11) holds.
We next prove that the implication in (11) is equivalent to that

of (12). Suppose that the implication in (11) holds. Fix any 0 6= h ∈
V. By the symmetry ofL(x), clearly,

〈h, [L(z)−L(x)] [L(z)−L(y)] h〉
= 〈h, [L(z)−L(y)] [L(z)−L(x)] h〉 .

Let S(x, y) denote the symmetric part of [L(z) − L(x)][L(z) −
L(y)]. Then,

〈h, [L(z)−L(x)] [L(z)−L(y)] h〉 = 〈h, S(x, y)h〉 .

Using the definition of S(x, y), a simple computation yields that

S(x, y) =
1
2
[L(y)−L(z)] [L(x)−L(z)]

+
1
2
[L(x)−L(z)] [L(y)−L(z)]

=
1
2
[L(z)−L(x)−L(y)]2

+
1
2

[
L2(z)−L2(x)−L2(y)

]
.

The last two equations along with Eq. (11) imply the implication in
(12). Conversely, if the implication in (12) holds, from the last two
equations we obtain the implication in (11). The last part follows
by the continuity of the operators. �

By Lemma 3.1(b)–(c), when r = 2, the assumptions of Propo-
sition 3.1 automatically hold, and we recover the first implication
of [4, Prop. 3.4], or its equivalent result as below.

Corollary 3.1. Suppose that r = 2. Then, for any x, y ∈ V and
z�K 0, it holds that

z2�K x2 + y2 H⇒ 2 [L(z)−L(x)] [L(z)−L(y)]

� [L(z)−L(x)−L(y)]2 . (16)

Moreover, the implication remains true when ‘‘�’’ is replaced by ‘‘�’’.

When r ≥ 3, the assumption rλ2z ≥ ‖ze‖
2 in Proposition 3.1

may not hold. Also, it is hard to verifywhether tr(L2(ze)−L2(xe)−
L2(ye)) ≥ r−1(‖ze‖2−‖xe‖2−‖ye‖2) holds or not. In other words,
by use of Proposition 3.1 it is difficult to achieve our goal for r ≥ 3.
However, as will be shown by Proposition 3.2, an implication as
in (10) can be established for r ≥ 3 by extending the proof of
[18, Lemma 6.3(c)] to another three classes of matrix algebras.

Proposition 3.2. Suppose that r ≥ 3. Then, for any x, y ∈ V and
z�K 0,

z2�K x2 + y2 H⇒ 4 [L(z)−L(x)] [L(z)−L(y)]

� [L(z)−L(x)−L(y)]2 . (17)

Moreover, the implication remains true when ‘‘�’’ is replaced by ‘‘�’’.

Proof. By [3, Theorem V.3.7], it suffices to prove this result for the
following algebras:
(i) The algebraSn of n× n real symmetric matrices;
(ii) The algebraHn of all n× n complex Hermitian matrices;
(iii) The algebraQn of all n× n quaternionic Hermitian matrices;
(iv) The algebra O3 of all 3× 3 octonionic Hermitian matrices.

Among others, the four classes of matrix algebras are equipped
with the Jordan product x ◦ y := 1

2 (xy + yx) and the trace inner
product 〈x, y〉T := <Tr(xy∗), where the notation ‘‘∗’’ means the
conjugate transpose, Tr(xy) denotes the trace of xy which is the
multiplication of matrices x and y, and<ameans the real part of a.
Let C,Q and O denote the complex number field, the

quaternion field and the octonion field, respectively. LetW be the
algebra of n×nmatriceswith entries inR,C, orQ, or the algebra of
3× 3 matrices with entries in O, equipped with the inner product
〈·, ·〉T and the norm ‖·‖T induced by 〈·, ·〉T. By [3, Propositions V.1.2,
V.1.5 and V.2.1], it is not difficult to verify that for any u, v, w ∈ W,

<Tr[(wu)(vw)] = <Tr[w(uvw)] = <Tr[wuvw]
= <Tr[w(uv)w], (18)

<Tr[w(uv)w] = <Tr[w(vu)w] if u, v, w are Hermitian, (19)

and

<Tr(uv) = <Tr(uv∗) if u is Hermitian. (20)

Also, by [3, Prop. V.2.1] we may verify that 〈L(x)y, z〉T =
〈y,L(x)z〉T for all x, y and z from the spaceSn, orHn, orQn, or O3.
Fix any x and y from Sn, or Hn, or Qn, or O3. Since z2�K x2 + y2,
from the Löwner–Heinz inequality in [13] it follows that

z�K x and z�K y. (21)

Fix any 0 6= a from the same space as x and y. From the above
discussions, we have

4 〈a, [L(z)−L(x)] [L(z)−L(y)] a〉T
= 4 〈(z − x) ◦ a, (z − y) ◦ a〉T
= 〈a(z − x)+ (z − x)a, a(z − y)+ (z − y)a〉T
= 2<Tr [(a(z − x)+ (z − x)a)((z − y)a)]
= 2<Tr [a(z − x)(z − y)a+ (z − x)a(z − y)a]
= 2<Tr

[
a(z2 − zy− xz + xy)a

]
+ 2<Tr

[
(z − x)1/2(z − x)1/2a(z − y)1/2(z − y)1/2a

]
> <Tr

[
a(2xy− 2zx− 2zy+ z2 + x2 + y2)a

]
+ 2<Tr

[
(z − x)1/2a(z − y)1/2(z − y)1/2a(z − x)1/2

]
= <Tr[a(z − x− y)2a] + 2

∥∥(z − x)1/2a(z − y)1/2∥∥2T
≥ <Tr[a(z − x− y)2a]
= <Tr[(a(z − x− y))((z − x− y)a)]
= <Tr[a(z − x− y)(a(z − x− y))∗]
= ‖(z − x− y)a‖2T,

where the first equality is by the symmetry ofL(·)with respect to
〈·, ·〉T, the third is due to (20) and the fact that a(z − x)+ (z − x)a
is Hermitian, the fourth is by (18), the fifth is by (18) and (21), and
the first inequality is using z2�K x2 + y2. On the other hand,〈
a, [L(z)−L(x)−L(y)]2 a

〉
T

= 〈(z − x− y) ◦ a, (z − x− y) ◦ a〉T
= <Tr [((z − x− y) ◦ a)((z − x− y) ◦ a)]
≤ <Tr

[
((z − x− y) ◦ a)((z − x− y) ◦ a)∗

]
= ‖(z − x− y) ◦ a‖2T

=
‖(z − x− y)a+ a(z − x− y)‖2T

4
≤ ‖(z − x− y)a‖2T,
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where the first inequality is since <Tr(uu) ≤ <Tr(uu∗), and the
last one is due to Cauchy–Schwarz inequality. From the last two
equations, we get the desired result. �

Comparing with Corollary 3.1, we only obtain a weaker
implication for the case r ≥ 3 by using the condition z2�K x2+y2.
We are not clear whether the result of Corollary 3.1 holds for the
case r ≥ 3. Nonetheless, we would view it as a positive conjecture
because numerical simulations support that it is true for the real
symmetric matrix algebraSn.
Now, by Corollary 3.1 and Proposition 3.2, we can establish the

following property of∇ψFB , which is an extension of [2, Lemma 6]
and [18, Lemma 6.3(c)].

Proposition 3.3. Let ψFB be defined by (4). For any x, y ∈ V, the
following results hold.

(a) 〈∇xψFB(x, y),∇yψFB(x, y)〉 ≥ 0, with the equality holding if and
only if φFB(x, y) = 0,

(b) ψFB(x, y) = 0 ⇐⇒ ∇xψFB(x, y) = 0 ⇐⇒ ∇yψFB(x, y) = 0.

Proof. (a) Fix any x, y ∈ V. If (x, y) = (0, 0), the result is
immediate by Lemma 2.2. We next assume that (x, y) 6= (0, 0)
and let z = (x2 + y2)1/2. For simplicity, we abbreviate φFB(x, y)
as φFB . Applying Lemma 2.2, Corollary 3.1 and Proposition 3.2, we
have that

〈∇xψFB(x, y),∇yψFB(x, y)〉

=
〈[

L(x)L−1(z)− I
]
φFB ,

[
L(y)L−1(z)− I

]
φFB
〉

=
〈
[L(y)−L(z)] [L(x)−L(z)]L−1(z)φFB , L−1(z)φFB

〉
≥ c−1

〈
[L(z)−L(x)−L(y)]2L−1(z)φFB , L−1(z)φFB

〉
= c−1

∥∥[L(z)−L(x)−L(y)]L−1(z)φFB
∥∥2

= c−1
∥∥L(φFB)L−1(z)φFB∥∥2 ≥ 0 (22)

where c = 2 if r = 2, and otherwise c = 4, and the last equality is
due to

L(z)−L(x)−L(y) = L(z − x− y) = L(φFB).

This proves the first part. If 〈∇xψFB(x, y),∇yψFB(x, y)〉 = 0, then
from (22) we obtain L(φFB)L

−1(z)φFB = 0. From the definition of
inner product in (7), we get

0 = tr
(
L(φFB)L

−1(z)φFB
)
= 〈e,L(φFB)L

−1(z)φFB〉

= 〈φFB ,L
−1(z)φFB〉,

which by [14] implies φFB = 0. Conversely, if φFB = 0, then from
Lemma 2.2we readily obtain 〈∇xψFB(x, y),∇yψFB(x, y)〉 = 0. Thus,
we complete the proof of part (a).
(b) The result is immediate by part (a) and the formulas of ∇xψFB
and ∇yψFB . �

In what follows, we assume A is a direct product of simple
Euclidean Jordan algebras

A = A1 × A2 × · · · × Am,

where each Ai = (Vi, ◦, 〈·, ·〉Vi) is a simple Euclidean Jordan
algebra with dim(Vi) = ni and

∑m
i=1 ni = n. For any x, y ∈ V, we

write x = (x1, . . . , xm), y = (y1, . . . , ym) with xi, yi ∈ Vi. Then,
x◦y = (x1 ◦y1, . . . , xm ◦ym) and 〈x, y〉 = 〈x1, y1〉+ · · ·+〈xm, ym〉,
and consequently, the SCCP (1) is equivalent to finding a vector
ζ ∈ V such that

Fi(ζ ) ∈ K i, Gi(ζ ) ∈ K i, 〈Fi(ζ ),Gi(ζ )〉 = 0,
i = 1, 2, . . . ,m

(23)
whereK i is a symmetric cone inVi, and F = (F1, . . . , Fm) and G =
(G1, . . . ,Gm)with Fi,Gi : V→ Vi. Note thatK = K1

×· · ·×Km,
and ψFB(x, y) and φFB(x, y) are written as

ψFB(x, y) =
(
ψFB(x1, y1), . . . , ψFB(xm, ym)

)
and

φFB(x, y) =
(
φFB(x1, y1), . . . , φFB(xm, ym)

)
.

To establish the main result of this paper, we also need the
definition of the Cartesian P0-property for a linear transformation
fromV toV. Specifically, a linear transformation G : V→ V is said
to have the Cartesian P0-property if for any 0 6= ζ = (ζ1, . . . , ζm) ∈
V, there exists an index ν ∈ {1, 2, . . . ,m} such that ζν 6= 0 and
〈ζν, (Gζ )ν〉 ≥ 0. This is a direct extension of the Cartesian P0-
property introduced by Chen and Qi [1] for SDCPs.

Theorem 3.1. Let F and G be differentiable mappings from V to V.
Then, every stationary point of (6) is a solution of (1) under one of
the following conditions:

(a) For every ζ ∈ V,∇F(ζ ) and −∇G(ζ ) are column monotone,
i.e., for any u, v ∈ V,

∇F(ζ )u−∇G(ζ )v = 0 H⇒ 〈u, v〉 ≥ 0.

(b) For every ζ ∈ V,∇G(ζ ) is invertible and∇G(ζ )−1∇F(ζ ) has the
Cartesian P0-property.

Proof. Let ζ be an arbitrary stationary point of the minimization
problem (6). Then,

0 = ∇ΨFB(ζ ) = ∇F(ζ )∇xψFB(F(ζ ),G(ζ ))

+∇G(ζ )∇yψFB(F(ζ ),G(ζ )) (24)

where for any u = (u1, . . . , um), v = (v1, . . . , vm) ∈ V with
ui, vi ∈ Vi, we write

∇xψFB(u, v) =
(
∇x1ψFB(u1, v1), . . . ,∇xmψFB(um, vm)

)
,

∇yψFB(u, v) =
(
∇y1ψFB(u1, v1), . . . ,∇ymψFB(um, vm)

)
.

If condition (a) is satisfied, then from the column monotonicity of
∇F and ∇Gwe have

0 ≥
〈
∇xψFB(F(ζ ),G(ζ )),∇yψFB(F(ζ ),G(ζ ))

〉
=

m∑
i=1

〈
∇xiψFB(Fi(ζ ),Gi(ζ )),∇yiψFB(Fi(ζ ),Gi(ζ ))

〉
.

Together with Proposition 3.3(a), we get φFB(Fi(ζ ),Gi(ζ )) = 0 for
all i. By [5, Prop. 6] and Eq. (23), this shows that ζ is a solution
of (1).
Suppose that condition (b) is satisfied. From Eq. (24), it follows

that

0 = ∇G(ζ )−1∇F(ζ )∇xψFB(F(ζ ),G(ζ ))+∇yψFB(F(ζ ),G(ζ )). (25)

Assume on the contrary that ζ is not a solution of (1). Then, by
Proposition 3.3(b),

∇xψFB(F(ζ ),G(ζ )) 6= 0 and ∇yψFB(F(ζ ),G(ζ )) 6= 0.

Using the Cartesian P0-property of∇G(ζ )−1∇F(ζ ), there exists an
index ν ∈ {1, 2, . . . ,m} such that ∇xνψFB(Fν(ζ ),Gν(ζ )) 6= 0 and〈
∇xνψFB(Fν(ζ ),Gν(ζ )),

[
∇G(ζ )−1∇F(ζ )∇xψFB(F(ζ ),G(ζ ))

]
ν

〉
≥ 0.

On the other hand, from Eq. (25) it follows that〈
∇xνψFB(Fν(ζ ),Gν(ζ )),

[
∇G(ζ )−1∇F(ζ )∇xψFB(F(ζ ),G(ζ ))

]
ν

〉
= −〈∇xνψFB(Fν(ζ ),Gν(ζ )),∇yνψFB(Fν(ζ ),Gν(ζ ))〉.

Combining the last two equations with the inequality in Proposi-
tion 3.3(a) yields that

〈∇xνψFB(Fν(ζ ),Gν(ζ )),∇yνψFB(Fν(ζ ),Gν(ζ ))〉 = 0,
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and consequently φFB(Fν(ζ ),Gν(ζ )) = 0. This contradicts ∇xνψFB
(Fν(ζ ),Gν(ζ )) 6= 0. Therefore, ζ must be a solution of (1). Theproof
is complete. �

Theorem 3.1 unifies and extends the results of [2, Prop. 3]
and [18, Prop. 6.1]. When ∇G is invertible, the column mono-
tonicity of ∇F(ζ ) and −∇G(ζ ) is equivalent to the positive
semidefiniteness of ∇G(ζ )−1∇F(ζ ), which implies the Cartesian
P0-property. This means that condition (b) is weaker than condi-
tion (a) for invertible ∇G.
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